Life-history variation of wild reindeer (*Rangifer tarandus*) in the highly productive North Ottadalen region, Norway

Eigil Reimers1,2, Nina Holmengen2 and Atle Mysterud2*

1 Norwegian College of Veterinary Science, Department of Morphology, Genetics and Aquatic Biology, P.O. Box 8146, Dep 0033 Oslo, Norway
2 Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway

(Accepted 19 May 2004)

Abstract

Variation in life history is a central key to understanding population dynamics, and density dependence and climate are important factors in shaping life-history variation in ungulates. Early growth is often sensitive to adverse conditions and this may in turn affect juvenile survival and age at first reproduction. We report variation in body weight of 5079 reindeer *Rangifer tarandus* from North Ottadalen, a very productive reindeer area in Norway, sampled over 14 years in the period 1967–1989. The North Ottadalen reindeer herd was established in 1964 from a winter herd of some 500 semi-domestic reindeer, and allowed to grow to a peak of over 3300 reindeer in 1974, after which increased harvest decreased the population size. The proportion of lactating yearling females varied between 0% and 50%. Lactating females had lower autumn body weights than non-lactating females. A decline in body weight with age, i.e. senescence, was evident in both males and females from around 7 to 9 years of age. Body weights of all age and sex groups as well as the proportion of yearling females lactating decreased over time, and more so in younger than older males, although the population size declined markedly after the population peak in 1974. We found no effect of the North Atlantic Oscillation or local weather on body weight. The possible causes of the marked decline in performance with time in the North Ottadalen reindeer herd are discussed, and it is suggested that this may be related to the transition from being managed as semi-domestic to wild (i.e. hunted).

Key words: *Rangifer tarandus*, wild reindeer, life-history variation

INTRODUCTION

Density dependence and climate are both important in shaping variation in life-history traits and subsequent population dynamics in ungulates (Sæther, 1997; Gaillard et al., 2000; Coulson et al., 2001). The most sensitive parameter towards density and climatic conditions are typically early growth, which may in turn affect juvenile survival and age at first reproduction (Reimers, 1983b; Gaillard et al., 2000). Early body weight is therefore an important life-history trait to study in order to understand population dynamics (Gaillard, Festa-Bianchet & Yoccoz, 1998; Gaillard et al., 2000).

While the effects of increasing density on life-history traits are nearly always negative (Fowler, 1987; Gaillard et al., 2000), there has been more discussion regarding patterns of life-history variation related to climate (Sæther, 1997; Weladji et al., 2002; Mysterud et al., 2003). In recent years, much attention has been paid to how the North Atlantic Oscillation (NAO), a climatic phenomenon explaining a large proportion of the weather patterns in the North Atlantic region (Hurrell, 1995; Hurrell et al., 2003), affects life-history variation and population dynamics of ungulates (Post et al., 1997; Post & Stenseth, 1999; Mysterud et al., 2001b; reviews in Stenseth et al., 2002; Mysterud et al., 2003). The winter-NAO is indexed from December through March, and may directly affect herbivores by mechanisms such as rainfall-induced mortality of soay sheep *Ovis aries* on St. Kilda (Catchpole et al., 2000; Coulson et al., 2001). Indirect effects of the NAO are also important, as winters with much snow lead to a spatially heterogeneous snow melt. This results in more variable plant flowering dates (Post & Stenseth, 1999) leading to newly emergent plants of high quality throughout the grazing season giving higher autumn body weights in herbivores (Mysterud et al., 2001b).

While much has been published on the responses of northern temperate ungulates to the NAO (reviews in Ottersen et al., 2001; Stenseth et al., 2002; Mysterud et al., 2003), little information is available for alpine ungulates. A negative correlation between adult female fecundity and the NAO was reported for reindeer *Rangifer*...
Table 1. An overview of sample sizes separated by year, age groups and sex

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female calves</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>40</td>
<td>47</td>
<td>44</td>
<td>37</td>
<td>6</td>
<td>7</td>
<td>19</td>
<td>208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male calves</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>25</td>
<td>35</td>
<td>18</td>
<td>24</td>
<td>9</td>
<td>7</td>
<td>26</td>
<td>154</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yearling females</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td>83</td>
<td>143</td>
<td>96</td>
<td>123</td>
<td>9</td>
<td>22</td>
<td>517</td>
</tr>
<tr>
<td>Yearling males</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>12</td>
<td>31</td>
<td>16</td>
<td>97</td>
<td>97</td>
<td>112</td>
<td>97</td>
<td>136</td>
<td>31</td>
<td>7</td>
<td>45</td>
</tr>
<tr>
<td>Adult females</td>
<td>7</td>
<td>20</td>
<td>11</td>
<td>6</td>
<td>68</td>
<td>39</td>
<td>84</td>
<td>405</td>
<td>414</td>
<td>356</td>
<td>490</td>
<td>44</td>
<td>19</td>
<td>97</td>
</tr>
<tr>
<td>Adult males</td>
<td>102</td>
<td>67</td>
<td>3</td>
<td>19</td>
<td>75</td>
<td>84</td>
<td>49</td>
<td>229</td>
<td>368</td>
<td>177</td>
<td>211</td>
<td>41</td>
<td>14</td>
<td>98</td>
</tr>
</tbody>
</table>

| Proportion of yearling females lactating | 0.10 | 0.20 | 0.50 | 0.25 | 0.20 | 0.19 | 0.17 | 0.23 | 0.21 | 0.11 | 0 |

R. tarandus at Hardangervidda, Norway (Post & Stenseth, 1999). In the Pyrénées, the NAO partly accounted for cohort effects in survival in the alpine chamois Rupicapra rupicapra, while this was not found in the Alps (Loison, Jullien & Menaut, 1999). Individuals born after positive NAO winters (indicative of high temperature and low precipitation) exhibited a low adult winter survival in the Pyrénées. However, most of the information that is published on alpine and arctic ungulates is data on total population counts or some other population indices (Post & Stenseth, 1999; Aanes et al., 2002; Forchhammer et al., 2002; Post & Forchhammer, 2002), giving little insight into the population processes. In this study, we present analysis of earlier unpublished data on body weight from 362 calves, 1120 yearlings and 3597 adult reindeer from North Ottadalen in Norway (Table 1). For females, lactational status was also given, so that we could estimate variation in age of first reproduction. We test the predictions that: (1) body weights of reindeer calves and yearlings should be negatively affected by density (Skogland, 1990); (2) the NAO should be negatively related to weights (as fecundity was reported depressed on Hardangervidda, Norway; Post & Stenseth, 1999); (3) lactating females have a lower body mass than non-lactating females due to costs of reproduction (Reimers, 1983b; Sand, 1998; Finstad & Prichard, 2000); (4) there is senescence in body weight for the oldest age-classes (Mysterud et al., 2001c).

MATERIAL AND METHODS

Study area

Data derive from the management area of the North Ottadalen wild reindeer, located in the North Ottadalen mountain range (approximately 62° N, 8–9° E) in southern part of Norway. The region covers an area of 3245 km², with peaks reaching above 2000 m a.s.l. The region is fairly undisturbed with little human infrastructure such as cabin areas and tourist trail systems. There is a varied climate due to its wide longitudinal extension. It is situated partly in a continental region with cold winters, warm summers and little precipitation, and partly in an oceanic region with heavy rainfall during summers and much snow during relatively mild winters. The rock composition lies within the north-western bedrock area, mainly consisting of Precambrian gneisses with low levels of plant nutrition. There are some Quaternary deposits from the latest ice age, deposited as glacialfluvians fans, moraine material in the valley bottoms, and some moraines at the mountain plains. Apart from this, there is little soil overlying the bedrock. The plant cover in North Ottadalen is sparse due to the nutritional composition of the bedrock and the high altitude. The timberline is at approximately 1000 m a.s.l. and birch Betula pubescens is the borderline tree species. Willow Salix sp. is a major component of the vegetation, as are lichens and heather species (Abrahamsen et al., 1977).

The North Ottadalen reindeer population

The reindeer in Ottadalen were semi-domesticated until 1964, when the semi-domestic reindeer company (Trio tamreinlag A/L) terminated their activity. A total of 402 calves and yearlings from the final gathering was released in 1964–65 in the north-western part of North Ottadalen, where they joined an estimated 100 wild reindeer (made up partly from animals lost from the Trio herd in previous years and partly from animals native to this area) (Reimers, 1972). The population was allowed to grow until hunting began in 1967 (Reimers, 1983a). Hunting quotas have ranged from a few hundred animals in the 1960s to more than 1000 animals in the 1980s and 1990s (Statistics Norway 1967–1990; Fig. 1a). The population size has fluctuated throughout the years peaking during 1974–75 at around 3300 animals (Fig. 1a). North Ottadalen is known as a productive reindeer area, with some females calving as yearlings (Reimers, 1983b; Reimers, 1997). Calving is also quite early, but has changed from May 6 during 1969–72 to May 12–14 during 1996–98 (Flydal & Reimers, 2002), compared to May 24–25 in other wild reindeer areas in Norway, such as Rondane and Hardangervidda (Reimers, Klein & Sørumgård, 1983).

Reindeer data

Jawbones were collected from 362 calves, 1120 yearlings and 3597 adult reindeer during the annual harvest in August–September (years 1967–77, 1983, 1988–1989; i.e., 14 years) together with data on dressed weight (i.e. live weight minus head, skin, viscera, bleedable blood
and metapodials) and female lactational status (Table 1). Lactational status in August–September probably underestimates female productivity in this area (see Reimers, 1997), as a number of females have ceased or reduced lactation to a level that may go undetected by the observer. The jawbones were sent to the State Game Research Institute for age analyses. Age was determined by tooth development in young animals and by counting annuli in tooth cementum in adults (Reimers & Nordby, 1968).

Estimates of population size were made in February–March each year by aerial counts of herds on their winter ranges, mainly in central and eastern parts of the area (Fig. 1a). Experienced ground personnel assisted in locating the reindeer herds, which were flown over and photographed from fixed wing aircrafts. Generally, females and younger animals were found in 2 to 3 large herds, while the males frequently appeared in herds smaller than 100 animals. In 1975 the local game authorities carried out aerial counts on February 26 and March 21 and found 3250 and 3280 animals, respectively, indicating that surveys are relatively reliable and, at least, capture trends. While we are confident that the herds of females and younger animals were found, photographed and accurately counted in the different years, a small number of males may have been overlooked in some years. We do realize that they are minimum counts, and therefore refer to this as the minimum population size index. For the period 1964 to 1973, values are interpolated based on the known starting point (502 animals in 1964) and the count in 1974 (using the average multiplication rate of 1.31), and some simple interpolations between years were also done (Fig. 1a). From the peak in 1974 to 1990, there was a marginally significant linear (ln) decrease in population size over time when only including actual counts (linear regression, $r^2 = 0.271$, $T = -2.021$, $P = 0.068$), but a second-order polynomial for year gave a much better fit ($r^2 = 0.697$, $T = 3.752$, $P = 0.004$), as the population size was fairly stable (weak increase) between 1979 and 1989 (Fig. 1a, $r^2 = 0.255$, $T = 1.548$, $P = 0.165$).

Climate and local weather

The NAO is an alteration in air pressure difference between the sub tropic high-pressure belt situated over the Azores and low-pressure belt situated over Iceland (Hurrell, 1995; Hurrell et al., 2003), and its use in ecological studies is described in detail elsewhere (Ottersen et al., 2001; Stenseth et al., 2002; Mysterud et al., 2003). The NAO is commonly indexed from December through March (available at http://www.cgd.ucar.edu/~jhurrell/nao.html/#winter). In Norway, a positive value of the NAO index indicates warm winters with much precipitation. In coastal areas of Norway, the temperature during winter is frequently close to zero, and precipitation alters between snow and rain. The NAO index therefore has a negative correlation with snow depth at sea level and a positive correlation at higher altitudes (Mysterud et al., 2000). The use of global climate indices like the NAO solves difficult problems of model selection often related to the large number of local weather parameters (Stenseth et al., 2003). In addition to the commonly used winter index described, we also used the seasonal (winter: December–February; spring: March–May; summer: June–August) indices of the NAO based on principal component analysis (Hurrell et al., 2003; available from http://www.cgd.ucar.edu/~jhurrell/nao.pc.html).

Data on local weather (monthly averages of temperature, precipitation and snow depth) were retrieved from the weather stations of the Norwegian Meteorological Institute (DNMI) surrounding the Ottaalen area. For
precipitation, we used stations at Preststulen (DNMI 14550) at 823 m a.s.l. and Vikho (DNMI 15630) at 1140 m a.s.l. The correlation between the NAO and precipitation was weak at both Preststulen (Dec–Mar: \(r = 0.095 \)) and Vikho (\(r = -0.282 \)). For snow depth, we used Preststulen. There was no correlation between the NAO and snow depth at Preststulen (\(r = 0.202 \)). Data on temperature was available for the coastal station Tafjord (DNMI 60500) at 15 m a.s.l., but the NAO and air temperature was not correlated (\(r = 0.004 \)).

To make local weather variables more tractable from a modelling perspective, we used principal component analysis (PCA) on monthly values of temperature, precipitation and snow depth for winter (December–March, as for the NAO index; Hurrell, 1995), spring (April–June) and summer (July and August) seasons. We used the first PCA (referred to as PCA1) for each season in the modelling. The PCA1 for winter (high value: cold/much snow/little correlation with precipitation; correlation with NAO: \(r = 0.190 \)), spring (high value: warm/less precipitation and snow in April–May; more in June) and summer (high value: much precipitation/little correlation with temperature), explained, respectively 30.7%, 26.2% and 41.7% of the variance in local weather.

Statistical analyses

We used general linear mixed models (GLMM) to analyse variation in body weights (for applications, see Milner, Elston & Albon, 1999; Mysterud et al., 2000), with ‘year’ as a random factor to account for the fact that individuals sampled in the same year cannot be treated as full replication when it comes to climatic effects or density (varying at the scale of years, and not between individuals sampled the same year). Separate models were used for calves, yearlings, and male and female adults. For yearlings, the analyses were performed both with sexes combined and separated. Analysing females separately was necessary in order to include reproductive status of yearlings included only sex (Table 2). However, the model including year was second best and the two models were far better than other models, and the latter model was therefore used for parameter estimation (Table 3). Male calves (average weight 24.9 kg, \(SE = 1.01 \)) and yearlings (average weight = 44.2 kg, \(SE = 1.01 \)) were heavier than female calves (average weight 24.2 kg, \(SE = 1.01; Table 3 \)) and yearlings (average weight 37.0 kg, \(SE = 1.01; Table 3 \)). Body weight decreased markedly over time for both calves and yearlings (Fig. 1b, Table 3). Including the minimum population size index, the winter-NAO for previous winter or in year of birth (cohort-NAO, yearlings only) or interactions resulted in much poorer models (Table 2). The same was the case when adding local (PCA-based) weather variables for winter, spring and summer seasons, or the PCA-based NAO indices for winter, spring and summer (Table 2), and when adding monthly values of temperature, precipitation or snow depth (results not shown).

The proportion of lactating female yearlings varied between 0 and 50% (Table 1, the year with 100% is shown). The most parsimonious model for calves included both sex and year (Table 2). The most parsimonious model for yearlings included only sex (Table 2). However, the model including year was second best and the two models were far better than other models, and the latter model was therefore used for parameter estimation (Table 3). Male calves (average weight 24.9 kg, \(SE = 1.01 \)) and yearlings (average weight = 44.2 kg, \(SE = 1.01 \)) were heavier than female calves (average weight 24.2 kg, \(SE = 1.01; Table 3 \)) and yearlings (average weight 37.0 kg, \(SE = 1.01; Table 3 \)). Body weight decreased markedly over time for both calves and yearlings (Fig. 1b, Table 3). Including the minimum population size index, the winter-NAO for previous winter or in year of birth (cohort-NAO, yearlings only) or interactions resulted in much poorer models (Table 2). The same was the case when adding local (PCA-based) weather variables for winter, spring and summer seasons, or the PCA-based NAO indices for winter, spring and summer (Table 2), and when adding monthly values of temperature, precipitation or snow depth (results not shown).

The proportion of lactating female yearlings varied between 0 and 50% (Table 1, the year with 100% is built on only two individuals), and declined significantly over the time period considered (Intercept: \(l.s. \) mean = 242.83, \(SE = 85.617, t = 2.836, P = 0.014 \); year: \(l.s. \) mean = –0.1236, \(SE = 0.043, t = –2.852, P = 0.014 \)). Population size (ln-transformed) was not significant when added to the model (\(l.s. \) mean = 0.613, \(SE = 0.523, t = –1.173, P = 0.262 \)). When analysing female yearlings separately (with year in the model), lactation had a negative effect on weights (\(l.s. \) mean = –0.058, \(SE = 0.0079, df = 476, t = –7.403, P < 0.001 \)). Mean weight of lactating females was 34.3 kg, while mean weight of non-lactating females was 38.2 kg.

RESULTS

Calves and yearlings

The most parsimonious model for calves included both sex and year (Table 2). The most parsimonious model for yearlings included only sex (Table 2). However, the model including year was second best and the two models were far better than other models, and the latter model was therefore used for parameter estimation (Table 3). Male calves (average weight 24.9 kg, \(SE = 1.01 \)) and yearlings (average weight = 44.2 kg, \(SE = 1.01 \)) were heavier than female calves (average weight 24.2 kg, \(SE = 1.01; Table 3 \)) and yearlings (average weight 37.0 kg, \(SE = 1.01; Table 3 \)). Body weight decreased markedly over time for both calves and yearlings (Fig. 1b, Table 3). Including the minimum population size index, the winter-NAO for previous winter or in year of birth (cohort-NAO, yearlings only) or interactions resulted in much poorer models (Table 2). The same was the case when adding local (PCA-based) weather variables for winter, spring and summer seasons, or the PCA-based NAO indices for winter, spring and summer (Table 2), and when adding monthly values of temperature, precipitation or snow depth (results not shown).

The proportion of lactating female yearlings varied between 0 and 50% (Table 1, the year with 100% is built on only two individuals), and declined significantly over the time period considered (Intercept: \(l.s. \) mean = 242.83, \(SE = 85.617, t = 2.836, P = 0.014 \); year: \(l.s. \) mean = –0.1236, \(SE = 0.043, t = –2.852, P = 0.014 \)). Population size (ln-transformed) was not significant when added to the model (\(l.s. \) mean = 0.613, \(SE = 0.523, t = –1.173, P = 0.262 \)). When analysing female yearlings separately (with year in the model), lactation had a negative effect on weights (\(l.s. \) mean = –0.058, \(SE = 0.0079, df = 476, t = –7.403, P < 0.001 \)). Mean weight of lactating females was 34.3 kg, while mean weight of non-lactating females was 38.2 kg.
Table 2. Results from model selection with AIC for calf and yearling reindeer *Rangifer tarandus* from North Ottadalen, Norway. x, term included in model. AIC, Akaike Information Criteria; ΔAIC, difference in AIC value between the AIC for the model given in that row and the most parsimonious model (lowest AIC; bolded). NAO, the commonly used station-based winter index of the North Atlantic Oscillations (Hurrell, 1995). cohortNAO, the station-based winter index of the NAO for the year of birth (for yearlings only). NAO – PCA, Principal Component based indices and for months December–February (DJF), March–May (MAM) and June–August (JJA). PCA1, first PCA axes per season for local measures of temperature, precipitation and snow depth (for winter and spring only). st, standardized variable (mean = 0, SD = 1)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Year (continuous)</th>
<th>st(Population size)</th>
<th>NAO</th>
<th>cohortNAO</th>
<th>Sex*Year</th>
<th>Sex*st(Population size)</th>
<th>Sex*NAO</th>
<th>Sex*cohortNAO</th>
<th>NAO*st(Population size)</th>
<th>PCA1 – winter climate</th>
<th>PCA1 – spring climate</th>
<th>PCA1 – summer climate</th>
<th>NAO – PCA - DJF</th>
<th>NAO – PCA - MAM</th>
<th>NAO – PCA - JJA</th>
<th>AIC</th>
<th>ΔAIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Calves</td>
<td></td>
<td>238.1456</td>
<td>29.6551</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>228.6418</td>
<td>39.1589</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>247.2189</td>
<td>20.5818</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>230.4691</td>
<td>37.3316</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>267.8007</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>256.2751</td>
<td>11.5256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>266.0357</td>
<td>1.765</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>240.6262</td>
<td>27.1745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260.4704</td>
<td>7.3303</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260.5723</td>
<td>7.2284</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260.0958</td>
<td>7.7049</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>259.3969</td>
<td>8.4038</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260.6714</td>
<td>7.1293</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>261.3149</td>
<td>6.4858</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>261.3149</td>
<td>6.4858</td>
</tr>
<tr>
<td>B. Yearlings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1149.283</td>
<td>40.418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1147.094</td>
<td>42.607</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1147.094</td>
<td>36.117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1156.226</td>
<td>44.342</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1145.359</td>
<td>42.547</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1164.323</td>
<td>25.378</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1152.106</td>
<td>37.595</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1174.639</td>
<td>15.062</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1185.431</td>
<td>4.270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1189.701</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1146.375</td>
<td>43.326</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1177.108</td>
<td>12.593</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1176.480</td>
<td>13.221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1176.998</td>
<td>12.703</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1177.985</td>
<td>11.716</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1177.985</td>
<td>11.716</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1177.870</td>
<td>11.831</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1177.870</td>
<td>11.831</td>
</tr>
</tbody>
</table>

Adults

The most parsimonious model included age up to second order for females and a sixth order polynomial of age for males, as well as year for both sexes, and lactational status in females only and an interaction term between age and year in males only (Table 4). A threshold effect for age at 9 years in females resulted in a slightly less parsimonious model (even if giving a good visual fit), but the way age was modelled for females did not affect the estimate for other effects. Body weights of both sexes decreased markedly over the time period considered. Adult males lost more weight over time than females, and younger males lost more than older males (Table 3, Fig. 2a). Lactating females were lighter than non-lactating females.

The senescence in body weight was significant when considering a separate analysis including only males aged 7 years or older (l.s. mean = -0.016, SE = 0.0073, df = 103, t = -2.150, P = 0.034) and females aged 9 years or older (l.s. mean = -0.019, SE = 0.0072, df = 183, t = -2.67, P = 0.008). For lactation, there was a significant age effect up to a second order term giving some evidence for reproductive senescence (Intercept: l.s. mean = 0.278, SE = 0.191, t = 1.459, P = 0.167; age: l.s. mean = 0.284, SE = 0.073, t = 3.869, P = 0.002; (age)^2: l.s. mean = -0.020, SE = 0.0057, t = -3.572, P = 0.003).
The proportion of lactating female yearlings varied between 0 and 50% (Table 1). This supports earlier and more fragmentary observations of pregnant calves, between 0 and 50% (Table 1). This supports earlier and more fragmentary observations of pregnant calves, which incurred a weight cost; (2) senescence in body weight was evident in both males and females; (3) body weights of all age and sex groups and proportion of yearling females lactating decreased over time, although the minimum population size index declined markedly after the population peak in 1974; (4) there was no effect of either the NAO or local weather.

DISCUSSION

We have reported variation in life-history traits as a possible function of climate, population size and time of reindeer from North Ottadalen, a very productive reindeer area in Norway. We found some interesting patterns: (1) a high proportion of yearlings were lactating, which incurred a weight cost; (2) senescence in body weight was evident in both males and females; (3) body weights of all age and sex groups and proportion of yearling females lactating decreased over time, although the minimum population size index declined markedly after the population peak in 1974; (4) there was no effect of either the NAO or local weather.

Age at first reproduction and senescence

The proportion of lactating female yearlings varied between 0 and 50% (Table 1). This supports earlier and more fragmentary observations of pregnant calves, which incurred a weight cost; (2) senescence in body weight was evident in both males and females; (3) body weights of all age and sex groups and proportion of yearling females lactating decreased over time, although the minimum population size index declined markedly after the population peak in 1974; (4) there was no effect of either the NAO or local weather.

Table 3. Parameter estimation with linear mixed models (with ‘year’ as random factor) for calf, yearling, adult male and female reindeer *Rangifer tarandus* from North Ottadalen, Norway. Note that ‘year’ (as a fixed factor below) refers to the linear effect of the term entered as a continuous variable. l.s. mean = least square mean

<table>
<thead>
<tr>
<th></th>
<th>L.s. mean</th>
<th>SE</th>
<th>df</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>31.416</td>
<td>5.827</td>
<td>350</td>
<td>5.391</td>
<td><0.001</td>
</tr>
<tr>
<td>Sex (M-F)</td>
<td>0.052</td>
<td>0.017</td>
<td>350</td>
<td>3.053</td>
<td>0.002</td>
</tr>
<tr>
<td>Year</td>
<td>-0.014</td>
<td>0.003</td>
<td>9</td>
<td>-4.845</td>
<td>0.001</td>
</tr>
<tr>
<td>Yearlings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>20.985</td>
<td>4.738</td>
<td>1105</td>
<td>4.429</td>
<td><0.001</td>
</tr>
<tr>
<td>Sex (M-F)</td>
<td>0.193</td>
<td>0.009</td>
<td>1105</td>
<td>22.702</td>
<td><0.001</td>
</tr>
<tr>
<td>Year</td>
<td>-0.009</td>
<td>0.002</td>
<td>12</td>
<td>-3.667</td>
<td>0.003</td>
</tr>
<tr>
<td>Adult males</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>4.397</td>
<td>0.181</td>
<td>1516</td>
<td>244.833</td>
<td><0.001</td>
</tr>
<tr>
<td>Age</td>
<td>3.936</td>
<td>0.133</td>
<td>1516</td>
<td>29.542</td>
<td><0.001</td>
</tr>
<tr>
<td>(Age2)</td>
<td>-3.107</td>
<td>0.129</td>
<td>1516</td>
<td>-24.072</td>
<td><0.001</td>
</tr>
<tr>
<td>(Age3)</td>
<td>1.607</td>
<td>0.124</td>
<td>1516</td>
<td>12.921</td>
<td><0.001</td>
</tr>
<tr>
<td>(Age4)</td>
<td>-0.580</td>
<td>0.129</td>
<td>1516</td>
<td>-4.492</td>
<td><0.001</td>
</tr>
<tr>
<td>(Age5)</td>
<td>0.658</td>
<td>0.124</td>
<td>1516</td>
<td>5.317</td>
<td><0.001</td>
</tr>
<tr>
<td>(Age6)</td>
<td>-0.196</td>
<td>0.124</td>
<td>1516</td>
<td>-1.577</td>
<td>0.115</td>
</tr>
<tr>
<td>st(Year)</td>
<td>-0.118</td>
<td>0.015</td>
<td>12</td>
<td>-7.983</td>
<td><0.001</td>
</tr>
<tr>
<td>Age*st(Year)</td>
<td>0.009</td>
<td>0.001</td>
<td>1516</td>
<td>6.433</td>
<td><0.001</td>
</tr>
<tr>
<td>Adult females</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>18.683</td>
<td>3.686</td>
<td>1941</td>
<td>5.069</td>
<td><0.001</td>
</tr>
<tr>
<td>Age</td>
<td>0.035</td>
<td>0.004</td>
<td>1941</td>
<td>8.506</td>
<td><0.001</td>
</tr>
<tr>
<td>(Age2)</td>
<td>-0.002</td>
<td>0.000</td>
<td>1941</td>
<td>-7.198</td>
<td><0.001</td>
</tr>
<tr>
<td>Year</td>
<td>-0.008</td>
<td>0.002</td>
<td>12</td>
<td>-4.069</td>
<td>0.002</td>
</tr>
<tr>
<td>Lactational status</td>
<td>-0.132</td>
<td>0.006</td>
<td>1941</td>
<td>-21.125</td>
<td><0.001</td>
</tr>
</tbody>
</table>

However, tabular data suggest that the proportion of lactating females did not decline markedly with age (high up to 13 years of age), and sample size for females older than 13 years old are very small (Table 5).
Table 4. Results from model selection with AIC for adult (≥ 2 yrs) male and female reindeer *Rangifer tarandus* from North Ottadalen, Norway. See Table 2 for abbreviations.

<table>
<thead>
<tr>
<th>Age</th>
<th>(Age)2</th>
<th>(Age)3</th>
<th>(Age)4</th>
<th>(Age)5</th>
<th>(Age)6</th>
<th>(Age)7</th>
<th>Age-threshold at 9 yrs.</th>
<th>Lactational status st(Year)</th>
<th>st(Population size)</th>
<th>NAO cohort NAO</th>
<th>Age: lactational status st(Year)</th>
<th>Age*st(Population size)</th>
<th>Age*NAO</th>
<th>Age*Ncohort</th>
<th>NAO*st(Population size)</th>
<th>PCA1 – winter climate</th>
<th>PCA1 – spring climate</th>
<th>PCA1 – summer climate</th>
<th>NAO – PCA - DJF</th>
<th>NAO – PCA - MAM</th>
<th>NAO – PCA - JJA</th>
<th>AIC</th>
<th>ΔAIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult males</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Adult females</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

non-lactating females during autumn. There was also evidence for a somatic cost of reproduction in adult females (Fig. 2b). Similar somatic costs of first reproduction in females on growth or body weight have been recorded for other wild reindeer populations (Reimers, 1983b), caribou in Alaska, U.S.A. (Cameron, 1994; Finstad & Prichard, 2000), moose *Alces alces* in Sweden (Sand, 1998; Ericsson & Wallin, 2001) and bison *Bison bison* in South Dakota, U.S.A. (Green & Rothstein, 1991).

For adult reindeer in this study, the body weight peaked at 7–9 years of age for both sexes (Fig. 2). That body weight in females peaked as early as at 7–9 years of age was unexpected. In red deer, body weight of females was stable after prime-age was reached and until 20 years
of age (Mysterud et al., 2001c) and until 11 years of age in bighorn sheep Ovis canadensis (Bérubé, Festa-Bianchet & Jorgenson, 1999). Data on reproduction of older age classes were limited in our study, even though a second order term for age was significant, the proportion of lactating females seemed not to decline markedly with age (Table 5).

Decline in performance over time

Body weight of all sex and age groups and proportion of yearling females lactating declined markedly for the whole study period 1967–1989 (Fig. 1, Table 3), however, the decline was much more marked in younger than older males (Fig. 2a). This is consistent with the different evolutionary trajectories of the sexes, making growth a priority for young males (Clutton-Brock, Guinness & Albon, 1982), and they are therefore more sensitive to variation in environmental conditions. The decline in individual performance over time, despite a decline in the minimum population size index, may possibly be due to delayed negative effects, if carrying capacity was exceeded in the years when the population peaked. The North Ottadalen area covers 3245 km², and the minimum population size index suggested at least 3300 individuals in 1974. This gives a density of about one reindeer per km² that year, which is in the upper density scale among wild reindeer herds in Norway (Reimers, 1986). Density has remained mostly below 0.8 reindeer per km² since 1978. As lichen heaths were plentiful in the area and the summer grazing situation seems to be good (Reimers et al., 1983), we therefore cannot substantiate that this decline in performance was due to overgrazing.

Another issue we regard as crucial, is that this population was ‘semi-domestic’ before it was changed to ‘wild’ by a management decision in 1964 (see above). The reindeer populations in Norway have a history from pure semi-domestic reindeer in some areas, via a good mix of wild and semi-domestic in other areas, to (close to) genetically wild in only a few areas (Roed, 1985, 1998). Most of the formerly semi-domestic population seem to have much larger body weights and better reproductive performance than many of the wild populations (Skogland, 1983; Reimers, 2002). We regard it as likely that the hunting pressure in Ottadalen may have changed the behaviour to a more alert and nervous type, imposing also a reduction in performance (Reimers, 1980). It is clearly established that populations with a semi-domestic background are less shy than ‘pure’ wild reindeer in Norway (Reimers & Svela, 2001), but it is not known whether this is due to genetic or behavioural differences. Since there is no documented evidence of such behavioural changes within a population over time, the suggestion that the decreasing performance is related to behavioural changes in the transition from semi-domestic to wild therefore remains speculative at present. Active hunter selection for large phenotypes may also reduce performance over time. We would welcome studies addressing this in more detail.

Effects of global climate and local weather

Climate has repeatedly been reported to have an impact on population dynamics of ungulates, in particular influencing survival and reproduction of younger and older animals (Sæther, 1997; Gaillard et al., 2000). In the North Ottadalen reindeer herd, there was no effect of the NAO on body weight of either calves or yearlings. This may not be surprising, considering that the NAO had a fairly low correlation with local weather in this region (see above). However, there was no relationship between reindeer performance and local weather patterns either. We therefore failed to find effects of either the NAO or local weather. Other studies have reported an effect of both the NAO and local weather for a range of different ungulates (reviews in Sæther, 1997; Stenseth et al., 2002; Weladji et al., 2002; Mysterud et al., 2003), including a time series of equal length from reindeer on Hardangervidda (Post & Stenseth, 1999). Our study urges for some caution in extrapolating results of the NAO from one area to other areas, there may evidently be much spatial variation in responses. Our results may suggest that climatic effects are less important in herds in very good condition as they are in Ottadalen. Alternatively, it may also be that reindeer in this area can use spatial heterogeneity to find suitable habitats even though overall conditions are not ideal.

Acknowledgements

We thank our collaborators Rolf Sørumgård and Øystein Molmen and numerous hunters for logistic support and field assistance, and Jonathan Colman, Jean-Michel Gaillard, Øystein Holand, Anne Loison, Ivar Mysterud, Harald Steen and one anonymous referee for comments.
REFERENCES

