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Abstract. Combining term rewriting and modal logics, this paper addresses conflu-
ence and termination of rewrite systems introduced for only-knowing logics. The
rewrite systems contain a rule scheme that gives rise to an infinite number of crit-
ical pairs, hence we cannot check the joinability of every critical pair directly, in
order to establish local confluence. We investigate conditions that are sufficient for
confluence and identify a set of rewrite rules that satisfy these conditions; however,
the general confluence result makes it easier to check confluence also of stronger
systems should one want additional rules. The results provide a firm logical basis
for implementation of procedures that compute autoepistemic expansions.
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1. Introduction

One way of motivating only-knowing logics is through their intended application to non-
monotonic reasoning. Although only-knowing logics have successfully been used to rep-
resent autoepistemic and default logics [14,11,21,15], the only-knowing logic addressed
in this paper primarily relates to propositional autoepistemic logic, the simplest case in
point. Let us, before we motivate and explain the contribution of this paper, briefly sum-
marize autoepistemic logic and the way it is reflected in only-knowing logic.

The language of autoepistemic propositional logic is a modal language with a sin-
gle belief modality B. The central notion of a stable set is defined as follows: A set Γ
of autoepistemic formulae is stable if it is closed under propositional logic, Bψ ∈ Γ
for each ψ ∈ Γ and ¬Bψ ∈ Γ for each ψ 6∈ Γ. The subset of Γ consisting only of
propositional formulae (i.e. formulae without modalities) is the kernel of Γ. This kernel
is unique; moreover, each deductively closed set of propositional formulae is the kernel
of a unique stable set.

Given an autoepistemic formula ϕ, the autoepistemic consequence relation deter-
mines the stable expansions of ϕ, i.e. stable sets that entail it and that satisfy a specific
fixpoint equation. Despite the non-constructive nature of the consequence relation, there
are simple algorithms [1,5,14] that for each autoepistemic formula ϕ compute a set of
propositional formulae ϕ1, . . . , ϕn such that Th(ϕ1), . . . ,Th(ϕn) are the kernels of all
and only stable expansions of ϕ, where Th(ϕi) denotes the set of propositional con-
sequences of ϕi. We illustrate a simple algorithm on the so-called Nixon Diamond, a
well-known example illustrating conflicting defaults.
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Example 1. Assume a knowledge base KB, a formula of propositional logic, which en-
tails that Nixon is both a quaker and a republican, formalized as q∧r. “Quakers are nor-
mally pacifists” is, when applied to Nixon, expressed as a formula δq = (Bq∧¬B¬p) ⊃
p. It intuitively reads “If I believe that Nixon is a quaker and it is consistent with my be-
liefs that he is a pacifist, then he is a pacifist.” “Republicans are normally not pacifists”
applied to Nixon is expressed as δr = (Br ∧ ¬Bp) ⊃ ¬p. We want to find the stable
expansions of the formula ϕ = KB ∧ δq ∧ δr.

The algorithm first identifies the modal atoms that occur as subformulae of ϕ: Bq,
Br, Bp, B¬p. There are potentially 16 different ways in which these may be valuated,
each of which is treated separately. Consider the valuation that maps Bq, Br and Bp to
true and B¬p to false. Take the modal atoms that are valuated to true and determine the
propositional consequences of these three and ϕ taken together. The result is Th(KB∧p),
since the δq default yields p. This is potentially the kernel of a stable expansion of ϕ. To
verify that Th(KB ∧ p) is indeed a stable expansion, we must check that KB ∧ p entails
propositions which are believed to hold (i.e. q∧ r∧p) by the assumed valuation and that
it does not entail any proposition that is not believed to hold (i.e. ¬p). Since both these
tests go through, Th(KB ∧ p) is the kernel of a stable expansion of ϕ. It is easy to check
that Th(KB ∧ ¬p) is the kernel of another stable expansion of ϕ, and that there are no
other stable expansions.

The algorithm for autoepistemic logic illustrated above manipulates a quite complex
construction in the meta-language; enumerating potential valuations, generating conse-
quences and checking for consistencies. It is precisely this reasoning at the meta-level
underlying the algorithm, that only-knowing logics can accommodate. Only-knowing
logics do not only represent this pattern of reasoning at the object level of the logic, they
can also replace the construction in the algorithm with a calculus.

Example 2. In only-knowing logic the Nixon Diamond can be represented by the formula
Oϕ, expressing that ϕ is “all I know;” the formula conveys both that “I believe that
ϕ holds” and that “whatever I believe is a consequence of ϕ” (the latter statement is
formalized by means of a co-belief operator C specifically addressed in [21]). By the
rules of the logic, the equivalenceOϕ ≡ O(KB∧p)∨O(KB∧¬p) is a theorem. Note that
the disjuncts to the right in the equivalence correspond directly to the stable expansions.
The right hand side of the equivalence can be determined from the left hand side in many
ways; the procedure addressed in this paper first applies a so-called expand rule and
then collapse rules and structural rules. The expand rule can be viewed as a rule that
successively builds up valuations of the sort addressed in Example 1. The expand rule
will, e.g., map the modal atom Bq in Oϕ to either > or ⊥:

Oϕ � (Oϕ〈Bq/>〉 ∧Bq) ∨ (Oϕ〈Bq/⊥〉 ∧ ¬Bq).

Here Oϕ〈Bq/v〉 evaluates to O(KB ∧ ((v ∧ ¬B¬p) ⊃ p) ∧ δr). We can apply a dis-
tribution rule, expand wrt. the remaining modal atoms, and simplify the result to get a
formula on DNF, in which one of the 16 disjuncts (corresponding to the potential kernels
of stable expansions identified by the procedure in Example 1) is:

O(KB ∧ p) ∧Bq ∧ ¬B¬p ∧Bp ∧Br.



A consistency check is now implemented using collapse rules (cf. Section 5), in this case
leading to O(KB ∧ p); the collapse rules reduce an O-formula and a modal atom to
either the O-formula itself or to ⊥ (most of the disjuncts in this example reduce to ⊥). In
the end we get a formula with two consistent disjuncts: O(KB ∧ p) ∨O(KB ∧ ¬p).

The Modal Reduction Theorem [21] states that for each formula ϕ, there exists proposi-
tional formulae ψ1, . . . , ψn such that Oϕ ≡ Oψ1 ∨ · · · ∨ Oψn is provable, where each
Oψi has an essentially unique model that corresponds to a stable expansion (it forms
a complete theory over the subjective, i.e. completely modalized, fragment of the lan-
guage). Hence, the theorem guarantees that one can reduceOϕ, representing an autoepis-
temic theory, to a formula of a form which directly exhibits its models. Note that the va-
lidity of the equivalence in the Modal Reduction Theorem shows that only-knowing logic
is in itself strong enough to accommodate the reasoning used to determine stable expan-
sions in autoepistemic logic. Also note that only-knowing logics are, in contrast to au-
toepistemic logic, in themselves monotonic; it is the arguments to O-modalities that ex-
hibit nonmonotonic behaviour. Being normal systems of modal logic they have a standard
Kripke semantics that in particular provides autoepistemic logic with increased concep-
tual clarity compared to its original fixpoint definition of expansions, not least because
only-knowing systems sharply separate object-language features from meta-concepts.

Whereas the Modal Reduction Theorem gives an abstract characterization of the
expressivity of only-knowing logic, the aim of this paper is to provide a bridge to the
design and implementation of procedures for computing expansions. In [21] the Modal
Reduction Theorem is proved using a set of equivalence-preserving rewrite rules, pro-
viding an easy-to-use calculus for reducingOϕ toOψ1∨· · ·∨Oψn; we shall refer to the
latter as the canonical form of the former. Compared to more high-level (pseudo-code)
algorithmic specifications, like the one in Example 1, rewrite systems are easier to rea-
son about and may be implemented more directly, for instance using the rewriting logic
tool Maude [3]. To pave the way for such principled and high-level approaches to imple-
mentation we shall in this paper focus on conditions for the design of confluent rewrite
calculi for only-knowing logics.

The algorithm in Example 1 is reminiscent of a truth table method for checking
propositional satisfiability: list all potential models and check each of them in separation.
Clearly, one can do much better, but using the framework of autoepistemic logic the
correctness of the algorithm must be checked for each optimization. Adding rules to a
confluent system is easier to deal with; all we have to do is to check that confluence is
preserved. Once this is done, we get the flexibility to modify search procedures for free.
The confluence results in this paper provide a firm logical basis for the implementation of
procedures that compute autoepistemic expansions which will, we believe, facilitate the
study and comparison of different search strategies. No results like the ones presented in
this paper have, to our knowledge, previously been established for a logic that supports
nonmonotonic patterns of reasoning.

For standard systems of rewriting modulo an equivalence relation, confluence is
proved using the following line of argument:

(i) Local confluence follows from joinability of all critical pairs.
(ii) Confluence follows from local confluence, local coherence with the equivalence

relation, and termination.



Hence, one has to check joinability of critical pairs, local coherence and termination; in
many cases these follow straightforwardly using standard techniques. The expand rule,
illustrated in Example 2, is in fact a rule scheme that gives rise to an infinite number of
critical pairs, hence we need a systematic method to establish the joinability of every
critical pair.

The collapse rules are expensive as they are preconditioned by SAT (propositional
satisfiability) tests, a fact which efficient strategies must deal with. The proof of the
Modal Reduction Theorem based on formula rewriting uses just the set of rewrite rules
that is needed to establish the theorem. The canonical form of an only-knowing formula
is derived by first generating a large DNF formula in which each disjunct corresponds
to a potential model, and then reducing each disjunct either to ⊥ or to a satisfiable only-
knowing formula. This rule set consists of modal rules and two propositional structural
rules: a distribution rule and a contradiction rule. From a computational perspective it is
clearly desirable to have more simplification rules at hand, to avoid having to generate
the large DNF formula upfront.

What we need is hence not just one confluent system for only-knowing logic, but
a systematic method, that can be used to check confluence of rewrite systems with the
expand rule. A result of this kind is not straightforward to establish. In Section 4 we
suggest a solution by introducing a system RMin and a natural condition that establishes
that critical pairs stemming from the use of the expand rule are joinable. In Section 5 we
prove that the original rewrite system in [21] equipped with some extra structural rules
is indeed confluent.

2. Only-knowing Logic

The only-knowing language we address in this paper slightly generalizes the language
discussed in Section 1 in that it is parameterized by an index set I partially ordered by a
relation 4. Intuitively each index in I denotes a confidence layer of an agent. Relative to
each confidence layer, there are the modal operators Bk (belief), Ck (co-belief) and Ok

(exact belief). Atomic formula consist of the truth constants > and ⊥, and a set {pi}i>1

of propositional letters; we will sometimes write p, q and r for p1, p2, and p3. Formulae
are constructed as follows.

ϕ,ψ −→ > |⊥ | pi | ¬ϕ |ϕ ∧ ψ |ϕ ∨ ψ |Bkϕ |Ckϕ |Okϕ

for all k ∈ I , where I is a finite index set. A formula of the form Bkϕ or Ckϕ is called a
modal atom. A modal literal is a modal atom or its negation. We say that a formula with
an occurrence ofOk is tainted; the reason for discriminating against tainted formulae has
to do with confluence issues. A formula is subjective if every propositional letter is within
the scope of a modal operator. A subjective formula is prime if it contains no nested
modalities. A formula without any occurrence of a modal operator is called objective.
A formula is constant if it is a Boolean combination of the truth constants. Note that
a constant formula is both subjective and objective; subjective because it contains no
propositional letters and objective because it contains no modalities. The sets mod(ϕ)
and pmod(ϕ) consist of the modal atoms and prime modal atoms, resp., occurring in ϕ.

For further motivation, axiomatization and semantics of the only-knowing logic,
cf. [21]. Of special interest are formulae of the form

∧
k∈IOkϕk, called OI -blocks. OI -



blocks intuitively represent the belief state of an agent relative to each confidence level
in the index set I . Let ϕ =

∧
k∈IOkϕk and ψ =

∧
k∈IOkψk be two prime OI -blocks.

ϕ is cumulative if i ≺ j implies that ϕj ⊃ ϕi is a tautology, i.e. that {¬ϕi, ϕj} is
unsatisfiable. Cumulativity reflects the intuition behind the partial order≺ on I . ϕ and ψ
are independent if there is an i ∈ I such that ϕi ≡ ψi is not a tautology.

A fundamental result in only-knowing logic, the Modal Reduction Theorem (MRT)
[21], states that any OI -block ϕ is equivalent to a disjunction of prime OI -blocks µ1 ∨
· · · ∨ µn for some n > 0 such that each µk is cumulative. Such a disjunction is on
canonical form if every pair of disjuncts µi and µj for i 6= j is independent; observe
that the empty disjunction ⊥ is on canonical form. One goal in this paper is to present a
confluent rewrite system where the normal form of OI -blocks is canonical.

As explained in Section 1, the rewrite procedure is based on substituting truth con-
stants for modal atoms. To this end we need some terminology about substitutions. Bind-
ings a, b, c, . . . are ordered pairs 〈β/v〉 such that β is a prime modal atom and v a truth
constant. We view a binding 〈β/v〉 as a function that maps (or binds) β to v, that is
β〈β/v〉 = v using postfix notation. Bindings are extended to arbitrary formulae in the
usual way. A modal substitution (henceforth just substitution, not to be confused with
the ground substitutions in Section 3) is a sequence over some set of bindings; the empty
substitution is written ε. If σ and τ are sequences, the concatenation of σ and τ is denoted
σ·τ or simply στ . We letϕ(aσ) = (ϕa)σ for any substitution aσ. For the sake of simplic-
ity, we define the complement operation on truth constants:> = ⊥ and⊥ = >. Observe
that bindings are in general not commutative (and not idempotent): If we let b = 〈Lv/v〉
and c = 〈Lv/v〉, then (LLv)bc = v, while (LLv)cb = Lv. A set of bindings is consis-
tent if no subset is of the form {〈β/>〉, 〈β/⊥〉}; a modal valuation is a consistent set of
bindings. We may view a modal valuation V as a function from prime modal atoms to
truth constants, hence we may refer to the domain of V : dom(V ) = {β | 〈β/v〉 ∈ V }. A
straightforward generalization of Lemma 31 in [21] is:

Lemma 3. If σ and τ are substitutions over a modal valuation V such that ϕσ and ϕτ
are without occurrences from dom(V ), then ϕσ = ϕτ .

We will assume that no formula has nested Os, equivalently that Okϕ is a formula iff
ϕ is not tainted, as this complicates the confluence argument unnecessarily. However,
this assumption does not decrease expressibility, as any formula Okϕ is equivalent to
Bkϕ ∧ Ck¬ϕ, which may occur freely. Hence to express, e.g., O1O2p, we must write
O1(B2p ∧ C2¬p).

3. Order-Sorted Term Rewriting

We want to capture the MRT with a rewrite theory, i.e. we want a rule set R such that
for any OI -block ϕ, there is a µ on canonical form such that ϕ �R µ. Additionally, we
want this rule set to be confluent.

3.1. General Notions

Cf. [2,17] for details on standard definitions and results. Let Σ be a set of function sym-
bols of given sorts – partially ordered by a subsort relation – and arities,X an unbounded



set of variables disjoint from Σ, and denote by T the term algebra over the function sym-
bols Σ and variables X . For a term ϕ ∈ T and ground substitution θ, we denote by θϕ
the application of θ to ϕ (resulting in a ground term without variables). The set Pos(ϕ)
of positions and the set Var(ϕ) of variables in ϕ are defined in the standard way [2]. De-
note by ϕ|p the subterm of ϕ at position p and by ϕ[ψ]p the term ϕ in which ψ replaces
the subterm at position p.

Let R be a set rewrite rules l � r where l, r ∈ T . We conventionally refer to the
left hand side l of a rule l � r as the LHS, and to the right hand side r as RHS, and call
an instance of a LHS a redex. A term ϕ reduces to ψ, written ϕ �R ψ, if there exists
l � r ∈ R, p ∈ Pos(ϕ), and θ ∈ Sub(Σ) such that ϕ|p = θl and ψ = ϕ[θr]p. The
reflexive transitive closure of �R is denoted�R. If the rule set is clear from the context,
we simply write � and�. A term ϕ is on normal form if there is no ψ such that ϕ � ψ.

Let AC be a set of equations specifying associativity and commutativity of conjunc-
tion and disjunction, and let �AC denote the rewrite system derived by orienting each
equation l = r ∈ AC as a rule l � r. We write ϕ ↔AC ψ if ϕ �AC ψ or ψ �AC ϕ,
while =AC denotes the reflexive transitive closure of↔AC. For terms ϕ and ψ, we write
ϕ �R/AC ψ if there are terms µ and ν such that ϕ =AC µ �R ν =AC ψ. We will simply
write R for R/AC throughout. Following [4], R is terminating if there is no infinite se-
quence of the form ϕ1 �R ϕ2 =AC ϕ3 �R ϕ4 =AC ϕ5 �R · · · . We say that ϕ and ψ are
R-joinable, denoted ϕ ↓R ψ, if there are terms µ and ν such that ϕ�R µ =AC ν �R ψ.
Furthermore, R is locally confluent if µ �R ϕ �R ν implies µ ↓R ν; R is locally co-
herent with AC if µ �R ϕ↔AC ν implies µ ↓R ν; and R is confluent if µ�R ϕ�R ν
implies µ ↓R ν.

Lemma 4 ([4,9,10]). R is confluent if it is terminating, locally confluent and locally
coherent with AC.

If l � r and l′ � r′ are variable-renamed rules such that Var(l, r)∩Var(l′, r′) = ∅, p is a
non-variable position of l, and θ is a most general unifier of (l|p, l′), then (θr1, (θl)[θr2]p)
is called a critical pair [2].

Critical Pair Lemma ([2,9,18]). R is locally confluent iff all its critical pairs are join-
able.

3.2. An Order-Sorted Equational Specification

We define a term algebra for the language of only-knowing formulae. It consists of the
following sorts: Fml, Subj, Obj, PMA, PML, Const, At and Bool. Let Bool = {>,⊥},
and let At be the set of propositional letters. Terms are constructed as follows. Each
sort in the upper diamond-shaped part of the subsort hierarchy (Figure 1) is closed
under the Boolean connectives, i.e. ∨,∧ : X × X ⇒ X and ¬ : X ⇒ X for
X ∈ {Fml,Subj,Obj,Const}. Negating a prime modal atom constructs a prime modal
literal: ¬ : PMA ⇒ PML. We conventionally use infix notation for the connectives and
write the index of the modal operators as subscripts, e.g., Okϕ for O(k, ϕ). Prefixing an
objective formula with Bk or Ck constructs a prime modal atom: B,C : I × Obj ⇒
PMA; prefixing a general formula with Ok, Bk or Ck constructs a a subjective formula:
O,B,C : I × Fml ⇒ Subj. It is easy to see that the sorts capture the syntax of the
only-knowing logic correctly, e.g., Subj corresponds the set of subjective formulae, as



it comprises prime modal literals and constant formulae, and is closed under boolean
connectives. The correspondence between sorts and fragments of the logical language is
listed in Figure 1.

Fml

Subj

PML

PMA

Const

Obj

At

Bool

Fml formulae
Subj subjective formulae
Obj objective formulae
PML prime modal literals
PMA prime modal atoms
Const constant formulae
At propositional letters
Bool truth constants

Figure 1. The subsort hierarchy and intended meaning of the sorts.

4. Confluence of Rewrite Systems with the Expand Rule

As we have seen, the rewriting procedure is based on uniformly substituting a truth con-
stant for every occurrence of some prime modal atom β in a formula ϕ, using the expand
rule, which is actually a rule scheme, and as such gives rise to an infinite number of rules.
The expand rule (scheme) is defined as

Oiϕ �E (Oiϕ〈β/>〉 ∧ β) ∨ (Oiϕ〈β/⊥〉 ∧ ¬β) if β ∈ pmod(ϕ).

The problem with the expand rule is that it is the source of an infinite number of critical
pairs. Hence we need a systematic way to show that critical pairs stemming from the use
of the expand rule are joinable. In the rest of this section we investigate the relationship
(wrt. joinability) between the expand rule and the structural rules in Figure 2. We con-
sider several rule sets with different properties; not all will capture the MRT. All con-
tain the expand rule and additional rules are either a structural rule or the collapse rules
(Figure 4) introduced in Section 5. The rule set consisting of all of these rules is denoted
ROnly.

4.1. Permutable Expandability

For α1, . . . , αn ∈ PMA, let e(Oiϕ, α1, . . . , αn) be shorthand for∨
~u∈Booln

(Oiϕ〈α1/u1〉 · · · 〈αn/un〉 ∧
∧

16k6n

αk(uk)),

where ~u = (u1, . . . , un). Using this notation, the expand rule can be written as

Oiϕ �E e(Oiϕ, α) if α ∈ pmod(ϕ),

in which case we say that Oiϕ is expanded wrt. α. A rule set R satisfies permutable
expandability if e(Oiϕ, α) ↓R e(Oiϕ, β) for any α, β ∈ pmod(ϕ); i.e. if Oiϕ can be



expanded both wrt. α and β, the resulting reducts are joinable. Any rule set containing
the expand rule must satisfy this property in order to be confluent. The rule set consisting
of just the expand rule, does not satisfy permutable expandability, hence we are interested
in stronger systems that do. A minimal (in the sense that we need every rule except A1 to
show Lemma 5 below, while A1 is needed to prove Lemma 8) rule set with this property
is RMin = {E,Dt,Dm, J∨, I∧,Kn,A1}.

Distribution (ψ1 ∨ ψ2) ∧ η �Dt (ψ1 ∧ η) ∨ (ψ2 ∧ η)

Absorption 1 (ϕ ∧ β) ∨ (ϕ ∧ β) �A1 ϕ

Absorption 2 (ϕ ∧ β) ∨ (ϕ ∧ β ∧ η) �A2 (ϕ ∧ β) ∨ (ϕ ∧ η)

Absorption 3 ϕ ∨ (ϕ ∧ η) �A3 ϕ

Identity of ∧ ψ ∧ > �J∧ ψ Domination ψ ∧ ⊥ �Dm ⊥

Identity of ∨ ψ ∨ ⊥ �J∨ ψ Contradiction β ∧ β �Kn ⊥

Idempotency of ∨ ψ ∨ ψ �I∨ ψ Complement of > ¬> �Co ⊥

Idempotency of ∧ β ∧ β �I∧ β Complement of ⊥ ¬⊥ �Co >

Figure 2. The structural rules. ψ1, ψ2, ψ, η ∈ Subj, β ∈ PML, ϕ is of the form Oµ or Oµ ∧ ψ, and η must
be untainted. β denotes the complement of β, i.e. Lψ = ¬Lψ and ¬Lψ = Lψ. A1, A2 and A3 are called the
absorption rules.

Repeated application of first the expand rule and then the distribution rule aggregates
conjunctions of prime modal atoms. Since we rewrite modulo AC, a conjunction of prime
modal literals can be viewed as a multiset. With the aid of the structural rules, such a
conjunction can be reduced to a form which corresponds to a consistent set: I∧ removes
duplicates and Kn/Dm reduce it to the empty disjunction⊥ if inconsistent. The following
notation is useful for further characterizing conjunctions of prime modal atoms. Let V be
a (possibly inconsistent) set of bindings. Define φ(V ) =

∧
{β(v) | 〈β/v〉 ∈ V }, where

β(>) and β(⊥) denote β and ¬β resp.

Lemma 5. Oiϕ ∧ φ(V )�RMin
Oiϕσ ∧ φ(V ) for every substitution σ over V .

Proof. By induction on the length of σ. The basis step, where σ = ε, is trivial. Let
σ be some substitution over V , and assume for the induction hypothesis that Oiϕ ∧
φ(V ) �RMin

Oiϕσ ∧ φ(V ). Let 〈β/v〉 ∈ V . Then φ(V ) ∧ β(v) �RMin
φ(V ) by I∧

and φ(V ) ∧ β(v) �RMin
⊥ by Kn and Dm. If β 6∈ pmod(ϕσ), then ϕσ〈β/v〉 = ϕσ. If

β ∈ pmod(ϕσ), then

Oiϕσ ∧ φ(V ) �E ((Oiϕσ〈β/>〉 ∧ β) ∨ (Oiϕσ〈β/⊥〉 ∧ ¬β)) ∧ φ(V )

�Dt (Oiϕσ〈β/>〉 ∧ φ(V ) ∧ β) ∨ (Oiϕσ〈β/⊥〉 ∧ φ(V ) ∧ ¬β)

�RMin
Oiϕσ〈β/v〉 ∧ φ(V ) by the observations above.

If α ∈ pmod(ϕ), we may expandOiϕ to e(Oiϕ, α); if in addition β ∈ pmod(ϕ〈α/>〉)∩
pmod(ϕ〈α/⊥〉), we may expand each disjunct once more and apply the distribution rule:



e(Oiϕ, α) �RMin
e(Oiϕ, α, β). Observe that it may be the case that β 6∈ pmod(ϕ), and

in general it is not the case that e(Oiϕ, α, β) = e(Oiϕ, β, α), nor that e(Oiϕ, α) =
e(Oiϕ, α, α). What is the case, though, is that e(Oiϕ, α) and e(Oiϕ, β) are RMin-
joinable:

Lemma 6. RMin satisfies permutable expandability.

Proof. Assume that α, β ∈ pmod(ϕ), and let µ = e(Oiϕ, α) and ν = e(Oiϕ, β). We
show that µ ↓RMin

ν. If α 6= β, then β ∈ Oiϕ〈α/u〉 and α ∈ Oiϕ〈β/v〉, thus µ �RMin

e(Oiϕ, α, β) and ν �RMin
e(Oiϕ, β, α). We have to show that for every u and v, if we

let a = 〈α/u〉 and b = 〈β/v〉, then Oiϕab ∧ α(u) ∧ β(v) and Oiϕba ∧ α(u) ∧ β(v)
are joinable. One can easily construct substitutions σ and τ over V = {a, b} – a modal
valuation – such that ϕabσ and ϕbaτ are without occurrences of α and β. By Lemma
3, Oiϕabσ = Oiϕbaτ , and by Lemma 5, Oiϕba ∧ φ(V ) �RMin

Oiϕbaτ ∧ φ(V ) and
Oiϕab ∧ φ(V )�RMin

Oiϕabσ ∧ φ(V ).

4.2. Local Confluence

A rule l � r satisfies R-substitutional joinability if la ↓R∪{l�r} ra whenever l is
untainted, for any binding a. We use this property to show joinability when some Oiϕ
is expanded and reduction is performed on some proper subformula of Oiϕ. Some rules
satisfy R-substitutional joinability for any R:

• The rules l � r whose LHS are tainted trivially satisfy the property. If we had al-
lowed nested Os, we would have had to show substitutional joinability for tainted
LHS, and this proves much harder than what is presently the case. And as disallow-
ing nested Os does not reduce expressibility, we find it to be worth the sacrifice.

• The rules whose LHS and RHS are objective satisfy the property, as la =
l �R∪{l�r} r = ra for any R.

• The rules where the only requirement on the variables on the LHS is that they are
subjective also satisfy the property, as if x ∈ Subj, then x〈β/v〉 ∈ Subj, hence the
rule is still applicable: la �R∪{l�r} ra.

The only two structural rules that fall outside all three categories are I∧ and Kn. We
say that a rule set R satisfies R′-substitutional joinability if every rule in R does; if
R = R′ we simply say that R satisfies substitutional joinability. RMin does not satisfy
substitutional joinability, as neither I∧ nor Kn satisfy RMin-substitutional joinability.

Lemma 7. ROnly satisfies substitutional joinability.

Proof. We show ROnly-substitutional joinability for I∧ and Kn. Let β ∈ PMA.

l � r l〈β/v〉� j

I∧ β ∧ β〈β/v〉 = v ∧ v �x v
I∧ ¬β ∧ ¬β〈β/v〉 = ¬v ∧ ¬v �Co v ∧ v �y v
Kn β ∧ ¬β〈β/v〉 = v ∧ ¬v �Co > ∧⊥ �z ⊥

r〈β/v〉� j

β〈β/v〉 = v
¬β〈β/v〉 = ¬v �Co v
⊥〈β/v〉 = ⊥

j denotes the common reduct of l〈β/v〉 and r〈β/v〉. x, y and z are Dm or J∧, depending
on v. The remaining rules satisfy R-substitutional joinability for any R.



The following lemma gives us joinability when one of the reducts stems from an appli-
cation of the expand rule, and the other satisfies substitutional joinability (see Figure 3,
left).

Lemma 8. Let R ⊇ RMin. If Oiϕ|p �l�r ω for some rule l � r satisfying R-
substitutional joinability, then e(Oiϕ, α) ↓R∪{l�r} Oiϕ[ω]p for every α ∈ pmod(ϕ).

Oiϕ

e(Oiϕ, α) Oiϕ[ω]p

·

R′R′

E l � r

Oi(β ∧ β)

e(Oi(β ∧ β), β) Oiβ

(Oi> ∧ β) ∨ (Oi⊥ ∧ ¬β)

ROnlyROnly

E I∧

Figure 3. Left: Lemma 8: R′ = R∪ {l � r}-joinability of e(Oiϕ, α) and Oiϕ[ω]p is guaranteed as long as
l � r satisfiesR-substitutional joinability andRMin ⊆ R. Right: e(Oi(β∧β), β) andOiβ areROnly-joinable.

As the expand rule is the source of an infinite number of critical pairs, we have introduced
the notion of substitutional joinability in order to show that all critical pairs are joinable.
As long as the system contains RMin, it already satisfies permutable expandability.

Theorem 9. Any rule set R extending RMin is locally confluent if it satisfies substitu-
tional joinability and all critical pairs of R \ {E} are joinable.

Proof. Any critical pair involving the expand rule is joinable by Lemma 6 (asRMin ⊆ R)
and Lemma 8 (as RMin ⊆ R and as long as substitutional joinability holds). Any critical
pair not involving the expand rule is joinable by assumption. HenceR is locally confluent
by the Critical Pair Lemma.

5. A Confluent Rule Set Capturing the MRT

In the previous section we gave sufficient properties for a rule set extending RMin to
be locally confluent. But what we really want is a rule set that is confluent, not merely
locally. By Lemma 4, such a rule set must be locally coherent with AC, whichRMin is not,
hence we need some additional rules. RMin is not even strong enough to guarantee that
there is some normal form that is canonical; the rule set RComp = {E,Dt,C,Dm, J∨}
is, however, as was shown in [21]. Note that RComp does not extend RMin, but extends a
subset of it with the collapse rules. The rule set we are primarily interested in is ROnly,
comprising the expand rule, all of the structural rules, and the collapse rules, i.e.ROnly =
RMin ∪ {C, I∨,A2,A3, J∧,Co}.

Lemma 10. Any canonical formula is on normal form wrt. ROnly.

Proof. The only LHS that matches a formula µ1 ∨ · · · ∨ µn on canonical form is that of
the very last collapse rule, i.e. Oiϕ ∧ Ojψ for some i ≺ j. However, its side condition
requires that {¬ϕ,ψ} is satisfiable, but as each µk is cumulative, this cannot be the
case.



By Lemma 10 and the fact that ROnly extends RComp, ROnly also captures the MRT. As
ROnly extends RMin, we may use Theorem 9 to show that it is confluent. The additional
rules in ROnly \RMin are needed for the following reasons:

• We need the collapse rules to obtain canonical normal forms.
• Associativity of disjunction lets us apply A1 in two distinct ways to some for-

mula (cf. Figure 5), resulting in two distinct reducts which can only be joined by
applying A2.

• Now we may apply both A1 and A2 to some formula (cf. Figure 5), resulting in
two distinct reducts, joinable by A3 (and A1).

• If we apply A3 to Op ∨ (Op ∧ Bp), and Op ∧ Bp �C Op, we obtain the two
distinct reducts Op and Op ∨Op, joinable by I∨.

• J∧ and Co are needed to show ROnly-substitutional joinability.

Although the additional rules are introduced for purely technical reasons (we need A1
to show confluence in a somewhat esoteric case, and because of this, we need A2, and
because of this again, we need A3), they are nonetheless useful in practice. Rules struc-
turally similar to the absorption rules are found in [15], where they are called simplifica-
tion rules. In Example 27 of the same paper, all three rules are used when reducing the
representation of a default theory with two defaults.

Oiϕ ∧Bkψ �C Oiϕ if i 4 k and not SAT(ϕ,¬ψ)

Oiϕ ∧Bkψ �C ⊥ if k 4 i and SAT(ϕ,¬ψ)

Oiϕ ∧ ¬Bkψ �C ⊥ if i 4 k and not SAT(ϕ,¬ψ)

Oiϕ ∧ ¬Bkψ �C Oiϕ if k 4 i and SAT(ϕ,¬ψ)

Oiϕ ∧ Ckψ �C Oiϕ if k 4 i and not SAT(¬ϕ,¬ψ)

Oiϕ ∧ Ckψ �C ⊥ if i 4 k and SAT(¬ϕ,¬ψ)

Oiϕ ∧ ¬Ckψ �C ⊥ if k 4 i and not SAT(¬ϕ,¬ψ)

Oiϕ ∧ ¬Ckψ �C Oiϕ if i 4 k and SAT(¬ϕ,¬ψ)

Oiϕ ∧Okψ �C ⊥ if i 4 k and SAT(¬ϕ,ψ)

Figure 4. The collapse rules. ϕ,ψ ∈ Obj and SAT : Obj × Obj ⇒ Bool. We assume that SAT(ϕ,ψ)
reduces to true iff {ϕ,ψ} is propositionally satisfiable.

In order to obtain confluence, the structural rules are restricted by requiring that variables
are of a more specific sort than Fml. Consider (Op∧Bp)∨(Op∧¬Bp) � Op, which is a
typical instance of A1. The reason why we restrict the sort of the variables such that, e.g.,
(Bp∧Op)∨ (Bp∧¬Op) � Bp is not an instance of A1, is that Bp∧Op �C Op, while
Bp∧¬Op is on normal form. Hence a less restrictive rule would generate an instance of
a critical pair (Bp,Op ∨ (Bp ∧ ¬Op)) that is not joinable.



(ϕ α β) ∨ (ϕ α β) ∨ (ϕ α β)

(ϕ β) ∨ (ϕ α β) (ϕ α β) ∨ (ϕ α)

(ϕ β) ∨ (ϕ α)

A2A2

A1 A1

(ϕ β) ∨ (ϕ β) ∨ (ϕ β η)

ϕ ∨ (ϕ β η) (ϕ β) ∨ (ϕ β) ∨ (ϕ η)

ϕ

A1+A3A3

A1 A2

Figure 5. Examples of why the absorption rules A2 and A3 are needed. The conjunction sign ∧ has been
omitted to save space. A1 necessitates the inclusion of A2, which again necessitates the inclusion of A3.

Theorem 11. ROnly is confluent.

Proof. By Lemma 4, ROnly is confluent if terminating, locally confluent and locally co-
herent with AC. By Theorem 9, ROnly is locally confluent if it satisfies substitutional
joinability and critical pairs (of ROnly \ {E}) are joinable. Hence we need the follow-
ing properties. Joinability of critical pairs: Left to the reader. Local coherence with AC:
Left to the reader. Substitutional joinability: By Lemma 7. Termination: We only give
an informal argument. Every rule except the expand and distribution rules decreases the
length of the formula. The expand rule is only applicable a finite number of times, as
|mod(ϕ〈β/v〉)| < |mod(ϕ)| if Oiϕ � e(Oiϕ, β). No rule increases the number of dis-
tinct modal atoms. By itself, the distribution rule can only applied a finite number of
times, as it pushes conjunctions inwards. If the distribution rule is not applicable and
some other rule than the expand rule is applied, then the distribution rule is still not
applicable. Thus any rule is only applicable a finite number of times.

As mentioned, RComp captures the MRT, i.e. for any OI -block ϕ, there is some canoni-
cal µ on normal form such that ϕ �RComp

µ. Being confluent, ROnly has the additional
property that if ϕ �ROnly

µ and µ is on normal form, then µ is canonical. In relation to
the MRT, this can be viewed as a step towards a correctness result. Correctness requires
soundness, a property which relies on a formal semantics. To establish soundness one
must, relative to an appropriate notion of validity, show that the LHS of the rules are log-
ically equivalent to the resp. RHS, and that substitution of logical equivalents is truth pre-
serving. These properties have been established for RComp wrt. the formal semantics of
the only-knowing logics in [21]. Since the rules in ROnly that are not in RComp, are based
on propositional tautologies, ROnly is, in the sense of the term just described, correct.

6. Conclusion and Future Work

We have in this paper proved termination and confluence of a rewrite system for one of
the most basic only-knowing logics [13,21]. The proof is generic in the sense that it is
based on the notion of substitutional joinability, a concept which can be used to show
confluence also in cases where one wants to add new rules to the system. Using the
rewriting logic tool Maude [3], we are currently experimenting with an implementation
of the system, investigating the effect of adding further simplification rules and changing
the search strategy.
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