Dispersion

- So far, we have studied particles with reference momentum $p = p_0$.
- A dipole field disperses particles according to their energy.
- This introduces an **x-E correlation in the beam**.

- Off-momentum: $p = p_0 + \Delta p = p_0 (1 + \Delta p/p_0)$. Hill’s equation:

 $$x'' + K(s)x = \frac{1}{\rho} \frac{\Delta p}{p_0}$$

- Solution gives an extra **dispersion term** to the homogenous solution $x_{\Delta p=0}(s)$

 $$x(s) = x_{\Delta p=0}(s) + D_x(s) \frac{\Delta p}{p_0}$$

 $D(s)$: “dispersion function”
Dispersion suppression

Rms beam size increases with dispersion, calculated as:

\[\sigma_{\text{rms}}(s) = \sqrt{\varepsilon_{\text{rms}} \beta(s) + (D(s) \sigma_p/p_0)^2} \]

D = 0

D > 0

The dispersion can be **locally suppressed** by lattice design. An energy spread does then not contribute to the beam-size.

Important for example when you want a **very small beam size**, for example at a collider interaction region.
Dispersion in linear lattices

- Lattice elements may add or subtract to the dispersion in the beam (x-E correlation). Assuming we know the dispersion at one location, we can calculate how the dispersion propagates through the lattice:

\[
\frac{\Delta p}{p_0} = 0 \quad \frac{\Delta p}{p_0} < 0 \\
D(s) = 0
\]

- Dispersion is affected by quadrupoles as well, and propagates along the lattice in the same manner as a particle. We may use the matrix framework for particle tracking to calculate dispersion. To add dispersion generated from dipoles and other elements to the framework, we add a third row:

\[
\begin{bmatrix}
D \\
D' \\
1
\end{bmatrix}_1 =
\begin{bmatrix}
m_{11} & m_{12} & \Delta D \\
m_{21} & m_{22} & \Delta D' \\
0 & 0 & 1
\end{bmatrix}_0
\begin{bmatrix}
D \\
D' \\
1
\end{bmatrix}_0
\]

where \(m_{ij}\) are the elements of the regular transport matrix and \(\Delta D, \Delta D'\) is the generated dispersion.
Dispersion in rings

- In rings, the design dispersion is uniquely defined by the lattice.
- Without quadrupole focusing, assuming constant bending field, the circumference would increase by $\frac{\Delta p}{p_0}$ yielding a constant dispersion, $D(s) = \frac{\Delta x(s)}{(\Delta p/p_0)} = \frac{\Delta \rho}{(\Delta \rho/\rho)} = \rho$.

- Quadrupole focusing modifies the dispersion function. We define the momentum compaction factor (cf. longitudinal dynamics) as:

$$\alpha = \frac{\Delta R / R}{\Delta p / p} = \langle D_x \rangle / \rho$$

- The momentum compaction factor can be calculated by computer codes. The value is usually > 0 and $<< 1$.
Chromaticity

- Particles with \(\Delta p \neq 0 \) focuses differently in quadrupoles
 - Optics analogy, “chromatic aberration”

- Focal length: \(f = \frac{1}{kl}, \ k \alpha \frac{1}{p}, \ f \alpha p=p_0(1+ \Delta p/p_0). \)

- Detrimental effects on beam:
 - Focusing (beta function) depends on energy: “projected” emittance growth in lines
 - The accelerator tunes, \(Q \), depends on energy; energy-spread -> tune-spread. Unstable resonance values might be hit.
Chromaticity in lines

- The focusing properties of a lattice depend on the beam energy.
- Chromaticity in lines can be quantified by $\sim \frac{d\beta}{\beta_0}/ \frac{\Delta p}{p_0}$ – the “W-function”.
- The projected emittance, calculated as the rms emittance for particles of all energies, increases:

If particles with the nominal energy are at a waist (focused), off-momentum particles are not at waist and the projected emittance increases.

\[\Delta p/p_0 = 0 \]
\[\Delta p/p_0 = -5\% \]
\[\Delta p/p_0 = +5\% \]
Chromaticy versus dispersion

Dispersion effect: linear

Chromatic effect: non-linear

From D. Gamba
Chromaticity in rings

- Chromaticity in rings, ξ, is defined by the tune shift per momentum change:

$$\Delta Q = \xi \frac{\Delta p}{p_0}$$

- The accelerator tune, Q, depends on energy; energy-spread -> tune-spread -> low order resonance values might be crossed -> beam loss.
- $\Delta p > 0$ in a FODO lattice leads to weaker focusing and thus $\Delta Q < 0$. Therefore, a linear lattice naturally generates a negative chromaticity, $\xi < 0$.
- The negative natural chromaticity may be adjusted using sextupoles magnets.
Magnet multipole expansion

- We discussed earlier the normalized magnet strengths:

 Dipole
 \[
 \frac{1}{\rho} = \frac{eB}{p} \Leftrightarrow \frac{1}{\rho} [m^{-1}] = 0.3 \frac{B[T]}{p[GeV/c]}
 \]

 Quadrupole
 \[
 k = \frac{eg}{p} \Leftrightarrow k [m^{-2}] \approx 0.3 \frac{g[T/m]}{p[GeV/c]}
 \]

- We can generalize this concept to magnetic multipole components \(k_n \) for a \(2(n+1) \)-pole:

 \[
 k_n = \frac{e}{p} \frac{\partial^n B_y}{\partial x^n}, \text{ with unit } [m^{-(n+1)}]
 \]

- Furthermore, the **kicks on a particle** from a magnetic \(2(n+1) \)-pole can be expressed as a combination of multipole components:

 \[
 \Delta x' + i\Delta y' = \frac{k_n l}{n!} (x + iy)^n
 \]

 - \(n=1 \): the quadrupole linear terms
 - \(n=2 \): sextupole terms:

 \[
 \Delta x' = \frac{1}{2} k_2 l(x^2 - y^2)
 \]
 \[
 \Delta y' = \frac{1}{2} k_2 lxy
 \]

 - Can be derived by Laplace eq. for the B-field.
 - See **Wille Ch. 3.**
Sextupoles
Correction with sextupoles

Sextupoles as chromaticity correctors

- Sextupoles can be used to correct chromaticity.
- Sextupole fields\(^*\):
 \[B_x = \frac{\partial^2 B_y}{\partial x^2} xy \quad B_y = \frac{\partial^2 B_y}{\partial x^2} \frac{1}{2}(x^2 - y^2) \]
- Add dispersion in \(x\):
 \[x \rightarrow x + \delta D_x \]
- Fields transform to:

\[\delta = \frac{\Delta p}{p_0} \]

Sextupole can be set in order to cancel chromaticity induced by the quadrupoles.

*assuming perfect thin sextupoles
Geometric terms of sextupoles may be cancelled by imposing $M = -1$ between two equal strength sextupoles.

Result: lattice with the first order chromaticity corrected, $(d\beta / \beta_0)/(\Delta p/p_0) = 0$, and geometric terms cancelled for the nominal energy. Application example: final focusing for a linear collider.
Can you also make apochromatic particle beam focusing analogous to how achromatic camera lenses are made?

To ensure energy-independence of the beam focusing (Twiss parameters), the answer is yes.

To ensure energy-independent phase-advance of the individual particles (cf. tune), the answer is no.

This means that sextupoles are required in rings to mitigate energy dependence of the tune.

Non-linear terms

- Sextupoles introduce higher order non-linear terms, $f(x^2, y^2, \ldots)$. If not cancelled by $-I$ transforms, these terms add **non-linear terms** to the particle dynamics in the accelerator.

- Real magnets contain small amount of higher order multipole fields, which also adds to the non-linear terms.

- For circular accelerators, the orbit stability now becomes a non-linear problem.

- The part of the transverse phase-space which is stable can be studied by particle tracking for many, many turns. The resulting stable phase-space is called the **dynamics aperture**.

- The non-linear dynamics can also be studied analytically, using Hamiltonian dynamics.

Example of LHC dynamic aperture simulation study

The red area represents initial conditions that are stable up to 100,000 turns around the LHC. The blue circles represent unstable initial conditions: their radius is proportional to the stability time.
We have studied the transverse optics of a circular accelerator and we have had a look at the optics elements,

- the dipole for bending
- the quadrupole for focusing
- the sextupole for chromaticity correction
- In LHC: also octupoles for controlling non-linear dynamics

Example: LHC lattice

The periodic structure in the LHC arc section
Synchrotron radiation

- Charged particles undergoing acceleration emit electromagnetic radiation

- Main limitation for circular electron machines
 - RF power consumption becomes too high

- The main limitation factor for LEP...
 - ...the main reason for building LHC

- However, synchrotron radiations is also useful
Characteristic of SR: power

Lorentz invariant formula for power radiated by accelerated charged particles:

\[P_S = \frac{e^2 c}{6\pi \varepsilon_0} \frac{1}{(m_0 c^2)^2} \left(\frac{dp}{d\tau} \right)^2 \]

(This is Larmor’s non-relativistic formula with the substitutions \(dt \to d\tau \) and \(p \to p^\mu \)). Two cases:

1) Linear acceleration \(\frac{dv}{dt} \parallel v \):

\[P_S = \frac{e^2 c}{6\pi \varepsilon_0} \frac{1}{(m_0 c^2)^2} \left(\frac{dp}{dt} \right)^2 \]

\(\frac{dp}{dt} = \frac{dE}{dx} \) is in the order 10-100 MV/m in today’s accelerators. \(P_S \) compared to power provided by the accelerator to increase the energy: \(\eta = \frac{P_S}{dE/dt} \sim 10^{-14} \Rightarrow \) linear acceleration gives negligible radiation.

2) Circular acceleration \(\frac{dv}{dt} \perp v \):

\[P_S = \frac{e^2 c}{6\pi \varepsilon_0} \frac{\gamma^2}{(m_0 c^2)^2} \left(\frac{dp}{dt} \right)^2 = \frac{e^2 c}{6\pi \varepsilon_0} \frac{1}{(m_0 c^2)^4} \frac{E^4}{R^2} \]

Radiated power increase with \(E^4 \) (!).
Characteristics of SR: distribution

- Electron rest-frame: radiation distributed as a "Hertz-dipole"

\[
\frac{dP_s}{d\Omega} \propto \sin^2 \psi
\]

- Relativist electron: Hertz-dipole distribution in the electron rest-frame, but transformed into the laboratory frame the radiation form a very sharply peaked light-cone

We assume a photon emitted in the rest frame y-direction, while the particle is moving in the z-direction (acceleration in the x-direction), \(p^\mu = [E/c, 0, \gamma p_y, \gamma p_z] \)

\[
p'^\mu = \begin{bmatrix} \gamma & 0 & 0 & \beta \gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta \gamma & 0 & 0 & \gamma \end{bmatrix} \begin{bmatrix} E/c \\ 0 \\ p_y \\ 0 \end{bmatrix} = \begin{bmatrix} \gamma E/c \\ 0 \\ p_y \\ \gamma \beta E/c \end{bmatrix}
\]

\[\Rightarrow \tan \theta = \frac{p_y'}{p_z'} = \frac{p_y}{\gamma \beta E/c} \approx \frac{E/c}{\gamma E/c} = \frac{1}{\gamma} \Rightarrow \text{The light-cone has an extremely small angle!} \]
Characteristics of SR: spectrum

Synchrotron radiation has a broad spectrum, due to short pulses as seen by an observer in the lab frame.
50% of radiation power is contained within a well defined "critical frequency" :

$$\omega_c = \frac{3c\gamma^3}{2R}$$

Advantages of synchrotron radiation as a light source :
1. High intensity
2. Spectrum that cannot be covered easy with other sources
3. Critical frequency is tunable

Radiation spectrum for different electron beam energies

See Wille (2000) for a derivation of the full spectrum.
Synchrotron radiation centers

Synchrotrons, or storage rings with boosters, which circulate low-emittance electron beams of with beam energy of ~1 GeV to ~8 GeV.

Some applications of photon science with Synchrotron Radiation:
- material/molecule analysis (UV, X-ray)
- crystallography; photo voltaic
- Life sciences; protein compositon

Example: the synchrotron SOLEIL, France

About ~40 synchrotron light sources exists throughout the world, and more are under constructions.
Radiation damping in storage rings

Synchrotron radiation: particle loses momentum on very close to direction of motion (within angle $1/\gamma$):

Rf cavities replenishes momentum in longitudinal direction:

The net effect is damping of the transverse phase-space of an electron beam in a storage ring – radiation damping. The emittance can be reduced by a several orders of magnitude in ~10 ms. A topic for the Linear Collider lectures.
Case study: the LHC
CERN accelerator complex

- LHC is responsible for accelerating protons from 450 GeV up to 7000 GeV
- 450 GeV protons injected into LHC from the SPS
- PS injects into the SPS
- LINACs injects into the PS
- The protons are generated by a proton source where a H₂ gas is heated up to provide protons
- The limitations in the earlier part of the acceleration chain originates from space charge -> collective effects lecture
- Circumference = 26658.9 m

- Four interactions points, where the beams collide, and massive particle physics experiments record the results of the collisions (ATLAS, CMS, ALICE, LHCb)

- Eight straight sections, containing the IPs, around 530 m long

- Eight arcs with a regular lattice structure, containing 23 arc cells

- Each arc cell has a periodic FODO-lattice, 106.9 m long
LHC bending magnets

8.3 T maximum field (allows for 7 TeV per proton beam). Generated by a current of 12 kA in the superconducting Rutherford coils.

Developments for higher energy hadron colliders (HE-LHC, FCC) : Nb_3Sn, HTS
LHC cavities

- Superconducting RF cavities. Standing wave, $f = 400$ MHz
- Each beam: one cryostat at 4.5 K, 4+4 cavities in each cryostat
- 5 MV/m accelerating gradient, 16 MeV energy gain per turn
LHC: the collision point

\[\sigma(s) = \sigma^* \sqrt{1 + (s/\beta^*)^2} \]

\[\sigma_{arc} = \sqrt{\varepsilon \beta_{typ}} \approx 0.3 \text{mm} \]

\[\sigma_{IP} = \sqrt{\varepsilon \beta^*} \approx 17 \mu\text{m} \]

Collision region:
- * very strong quadrupoles,
- * close to the interaction point

\(\beta_{typ} \approx 180m, \beta^* = 0.55m, \varepsilon \approx 0.5nm \times rad \)

Upgraded magnets, more beta squeeze, more luminosity.
LHC

- **proton-proton collisions**
 \[\Rightarrow \text{two vacuum chambers, with opposite bending field} \]

- Proton chosen as particle type due to **low synchrotron radiation**

- Magnetic **field-strength limiting factor** for particle energy

- **RF cavities**
 \[\Rightarrow \text{bunched beams} \]

- **Superconducting lattice magnets** and **superconducting RF cavities**

- **Synchrotron** with **alternating-gradient focusing**; regular **FODO arc-sections** with **sextupoles** for chromaticity correction and octupoles for controlling the non-linear dynamics
LHC nominal parameters
(at collision energy)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle type</td>
<td>p, Pb</td>
</tr>
<tr>
<td>Proton energy E_p at collision</td>
<td>7000 GeV</td>
</tr>
<tr>
<td>Peak luminosity (ATLAS, CMS)</td>
<td>$1 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$</td>
</tr>
<tr>
<td>Circumference C</td>
<td>26 658.9 m</td>
</tr>
<tr>
<td>Bending radius ρ</td>
<td>2804.0 m</td>
</tr>
<tr>
<td>RF frequency f_{RF}</td>
<td>400.8 MHz</td>
</tr>
<tr>
<td># particles per bunch n_p</td>
<td>1.15×10^{11}</td>
</tr>
<tr>
<td># bunches n_b</td>
<td>2808, 25 ns spacing</td>
</tr>
</tbody>
</table>