Overview

1 Constructing the hyperreals
Overview

1. Constructing the hyperreals
2. The transfer principle
Overview

1 Constructing the hyperreals
2 The transfer principle
3 Properties of the hyperreals
Overview

1. Constructing the hyperreals
2. The transfer principle
3. Properties of the hyperreals
4. Continuity
Overview

1. Constructing the hyperreals
2. The transfer principle
3. Properties of the hyperreals
4. Continuity
5. Differentiation
Intuitive construction

- A hyperreal is a sequence of reals $\langle r_n \rangle$
Intuitive construction

- A hyperreal is a sequence of reals \(\langle r_n \rangle \)
 - If \(\lim_{n \to \infty} r_n = 0 \), \(\langle r_n \rangle \) is infinitely small.
Intuitive construction

- A hyperreal is a sequence of reals $\langle r_n \rangle$
 - If $\lim_{n \to \infty} r_n = 0$, $\langle r_n \rangle$ is infinitely small.
 - If $\lim_{n \to \infty} r_n = \infty$, $\langle r_n \rangle$ is infinitely large.
Intuitive construction

■ A hyperreal is a sequence of reals $\langle r_n \rangle$
 ■ If $\lim_{n \to \infty} r_n = 0$, $\langle r_n \rangle$ is infinitely small.
 ■ If $\lim_{n \to \infty} r_n = \infty$, $\langle r_n \rangle$ is infinitely large.
■ Elementwise addition and multiplication
Intuitive construction

- A hyperreal is a sequence of reals $\langle r_n \rangle$
 - If $\lim_{n \to \infty} r_n = 0$, $\langle r_n \rangle$ is infinitely small.
 - If $\lim_{n \to \infty} r_n = \infty$, $\langle r_n \rangle$ is infinitely large.
- Elementwise addition and multiplication
- Problem: This is not a field.

$$\langle 1, 0, 1, 0, \ldots \rangle \odot \langle 0, 1, 0, 1, \ldots \rangle = \langle 0, 0, 0, 0, \ldots \rangle$$
Intuitive construction

- A hyperreal is a sequence of reals \(\langle r_n \rangle \)
 - If \(\lim_{n \to \infty} r_n = 0 \), \(\langle r_n \rangle \) is infinitely small.
 - If \(\lim_{n \to \infty} r_n = \infty \), \(\langle r_n \rangle \) is infinitely large.

- Elementwise addition and multiplication

- Problem: This is not a field.
 \[
 \langle 1, 0, 1, 0, \ldots \rangle \odot \langle 0, 1, 0, 1, \ldots \rangle = \langle 0, 0, 0, 0, \ldots \rangle
 \]

- Solution: Introduce an equivalence relation.
Intuitive construction

- A hyperreal is a sequence of reals $\langle r_n \rangle$
 - If $\lim_{n \to \infty} r_n = 0$, $\langle r_n \rangle$ is infinitely small.
 - If $\lim_{n \to \infty} r_n = \infty$, $\langle r_n \rangle$ is infinitely large.

- Elementwise addition and multiplication
- Problem: This is not a field.

$$ \langle 1, 0, 1, 0, \ldots \rangle \odot \langle 0, 1, 0, 1, \ldots \rangle = \langle 0, 0, 0, 0, \ldots \rangle $$

- Solution: Introduce an equivalence relation.
- Large subsets of \mathbb{N}.
Ultrafilters

Definition

An ultrafilter on \(\mathbb{N}, \mathcal{F} \), is a set of subsets of \(\mathbb{N} \) such that:

- If \(X \in \mathcal{F} \) and \(X \subseteq Y \subseteq \mathbb{N} \), then \(Y \in \mathcal{F} \).
- If \(X \in \mathcal{F} \) and \(Y \in \mathcal{F} \), then \(X \cap Y \in \mathcal{F} \).
- \(\mathbb{N} \in \mathcal{F} \), but \(\emptyset \notin \mathcal{F} \).
- For any subset \(A \) of \(\mathbb{N} \), \(\mathcal{F} \) contains exactly one of \(A \) and \(\mathbb{N} \setminus A \).

We say that an ultrafilter is free if it contains no finite subsets of \(\mathbb{N} \).
Ultrafilters

Definition

An *ultrafilter* on \mathbb{N}, \mathcal{F}, is a set of subsets of \mathbb{N} such that:

- If $X \in \mathcal{F}$ and $X \subseteq Y \subseteq \mathbb{N}$, then $Y \in \mathcal{F}$.
- If $X \in \mathcal{F}$ and $Y \in \mathcal{F}$, then $X \cap Y \in \mathcal{F}$.
- $\mathbb{N} \in \mathcal{F}$, but $\emptyset \notin \mathcal{F}$.
- For any subset A of \mathbb{N}, \mathcal{F} contains exactly one of A and $\mathbb{N} \setminus A$.

We say that an ultrafilter is *free* if it contains no finite subsets of \mathbb{N}.

Theorem

There exists a free ultrafilter on \mathbb{N}.
Formal construction

- Fix a free ultrafilter \mathcal{F} on \mathbb{N}.

Equivalence relation:

$\langle r^n \rangle \equiv \langle s^n \rangle \iff \{ n \in \mathbb{N} | r^n = s^n \} \in \mathcal{F}$.

Defining the hyperreals \mathbb{R}^* as

$\mathbb{R}^* = \{ [r] | r \in \mathbb{R} \} = \mathbb{R}_F = \mathbb{R} / \equiv$.

Addition and multiplication:

$[r] + [s] = [\langle r^n \rangle] + [\langle s^n \rangle] = [\langle r^n + s^n \rangle]$,

$[r] \cdot [s] = [\langle r^n \rangle] \cdot [\langle s^n \rangle] = [\langle r^n \cdot s^n \rangle]$.

Ordering relation:

$[r] < [s] \iff \{ n \in \mathbb{N} | r^n < s^n \} \in \mathcal{F}$.

Formal construction

- Fix a free ultrafilter \mathcal{F} on \mathbb{N}.
- Equivalence relation:

$$\langle r_n \rangle \equiv \langle s_n \rangle \iff \{ n \in \mathbb{N} \mid r_n = s_n \} \in \mathcal{F}.$$
Formal construction

- Fix a free ultrafilter \mathcal{F} on \mathbb{N}.
- Equivalence relation:
 \[\langle r_n \rangle \equiv \langle s_n \rangle \iff \{ n \in \mathbb{N} \mid r_n = s_n \} \in \mathcal{F}. \]
- Defining the hyperreals (\mathbb{R}^*) as
 \[\mathbb{R}^* = \{ [r] \mid r \in \mathbb{R}^N \} = \mathbb{R}^N / \equiv. \]
Formal construction

- Fix a free ultrafilter \mathcal{F} on \mathbb{N}.
- Equivalence relation:
 \[
 \langle r_n \rangle \equiv \langle s_n \rangle \iff \{ n \in \mathbb{N} \mid r_n = s_n \} \in \mathcal{F}.
 \]
- Defining the hyperreals ($^*\mathbb{R}$) as
 \[
 ^*\mathbb{R} = \{ [r] \mid r \in \mathbb{R}^\mathbb{N} \} = \mathbb{R}^\mathbb{N}/\equiv.
 \]
- Addition and multiplication:
 \[
 [r] + [s] = [\langle r_n \rangle] + [\langle s_n \rangle] = [\langle r_n + s_n \rangle]
 \]
 \[
 [r] \cdot [s] = [\langle r_n \rangle] \cdot [\langle s_n \rangle] = [\langle r_n \cdot s_n \rangle].
 \]
Formal construction

- Fix a free ultrafilter \mathcal{F} on \mathbb{N}.
- Equivalence relation:

 \[\langle r_n \rangle \equiv \langle s_n \rangle \iff \{ n \in \mathbb{N} \mid r_n = s_n \} \in \mathcal{F}. \]

- Defining the hyperreals $^{\ast}\mathbb{R}$ as

 \[^{\ast}\mathbb{R} = \{ [r] \mid r \in \mathbb{R}^\mathbb{N} \} = \mathbb{R}^\mathbb{N} / \equiv. \]

- Addition and multiplication:

 \[[r] + [s] = [\langle r_n \rangle] + [\langle s_n \rangle] = [\langle r_n + s_n \rangle] \]
 \[[r] \cdot [s] = [\langle r_n \rangle] \cdot [\langle s_n \rangle] = [\langle r_n \cdot s_n \rangle]. \]

- Ordering relation:

 \[[r] < [s] \iff \{ n \in \mathbb{N} \mid r_n < s_n \} \in \mathcal{F}. \]
Infinitely small and large numbers

Theorem

There exist numbers $\varepsilon, \omega \in \mathbb{R}^*$ such that $0 < \varepsilon < r$ for any positive real number r and $\omega > r$ for any real number r.

Theorem

There exist numbers $\varepsilon, \omega \in \ast \mathbb{R}$ such that $0 < \varepsilon < r$ for any positive real number r and $\omega > r$ for any real number r.

Proof of the first part.

- Real numbers in $\ast \mathbb{R}$: $r \mapsto *r = \langle r, r, r, \ldots \rangle$.
- Let $\varepsilon = [\langle 1, \frac{1}{2}, \ldots \rangle] = [\langle \frac{1}{n} \rangle]$. For any positive real r, the set $\{n \in \mathbb{N} \mid \frac{1}{n} > r\}$ is finite, and hence $\{n \in \mathbb{N} \mid \frac{1}{n} < r\}$ is cofinite, and so is in \mathcal{F}, which means that $\varepsilon < r$. Since $\{n \in \mathbb{N} \mid 0 < \frac{1}{n}\} = \mathbb{N} \in \mathcal{F}$, we also have that $0 < \varepsilon$. ■
Enlarging sets

- For a subset A of \mathbb{R}, we create the enlarged subset *A of $^*\mathbb{R}$.

\[r \in ^*A \iff \{ n \in \mathbb{N} | r_n \in A \} \in F. \]

Examples:

- If $\omega = \langle 1, 2, 3, ... \rangle$, then $\{ n \in \mathbb{N} | \omega_n \in \mathbb{N} \} = \mathbb{N} \in F$, so $[\omega] \in ^*\mathbb{N}$.

$^*\{ \{ r \} \} = \{ ^*r \}$.

$^* (A \cup B) = ^*A \cup ^*B$.

$^* (0, 1) = \{ x \in ^*\mathbb{R} | 0 < x < 1 \}$.

Arne Tobias
Hyperreal Calculus
September 2, 2016
Enlarging sets

- For a subset \(A \) of \(\mathbb{R} \), we create the enlarged subset \(\ast A \) of \(\ast \mathbb{R} \).
- Definition:

\[
[r] \in \ast A \iff \{ n \in \mathbb{N} \mid r_n \in A \} \in \mathcal{F}.
\]

Examples:

If \(\omega = \langle 1, 2, 3, \ldots \rangle \), then \(\{ n \in \mathbb{N} \mid \omega_n \in \mathbb{N} \} \in \mathcal{F} \), so \(\omega \in \ast \mathbb{N} \).

\(\ast \{ r \} = \{ \ast r \} \)

\(\ast (A \cup B) = \ast A \cup \ast B \)

\(\ast (0, 1) = \{ x \in \ast \mathbb{R} \mid 0 < x < 1 \} \)
Enlarging sets

- For a subset A of \mathbb{R}, we create the enlarged subset $\ast A$ of $\ast \mathbb{R}$.
- Definition:

 $$[r] \in \ast A \iff \{ n \in \mathbb{N} \mid r_n \in A \} \in \mathcal{F}.$$

- Examples:
Enlarging sets

- For a subset A of \mathbb{R}, we create the enlarged subset $*A$ of $*\mathbb{R}$.
- Definition:
 \[[r] \in *A \iff \{ n \in \mathbb{N} \mid r_n \in A \} \in \mathcal{F}. \]
- Examples:
 - If $\omega = \langle 1, 2, 3, \ldots \rangle$, then $\{ n \in \mathbb{N} \mid \omega_n \in \mathbb{N} \} = \mathbb{N} \in \mathcal{F}$, so $[\omega] \in *\mathbb{N}$.

Arne Tobias Hyperreal Calculus September 2, 2016 6 / 21
Enlarging sets

For a subset A of \mathbb{R}, we create the enlarged subset *A of $^*\mathbb{R}$.

Definition:

$$[r] \in ^*A \iff \{n \in \mathbb{N} \mid r_n \in A\} \in \mathcal{F}. $$

Examples:

- If $\omega = \langle 1, 2, 3, \ldots \rangle$, then $\{n \in \mathbb{N} \mid \omega_n \in \mathbb{N}\} = \mathbb{N} \in \mathcal{F}$, so $[\omega] \in ^*\mathbb{N}$.
- $^*\{r\} = \{^*r\}$
Enlarging sets

- For a subset A of \mathbb{R}, we create the enlarged subset $*A$ of $*\mathbb{R}$.
- **Definition:**

 $[r] \in *A \iff \{n \in \mathbb{N} | r_n \in A\} \in \mathcal{F}.$

- **Examples:**

 - If $\omega = \langle 1, 2, 3, \ldots \rangle$, then $\{n \in \mathbb{N} | \omega_n \in \mathbb{N}\} = \mathbb{N} \in \mathcal{F}$, so $[\omega] \in *\mathbb{N}$.
 - $*\{r\} = \{*r\}$
 - $*(A \cup B) = *A \cup *B$
Enlarging sets

- For a subset A of \mathbb{R}, we create the enlarged subset *A of $^*\mathbb{R}$.

- Definition:

 $$[r] \in ^*A \iff \{n \in \mathbb{N} \mid r_n \in A\} \in \mathcal{F}.$$

- Examples:
 - If $\omega = \langle 1, 2, 3, \ldots \rangle$, then $\{n \in \mathbb{N} \mid \omega_n \in \mathbb{N}\} = \mathbb{N} \in \mathcal{F}$, so $[^*\omega] \in ^*\mathbb{N}$.
 - $[^*\{r\}] = \{^*r\}$
 - $^*(A \cup B) = ^*A \cup ^*B$
 - $^*(0, 1) = \{x \in ^*\mathbb{R} \mid 0 < x < 1\}$
Extending functions

- Take a function \(f : \mathbb{R} \to \mathbb{R} \), and extend it to \(*f : \ast \mathbb{R} \to \ast \mathbb{R} \).
Extending functions

- Take a function $f : \mathbb{R} \to \mathbb{R}$, and extend it to $\star f : \star \mathbb{R} \to \star \mathbb{R}$.
- Definition:

\[
\star f([\langle r_1, r_2, \ldots \rangle]) = [\langle f(r_1), f(r_2), \ldots \rangle].
\]
Extending functions

- Take a function $f : \mathbb{R} \to \mathbb{R}$, and extend it to $*f : *\mathbb{R} \to *\mathbb{R}$.
- Definition:

 $$
 *f([\langle r_1, r_2, \ldots \rangle]) = [\langle f(r_1), f(r_2), \ldots \rangle].
 $$

- Can also extend $f : A \to \mathbb{R}$ to $*f : *A \to *\mathbb{R}$ with the same idea, but with a small trick.
Extending functions

- Take a function \(f : \mathbb{R} \to \mathbb{R} \), and extend it to \(*f : *\mathbb{R} \to *\mathbb{R} \).
- Definition:
 \[
 *f([\langle r_1, r_2, \ldots \rangle]) = [\langle f(r_1), f(r_2), \ldots \rangle].
 \]
- Can also extend \(f : A \to \mathbb{R} \) to \(*f : *A \to *\mathbb{R} \) with the same idea, but with a small trick.
- Note that \(*f(*r) = *(f(r)) \).
The transfer principle

- What is the transfer principle?
The transfer principle

- What is the transfer principle?
- \mathcal{L}-sentences
The transfer principle

- What is the transfer principle?
- \mathcal{L}-sentences
- Examples:

$$(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$$

$$(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x + y = y)$$

$$(\forall x \in \mathbb{R})(x > 0 \rightarrow \neg(x < 0))$$

$$(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$$

$$(\forall n \in \mathbb{N}^*)(\exists m \in \mathbb{N}^*)(m > n)$$

$$(\forall x \in \mathbb{R})(\sin(x) < 2)$$

$$(\forall x \in \mathbb{R}^*)(\sin(x)^* < 2^*)$$
The transfer principle

- What is the transfer principle?
- \mathcal{L}-sentences
- Examples:
 - $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$
The transfer principle

- What is the transfer principle?
- \mathcal{L}-sentences
- Examples:
 - $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$
 - $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x + y = y)$
The transfer principle

- What is the transfer principle?
- \(\mathcal{L} \)-sentences
- Examples:
 - \((\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)\)
 - \((\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x + y = y)\)
 - \((\forall x \in \mathbb{R})((x > 0) \rightarrow \neg(x < 0))\)
The transfer principle

■ What is the transfer principle?
■ \mathcal{L}-sentences
■ Examples:
 ■ $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$
 ■ $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x + y = y)$
 ■ $(\forall x \in \mathbb{R})((x > 0) \rightarrow \neg(x < 0))$
■ \ast-transforms

Theorem (Transfer principle)
An \mathcal{L}-sentence ϕ is true if and only if its \ast-transform $\ast\phi$ is true.
The transfer principle

- What is the transfer principle?
- \mathcal{L}-sentences
- Examples:
 - $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$
 - $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x + y = y)$
 - $(\forall x \in \mathbb{R})((x > 0) \rightarrow \neg(x < 0))$
- \ast-transforms
 - $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$ to $(\forall n \in \ast\mathbb{N})(\exists m \in \ast\mathbb{N})(m > n)$.
The transfer principle

What is the transfer principle?

L-sentences

Examples:

- $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$
- $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x + y = y)$
- $(\forall x \in \mathbb{R})((x > 0) \rightarrow \neg(x < 0))$

\ast-transforms

- $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$ to $(\forall n \in \ast\mathbb{N})(\exists m \in \ast\mathbb{N})(m \ast > n)$.
- $(\forall x \in \mathbb{R})(\sin(x) < 2)$ to $(\forall x \in \ast\mathbb{R})(\ast\sin(x) < \ast2)$.
The transfer principle

- What is the transfer principle?
- \mathcal{L}-sentences
- Examples:
 - $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$
 - $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x + y = y)$
 - $(\forall x \in \mathbb{R})((x > 0) \rightarrow \neg(x < 0))$
- \ast-transforms
 - $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m > n)$ to $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N})(m \ast > n)$.
 - $(\forall x \in \mathbb{R})(\sin(x) < 2)$ to $(\forall x \in \mathbb{R})(\ast\sin(x) < \ast 2)$.
The transfer principle

- What is the transfer principle?
- \mathcal{L}-sentences
- Examples:
 - $\forall n \in \mathbb{N} (\exists m \in \mathbb{N}) (m > n)$
 - $\exists x \in \mathbb{R} (\forall y \in \mathbb{R}) (x + y = y)$
 - $\forall x \in \mathbb{R} ((x > 0) \rightarrow \neg(x < 0))$
- \ast-transforms
 - $\forall n \in \mathbb{N} (\exists m \in \mathbb{N}) (m > n)$ to $\forall n \in \ast\mathbb{N} (\exists m \in \ast\mathbb{N}) (m > n)$.
 - $\forall x \in \mathbb{R} (\sin(x) < 2)$ to $\forall x \in \ast\mathbb{R} (*\sin(x) < *2)$.

Theorem (Transfer principle)

An \mathcal{L}-sentence φ is true if and only if its \ast-transform $\ast\varphi$ is true.
Using the transfer principle

Theorem

The structure \(\langle \ast \mathbb{R}, +, \cdot, < \rangle \) is an ordered field with zero and unity.
Using the transfer principle

Theorem

The structure $\langle \ast \mathbb{R}, +, \cdot, \prec \rangle$ is an ordered field with zero and unity.

Proof.

All axioms for ordered fields can be expressed as \mathcal{L}-sentences. For example, that addition is commutative in \mathbb{R} can be expressed as $(\forall x, y \in \mathbb{R})(x + y = y + x)$, which is true. Then, we conclude by transfer that $(\forall x, y \in \ast \mathbb{R})(x + y = y + x)$ is true, and hence addition is commutative in $\ast \mathbb{R}$ as well. Doing this for all the axioms proves the statement.
Terminology and notation

We say that a hyperreal number b is:

- **limited** if $r < b < s$ for some $r, s \in \mathbb{R}$,
Terminology and notation

We say that a hyperreal number b is:

- **limited** if $r < b < s$ for some $r, s \in \mathbb{R}$,
- **positive unlimited** if $r < b$ for all $r \in \mathbb{R}$,
- **negative unlimited** if $b < r$ for all $r \in \mathbb{R}$,
- **unlimited** if it is positive or negative unlimited,
- **positive infinitesimal** if $0 < b < r$ for all positive $r \in \mathbb{R}$,
- **negative infinitesimal** if $r < b < 0$ for all negative $r \in \mathbb{R}$,
- **infinitesimal** if it is positive infinitesimal, negative infinitesimal or 0,
- **appreciable** if it is limited but not infinitesimal.
Terminology and notation

We say that a hyperreal number b is:

- **limited** if $r < b < s$ for some $r, s \in \mathbb{R}$,
- **positive unlimited** if $r < b$ for all $r \in \mathbb{R}$,
- **negative unlimited** if $b < r$ for all $r \in \mathbb{R}$,
- **unlimited** if it is positive or negative unlimited,
- **positive infinitesimal** if $0 < b < r$ for all positive $r \in \mathbb{R}$,
- **negative infinitesimal** if $r < b < 0$ for all negative $r \in \mathbb{R}$,
- **infinitesimal** if it is positive infinitesimal, negative infinitesimal or 0,
- **appreciable** if it is limited but not infinitesimal.
Terminology and notation

We say that a hyperreal number b is:

- **limited** if $r < b < s$ for some $r, s \in \mathbb{R}$,
- **positive unlimited** if $r < b$ for all $r \in \mathbb{R}$,
- **negative unlimited** if $b < r$ for all $r \in \mathbb{R}$,
- **unlimited** if it is positive or negative unlimited,
Terminology and notation

We say that a hyperreal number \(b \) is:

- **limited** if \(r < b < s \) for some \(r, s \in \mathbb{R} \),
- **positive unlimited** if \(r < b \) for all \(r \in \mathbb{R} \),
- **negative unlimited** if \(b < r \) for all \(r \in \mathbb{R} \),
- **unlimited** if it is positive or negative unlimited,
- **positive infinitesimal** if \(0 < b < r \) for all positive \(r \in \mathbb{R} \),
- **negative infinitesimal** if \(r < b < 0 \) for all negative \(r \in \mathbb{R} \),
- **infinitesimal** if it is positive infinitesimal, negative infinitesimal or \(0 \),
- **appreciable** if it is limited but not infinitesimal.
Terminology and notation

We say that a hyperreal number b is:

- **limited** if $r < b < s$ for some $r, s \in \mathbb{R}$,
- **positive unlimited** if $r < b$ for all $r \in \mathbb{R}$,
- **negative unlimited** if $b < r$ for all $r \in \mathbb{R}$,
- **unlimited** if it is positive or negative unlimited,
- **positive infinitesimal** if $0 < b < r$ for all positive $r \in \mathbb{R}$,
- **negative infinitesimal** if $r < b < 0$ for all negative $r \in \mathbb{R}$,
Terminology and notation

We say that a hyperreal number b is:

- **limited** if $r < b < s$ for some $r, s \in \mathbb{R}$,
- **positive unlimited** if $r < b$ for all $r \in \mathbb{R}$,
- **negative unlimited** if $b < r$ for all $r \in \mathbb{R}$,
- **unlimited** if it is positive or negative unlimited,
- **positive infinitesimal** if $0 < b < r$ for all positive $r \in \mathbb{R}$,
- **negative infinitesimal** if $r < b < 0$ for all negative $r \in \mathbb{R}$,
- **infinitesimal** if it is positive infinitesimal, negative infinitesimal or 0,
Terminology and notation

We say that a hyperreal number b is:

- **limited** if $r < b < s$ for some $r, s \in \mathbb{R}$,
- **positive unlimited** if $r < b$ for all $r \in \mathbb{R}$,
- **negative unlimited** if $b < r$ for all $r \in \mathbb{R}$,
- **unlimited** if it is positive or negative unlimited,
- **positive infinitesimal** if $0 < b < r$ for all positive $r \in \mathbb{R}$,
- **negative infinitesimal** if $r < b < 0$ for all negative $r \in \mathbb{R}$,
- **infinitesimal** if it is positive infinitesimal, negative infinitesimal or 0,
- **appreciable** if it is limited but not infinitesimal.
Terminology and notation

We say that a hyperreal number b is:

- **limited** if $r < b < s$ for some $r, s \in \mathbb{R}$,
- **positive unlimited** if $r < b$ for all $r \in \mathbb{R}$,
- **negative unlimited** if $b < r$ for all $r \in \mathbb{R}$,
- **unlimited** if it is positive or negative unlimited,
- **positive infinitesimal** if $0 < b < r$ for all positive $r \in \mathbb{R}$,
- **negative infinitesimal** if $r < b < 0$ for all negative $r \in \mathbb{R}$,
- **infinitesimal** if it is positive infinitesimal, negative infinitesimal or 0,
- **appreciable** if it is limited but not infinitesimal.
Terminology and notation

We say that a hyperreal number b is:

- **limited** if $r < b < s$ for some $r, s \in \mathbb{R}$,
- **positive unlimited** if $r < b$ for all $r \in \mathbb{R}$,
- **negative unlimited** if $b < r$ for all $r \in \mathbb{R}$,
- **unlimited** if it is positive or negative unlimited,
- **positive infinitesimal** if $0 < b < r$ for all positive $r \in \mathbb{R}$,
- **negative infinitesimal** if $r < b < 0$ for all negative $r \in \mathbb{R}$,
- **infinitesimal** if it is positive infinitesimal, negative infinitesimal or 0,
- **appreciable** if it is limited but not infinitesimal.

For a subset X of $^*\mathbb{R}$, we define $X_\infty = \{ x \in X \mid x \text{ is unlimited} \}$ and $X^+ = \{ x \in X \mid x > 0 \}$.

Arithmetic of hyperreals

If ε and δ are infinitesimals, b and c are appreciable, r and s are limited and H is unlimited, then:

- $\varepsilon + \delta$ is infinitesimal,
Arithmetic of hyperreals

If ε and δ are infinitesimals, b and c are appreciable, r and s are limited and H is unlimited, then:

- $\varepsilon + \delta$ is infinitesimal,
- $b + \varepsilon$ is appreciable,
Arithmetic of hyperreals

If ε and δ are infinitesimals, b and c are appreciable, r and s are limited and H is unlimited, then:

- $\varepsilon + \delta$ is infinitesimal,
- $b + \varepsilon$ is appreciable,
- $\varepsilon \cdot \delta$ is infinitesimal,
Arithmetic of hyperreals

If ε and δ are infinitesimals, b and c are appreciable, r and s are limited and H is unlimited, then:

- $\varepsilon + \delta$ is infinitesimal,
- $b + \varepsilon$ is appreciable,
- $\varepsilon \cdot \delta$ is infinitesimal,
- $\varepsilon \cdot b$ is infinitesimal,
Arithmetic of hyperreals

If ε and δ are infinitesimals, b and c are appreciable, r and s are limited and H is unlimited, then:

- $\varepsilon + \delta$ is infinitesimal,
- $b + \varepsilon$ is appreciable,
- $\varepsilon \cdot \delta$ is infinitesimal,
- $\varepsilon \cdot b$ is infinitesimal,
- $b \cdot c$ is appreciable,
Arithmetic of hyperreals

If ε and δ are infinitesimals, b and c are appreciable, r and s are limited and H is unlimited, then:

- $\varepsilon + \delta$ is infinitesimal,
- $b + \varepsilon$ is appreciable,
- $\varepsilon \cdot \delta$ is infinitesimal,
- $\varepsilon \cdot b$ is infinitesimal,
- $b \cdot c$ is appreciable,
- $\frac{b}{H}$ is infinitesimal,
Arithmetic of hyperreals

If ε and δ are infinitesimals, b and c are appreciable, r and s are limited and H is unlimited, then:

- $\varepsilon + \delta$ is infinitesimal,
- $b + \varepsilon$ is appreciable,
- $\varepsilon \cdot \delta$ is infinitesimal,
- $\varepsilon \cdot b$ is infinitesimal,
- $b \cdot c$ is appreciable,
- $\frac{b}{H}$ is infinitesimal,
- $r + s$ is limited,
Arithmetic of hyperreals

If ε and δ are infinitesimals, b and c are appreciable, r and s are limited and H is unlimited, then:

- $\varepsilon + \delta$ is infinitesimal,
- $b + \varepsilon$ is appreciable,
- $\varepsilon \cdot \delta$ is infinitesimal,
- $\varepsilon \cdot b$ is infinitesimal,
- $b \cdot c$ is appreciable,
- $\frac{b}{H}$ is infinitesimal,
- $r + s$ is limited,
- $r \cdot s$ is limited.
Halos

- $r \simeq s$ iff $r - s$ is infinitesimal.
Halos

- $r \simeq s$ iff $r - s$ is infinitesimal.
- $\text{hal}(b) = \{ c \in \mathbb{R}^* \mid b \simeq c \}$
Halos

- $r \simeq s$ iff $r - s$ is infinitesimal.
- $\text{hal}(b) = \{ c \in \mathbb{R}^* \mid b \simeq c \}$

Proposition

*If two real numbers b and c are infinitely close, that is if $b \simeq c$, then $b = c$.***
Halos

- $r \simeq s$ iff $r - s$ is infinitesimal.
- $\text{hal}(b) = \{c \in \mathbb{R}^* | b \simeq c\}$

Proposition

*If two real numbers b and c are infinitely close, that is if $b \simeq c$, then $b = c$.***

Proof.

Suppose that $b \simeq c$ with b and c real, but that $b \neq c$. Then there is a non-zero real number r such that $b - c = r$. But this contradicts the assumption that $b \simeq c$, since r is not an infinitesimal. ■
Theorem (Existence of shadows)

Every limited hyperreal b is infinitely close to one and only one real number s. This real number is called the shadow of b, which is denoted by $\text{sh}(b)$.
Shadows

Theorem (Existence of shadows)

Every limited hyperreal \(b \) is infinitely close to one and only one real number \(s \). This real number is called the shadow of \(b \), which is denoted by \(\text{sh}(b) \).

Proof sketch.

Let \(A = \{ r \in \mathbb{R} \mid r < b \} \). By the Dedekind completeness of \(\mathbb{R} \), \(A \) has a least upper bound in \(\mathbb{R} \). Call this real number \(s \). Then prove that \(b \simeq s \) using that \(s \) is a least upper bound of \(A \).
Continuity

Theorem

A function $f : \mathbb{R} \to \mathbb{R}$ is continuous at $c \in \mathbb{R}$ if and only if $f(x) \sim f(c)$ whenever $x \sim c$.

Proof sketch. The definition of continuity can be expressed by the L-sentence $(\forall \varepsilon \in \mathbb{R}^+) (\exists \delta \in \mathbb{R}^+) (\forall x \in \mathbb{R}) (|x - c| < \delta \rightarrow |f(x) - f(c)| < \varepsilon)$. Then one can use the transfer principle, and some tricks, to prove the theorem. ■
Continuity

Theorem

A function \(f : \mathbb{R} \to \mathbb{R} \) is continuous at \(c \in \mathbb{R} \) if and only if \(f(x) \simeq f(c) \) whenever \(x \simeq c \).

Proof sketch.

The definition of continuity can be expressed by the \(L \)-sentence \((\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall x \in \mathbb{R})(|x - c| < \delta \to |f(x) - f(c)| < \varepsilon)\). Then one can use the transfer principle, and some tricks, to prove the theorem. ■
Continuity

Theorem

A function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is continuous at \(c \in \mathbb{R} \) if and only if \(f(x) \simeq f(c) \) whenever \(x \simeq c \).

Proof sketch.

The definition of continuity can be expressed by the \(\mathcal{L} \)-sentence \((\forall \varepsilon \in \mathbb{R}^+) (\exists \delta \in \mathbb{R}^+) (\forall x \in \mathbb{R}) (|x - c| < \delta \rightarrow |f(x) - f(c)| < \varepsilon)\). Then one can use the transfer principle, and some tricks, to prove the theorem. □

Theorem

A function \(f : A \rightarrow \mathbb{R} \) is continuous at \(c \in A \) if and only if \(f(x) \simeq f(c) \) whenever \(x \simeq c \) and \(x \in *A \).
A continuous function

Proposition

\[\text{The function } f(x) = x^2 \text{ is continuous at any } a \in \mathbb{R}. \]
A continuous function

Proposition

The function $f(x) = x^2$ is continuous at any $a \in \mathbb{R}$.

Proof.

- We want $f(x) \simeq f(a)$ whenever $x \simeq a$.
A continuous function

Proposition

The function $f(x) = x^2$ is continuous at any $a \in \mathbb{R}$.

Proof.

- We want $f(x) \approx f(a)$ whenever $x \approx a$.
- If $x \approx a$, then $x = a + \varepsilon$ for some infinitesimal ε.

■
A continuous function

Proposition

The function \(f(x) = x^2 \) is continuous at any \(a \in \mathbb{R} \).

Proof.

- We want \(f(x) \approx f(a) \) whenever \(x \approx a \).
- If \(x \approx a \), then \(x = a + \varepsilon \) for some infinitesimal \(\varepsilon \).
- Now \(f(x) = f(a + \varepsilon) = a^2 + 2a\varepsilon + \varepsilon^2 \).
A continuous function

Proposition

The function $f(x) = x^2$ is continuous at any $a \in \mathbb{R}$.

Proof.

- We want $f(x) \approx f(a)$ whenever $x \approx a$.
- If $x \approx a$, then $x = a + \varepsilon$ for some infinitesimal ε.
- Now $f(x) = f(a + \varepsilon) = a^2 + 2a\varepsilon + \varepsilon^2$.
- Then $f(x) - f(a) = a^2 + 2a\varepsilon + \varepsilon^2 - a^2 = \varepsilon(2a + \varepsilon)$.
Proposition

The function \(f(x) = x^2 \) is continuous at any \(a \in \mathbb{R} \).

Proof.

- We want \(f(x) \approx f(a) \) whenever \(x \approx a \).
- If \(x \approx a \), then \(x = a + \varepsilon \) for some infinitesimal \(\varepsilon \).
- Now \(f(x) = f(a + \varepsilon) = a^2 + 2a\varepsilon + \varepsilon^2 \).
- Then \(f(x) - f(a) = a^2 + 2a\varepsilon + \varepsilon^2 - a^2 = \varepsilon(2a + \varepsilon) \).
- This is infinitesimal.
A continuous function

Proposition

The function \(f(x) = x^2 \) is continuous at any \(a \in \mathbb{R} \).

Proof.

- We want \(f(x) \approx f(a) \) whenever \(x \approx a \).
- If \(x \approx a \), then \(x = a + \varepsilon \) for some infinitesimal \(\varepsilon \).
- Now \(f(x) = f(a + \varepsilon) = a^2 + 2a\varepsilon + \varepsilon^2 \).
- Then \(f(x) - f(a) = a^2 + 2a\varepsilon + \varepsilon^2 - a^2 = \varepsilon(2a + \varepsilon) \).
- This is infinitesimal.
- Hence \(f(x) \approx f(a) \).
The Intermediate Value Theorem

Theorem (The Intermediate Value Theorem)

Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then for every real number d strictly between $f(a)$ and $f(b)$ there exists a real number $c \in (a, b)$ such that $f(c) = d$.
Proof.

Assume that $f(a) < d < f(b)$.
Proof.

Assume that $f(a) < d < f(b)$.

- Partition $[a, b]$ into n subintervals of equal length
Proof.

Assume that $f(a) < d < f(b)$.

- Partition $[a, b]$ into n subintervals of equal length.
- These intervals have endpoints $p_k = a + k\frac{b-a}{n}$.
Proof.

Assume that $f(a) < d < f(b)$.

- Partition $[a, b]$ into n subintervals of equal length
- These intervals have endpoints $p_k = a + k \frac{b-a}{n}$
- Let s_n be the maximum of $\{p_k \mid f(p_k) < d\}$
Proof.

Assume that \(f(a) < d < f(b) \).

- Partition \([a, b]\) into \(n\) subintervals of equal length.
- These intervals have endpoints \(p_k = a + k \frac{b-a}{n} \).
- Let \(s_n \) be the maximum of \(\{p_k \mid f(p_k) < d\} \).
- We have \(a \leq s_n < b \) and \(f(s_n) < d \leq f(s_n + \frac{b-a}{n}) \) for all \(n \in \mathbb{N} \).

\[\blacksquare \]
Proof.

Assume that $f(a) < d < f(b)$.

- Partition $[a, b]$ into n subintervals of equal length
- These intervals have endpoints $p_k = a + k \frac{b-a}{n}$
- Let s_n be the maximum of $\{p_k \mid f(p_k) < d\}$
- We have $a \leq s_n < b$ and $f(s_n) < d \leq f(s_n + \frac{b-a}{n})$ for all $n \in \mathbb{N}$.
- By transfer, this is true for all $n \in \mathbb{N}^*$, so pick an $N \in \mathbb{N}_\infty$.

\blacksquare
Proof.

Assume that $f(a) < d < f(b)$.

- Partition $[a, b]$ into n subintervals of equal length.
- These intervals have endpoints $p_k = a + k \frac{b-a}{n}$.
- Let s_n be the maximum of $\{p_k \mid f(p_k) < d\}$.
- We have $a \leq s_n < b$ and $f(s_n) < d \leq f(s_n + \frac{b-a}{n})$ for all $n \in \mathbb{N}$.
- By transfer, this is true for all $n \in {}^*\mathbb{N}$, so pick an $N \in {}^*\mathbb{N}_\infty$.
- $a \leq s_N < b$, so s_N is limited, and has a shadow c.

\[\Box\]
Proof.

Assume that $f(a) < d < f(b)$.

- Partition $[a, b]$ into n subintervals of equal length
- These intervals have endpoints $p_k = a + k \frac{b-a}{n}$
- Let s_n be the maximum of $\{p_k \mid f(p_k) < d\}$
- We have $a \leq s_n < b$ and $f(s_n) < d \leq f(s_n + \frac{b-a}{n})$ for all $n \in \mathbb{N}$.
- By transfer, this is true for all $n \in {}^*\mathbb{N}$, so pick an $N \in {}^*\mathbb{N}_\infty$.
- $a \leq s_N < b$, so s_N is limited, and has a shadow c.
- $\frac{b-a}{N}$ is infinitesimal, and so $s_N \sim c$ and $s_N + \frac{b-a}{N} \sim c$.

\[\square\]
Proof.

Assume that \(f(a) < d < f(b) \).

- Partition \([a, b]\) into \(n\) subintervals of equal length
- These intervals have endpoints \(p_k = a + k \frac{b-a}{n} \)
- Let \(s_n \) be the maximum of \(\{ p_k \mid f(p_k) < d \} \)
- We have \(a \leq s_n < b \) and \(f(s_n) < d \leq f(s_n + \frac{b-a}{n}) \) for all \(n \in \mathbb{N} \).
- By transfer, this is true for all \(n \in \mathbb{N}^\ast \), so pick an \(N \in \mathbb{N}^\infty \).
- \(a \leq s_N < b \), so \(s_N \) is limited, and has a shadow \(c \).
- \(\frac{b-a}{N} \) is infinitesimal, and so \(s_N \simeq c \) and \(s_N + \frac{b-a}{N} \simeq c \).
- By continuity, \(f(s_N) \simeq f(c) \) and \(f(s_N + \frac{b-a}{N}) \simeq f(c) \).

\(\blacksquare \)
Proof.

Assume that $f(a) < d < f(b)$.

- Partition $[a, b]$ into n subintervals of equal length.
- These intervals have endpoints $p_k = a + k \frac{b-a}{n}$.
- Let s_n be the maximum of $\{p_k | f(p_k) < d\}$.
- We have $a \leq s_n < b$ and $f(s_n) < d \leq f(s_n + \frac{b-a}{n})$ for all $n \in \mathbb{N}$.
- By transfer, this is true for all $n \in *\mathbb{N}$, so pick an $N \in *\mathbb{N}_\infty$.
- $a \leq s_N < b$, so s_N is limited, and has a shadow c.
- $\frac{b-a}{N}$ is infinitesimal, and so $s_N \simeq c$ and $s_N + \frac{b-a}{N} \simeq c$.
- By continuity, $f(s_N) \simeq f(c)$ and $f(s_N + \frac{b-a}{N}) \simeq f(c)$.
- Therefore $f(c) \simeq f(s_N) < d \leq f(s_N + \frac{b-a}{N}) \simeq f(c)$.

\blacksquare
Proof.

Assume that \(f(a) < d < f(b) \).

- Partition \([a, b]\) into \(n\) subintervals of equal length
- These intervals have endpoints \(p_k = a + k \frac{b-a}{n} \)
- Let \(s_n \) be the maximum of \(\{p_k \mid f(p_k) < d\} \)
- We have \(a \leq s_n < b \) and \(f(s_n) < d \leq f(s_n + \frac{b-a}{n}) \) for all \(n \in \mathbb{N} \).
- By transfer, this is true for all \(n \in \mathbb{N}^\ast \), so pick an \(N \in \mathbb{N}^\infty \).
- \(a \leq s_N < b \), so \(s_N \) is limited, and has a shadow \(c \).
- \(\frac{b-a}{N} \) is infinitesimal, and so \(s_N \sim c \) and \(s_N + \frac{b-a}{N} \sim c \).
- By continuity, \(f(s_N) \sim f(c) \) and \(f(s_N + \frac{b-a}{N}) \sim f(c) \).
- Therefore \(f(c) \sim f(s_N) < d \leq f(s_N + \frac{b-a}{N}) \sim f(c) \).
- So \(f(c) \sim d \), but both are real, and so \(f(c) = d \).
Theorem

If \(f \) is defined at \(x \in \mathbb{R} \), then \(L \in \mathbb{R} \) is the derivative of \(f \) at \(x \) if and only if for every nonzero infinitesimal \(\varepsilon \), \(f(x + \varepsilon) \) is defined, and

\[
\frac{f(x + \varepsilon) - f(x)}{\varepsilon} \simeq L.
\]
Differentiation

Theorem

If f is defined at $x \in \mathbb{R}$, then $L \in \mathbb{R}$ is the derivative of f at x if and only if for every nonzero infinitesimal ε, $f(x + \varepsilon)$ is defined, and

$$\frac{f(x + \varepsilon) - f(x)}{\varepsilon} \simeq L.$$

Remark

If f is differentiable, we can find the derivative as $f'(x) = \text{sh} \left(\frac{f(x + \varepsilon) - f(x)}{\varepsilon} \right)$ for any non-zero infinitesimal ε.

Arne Tobias

Hyperreal Calculus

September 2, 2016
Increments

- Notation: $\Delta f = f(x + \Delta x) - f(x) (= \Delta f(x, \Delta x))$
Increments

- Notation: \(\Delta f = f(x + \Delta x) - f(x) (= \Delta f(x, \Delta x)) \)
- \(f'(x) = \text{sh} \left(\frac{\Delta f}{\Delta x} \right) \), if \(f'(x) \) is defined
Increments

- Notation: \(\Delta f = f(x + \Delta x) - f(x) \) (= \(\Delta f(x, \Delta x) \))
- \(f'(x) = \text{sh} \left(\frac{\Delta f}{\Delta x} \right) \), if \(f'(x) \) is defined

Lemma (Incremental Equation)

If \(f'(x) \) exists at real \(x \) and \(\Delta x \) is infinitesimal, then there exists an infinitesimal \(\varepsilon \), dependent on \(x \) and \(\Delta x \), such that \(\Delta f = f'(x)\Delta x + \varepsilon \Delta x \).
Increments

- Notation: \(\Delta f = f(x + \Delta x) - f(x) (= \Delta f(x, \Delta x)) \)
- \(f'(x) = \operatorname{sh} \left(\frac{\Delta f}{\Delta x} \right) \), if \(f'(x) \) is defined

Lemma (Incremental Equation)

If \(f'(x) \) exists at real \(x \) and \(\Delta x \) is infinitesimal, then there exists an infinitesimal \(\varepsilon \), dependent on \(x \) and \(\Delta x \), such that \(\Delta f = f'(x)\Delta x + \varepsilon \Delta x \).

Proof.

Since \(f'(x) \) exists, we have that \(f'(x) \sim \frac{\Delta f}{\Delta x} \), and hence that \(f'(x) - \frac{\Delta f}{\Delta x} = \varepsilon \) for some infinitesimal \(\varepsilon \). Multiplying through by \(\Delta x \) and rearranging, we get that \(\Delta f = f'(x)\Delta x + \varepsilon \Delta x \), which is what we wanted. \(\blacksquare \)
Theorem (Product rule)

If \(f \) and \(g \) are differentiable at \(x \), so is \(fg \), and we have that \((fg)'(x) = f(x)g'(x) + g(x)f'(x) \).
Theorem (Product rule)

If f and g are differentiable at x, so is fg, and we have that $(fg)'(x) = f(x)g'(x) + g(x)f'(x)$.

Proof.

We get that $\Delta(fg) = f(x)\Delta g + g(x)\Delta f + \Delta f\Delta g$ which yields that

$$
\frac{\Delta(fg)}{\Delta x} = f(x)\frac{\Delta g}{\Delta x} + g(x)\frac{\Delta f}{\Delta x} + \frac{\Delta f}{\Delta x}\Delta g
\approx f(x)g'(x) + g(x)f'(x) + 0,
$$

from which our theorem follows.
Theorem (Chain Rule)

If f is differentiable at $x \in \mathbb{R}$, and g is differentiable at $f(x)$, then $g \circ f$ is differentiable at x with derivative $g'(f(x))f'(x)$.
Theorem (Chain Rule)

If f is differentiable at $x \in \mathbb{R}$, and g is differentiable at $f(x)$, then $g \circ f$ is differentiable at x with derivative $g'(f(x))f'(x)$.

Proof.

We have that $\Delta(g \circ f)(x, \Delta x) = \Delta g(f(x), \Delta f)$. By the incremental equation, we have that $\Delta(g \circ f) = g'(f(x))\Delta f + \varepsilon \Delta f$ for some infinitesimal ε, and hence that

$$\frac{\Delta(g \circ f)}{\Delta x} = g'(f(x)) \frac{\Delta f}{\Delta x} + \varepsilon \frac{\Delta f}{\Delta x} \approx g'(f(x))f'(x) + 0$$

which establishes our claim.