Specifying Services using the Service oriented architecture Modeling Language (SoaML): A baseline for Specification of Cloud-based Services

Brian Elvesæter1, Arne-Jørgen Berre1 and Andrey Sadovykh2

1 SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway \texttt{brian.elvesater@sintef.no, arne.j.berre@sintef.no}

2 SOFTEAM, 21 avenue Victor Hugo, 75016 Paris, France \texttt{andrey.sadovykh@softeam.fr}
Outline

• Short presentation of the main part of the paper
 – What is SoaML?
 – Experiences and issues
 – Illustrative example
 – Two approaches

• Ongoing and future work
 – A baseline for Specification of Cloud-based Services
 – Towards a Cloud Modeling Language (CloudML)
What is SoaML?

- Service oriented architecture Modeling Language (SoaML)
 - Defines language constructs and extensions to UML2 to support service concepts (metamodel and UML profile)
 - Focuses on basic service modelling concepts and structure.
 - A foundation for further extensions and integration with BPMN, BMM and other metamodels.

- Key language constructs
 - Consumer
 - MessageType
 - Participant
 - Provider
 - ServiceContract
 - ServiceInterface
 - ServicesArchitecture
SoaML experiences, identified issues and purpose of our paper

• Our experiences with SoaML
 – Tooling
 – Methods and practices
 – Application in industry projects

• Identified issues
 – Inconsistencies in the specification.
 – Two (three) main approaches to service modelling.
 – Examples illustrating the two approaches are not consistent.
 – No clear separation, the two approaches are somewhat intertwined.
 – Tool support lacking or worse wrongly implemented.

• Purpose of our paper
 – Clarify the differences and similarities between the different approaches.
 – Describe how to align the approaches.
 – Position SoaML as a baseline for specification of cloud-based services.
 – SoaML can be extended with new modelling constructs and integrated with other modelling languages.
Consolidated and extended example

Services architecture:
- High level description of how participants work together for a purpose by providing and using services expressed as service contracts.

Service contract:
- Service specifications that define the roles each participant plays in the service and the interfaces they implement to play that role.
Two approaches

ServiceContract (Collaboration)

Refinements or Views

Consumer (Interface)
- quote()
- order()
- quoteRequest()
- orderConfirmation()

Provider (Interface)
- consumer:OrderPlacer
- provider:OrderTaker

ServiceInterface (Class)

Type

Parameter

MessageType
- QuoteRequest
- Order
- OrderConfirmation

Enumeration
- CurrencyType
 - EUR
 - USD
- ConfirmationType
 - Confirmed
 - Shipped
 - Cancelled
 - OutOfStock
A baseline for Specification of Cloud-based Services in REMICS
Model-Driven Migration of Legacy Applications to Service Cloud

- **Source Architecture**
 - Knowledge: REMICS KDM
 - Business Process and Rules Components: SoaML
 - Implementation: UML, U2TP

- **Recover**
 - Knowledge Discovery, Reverse Engineering
 - Source code, binaries, documentation, users knowledge, configuration files, execution logs and traces.

- **Model Driven Interoperability**
 - Service mediation for adaptation
 - SOA and Cloud Computing Patterns applied, Legacy Components Replacement and Wrapping, Design by Service Composition

- **Migrate**
 - Target Architecture for Service Cloud platform
 - SoaML with REMICS extensions for Service Clouds, Links to Business Models

- **Validate, Control and Supervise**
 - Forward MDA through PIM4Cloud
 - Model Transformation, Code Generation, Traceability

- **Legacy Artifacts**
 - RESERVOIR, Joyant, Amazon, Google, Microsoft

- **Models@Runtime for application management, Model Checking, Model-based Testing for validation**

SINTEF ICT
Cloud computing layers

• Cloud computing layers:
 – **Software as a Service** delivers software as a service over the Internet.
 – **Platform as a Service** delivers a computing platform and solution stack as a service.
 – **Infrastructure as a Service** delivers a platform virtualization environment as a service.

• Different issues for each layer:
 – Security
 – Quality of Service
 – Data Storage Interface
 – Client Application Interface
 – Provisioning
 – Development Platform
 – Virtual machine interface

• SoaML4Cloud (PIM4Cloud) can’t address all these issues
Cloud models and languages

- We are currently looking at some interesting models and languages:
 - Amazon Cloudformation
 - a textual description language for cloud resources
 - http://aws.amazon.com/cloudformation/
 - CA 3Tera AppLogic
 - a graphical language for Cloud configuration
 - Elastra – with DSLs for Cloud configuration
 - Elastra Cloud Modeling Language (ECML) is used to describe an application (software, requirements, and policies)
 - Elastra Deployment Modeling Language (EDML) is used to describe the resources (virtual machines, storage, and network) available in a data center.
 - www.elastra.com
Cloud computing standardisation

<table>
<thead>
<tr>
<th>Standardisation organisation</th>
<th>Cloud standardisation</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Grid Forum</td>
<td>Open Cloud Computing Interface</td>
<td>Microsoft, Sun, Intel, HP, AT&T, eBay, etc</td>
</tr>
<tr>
<td>Cloud Computing Interoperability Forum</td>
<td>Enable a global cloud computing ecosystem</td>
<td>Cisco, Intel, Thomson Reuters, Orange, Sun, IBM, RSA, etc</td>
</tr>
<tr>
<td>Distributed Management Task Force</td>
<td>Open Virtualisation Format Standard & Open Cloud Standards Incubator</td>
<td>IBM, Microsoft, Novell, Oracle, Sun, Vmware, EMC, etc</td>
</tr>
<tr>
<td>Open Cloud Consortium</td>
<td>Standards and Interoperability for Large Data & Open Cloud Testbed</td>
<td>Cisco, MIT Lincoln Labs, Yahoo, various colleges</td>
</tr>
<tr>
<td>Cloud Security Alliance</td>
<td>Best practices for providing security assurance</td>
<td>eBay, ING, Qualys, PGP, zScaler, etc</td>
</tr>
<tr>
<td>Storage Networking Industry Association</td>
<td>Storage Networking</td>
<td>Dell, EMC, Oracle, Juniper Networks, Qlogic, HP, Vmware, Hitachi, NetApp</td>
</tr>
<tr>
<td>Object Management Group</td>
<td>Modelling languages for Cloud computing</td>
<td>OMG members (industry consortium)</td>
</tr>
</tbody>
</table>
Future work: OMG standardisation goals

- Specify the REMICS SoaML4Cloud (PIM4Cloud) metamodel and profile
 - extension of the SoaML metamodel and profile
 - platform independent model
 - deployment modelling
 - support for code-generation aimed at cloud computing platforms

- Issue an OMG Request for Proposal (RFP) for CloudML
 - Focus on modelling deployment of applications & services on cloud for portability, interoperability and reuse
 - Address deployment to Cloud Platforms at the Infrastructure and Service level
 - Deployment model to specify infrastructure and QoS and SLA properties for analysis
Thanks for your attention!

- Questions?
- SoaML website:
 - http://www.soaml.org/
- SHAPE website:
 - http://www.shape-project.eu/
- NEFFICS website:
 - http://www.neffics.eu/
- REMICS website:
 - http://www.remics.eu/
- SiSaS website:
 - http://sisas.modelbased.net/