Generators of matrix algebras in dimension 2 and 3

Helmer Aslaksen a,*, Arne B. Sletsjøe b

a Department of Mathematics, National University of Singapore, Singapore 117543, Singapore
b Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway

Received 14 June 1995; accepted 8 May 2006
Available online 8 October 2008
Submitted by T.J. Laffey

Abstract

Let K be an algebraically closed field of characteristic zero and consider a set of 2×2 or 3×3 matrices. Using a theorem of Shemesh, we give conditions for when the matrices in the set generate the full matrix algebra.

Keywords: Generator; Matrix; Algebra

1. Introduction

Let K be an algebraically closed field of characteristic zero, and let $M_n = M_n(K)$ be the algebra of $n \times n$ matrices over K. Given a set $S = \{A_1, \ldots, A_p\}$ of $n \times n$ matrices, we would like to have conditions for when the A_i generate the algebra M_n. In other words, determine whether every matrix in M_n can be written in the form $P(A_1, \ldots, A_p)$, where P is a noncommutative polynomial. (We identify scalars with scalar matrices so the constant polynomials give the scalar matrices.) The case $n = 1$ is of course trivial, and when $p = 1$, the single matrix A_1 generates a commutative subalgebra. We therefore assume that $n, p \geq 2$. This question has been studied by many authors, see for example the extensive bibliography in [2]. We will give some results in the case of $n = 2$ or 3. We would like to thank the referees and the editor for making nontrivial improvements to the paper.

* Corresponding author.
E-mail addresses: aslaksen@math.nus.sg (H. Aslaksen), arnebs@math.uio.no (A.B. Sletsjøe).

0024-3795/$ - see front matter © 2008 Published by Elsevier Inc.
doi:10.1016/j.laa.2006.05.022
2. General observations

Let \(\mathcal{A} \) be the algebra generated by \(S \). If we could show that the dimension of \(\mathcal{A} \) as a vector space is \(n^2 \), it would follow that \(\mathcal{A} = M_n \). This can sometimes be done when we know a linear spanning set \(\mathcal{B} = \{ B_1, \ldots, B_q \} \) of \(\mathcal{A} \). Let \(M \) be the \(n^2 \times q \) matrix obtained by writing the matrices in \(\mathcal{B} \) as column vectors. We would like to show that \(\text{rank } M = n^2 \). Since \(M \) is an \(n^2 \times n^2 \) matrix and \(\text{rank } M = \text{rank } (MM^*) \), it suffices to show that \(\det (MM^*) \neq 0 \). Unfortunately, the size of \(\mathcal{B} \) may be big [4]. In this paper we will combine this method with results of Shemesh and Spencer and Rivlin to get some simple results for \(n = 2 \) or 3.

The starting point is the following well-known consequence of Burnside’s Theorem.

Lemma 1. Let \(\{ A_1, \ldots, A_n \} \) be a set of matrices in \(M_n \) where \(n = 2 \) or 3. The \(A_i \)’s generate \(M_n \) if and only if they do not have a common eigenvector or a common left-eigenvector.

We can therefore use the following theorem due to Shemesh [5].

Theorem 2. Two \(n \times n \) matrices, \(A \) and \(B \), have a common eigenvector if and only if

\[
\sum_{k,l=1}^{n-1} [A^k, B^l]^* [A^k, B^l]
\]

is singular.

Adding scalar matrices to the \(A_i \)’s does not change the subalgebra they generate, so we sometimes assume that our matrices lie in \(\mathfrak{sl}_n = \{ M \in M_n | \text{tr } M = 0 \} \). We also sometimes identify matrices in \(M_n \) with vectors in \(K^{n^2} \), and if \(N_1, \ldots, N_{n^2} \in M_n \), then \(\det(N_1, \ldots, N_{n^2}) \) denotes the determinant of the \(n^2 \times n^2 \) matrix whose \(j \)th column is \(N_j \), written as \((N_{j1}, \ldots, N_{jn})^t \), where \(N_{jk} \) is the \(k \)th row of \(N_j \) for \(k = 1, 2, \ldots, n \). We write the scalar matrix \(aI \) as \(\mathcal{A} \). When we say that a set of matrices generate \(M_n \), we are talking about \(M_n \) as an algebra, while when we say that a set of matrices form a basis of \(M_n \), we are talking about \(M_n \) as a vector space.

3. The \(2 \times 2 \) case

The following theorem is well-known, but we include a proof since it illustrated a technique we will use in the \(3 \times 3 \) case. Notice that the proof gives us an explicit basis for \(M_2 \).

Theorem 3. Let \(A, B \in M_2 \). \(A \) and \(B \) generate \(M_2 \) if and only if \([A, B] \) is invertible.

Proof. A direct computation shows that

\[
\det(I, A, B, AB) = -\det(I, A, B, BA) = \det[A, B].
\]

Hence

\[
\det(I, A, B, [A, B]) = 2\det[A, B]. \quad (1)
\]

But if \(I, A, B, [A, B] \) are linearly independent, then the dimension of \(\mathcal{A} \) as a vector space is 4, so \(A \) and \(B \) generate \(M_2 \). \(\square \)
We call $[M, N, P] = [M, [N, P]]$ a double commutator. The characteristic polynomial of A can be written as
\[x^2 - x \text{tr} A + ((\text{tr} A)^2 - \text{tr} A^2)/2. \]
It follows that the discriminant of the characteristic polynomial of A can be written as
\[\text{disc}(A) = 2\text{tr} A^2 - (\text{tr} A)^2. \]

Lemma 4. Let $A, B, C \in \mathbb{M}_2$ and suppose that no two of them generate \mathbb{M}_2. Then A, B, C generate \mathbb{M}_2 if and only if the double commutator $[A, B, C] = [A, [B, C]]$ is invertible.

Proof. A direct computation shows that
\[\det(I, A, B, C)^2 = -\det[A, [B, C]] - \text{disc}(A)\det[B, C]. \tag{2} \]
But if I, A, B, C are linearly independent, then A, B and C generate \mathbb{M}_2. □

Notice that the above proof gives us an explicit basis for \mathbb{M}_2. We can now give a complete solution for the case $n = 2$.

Theorem 5. The matrices $A_1, \ldots, A_p \in \mathbb{M}_2$ generate \mathbb{M}_2 if and only if at least one of the commutators $[A_i, A_j]$ or double commutators $[A_i, A_j, A_k] = [A_i, [A_j, A_k]]$ is invertible.

Proof. If $p > 4$, the matrices are linearly dependent, so we can assume that $p \leq 4$. Suppose that A_1, A_2, A_3, A_4 generate \mathbb{M}_2, but that no proper subset of them generates \mathbb{M}_2. Then the four matrices are linearly independent, and we can write the identity I as a linear combination of them. If the coefficient of A_4 in this expression is nonzero, then A_1, A_2, A_3, I span and therefore generate \mathbb{M}_2, so A_1, A_2, A_3 generate \mathbb{M}_2. Thus, if A_1, \ldots, A_p generate \mathbb{M}_2, we can always find a subset of three of these matrices that generate \mathbb{M}_2. The result now follows from Theorem 3 and Lemma 4. □

4. Two 3×3 matrices

In the case of two 3×3 matrices, we have the following well-known theorem.

Theorem 6. Let $A, B \in \mathbb{M}_3$. If $[A, B]$ is invertible, then A and B generate \mathbb{M}_3.

For $M \in \mathbb{M}_3$, we define $H(M)$ to be the linear term in the characteristic polynomial of M. Hence
\[H(M) = ((\text{tr} M)^2 - \text{tr} M^2)/2, \]
which is equal to the sum of the three principal minors of degree two of M. Notice that $H(M)$ is invariant under conjugation, and that if $[A, B]$ is singular, then $[A, B]$ is nilpotent if and only if $H([A, B]) = 0$.

The following theorem shows that if $[A, B]$ is invertible and $H([A, B]) \neq 0$, then we can give an explicit basis for \mathbb{M}_3.

Theorem 7. Let $A, B \in \mathbb{M}_3$. Then
\[\det(I, A, A^2, B, B^2, AB, BA, [A, [A, B]], [B, [B, A]]) = 9 \det[A, B]H([A, B]), \quad (3) \]

so if \(\det[A, B] \neq 0 \) and \(H([A, B]) \neq 0 \), then
\[\{ I, A, A^2, B, B^2, AB, BA, [A, [A, B]], [B, [B, A]] \} \]
form a basis for \(M_3 \).

The proof of (3) is by direct computation. Notice that this can be thought of as a generalization of (1) and (2).

We can also use Shemesh’s Theorem to characterize pairs of generators for \(M_3 \).

Theorem 8. The two \(3 \times 3 \) matrices \(A \) and \(B \) generate \(M_3 \) if and only if both
\[\sum_{k,l=1}^{2} [A^k, B^l]^* [A^k, B^l] \quad \text{and} \quad \sum_{k,l=1}^{2} [A^k, B^l] [A^k, B^l]^* \]
are invertible.

5. Three or more \(3 \times 3 \) matrices

We start with the following theorem due to Laffey [1].

Theorem 9. Let \(\mathcal{S} \) be a set of generators for \(M_3 \). If \(\mathcal{S} \) has more than four elements, then \(M_3 \) can be generated by a proper subset of \(\mathcal{S} \).

It is therefore sufficient to consider the cases \(p = 3 \) or 4. Following the approach outlined earlier, we start by finding a linear spanning set. Using the polarized Cayley–Hamilton Theorem, Spencer and Rivlin [6,7] deduced the following theorem.

Theorem 10. Let \(A, B, C \in M_3 \). Define
\[S(A) = \{ A, A^2 \} \]
\[T(A, B) = \{ AB, A^2B, AB^2, A^2B, A^2BA, A^2B^2A \} \]
\[S(A_1, A_2) = T(A_1, A_2) \cup T(A_2, A_1) \]
\[T(A, B, C) = \{ ABC, A^2BC, BA^2C, BCA^2, A^2B^2C, CA^2B^2, ABCA^2 \} \]
\[S(A_1, A_2, A_3) = \bigcup_{\sigma \in S_3} T(A_\sigma(1), A_\sigma(2), A_\sigma(3)). \]

1. The subalgebra generated by \(A \) and \(B \) is spanned by
\[I \cup S(A) \cup S(B) \cup S(A, B). \]
2. The subalgebra generated by \(A, B \) and \(C \) is spanned by
\[I \cup S(A) \cup S(B) \cup S(A, B) \cup S(A, B, C). \]
These spanning sets are not optimal. They include words of length 5. Paz [3] has proved that M_n can be generated by words of length $[(n^2 + 2)/3]$. For M_3 this gives words of length 4. The general bound has been improved by Pappacena [4].

We next give a version of Shemesh’s Theorem for three 3×3 matrices.

Theorem 11. The matrices $A, B, C \in M_3$ have a common eigenvector if and only the matrix

$$M(A, B, C) = \sum_{M \in S(A), N \in S(B)} [M, N]^* [M, N] + \sum_{M \in S(A), N \in S(C)} [M, N]^* [M, N]$$

$$+ \sum_{M \in S(B), N \in S(C)} [M, N]^* [M, N]$$

is singular.

Proof. Let \mathcal{A} be the algebra generated by A, B, C. Set

$$V = \bigcap_{M \in S(A)} \ker [M, N] \bigcap_{M \in S(A)} \ker [M, N] \bigcap_{M \in S(C)} \ker [M, N] \bigcap_{M \in S(C)} \ker [M, N].$$

We claim that V is invariant under \mathcal{A}. Let $v \in V$ and consider $\mathcal{A}v$. We know from Theorem 10 that any element of \mathcal{A} is a linear combination of terms of the form

$$p(A, B)C^i q(A, B)C^j r(A, B)$$

with $p(A, B), q(A, B), r(A, B) \in I \cup S(A) \cup S(B) \cup S(A, B)$. Since

$$v \in \ker [S(A, B), S(C)] \cap \ker [S(A), S(C)] \cap \ker [S(B), S(C)],$$

we get

$$p(A, B)C^i q(A, B)C^j r(A, B) v = p(A, B)C^i q(A, B) r(A, B)C^j v = p(A, B)q(A, B) r(A, B)C^{i+j} v = C^{i+j} p(A, B)q(A, B) r(A, B) v.$$

In the same way we use the fact that $v \in [S(A), S(B)]$ to sort the terms of the form $p(A, B) q(A, B) r(A, B) v$, so that we finally get

$$\mathcal{A}v = \left\{ \sum a_{ijk} C^i B^j A^K v \mid 0 \leq i, j, k \leq 2, a_{ijk} \in K \right\}.$$

Using the above technique, it follows easily that $\mathcal{A}v \subseteq V$ and that V is \mathcal{A} invariant. Hence we can restrict \mathcal{A} to V, but since the elements of \mathcal{A} commute on V, they have a common eigenvector, and we can finish as in the proof of Theorem 2. \square

From this we deduce the following theorem.

Theorem 12. Let $A, B, C \in M_3$. Then A, B, C generate M_3 if and only if both $M(A, B, C)$ and $M(A^t, B^t, C^t)$ are invertible.
For the case of four matrices, we can prove the following theorem.

Theorem 13. The matrices $A_1, A_2, A_3, A_4 \in M_3$ have a common eigenvector if and only the matrix

$$M(A_1, A_2, A_3, A_4) = \sum_{i,j=1, i < j}^{4} \left(\sum_{M \in S(A_i), N \in S(A_j)} [M, N]^*[M, N] \right)$$

$$+ \sum_{i,j=1, i < j}^{3} \left(\sum_{M \in S(A_i, A_j), N \in S(A_4)} [M, N]^*[M, N] \right) + \sum_{M \in S(A_1, A_2, A_3), N \in S(A_4)} [M, N]^*[M, N].$$

is singular.

Proof. Similar to the proof of Theorem 11. □

From this we deduce the following theorem.

Theorem 14. Let $A, B, C, D \in M_3$. Then A, B, C, D generate M_3 if and only if both $M(A, B, C, D)$ and $M(A^t, B^t, C^t, D^t)$ are invertible.

References