Introduction to High-Energy Physics Computing

Are Strandlie
NTNU at Gjøvik, and
University of Oslo, Department of Physics
Norway
Outline

- Introduction
- Various aspects of Physics Computing:
 - Event Filtering
 - Calibration and alignment
 - Event Reconstruction
 - Event Simulation
 - Physics Analysis
 - Data Flow and Computing Resources
The technical challenge at LHC

Everything in LHC computing is connected to processing such data!!
The technical challenge (ctd)

- Very high (design) event rate: 40 MHz
- Large event size: $O(1)$ MB
- Large background of uninteresting events
- Large background in each event
 - many interactions in each beam crossing
 - pile-up from adjacent beam crossing
 - many low-momentum particles
The technical challenge (ctd)

- Large number of physicists doing analysis
 - ATLAS and CMS experiments at the LHC: both consist of 170-180 institutes in about 40 countries
 - Distribution of data and programs
 - Bookkeeping is crucial

- High pressure, competitive spirit
 - Important discoveries to be (and have been) made
 - Computing has to be as fast as possible
What is Physics Computing?

- Yearly input: A few petabytes of data
- Yearly output: A few hundred physics papers
- Data reduction factor of 10^7 to 10^8!!
- How is it done?
- Will try to answer this question in this and tomorrow’s lectures
It’s simple … is it?

Are Strandlie, NTNU and UiO

Paper paper15

Data higgsdata

... paper15=make_paper(higgsdata) ...

Electroweak phase transition in an extension of the standard model with a real Higgs singlet

S W (Sam) Y Y Jenq1 and S K Oh1,2 1 Kavli IPMU (WPI), University of Tokyo, Kashiwa, Chiba 277-8583, Japan
2 Department of Physics, Seoul National University, Seoul 151-742, Korea
Received 1 December 2004
Published 24 June 2005
Online at: adsabs.harvard.edu/abs/2005JPhG...32..957S

Abstract

The Higgs potential of the standard model with an additional real Higgs singlet is studied in order to examine if it can allow the strongly first-order electroweak phase transition. It is found that there are parameter values for which this model at the seesaw level with a finite-temperature effect can allow the strongly first order transition. These parameter values also predict that the masses of the neutral scalars Higgs bosons of the model are consistent with the present experimental bounds. The masses of the neutral scalars Higgs bosons can also be matched at the proposed ILC with $\sqrt{s} = 1.6$ TeV in the near future.

1. Introduction

The possibility of baryogenesis by means of electroweak phase transition has recently been widely examined, in which the electroweak baryogenesis in set in principle, by the future accelerator experiments [1]. If the electroweak phase transition is strongly first order, a cut-off $T \equiv 0$ for the dynamics of the baryon asymmetry during the evolution of the universe [2]. It has already been observed that the standard model (SM) the electroweak phase transition cannot be strongly first order unless the mass of the scalar Higgs boson is larger than the lower bound set experimentally by LEP [3]. The sufficient strengths of the first-order electroweak phase transition is essential for preserving the generated baryon asymmetry of the electroweak scale. In the literature, a number of extensions have been studied to achieve this by adding new scalar fields to the standard model. The commonly first-order electroweak phase transition in various models beyond the SM [4].

The Higgs potential of the standard model with a real Higgs singlet field has been adopted within the context of electroweak phase transition [5]. We consider the model is improved, because adding a real Higgs singlet field is the simplest extension of the Higgs sector of the SM. In that model, the strength of the first-order electroweak phase transition is stronger than that in the case of the SM. Due to the presence of such terms in the tree-level Higgs potential, a strongly first-order electroweak phase transition is expected.

Section 2 estimates the necessarywidth of the Higgs sector of the SM in the near future.
Actually, at LHC we need...

- Millions of lines of code (C++, Python, ...)
- Hundreds of neural networks (BNNs, not ANNs)
- Large infrastructure
 - Customized hardware
 - PC farms
 - Database and storage systems
 - Distributed analysis facilities
 - The grid
What happens to the data?

- Event filtering, tagging and storage
- Calibration, alignment
- Event reconstruction
- Storage
- Event simulation
- Physics analyses
Step by step

- Each step involves some data reduction
 - data are discarded (online)
 - data are compressed (offline)
- In each step the data get closer to be interpretable in physical terms
- Some steps are repeated many times until the output is satisfactory (offline reprocessing)
Online vs Offline computing

- **Online**
 - In real time, fast!
 - Decisions are irreversible
 - Data cannot be recovered

- **Offline**
 - From almost real time to long delays
 - Decisions can be reconsidered
 - Data can be reprocessed
Online processing

- Trigger: event selection
 - Needs only a (small) subset of the detector data
 - Fast, as little dead-time (time period when triggering system is insensitive to new data) as possible
 - Gives “green” or “red” light to the data acquisition
Online processing (ctd)

- **Data acquisition**
 - Interfaces to detector hardware
 - Builds complete events from fragments
 - Sends them to the higher level event filter(s)
 - Writes accepted events to mass storage
 - Very complex system
Complexity of Data acquisition

Computing and Communication main subsystems
Are Strandlie, NTNU and UiO
Online processing (ctd)

- **Monitoring**
 - Detector status
 - Data acquisition performance
 - Trigger performance
 - Data quality check

- **Control**
 - Configure systems
 - Start/stop data taking
 - Initiate special runs (calibration, alignment)
 - Upload trigger tables, calibration constants, …
Event selection

- Primary (design) collision rate: 40 MHz
- Recording rate: a few hundred Hz
- How is this achieved?
 - Multi-level trigger – chain of yes/no decisions
 - Very fast first level: (Programmable) hardware
 - Slower higher level(s): Software on specialized or commodity processors
Event selection (ctd)

- Has to be reliable
- Rejected data are lost forever
- Continuous monitoring
- Do not lose new physics
- Must therefore be open to many different signatures of potentially new physics in the detector system
Example: ATLAS
What ATLAS subdetectors measure

- **Inner detector**
 - Momentum and position of charged particles

- **Electromagnetic calorimeter**
 - Energy of photons, electrons and positrons

- **Hadron calorimeter**
 - Energy of charged and neutral hadrons

- **Muon system**
 - Momentum and position of muons
ATLAS detector
Event selection (ctd)

- **Overall guideline in designing trigger system: what are the essential features of interesting physics in the detectors?**
 - Typically high-energy particles moving transversely to the beam direction
 - Results in large energy deposits in the calorimetric systems, high-energy muons in the muon system, etc.

- **Multi-level trigger explores such features in various degrees of detail**
Multi-level selection

- Many events can be discarded very quickly – fast level-1 trigger
- Only the surviving ones are scrutinized more carefully – high-level filter(s)
- Triggers are tailored to specific physics channels (Higgs, top, WW, ZZ, …)
 - Many such hypotheses are investigated in parallel
ATLAS triggering system

- ATLAS has three-level trigger system
 - Level 1 purely hardware-based (ASICs and FPGAs)
 - High-level trigger (level 2 and Event Filter (EF)) software-based

- Level 1 uses information mainly from calorimeters and muon system

- Level 2 also includes information from Inner Detector, uses data from Regions of Interest (RoI) identified by level 1

- EF has access to complete set of data and uses same algorithms as offline event reconstruction
Numbers indicated are design parameters

Are Strandlie, NTNU and UiO
ATLAS L1 trigger

- Input (design) rate: 40 MHz
- Output rate: up to 100 kHz
- Latency (time to reach trigger decision): $O(1 \, \mu s)$
- Data pipelined until trigger decision can be made
- Mainly 2 detector systems: muons/calorimeters
ATLAS L1 trigger

Are Strandlie, NTNU and UiO
ATLAS L1 calorimeter trigger

- High-energy objects in an event:
 - Electrons/photons
 - Hadronic decays of tau lepton
 - Jet candidates

- Global event properties:
 - Total transverse energy (ET)
 - Missing ET
 - Jet sum ET

- Sends to Central trigger:
 - Multiplicity of electrons/photons and jets passing thresholds
 - Thresholds passed by total and missing ET

Are Strandlie, NTNU and UiO
ATLAS L1 muon trigger

- Dedicated muon trigger chambers with good time resolution:
 - RPCs (barrel region)
 - TGCs (endcap regions)

- Search for patterns of measurements consistent with high momentum muons coming from collision point

Are Strandlie, NTNU and UiO
ATLAS L1 CTP

- Central Trigger Processor
- L1 inputs are combined to form L1 items
 - e.g. an input EM10 (electromagnetic cluster above 10 GeV) can be used in the generation of several L1 items:
 - L1_EM10: At least one EM cluster above 10 GeV
 - L1_2EM10: At least two EM clusters, each above 10 GeV
 - L1_EM10_MU6: An EM cluster above 10 and a muon above 6 GeV.
- A L1 Accept is generated and sent to the detector readout electronics only if at least one L1 item survives.
High-level filter

- Further data selection:
 - Up to 100 kHz input rate
 - A few hundred Hz output rate

- Event tagging:
 - Reconstruct physics objects
 - Mark events having interesting features
 - Facilitates quick access later
High-level filter (ctd)

- More detailed analysis of event and underlying physics
- Runs on standard processors (commodity PCs)
- CMS: 1 stage (in contrast to ATLAS two-stage solution)
CMS high-level trigger

- Has to keep pace with the L1 Output (up to 100 kHz)
- Solution: massive parallelism
- Filter farm
 - O(10000) cores
 - Decision time: O(100) ms
CMS high-level trigger (ctd)

- Same software framework as in offline reconstruction
- Transparent exchange of algorithms with offline code
- Regional reconstruction
 - Concentrates on region(s) found by Level 1
- Partial reconstruction
 - Stop as soon specific questions are answered
Output of CMS high-level trigger

- Raw data are sent to Tier-0 farm (at CERN)
 - Detector data (zero compressed)
 - Trigger information + some physics objects
 - $O(50)$ physics datasets, depending on trigger history, $O(10)$ online streams (calibration/monitoring/alignment)
- Physics: $O(1)$ MB @ a few hundred Hertz = a few hundred MB/sec
- Alignment/Calibration: $O(50)$ MB/sec
Output of CMS high-level trigger (ctd)

- LHC runs for $\sim 10^7$ sec/year
- A few PB per year at design luminosity
Tier-0 processing

- Archive raw data on mass storage
- First event reconstruction without or with a small delay
- Archive reconstructed data on mass storage
 - A few hundred kByte/event, depending on physics
 - Reconstructed objects (hits/clusters, tracks, vertices, jets, electrons, muons)
- Send raw and processed data to Tier-1
Tier-0 processing (ctd)

Are Strandlie, NTNU and UiO
Summary, event selection

- Selecting a small subset of all collision events for offline analyses
 - Reducing from 40 MHz collision rate to recording rate of a few hundred Hertz

- Multi-level triggering system
 - Looking for signatures of potentially interesting physics in detectors
 - First level purely hardware-based with pipelined data
 - Higher level(s) software-based, massively parallelized on filter farms
Offline Processing

- **Calibration**
 - Convert raw data to physical quantities

- **Alignment**
 - Find out precise detector positions

- **Event reconstruction**
 - Reconstruct particle tracks and vertices (interaction points)
 - Identify particle types and decays
 - Impose physics constraints (energy and momentum conservation)
Offline Processing (ctd)

- **Simulation**
 - Generate artificial events resembling real data as closely as possible
 - Needed for background studies, corrections, error estimation, …

Monte Carlo Method
Offline Processing (ctd)

- **Physics analysis**
 - Extract physics signals from background
 - Compute masses, cross-sections, branching ratios, discovery limits, …
 - Requires sophisticated multivariate techniques
 - *Series of lectures and exercises on data analysis methods later in this theme*

Are Strandlie, NTNU and UiO
Calibration: From bits to GeV and cm

- Raw data are mostly ADC or TDC counts
- They have to be converted to physical quantities such as energy or position
- Very detector dependent
- Every detector needs calibration
- Calibration constants need to be updated and stored in a database
Silicon Tracker calibration

- Incoming particle creates electric charge in strips or pixels
Silicon Tracker calibration (ctd)

- Charge distribution depends on location of crossing point and crossing angle
- Solve inverse problem: reconstruct crossing point from charge distribution and crossing angle
- Test beam, real data
Drift tube calibration

Drifting electrons → Anode wire
Tube wall (cathode)
Charged track

Are Strandlie, NTNU and UiO
Drift tube calibration (ctd)

- Incoming particle ionizes gas in tube
- Electrons/ions drift to anode/cathode
- Drift time is measured
- Must be converted to drift distance
- Time/distance relation must be determined (not always linear)
- Test beam, real data
Alignment: Where are the detectors?

- Tracking detectors are very precise instruments
- Silicon strip detector: $\sim 50 \, \mu m$
- Pixel detector: $\sim 10 \, \mu m$
- Drift tube: $\sim 100 \, \mu m$
- Positions of detector elements need to be known to a similar or better precision
Example: CMS tracker

Wow, I will have to realign this…
Alignment

- Mechanical alignment
- Measurements taken before assembly
- Switching on the magnetic field
- Laser alignment
- Alignment with charged tracks from collisions, beam halo and cosmic rays
Alignment (ctd)

- Difficult because of huge number of parameters to be estimated (~ 100000)
- Continuous process
- Alignment constants need to be updated and stored in a database
Event reconstruction

- Find out which particles have been created where and with which momentum
- Many can be observed directly
- Some are short-lived and have to be reconstructed from their decay products
- Some (neutrinos) escape without leaving any trace
Event reconstruction (ctd)

- Reconstruct charged particles
- Reconstruct neutral particles
- Identify type of particles
- Reconstruct vertices (interaction points)
- Reconstruct kinematics of the interaction
- Not trivial, very time-consuming ...
CMS: Higgs decay into two jets
What CMS subdetectors measure

Key:
- Muon
- Electron
- Charged Hadron (e.g. Pion)
- Neutral Hadron (e.g. Neutron)
- Photon

Transverse slice through CMS

Are Strandlie, NTNU and UiO
Charged particles

- Charged particles are detected by tracker and calorimeters
- Muons also reach the muon system
- Very high number of low-momentum charged particles
- Select by threshold on transverse momentum
Charged particles (ctd)
Neutral particles

- Neutral particles are detected mainly by calorimeters (e.g. photons, neutrons)
- They should deposit their entire energy
- Some of them decay into charged particles which are detected by the tracker (e.g. K^0)
- Neutrinos escape without leaving a trace (missing energy)
Neutral particles (ctd)
Reconstruction of charged particles

- Trajectory is curved because of the magnetic field
- Position is measured in a number of places –“hits”
- Determine track parameters (location, direction, momentum) plus their estimated uncertainties from the position measurements
- Data compression
The difficulties

- Assignment of hits to particles is unknown
- Huge background from low-momentum tracks
- Additional background from other interactions in the same beam crossing, from adjacent beam crossings and from noise in the electronics
More difficulties

- Charged particles interact with all the material, not only the sensitive parts
 - Multiple Coulomb scattering
 - Changes direction, but not momentum
 - Energy loss by ionization
 - All charged particles, changes momentum
 - Energy loss by bremsstrahlung
 - Electrons and positrons, changes momentum
Tracks only
Tracks with hits
Hits only
Decomposition of the problem

- Pattern Recognition or Track Finding
 - Assign detector hits to track candidates (collection of hits all believed to be created by the same particle)

- Parameter estimation or Track Fit
 - Determine track parameters + their estimated uncertainties (covariance matrix)

- Test of the track hypothesis
 - Is the track candidate the trace of a real particle?
Track finding

- Depends a lot on the properties of the detector:
 - Geometry, configuration
 - Magnetic field
 - Precision
 - Occupancy
- Many solutions available
- No general recipe
A few track finding algorithms

- Track following
- Kalman filter
- Combinatorial Kalman filter
- Hough transform
- Artificial neural network
Track fit

- Determine (estimate) track parameters
- Determine uncertainties of estimated track parameters (covariance matrix)
- Test track hypothesis
- Reject outliers
 - Distorted hits
 - Extraneous hits
 - Electronic noise hits
Ingredients

- **Magnetic field**
 - Constant or variable

- **Track model**
 - Solution of the equation of motion
 - Analytic (explicit) or numerical

- **Error model**
 - Observation errors
 - Process noise
Estimation of track parameters

- Most estimators minimize a least-squares objective function
 - Linear regression
 - Kalman filter
- Robust estimation
 - Adaptive filter
 - Automatic suppression of outlying hits
Reconstruction of neutral particles

- Neutral particles are only seen by the calorimeters
- Photons are absorbed in the electromagnetic calorimeter
- Neutral hadrons are absorbed in the hadronic calorimeter
- Neutrinos are not detected directly
Shower finding

- An incident particle produces a shower in the calorimeter
- A shower is a cluster of cells with energy deposit above threshold
Shower finding (ctd)

- Overlapping clusters must be separated
- Various clustering techniques are used to find showers
- The algorithms depend on various characteristics of the calorimeter
 - Type (electromagnetic or hadronic)
 - Technology (homogeneous or sampling)
 - Cell geometry, granularity
Particle identification

- Determining the type of a particle
- Dedicated detectors
 - Calorimeter (electromagnetic or hadronic)
 - Ring imaging Cherenkov (RICH)
 - Transition radiation detector
 - Ionization measurements
Particle identification (ctd)

- Combining information from several detectors
 - Shower in electromagnetic calorimeter
 + no matching track in tracker \rightarrow photon
 - Shower in electromagnetic calorimeter
 + matching track in tracker \rightarrow electron/positron
 - Shower in hadronic calorimeter
 + matching track in tracker \rightarrow charged hadron
 - Track in muon system
 + matching track in tracker \rightarrow muon
Vertex reconstruction

- Primary vertex: interaction of the two beam particles – easy
- Secondary vertices: decay vertices of unstable particles – difficult
- Emphasis on short-lived unstable particles which decay before reaching the tracker
- Data compression
Primary and secondary tracks

Primary tracks

Secondary tracks
The difficulties

- Association of tracks to vertices is unknown
- Secondary tracks may pass very close to the primary vertex (and vice versa)
 - Especially if decay length is small
- Track reconstruction may be less than perfect
 - Outliers, distortions, incorrect errors
Decomposition of the problem

- **Pattern Recognition or Vertex Finding**
 - Assign tracks to vertex candidates

- **Parameter estimation or Vertex Fit**
 - Determine vertex location + covariance matrix, update track parameters

- **Test of the vertex hypothesis**
 - Is the vertex candidate a real vertex?
Vertex finding

- Almost independent of the detector geometry
- Secondary vertex finding may depend on the physics channel under investigation
- Essentially a clustering problem
- Many solutions available
A few vertex finding algorithms

- Hierarchical clustering
 - Single linkage, complete linkage,…
- Machine learning
 - k-means, competitive learning, deterministic annealing, …
- Estimation based
 - robust location estimation, iterated vertex fit
Vertex fitting

- Most estimators minimize a least-squares objective function
 - Linear regression
 - Kalman filter
- Robust estimation
 - Adaptive filter
 - Automatic suppression of outlying tracks
Kinematic fitting

- Impose physical constraints
 - Momentum conservation
 - Energy conservation
- Test mass hypotheses
 - See whether kinematics are compatible with the decay of a certain particle
- Reconstruct invisible particles
Storage

- Event reconstruction produces physics objects
 - Tracks
 - Vertices
 - Identified particles
 - Jets
 - Tags
- Need to be stored
Storage (ctd)

- Preferred tool for event data: ROOT
- Physics objects depend on
 - Alignment
 - Calibration
 - Version of the reconstruction program
 - Algorithm parameters
- Must be stored as well (database)
Summary, event reconstruction

- Track reconstruction
 - Charged: determine track parameters from hits
 - Neutral: find showers in calorimeters

- Particle identification

- Vertex reconstruction
 - Determine number of production points and their positions from the set of reconstructed tracks

- Kinematic fitting
 - Refine estimates by e.g. imposing physical constraints
Simulation

- Why do we need simulation?
 - Optimization of detector in design phase
 - Testing, validation and optimization of trigger and reconstruction algorithms
 - Computation of trigger and reconstruction efficiency
 - Computation of geometrical acceptance corrections
 - Background studies
 - Systematic error studies
Simulation steps

- **Physics generation**
 - Generate particles according to physics of the collision
 - General-purpose and specialized generators

- **Event simulation**
 - Track particles through the detector, using detector geometry and magnetic field
 - Simulate interaction of particles with matter
 - Generate signals in sensitive volumes
 - Simulate digitization process (ADC or TDC)
 - Simulate trigger response
Simulation steps (ctd)

- **Reconstruction**
 - Treat simulated events exactly as real events
 - Keep (some) truth information: association of hits to tracks, association of tracks to vertices, true track parameters, true vertex parameters, …
 - Store everything
Event simulation

- Was frequently (and still sometimes is) experiment-specific
- Now there is a widely used standard: GEANT4
 - Object oriented, C++
 - Extremely general and versatile
- Needs detailed description of the apparatus (sensitive and insensitive parts)
Detector description

- **Geometry**
 - Partition the detector into a hierarchy of volumes
 - Describe their shape and their position relative to a mother volume
 - Use possible symmetries

- **Material**
 - Chemical composition, density
 - Physical properties: radiation length, interaction length, …
An example detector model
Physics analysis

- Event selection
 - Multidimensional criteria
 - Statistics, neural networks, genetic algorithms, …

- Signal extraction
 - Study background
 - Determine significance of signal

- Corrections
 - Detector acceptance, reconstruction efficiency, …
 - From simulated and from real data
Physics analysis (ctd)

- Computation of physical quantities …
 - Cross sections, branching ratios, masses, lifetimes, …
- … and of their errors
 - Statistical errors: uncertainty because of limited number of observations
 - Systematic errors: uncertainty because of limited knowledge of key assumptions (beam energy, calibration, alignment, magnetic field, theoretical values, background channels, …)
Analysis tools

- Need versatile tools for
 - Multidimensional selection, event display and interactive reprocessing
 - Histogramming, plotting, fitting of curves and models
 - Point estimation, confidence intervals, limits

- Main tool currently used: ROOT
 - Data analysis and storage, but also detector description, simulation, data acquisition, …
And finally …

Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at $\sqrt{s} = 0.9$ and 2.36 TeV

CMS Collaboration

Abstract: Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at $\sqrt{s} = 0.9$ and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 ± 0.01 (stat.) ± 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 ± 0.01 (stat.) ± 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and $+2.4$. At these energies, the measured pseudorapidity densities in the central region, $dN_{ch}/d\eta|_{|\eta|<0.5}$, are 3.48 ± 0.02 (stat.) ± 0.13 (syst.) and 4.47 ± 0.04 (stat.) ± 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in pp and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.

Keywords: Hadron-Hadron Scattering

ArXiv ePrint: 1002.0621

Are Strandlie, NTNU and UiO
Distributed analysis

- Physics analysis takes place in many labs all over the world
- Physicists need fast access to event data and corresponding calibration, alignment and bookkeeping data ... and to simulated data
- We need the grid!
The LHC Computing Grid

- Global collaboration of more than 150 computing centers in close to 40 countries
- Four-tiered model
- Data storage and analysis infrastructure
- $O(10^5)$ CPUs
- $O(100)$ PByte disk storage (tiers 0 and 1)
Data management

- Dataset bookkeeping
 - Which data exist?
- Dataset locations service
 - Where are the data?
- Data placement and transfer system
 - Tier-0 \rightarrow Tier-1 \rightarrow Tier-2
- Data access and storage
 - Long-term storage, direct access
Data flow in ATLAS

CERN Analysis Facility

200 Hz
RAW: ~1.6 MB/evt

Calibration

Event Summary Data (ESD): ~ 1.5MB/evt
Analysis Object Data (AOD): ~ 150 kB/evt
Derived data (dESD, dAOD, NTUP, ...) distributed over grid

Tier-0

Data Recording to tape
First Pass Processing

10 Tier-1 centers
RAW data copy on tape
Analysis data on disk
Reprocessing

Tier-1

Tier-1

Tier-2

Tier-2

Tier-2

Tier-2

Tier-2

37 Tier-2 centers
Analysis data on disk
User Analysis

Are Strandlie, NTNU and UiO
Additional resources

- CAF (CERN Analysis Facility)
 - O(100) worker nodes, O(1000) cores (CMS)
 - Ready access to calibration and express streams
 - Fast turnaround
 - Operation critical tasks
 - trigger and detector diagnostics
 - alignment and calibration
 - monitoring and performance analysis

- Physics data quality monitoring
Data flow in CMS-CAF

CMS (P5)
- HLT
- Storage Manager

CAF
- Alignment & calibration
- Commissioning, Physics, DQM

Offline Conditions Database

Conditions

Tier0
- Repacker
- Primary Datasets
- Disk buffer
- Prompt reconstruction 48h delay

Express
- Calibration/Monitoring
- Express

Physics

Are Strandlie, NTNU and UiO
Summary

- Physics computing involves:
 - Event filtering with multi-level trigger
 - Storage of raw data
 - Calibration and alignment
 - Storage of calibration and alignment data
 - Event reconstruction
 - Storage of reconstruction objects and metadata
Summary (ctd)

- Physics computing involves:
 - Simulation of many million events
 - Storage of simulated raw data and truth information
 - Reconstruction of simulated events
 - Storage of reconstruction objects and truth information
 - Distributed physics analysis and event viewing
 - Storage of high-level physics objects
Acknowledgments

- All illustrations from the ATLAS and CMS experiments are subject to © CERN (CERN Copyright)

- Thanks in particular to the ATLAS TDAQ community for providing facts and figures describing the ATLAS triggering system