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Abstract Climate at northern latitudes are currently
changing both with regard to the mean and the temporal
variability at any given site, increasing the frequency of
extreme events such as cold and warm spells. Here we
use a conceptually new modelling approach with two
different dynamic terms of the climatic effects on a
Svalbard reindeer population (the Brøggerhalvøya
population) which underwent an extreme icing event
(‘‘locked pastures’’) with 80% reduction in population
size during one winter (1993/94). One term captures the
continuous and linear effect depending upon the Arctic
Oscillation and another the discrete (rare) ‘‘event’’ pro-
cess. The introduction of an ‘‘event’’ parameter
describing the discrete extreme winter resulted in a more
parsimonious model. Such an approach may be useful in
strongly age-structured ungulate populations, with
young and very old individuals being particularly prone
to mortality factors during adverse conditions (resulting
in a population structure that differs before and after
extreme climatic events). A simulation study demon-
strates that our approach is able to properly detect the
ecological effects of such extreme climate events.

Keywords Arctic oscillation Æ Continuous vs. discrete
environmental forcing Æ Non-linearity Æ Time series
analysis Æ Ungulates

Introduction

An improved understanding of externally driven den-
sity-independent factors has been made urgent by
climatologists reckoning that we currently may be
experiencing changes in both the mean and variability of
the climate at any given site (IPCC 2001). The increased
variability in temperature and precipitation will increase
the frequency of extreme events such as cold and warm
spells (Shabbar & Bonsal 2003), drought (Clark et al.
2003), wild fires (Diaz-Delgado et al. 2003) and flooding
(Thomson et al. 2003) in terrestrial ecosystems and algal
blooms in marine ecosystems (Chan et al. 2003b). For
example, recurrent wildfires due to an increased fire
frequency, as is occurring in some Mediterranean-type
ecosystems (Diaz-Delgado et al. 2003), may reduce
ecosystem resilience (i.e. the ability to recover the pre-
disturbance state). Modelling the dynamic effects on
ecological systems of such extreme climatic effects to-
gether with more continuous effects is thus very impor-
tant, and also challenging as it relates to the issue of
non-linear ecological effects of climate variability (e.g.
Seastedt & Knapp 1993; Mysterud et al. 2001; Stenseth
et al. 2002; Stenseth & Mysterud 2002; Mysterud et al.
2003).

In northern arctic and alpine environments, more
frequent freezing and thawing are expected key features
of winter climate for herbivores in the future given a
global warming (Danell et al. 1999; Mysterud et al.
2003). A recent analysis showed that winter warm spells
increased in both the frequency and duration over most
of Canada during the second half of the 20th century,
linked to more frequent occurrences of the positive
phase of the North Atlantic Oscillation (NAO) (Shabbar
& Bonsal 2003). Extreme icing events, typically a result
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of warm spells with rainfall during winter, severely re-
strict access to the field layer for herbivores – being
termed ‘‘locked pastures’’ among Sami reindeer herders
(Holand 2003). The ‘‘text-book’’ example of a dramatic
effect of such locked pastures comes from the extreme
northern environment on Svalbard, Norway at 78–80�
North. Despite that fat reserves of the Svalbard reindeer
(Rangifer tarandus platyrhynchus) during autumn may
constitute 60% of the total body weight; a severe icing
event in 1993/94 led to an 80% decline in the Brøgger-
halvøya population (Aanes et al. 2002; see also Solberg
et al. 2001; Aanes et al. 2000). In contrast, the effect of
variability in climate apart from such extreme winters, is
mainly related to differences in summer forage quality
(Aanes et al. 2002).

Here we propose to model such extreme climatic
events as an environmental forcing component being
different from the typically assumed (linear or non-lin-
ear) response to continuous and fairly normal climate
variability, namely as a component specifically corre-
sponding to rare climatic effects (such as occasional
extreme winter icing events). We have earlier adopted
such an approach in another setting: Chan et al. (2003b)
using the same methodological framework when analy-
sing the population dynamical effects of an algal bloom
in a marine system. Here we specifically expand on this
approach within a terrestrial setting using data on the
Svalbard reindeer as an example to model the potential
dynamic role of the increased frequency of warm spells
during winter at northern latitudes (Shabbar & Bonsal
2003). Throughout we adopt a phenomenological ap-
proach primarily aiming at determining the structure of
the interaction between the biological processes and the
environmental forcing due to both fairly continuous
climate variability (such as the North Atlantic Oscilla-
tion and the Arctic Oscillation) and discrete extreme
weather events.

Material and methods

The reindeer data

We use reindeer abundance data from the Brøgger-
halvøya peninsula (221 km2) located on the north-wes-
tern coast of Svalbard (78�5¢N, 11�5¢E); characterized by
a mountainous area in the centre, surrounded by areas
of lowland plain (for further details, see Aanes et al.
2000). Transferring three males and nine females to
Brøggerhalvøya founded the study population in 1978.
The number of reindeer has been counted annually
during April from 1979 by personnel on snow-mobiles.
The terrain is open and such counts are regarded highly
reliable with insignificant sampling error (Aanes et al.
2000, 2002). The population grew – within the
Brøggerhalvøya – steadily until a major population
crash during the winter 1993/94. Data that were used
derive from Øritsland and Severinsen (unpubl.; see also
Aanes et al. 2000, 2002).

The climate data

Data on the North Atlantic Oscillation (NAO; Hurrell
et al. 2003; http://www.cgd.ucar.edu/�jhurrell/nao.html)
and the Arctic Oscillation (AO; Thompson & Wallace
1998; Stenseth et al. 2003; http://jisao.washington.edu/
data/annularmodes/Data/ao_index.html) were derived
from the web. The AO and NAO are both part of the
more widely defined Northern Hemisphere Annular
Mode (NAM; Thompson & Wallace 2000; Thompson
et al. 2000; Baldwin et al. 2003). The AO is defined as the
first PC time series of the mean sea level pressure (SLP)
field over the Northern Hemisphere, north of 20�N. We
refer to the AO for summer (June–September) as AOs,
and winter as AOw (November–April). See Stenseth
et al. (2003) for pros and cons for using such indexes as
opposed to local weather variables.

Additive and innovative outliers

Within a time series context, there are several notions of
outliers, the distinction of which is pertinent to a proper
assessment of the effects on the population dynamics due
to a discrete extreme climatic event. An outlier refers to
an observation that does not conform to the general
(dynamical) pattern shared by the majority of the
observations. This happens if, for example, the dynamics
is approximately linear under ‘‘typical’’ conditions, but
is non-linear over a wider spectrum of covariate values
encompassing both typical and atypical conditions, with
the single, ‘‘offending’’ observation outside the linear
domain. Yet in a dynamic system, there are two kinds of
outliers, namely, additive outlier and innovative outlier.
An additive outlier occurs when the response variable
takes an atypical value, which then alters the autore-
gressive structure for the next few time series observa-
tions. On the other hand, an innovative outlier occurs
when the error term in a time series model takes an
atypical value, so that the autoregressive structure is
affected only for the corresponding observation. Fur-
thermore, a dynamic system may respond to an extreme
event with a level shift (i.e. the mean function changes by
a certain amount afterwards). For example, this occurs if
the first differences of the data (i.e., growth rates for log-
transformed data) are a white noise process that has an
additive outlier. Thus, the proper treatment of an ex-
treme event in a time series analysis depends on the
nature of the outlier (Tsay 1988; Peña et al. 2001).

Statistical analyses

We compared the performance of earlier models with
the conceptually new model, with more details in an
electronic appendix.

Let the population size in year t be given as Nt, and
the corresponding log-transformed abundance as Xt =
log(Nt); let furthermore Rt = Xt � Xt-1 and It a dummy
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variable indicating the winter crash of 1993/94 (being
equal to 1 for t=1994 and zero otherwise). Assuming
maximally an order 2 density-dependent structure, a
possible model for a lag k of the external climate (Ct-k)
for which either the NAO or the AO (winter or summer)
as well as an additional external extreme event is given
as Rt= R¢t+d It (where R¢t [see below] are defined as the
corresponding variables had there been no crash in the
winter of 1993/94). We remark that the maximal order
could well be 3 because of fractional delay in the density
dependence. Indeed, the reindeer were counted in April
of each year and natality in reindeer in spring depends
on the reindeer condition in the preceding winter which
in turn correlates with abundance in the winter. Thus, if
the process is affected by lag 2 of the reindeer abun-
dance, a fractional delay of 2.5 may be expected, in
which case the maximal order may become 2.5 or the
maximal order becomes 3. See section 2.3.1 of Royama
(1992). The issue of the maximal order will be explored
empirically below.

Following in general (but not in detail) Aanes et al.
(2002), we model the unperturbed R¢t as an AR model
with Ct-k as the covariate:

R0t ¼ b0 þ b1R0t�1 þ b2R0t�2 þ ckCt�k þ et; ð1Þ

where, as above, et are uncorrelated noise terms of zero
mean and constant variance, bi and c are coefficients and
k = 0, 1, 2 is to be selected by the AIC (the Akaike
Information Criterion).

Thus, we may speculate that the 1993/94 crash mainly
perturbed the growth rate in 1994; that is, Rt=R¢t+d It.
Upon substituting this relationship in (1) and after re-
arranging, we obtain

Rt ¼ b0 þ b1Rt�1 þ b2Rt�2 þ ckCt�k þ dIt � b1dIt�1
� b2dIt�2 þ et: ð2Þ

The 1994 reindeer datum is then modelled as an
additive outlier, referring to the perturbation being
localized in the particular growth rate in 1994. Model (2)
implies that the observed growth rates were affected for
3 years starting from 1994. The model is essentially
comparing the natural mean level before (16 years) and
after (5 years) the icing event, after adjusting for the
natural growth rate and serial dependence. Note that a
5-year post-intervention period is not atypical for such
studies (Ramirez & Crano 2003).

In contrast to modelling the 1994 crash as an additive
outlier, an alternative is to consider the crash effect as an
innovative outlier (i.e., its effect is localized in the
residual in 1994), so that the model becomes

Rt ¼ b0 þ b1Rt�1 þ b2Rt�2 þ ckCt�k þ dIt þ et: ð3Þ

Under this scenario, the unperturbed model may be
estimated by omitting the single outlying data case.

While the use of dummy variables to model atypical
events is not new, the different ways of placement of the
dummy variables as in (2) and (3) correspond to differ-

ent types of outliers, namely, innovative and additive
outliers each with different implications on the model
dynamics (for definition of these two types of outliers,
see above). This distinction of various outlier types,
while well known in time series literature, seems to have
received little attention in the ecological literature.

Results

All models reported below were fitted using a modified
ARIMA function of the statistical package R (http://
www.r-project.org/). It should be emphasized that the
original ARIMA function in R and the ARIMA pro-
cedure of SAS, as well as the SPSS trends package do
not fit models such as (3). Rather, they model the co-
variate-adjusted variable as an ARIMA model (i.e.,
mt = b0 + b1 mt-1 + b2 mt-2 + et where mt= Rt�(ckCt-k

+ d It)) (i.e., fitting a regression model with the errors
specified as an ARIMA process). This subtle difference
in the model estimated by the major statistical software
from the intended biological model may for sure easily
be overlooked!

The Brøggerhalvøya populations had significant di-
rect and delayed density dependence (see also Aanes
et al. 2000, 2002). The first row of Table 1 reports the
model defined by (2) fitted to all data, with the lag of the
AOs as the covariate in the best-fitted model selected by
the AIC. As predicted, dropping the crash effect from
the best fitted model results in worse fit, i.e. higher AIC
(second row in Table 2), and further omitting the 1994
datum also leads to a worse fit (c.f. third row in Table 2).
The top panel of Fig. 1 shows that the fitted values from
the best fitted model match the observations closely. The
predicted values for the years 2000–4 appear to extend
the trend of the data smoothly. The middle panel of
Fig. 1 shows that omitting the crash effect renders the
fitted model to grossly over-predict the number of
reindeers in 1994 but otherwise tracking the data rea-
sonably well. However, the predicted values appear to be
depressed when compared with the data trend, possibly
due to the smaller estimates of the intercept and the AOs
effect (in magnitude), when compared with the first
model. But dropping the 1994 datum from the model fit
still yields a substantial over-prediction of the 1995
datum, as seen in the bottom panel of Fig. 1. Also, the
predicted values seem to be at a lower level than
suggested by the data.

Model (2) implies that the reindeer data follow an
order 3 process.

To empirically check whether order 2 suffices for the
original process, we fitted a model modified from (2)
with Rt-i replaced by Xt-i i=1,2, but the AIC of the
modified model is �9.63, well above that of the order 2
model for the growth rates. Hence, we conclude that an
order 2 model for the growth rates is consistent with
the observed data. Note that (2) can be re-written as
Rt = b0 + b1 Xt-1 + (�b1+b2) Xt-2 �b2 Xt-3 + ckCt-k
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+ d It�b1d It-1 �b2d It-2 + et. Substituting the estimates
from the first row of Table 1 in the preceding equation,
we see that the coefficient estimates of lags 1–3 of Xt and
their standard errors (enclosed in parentheses) equal
�0.532 (0.16), 0.0216 (0.16) and 0.419 (0.15) respec-
tively. Thus, it seems that the aforementioned lag 2.5
effect is better picked up by the lag 3 proxy than the lag 2
abundance. Moreover, this shows clearly that the pro-
cess is density dependent.

According to model (2), the population exhibits a
crash effect due to the severe winter 1993/94, and the
dynamic was altered for 3 years starting from 1994 but
then recovered afterwards. By dynamic, we mean the
autoregressive structure of the model for the observed
growth rates. Figure 2 displays the time plot of the
residuals from the fitted model specified by model (2),
as well as the residual autocorrelations, which indicates
that the residuals appear to be white. As climate may
interact with the density dependence structure (Stenseth
et al. 2004; Jacobson et al. 2004; Ciannelli et al. 2004),
we have tested for possible interactions between cli-
matic effects and lagged growth rates using the test of
Chan et al. (2003a). Specifically, we consider a non-
parametric version of (2) by letting the density-depen-
dent effects and the climatic effect to be possibly
nonlinear, i.e. Rt = b0 +s1(Rt-1)+ s2(Rt-2)+s3(Ct-k)
+dIt�b1d It-1�b2dIt-2+et, an additive model where si
are nonparametric functions to be estimated from the
data. We then test whether the model contains signifi-
cant interaction terms as products of pairs of the
nonparametric main effects, namely, s1(Rt-1) s2(Rt-2),
s1(Rt-1) s3(Ct-k), s2(Rt-2), s3(Ct-k), one by one, using the
method of Chan et al. (2003a).

We outline the testing procedure for checking the
significance of, e.g. s1(Rt-1)s2(Rt-2) as follows: Let the
residuals from the original model be et. Fit an additive
model similar to the original additive model but with the
response variable now being s1(Rt-1)s2(Rt-2). Let the
residuals of the latter additive model be ft. The test
statistic is T=nR2/(1�R2), where n is the sample size, R2

is the R-square from the linear regression of et on ft . The
test statistic has a v2 asymptotic distribution with 1 d.f.,
under the null hypothesis that the model is additive, i.e.
the interaction term is absent from the model. The
p-values of the three interaction terms equal 0.16, 0.76
and 0.1, suggesting that the system is additive. More-
over, the additive effects are found to be by and large
linear, with the d.f. of s1, s2 and s3 estimated to be 1.31, 1
and 1 respectively. Altogether, these model diagnostics
suggest that the growth rates can be adequately mod-
elled by a single auto-correlation model specified by
model (2), even though theoretically the growth rate
may be initially non-stationary given its somewhat small
founding population (see Royama 1992: 112–113).

The coefficient estimates are all insignificant for lags
0–2 of AOw and NAO, and for lags 0 and 1 of AOs. The
last two models in Table 1 correspond to the two general
AR models fitted by Aanes et al. (2002), see corrected
results in Aanes et al. (2004).T

a
b
le

1
M
a
x
im

u
m

li
k
el
ih
o
o
d
es
ti
m
a
te
s
fo
r
th
e
S
v
a
lb
a
rd

re
in
d
ee
r
p
o
p
u
la
ti
o
n
in

B
rø
g
g
er
h
a
lv
ø
y
a
.
N
u
m
b
er
s
w
it
h
in

p
a
re
n
th
es
es

a
re

st
a
n
d
a
rd

er
ro
rs

o
f
th
e
es
ti
m
a
te
s.
T
h
e
la
st
tw

o
m
o
d
el
s

a
re

v
a
ri
a
n
ts

il
lu
st
ra
ti
n
g
th
e
p
o
o
r
fi
t
re
su
lt
in
g
fr
o
m

ig
n
o
ri
n
g
th
e
a
d
d
it
iv
e
o
u
tl
ie
r
n
a
tu
re

o
f
1
9
9
4

M
o
d
el

E
q
.
2
(i
n
R

t
=

X
t�

X
t-
1
)

In
te
rc
ep
t

D
en
si
ty

d
ep
en
d
en
ce

C
li
m
a
te
-c
o
n
ti
n
u
o
u
s

C
li
m
a
te
-e
v
en
t

E
rr
o
r

A
IC

b 0
b 1

b 2
c

d
r2

F
u
ll
m
o
d
el

0
.4
4
6
5
(0
.0
6
4
4
)
�
0
.5
3
1
6
(0
.1
5
8
8
)
�
0
.4
1
9
0
(0
.1
4
8
1
)

A
O
s t
-2
�
0
.2
9
4
1
(0
.0
8
0
9
)
�
1
.9
0
2
1
(0
.0
9
7
3
)

0
.0
1
1
6
8
�
1
9
.6
9

R
t
=

b 0
+

b 1
R

t-
1
+

b 2
R

t-
2
+

c 2
A
O
s t
-2
+

e t
(a
ll
y
ea
rs
,

w
it
h
o
u
t
cr
a
sh

eff
ec
t)

0
.1
2
9
6
(0
.1
0
3
4
)
�
0
.1
0
8
4
(0
.2
2
6
9
)

0
.0
7
6
1
(0
.2
3
7
0
)

A
O
s t
-2
�
0
.0
7
6
2
(0
.3
6
6
2
)

0
.1
7
4
5

3
1
.8
7

R
t
=

b 0
+

b 1
R

t-
1
+

b 2
R

t-
2
+

c 2
A
O
s t
-2
+

e t
(e
x
cl
u
d
in
g
1
9
9
4
,

w
it
h
o
u
t
cr
a
sh

eff
ec
t)

0
.0
7
6
1
(0
.0
6
6
3
)

0
.5
2
8
4
(0
.2
1
9
4
)
�
0
.2
2
2
5
(0
.2
1
6
0
)

A
O
s t
-2
0
.1
3
7
2
(0
.2
2
4
4
)

0
.0
7
0
5
3

1
5
.2
2

559



We have also explored the possibility of modelling
the crash effect as an innovative outlier, but the AIC of
the best-fitted model equals �12.16 [relative to the
model defined by Eq. (2)], suggesting that the additive

outlier specification [i.e., the model given by Eq. (2) with
AIC=�19.96] is the better. Therefore, we conclude that
the 1993/94 crash is adequately modelled as an additive
outlier.

Fig. 1 Solid curve displays the
logarithm of the reindeer counts
in Brøggerhalvøya, with crosses
for the fitted values from three
models (Table 1). The fitted
values and the predicted values
displayed in the top graph are
computed from the model
defined by Eq. (2) fitted with all
data. Those in the middle graph
are from the model defined by
(2) without the crash effect,
again fitted with all data
whereas the fitted values in the
bottom graph are from the
model defined by (2) without
the crash effect and fitted with
all data except the 1994 datum

Table 2 Empirical level and power for detecting an extreme
climatic effect. Annual counts over the period from 1979 to 1999
were simulated from a model adapted from the fitted full model in
Table 1, with b0=0.45, b1=�0.53, b2=�0.42, c=�0.30, normally
distributed errors of zero mean and standard deviation r=0.1, and
with various combinations of the climatic effect d and the number

of post-intervention data. The table reports the percentage of
rejecting the null hypothesis of no climatic effect (i.e., the null
hypothesis that d=0, at 5% significance level). Each experiment
had 1000 replications of simulated time series. Percentages in the
column under the heading d=0.0 are the empirical size of the test,
all of which are close to the nominal 5% value

No. of post-intevention data d=0.0 d=�0.1 d=�0.5 d=�1.0 d=�1.5 d=�2.0

2 8.7 18.7 99.4 100 100 100
5 6.6 16.2 99.5 100 100 100
10 7.0 22.6 99.2 100 100 100
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Assessing the appropriateness of the model through
simulations

We performed a simulation study specifically designed
to investigate the empirical performance of the pro-
posed approach for detecting a discrete, extreme cli-
matic effect. Specifically we examine the effect of the
length of the post-intervention period and the signal-to-
noise d/r ratio on the size of testing for an extreme
climatic effect. Abundance data of 21 years (over the
same years we have the reindeer data) were simulated
from a model similar to the fitted full model in Table 1.
We varied the number of post-intervention data as 2, 5
or 10. Table 2 reports the empirical percentages of

rejecting the null hypothesis of no climatic effects using
a nominal 5% t-test derived from the estimator of d. It
can be seen that the empirical level of the test is gen-
erally close to 5% although somewhat inflated to 8.7%
when there are only two post-intervention data. The
test has moderate power if the climatic effect is of the
same order of magnitude as the noise standard devia-
tion, but its empirical power becomes almost 100%
when the d/r ratio approaches 5. Overall, the empirical
power curves for different post-intervention number of
data bear similar shape, as is expected from general
statistical theory. While the dominating factor for
detecting an extreme climatic effect is the d/r ratio,
Table 2 shows that in the case of an extreme climatic

Fig. 2 The upper diagram
shows the time plot of the
residuals for the fitted model
specified by Eq. (2). The lower
diagram is the corresponding
residual autocorrelation
function. The dotted horizontal
lines are the 95% confidence
limits assuming the errors are
white noise. In particular, none
of the residual autocorrelations
are significant, at 5%
significance level
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effect occurring very close to an end of the time series,
it may be desirable to do an adjustment to account for
size inflation of the t-test (e.g., by bootstrap). In our
case, such an adjustment is not needed as the empirical
level is quite close to the nominal 5%. Indeed, the
bootstrap 95% confidence interval of the crash effect
parameter (d) extends from �2.09 to �1.68 (based on
1000 bootstraps with the residuals sampled with
replacement), which almost equals the theoretical
interval from �2.11 to �1.70, thereby strongly indi-
cating the significance of the found crash effect.

Discussion

Our approach is of potential great use when studying the
ecological effects of climate – with occasional extreme
events. For example, discrete shocks may be detected by
testing the significance of the coefficient of the dummy
variable for an (additive or innovative) outlier sequen-
tially case by case, with proper allowance for the mul-
tiple tests, see Tsay (1988) and Peña et al. (2001).
Alternatively, the outliers may be modelled through an
approach of probabilistic mixture of two normal distri-
butions, one of which having a much larger variance
accommodates occasional extreme events, see p. 143 of
Peña et al. (2001).

Our approach may be particularly useful for studying
strongly age-structured populations (see, e.g., Gaillard
et al. 1998) whose population structure may differ before
and after rare and extreme climatic events. For ungu-
lates, survival of prime-aged females is typically stable
and high, but lower and more variable among both
young and old individuals (review in Gaillard et al.
1998). Importantly, density-dependent and density-
independent variation in vital rates interacts strongly
with the age structure in determining the dynamics
(Coulson et al. 2001). When conditions are severe, either
due to high density, harsh climate, or the interaction,
young and old individuals are most strongly affected
constituting the bulk of the dying individuals (Coulson
et al. 2001, for Svalbard reindeer, see Solberg et al.
2001). The introduction of a ‘‘climate-event’’ parameter
in addition to a continuous climate variable is a way of
incorporating a sudden change in sex and age structure
after a population crash. The 1993/94 crash resulted
from heavy climate-induced emigration and some mor-
tality (Øritsland and Severinsen unpubl). Younger
individuals are also the ones most frequently dispersing
(Wahlström & Liberg 1995; Clutton-Brock et al. 2002),
so also increased emigration can lead to a different
population age structure. Irrespective of the demo-
graphic mechanisms, Eq. (2) indicates that the crash
triggered a 3-year alteration in the dynamics starting
from 1994 even after accounting for the sudden drop in
density (table 1), demonstrating the utility of such an
approach for ungulate populations. It should be men-
tioned that our approach is not limited to time series
analysis of population counts; it might, given data, easily

be lifted to an age-structured analysis that may pinpoint
the differential impacts of the extreme events on different
age group; see Chan et al. (2003b) for a related appli-
cation. Unfortunately, age-structured data are unavail-
able for the reindeer population under study.

The probability of a severe die-off (>50% decline in
total population size in one year) is 14% per generation
in vertebrates (Reed et al. 2003). Observing that ex-
treme climatic events may imprint signatures on the
ecological dynamics, it might be worthwhile analysing
what the emergent properties in a wider geographical
context are, for instance, in relation to the ability of
such extreme events to provoke population-size oscil-
lations and to synchronize different populations ex-
posed to the same extreme events. However, this is
beyond the scope of this particular paper. Another is-
sue concerns finding some climatic factor that corre-
lates well with the crash. While this problem is of
general interest, such a task may be futile here given
only one major crash in the reindeer data. Indeed, any
such climatic factor must have an extreme value in
1994, but otherwise within normal range. The dummy
variable which equals 1 in 1994 and 0 otherwise forms
the ideal limit of any such climatic factor. Thus, for the
purpose of untangling the normal weather impact from
the extreme but rare weather impact, our approach is
perhaps the best one could have.
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