Surface mesh generation techniques with guaranteed properties

Trial lecture

Christopher Dyken

June 2, 2008
Given a surface $S = \{ x \in \mathbb{R}^3 : f(x) = 0 \}$, generate a mesh \mathcal{M} that represents S.

- **Topological properties:**
 - *Manifold surface*: Is the resulting surface \mathcal{M} a valid surface?
 - *Topological type*: Are S and \mathcal{M} the same type of shape?

- **Geometric properties:**
 - *Approximation error*. How good an approximation of S is \mathcal{M}?
 - *Triangle density*. We want a minimal amount of triangles, but “enough” triangles in difficult areas.
 - *Shape of triangles*. Avoid long thin triangles.

- **Algorithmic properties:**
 - *Termination*. For what kind of input is the algorithm guaranteed to terminate?
The notion that two objects are of “equal type”

\(\mathcal{M}\) and \(\mathcal{S}\) are homeomorphic

A **homeomorphism** between \(\mathcal{S}\) and \(\mathcal{M}\) is a continuous bijection with a continuous inverse:

Points close on \(\mathcal{S}\) correspond to points close on \(\mathcal{M}\).

A homeomorphism doesn’t imply a continuous deformation between \(\mathcal{S}\) and \(\mathcal{M}\), but an isotopy does:

\(\mathcal{M}\) and \(\mathcal{S}\) are isotopic

An **isotopy** is a continuous map \(\gamma(\cdot, t)\),

\[
\gamma : \mathcal{S} \times [0, 1] \to \mathbb{R}^3, \quad \gamma(S, 0) = \mathcal{S}, \quad \gamma(S, 1) = \mathcal{M},
\]

that is a homeomorphism for any fixed \(t \in [0, 1]\).

If \(\gamma : \mathbb{R}^3 \times [0, 1] \to \mathbb{R}^3\), \(\gamma\) is an **ambient** isotopy.
Marching cubes assumes f is sampled on a regular 3D grid:

Grid cells have 8 neighbouring samples.
Label samples at corners:
$f < 0$: inside, $f \geq 0$: outside.

256 different cell label configurations, can be reduced to 15 using symmetry.

Let configuration of labels determine tessellation of surface inside cell.

Tessellation stored in a fixed table, edge intersections found using linear interpolation.
Labels alone cannot determine full topology in all cases:

E.g. case 6 is *ambiguous:* Two choices of connecting face.

Inconsistent choices produce holes in the resulting surface!

And should diagonally opposing corners be connected?

At least M should be a consistent 2-manifold.

Even better if M and S are homeomorphic, or even isotopic...
Montani, Scateni, & Scopigno,
A modified look-up table for implicit disambiguation of MC

- Sacrifice symmetry and extend table of cell configurations.

Nielson & Harmann,
The asymptotic decider: Resolving the ambiguity in MC

- Intersects asymptotic lines of iso-curves of the bilinear interpolant.

Nielson,
On marching cubes

- DeVella’s necklace $DeV(T)$ is intersection of asymptotic planes.
- If $DeV(T)$ exists and is inside cube \rightarrow tunnel.
- 68 basic cases (uses only rotation), some need internal vertices, taken from $DeV(T)$.
Regular subdivision schemes:

- Modified table guarantees to a consistent 2-manifold.
- Asymptotic decider resolves ambiguities consistently and corners on faces are connected as the bilinear interpolant.
- On marching cubes consistently connect diagonally opposing corners as the trilinear interpolant.

Problems with regular subdivision:

- No guarantee that M and S are of the same type.
- Grid is too coarse: Miss small features.
- Grid is too fine: An excessive amount of triangles.

A strategy is then to _adaptively_ subdivide the grid:

- Subdivide until S is “simple enough” inside a cell.
- Better control on approximation error (bounded by cell size).
- Better control on triangle distribution (governed by cell size).
Snyder’s adaptive refinement algorithm

Subdivide boxes until S is *globally parameterizable* inside each box:

S is globally parameterizable over X if the planar projection of

$S|_X = \{(x_0, x_1, x_2) \in X : f(x_0, x_1, x_2) = 0\}$

along the axis x_i has no fold-overs, that is, $\frac{\partial f}{\partial x_i} \neq 0$ in X.

This condition is checked using *interval arithmetics*:

Instead of using a *single scalar* x, we calculate with an *interval* $[a, b]$. Thus, $f([a, b])$ is the interval f takes on over the range $[a, b]$.

We *assume* that

If $[a, b] \to 0$ then $f([a, b]) \to 0$,

which is not always the case.
Initialize A with bounding box and while there exist a box X in A:

- if $0 \notin f(X)$, then X is void of surface and is discarded.
- if $0 \notin \frac{\partial f}{\partial x_i}(S|_X)$ then $S|_X$ is globally parameterizable, put in B.
- Otherwise, subdivide X and put subdivided boxes in A.

Then, mesh each box x in B, sorted from small to large:

- $S|_X$ is globally parameterizable along x_i, can be projected onto the $\{x_0, x_1, x_2\}\{x_i\}$-plane w/o folding
- Intersect with side walls s.t. curves look as side was top-side.
- Triangulate projected regions.
- Propogate face-surface configuration to neighbouring boxes.

If no generated cube face are tangent to S:

Snyder’s algorithm terminates.

Small normal variation is a stronger condition, but relaxes requirement on projection direction:

The small normal variation condition requires that

\[\langle \nabla f(a), \nabla f(b) \rangle \geq 0, \quad \forall a, b \in S|_X, \]

i.e., all normal vectors are inside a 90° cone.

Property implies global parameterizability along cone axis:

\(S|_X \) can be projected along cone axis onto a plane w/o foldover
Small normal variation and mean value theorem bound the curve:

The curvature is limited, and cells are equally-sided cubes, the surface cannot escape “too far” through a neighbouring cell.

The surface can be “isotopically pushed” so that \mathcal{M} intersects an edge only once.

An equally-sided bounding box is adaptively refined as an oct-tree:

The tree is balanced such that the size of adjacent cells maximally differ by a factor of two.

This reduces the number of configurations.

On faces, edge intersections are joined, and for all cases but one, the cell contains a single loop.
Start with bounding box, subdivide oct-tree until every leaf X is

- either void of S
 (check if $f(X) \neq 0$ using interval arithmetics)
- or $S|_X$ satisfies the small normal variation criterion
 (use interval arithmetics)
- and boxes are balanced
 (two adjacent boxes differ maximally in size by a factor of 2).

Then, build \mathcal{M} by meshing the cells in the oct-tree:

- All edges with sign-changes get a vertex inserted.
- For each face in the oct-tree, connect vertices.
- For each leaf cell, connect loops of edges.

S continuous & non-degenerate & interval arithmetics converges:

Algorithm terminates and \mathcal{M} and S are isotopic.

... but what about triangle shapes?
Delaunay refinement in the plane

Farthest point Delaunay refinement \textit{improves triangle shapes}:

While a triangle T of low quality exists:
- Insert a vertex at the circumcircle of T.
- Circumcircle of T is no longer empty, T will be retriangulated.

Let r be the circumradius and l be the shortest edge of T.

Bounds on r/l implies bounds on the smallest angle θ of T:

\[
\frac{r}{l} = \frac{1}{2 \sin(\theta)}, \quad \text{and thus,} \quad \frac{r}{l} > B \quad \iff \quad \theta < \theta_{\min}.
\]

When T is refined:
- Three new edges have length r, the rest are longer.
- New edges are at least Bl long.
- $B > 1$, i.e. $\theta_{\min} < 30^\circ$: no new edges shorter than l.
How to define a Delaunay triangulation on a surface?

Chew,
Guaranteed-quality mesh generation for curved surface.

Generalize circle criterium using the surface Delaunay ball:

The *surface Delaunay ball* for a triangle T in a mesh \mathcal{M} of set of points $P \subset S$ is the sphere through the corners of T and with its center on S.

Generalization is consistent for “reasonable surfaces”:

If ∇S over two adjacent triangles is inside a $\frac{\pi}{2}$-cone, apices of the two triangles are consistently outside their opposing circumcircle.

And calculating the criterium amounts to intersecting S with a line:

Centers of all spheres circumscribing T lies on a line.
Surface Delaunay refinement procedure:

- Initialize with a coarse mesh \mathcal{M} of points $P \subset S$.
- Build constrained Delaunay triangulation.
- While not finished:
 - Find triangles that either
 - has a minimal angle $< 30^\circ$, or
 - violates a user-specified size criterion.
 - Insert circumcentre of triangle with the largest circumcircle.
 - Update triangulation.

It is assumed that normals over triangles are inside a $\frac{\pi}{2}$-cone.

If algorithm halts:

- No interior triangle with minimum angle $< 30^\circ$.
- No triangle is larger than user-specified size criterion.

But *no* guarantees on topological relationships of \mathcal{M} and S:

Surface-based schemes have trouble with topology changes!
Using the 3D Delaunay triangulation

Boissonnat and Oudot,
Provably good sampling and meshing of surfaces.

The **restricted Delaunay triangulation (RDT)** is a subset of the 3D Delaunay triangulation:

The RDT \mathcal{M} for a set of points $P \subset S$ is the set of faces from the 3D Delaunay triangulation whose dual Voronoi-edges intersects S.

Surface Delaunay balls are empty in a RDT:

A triangle T in a RDT is characterized by that the sphere through the corners of T with center on S is empty.

We know how to get a surface from P...

Can we guarantee that \mathcal{M} and S are isotopic?

Yes! If the samples of P are dense enough.
The sample density of a ψ-sample is bound by $\psi : S \rightarrow \mathbb{R}^+$:

For any point x on S, there is a point $p \in P$ maximally $\psi(x)$ away.

The density of P is compared to the *local feature size*:

The $\text{lfs}(x)$ is the Euclidean distance from x to the medial axis, and if density of P is bound by $\psi(x) = \epsilon \text{lfs}(x)$, then P is an ϵ-sample.

Weak ϵ-samples only require condition on Delaunay balls centers.

The following theorem guarantees an isotopic mesh:

Theorem (Amenta & Bern, Boissonnat & Oudot)

If P is a weak ϵ-sample with $\epsilon < 0.1$ and $M = \text{RDT}(P)$ with at least a triangle on every component of S, then M is homeomorphic and ambient isotopic to S.
Algorithm for building an ϵ-sample P:

- Initialize with at least one triangle on each component of S.
- While not finished:
 - Intersect every Voronoi-edge with S.
 - If intersection x exists,
 it is the center of a surface Delaunay ball with radius r.
 - If $r \geq \psi(x)$, insert x into P and update \mathcal{M}.

For 1-Lipschitz ψ where $0 < \psi(x) < \epsilon \text{lfs}(x)$:

- The result is a weak ψ-sample.
- If $\epsilon < 0.1$ then \mathcal{M} is ambient isotopic to S
- Number of points bounded so the algorithm terminates:
 \[|P| < O(H(\psi, S)), \quad H(\psi, S) := \int_{x \in S} \frac{1}{\psi(x)^2} \, dx \]
- Combines with θ_{min}-predicate and terminates if $\theta_{\text{min}} < \frac{\pi}{6}$.

need an explicit apriori lower bound on $\text{lfs}(x)$!

... can it be avoided?
Asserting the topological ball property

Cheng, Dey, Ramos, & Ray, *Sampling & meshing a surf. w/ guarant. topology and geometry*.

An alternative requirement is the *topological ball property*:

A point set P on S has the *topological ball property* if any k-dim face of $\text{Vor}(P)$ intersects S in a closed $(k-1)$-dim ball or is \emptyset.

And with this property, the topological space can be triangulated:

Theorem Edelsbrunner & Shah

If $P \subset S$ satisfies the topological ball property, and \mathcal{M} is the restricted Delaunay triangulation of P, then \mathcal{M} is homeomorphic to S.
Insert points on $S = \{ f(x) = 0 \}$ where top. ball property fails:

1. For Voronoi edge e, $p = e \cap S$ must be a single point:
 If e intersects S more than once, insert farthest intersection.

2. \mathcal{M} is 2-manifold:
 If triangle fan of p contains *multiple cycles* or edge $[p, q]$ is not shared by *exactly two triangles*,
 insert farthest intersection of S with edges of Vor-cell of p/q.

3. For Voronoi face F, $s = S \cap F$ must be a single segment:
 If s has a closed loop, s is at x tangent to a dir d in F.
 Insert intersection of $s \cap \ell(x, d)$ farthest from x.
 Tests 1 & 2 excludes that s is of multiple segments.

4. For Voronoi volume V, $m = S \cap V$ must be a single disc:
 If the silhouette $\langle \nabla m, \nabla f(p) \rangle = 0$ is outside V, m is a disc.
 Break silhouette loops: insert points tangent to a $d' \perp \nabla S(p)$.
 Insert points where silhouette intersects ∂V.
When algorithm terminates:

- P satisfies topological ball property:
 \[M \text{ homeomorphic to } S. \]
 (No guarantee for isotopy.)

- For smooth S:
 New point q inserted is $\|p - q\| \leq 0.06 \text{lfs}(p)$ for $p \in P$.

- Algorithm terminates.

- Not necessary to know lfs!

- Needs up to second order derivatives of f.

No consideration for triangle quality, but can be extended:

Repeat until stable:

- Run a pass of e.g. Chew’s algorithm (may destroy topology).
- Run a pass of steps 1–4 (may destroy triangle shape).

Extension terminates for smooth surfaces.

...what about surfaces with degenerate points?
Mourrain & Tecourt, *Isotopic meshing of a real algebraic surface*. The algorithm is based on the concept of the *polar variety*

The *polar variety* C is the set of points satisfying

$$ f(x, y, z) = 0, \quad \frac{\partial f}{\partial z}(x, y, z) = 0. $$

This is the silhouette along the z-axis and is usually a set of curves.

The polar variety is segmented using *slab points*:

Slab points are the x-coordinates where C is singular or has tangent perpendicular to x-axis.
The polar variety slices the space into a set of vertical slabs, and the cross sections are meshed using a planar algorithm:

- Find critical points X of C:
 - C is tangent to y,
 - C intersects itself, or
 - C has another singularity.

 Between critical points C is x-monotonous.

- Insert intermediate x-values into X between critical points.

- Find intersections of C and vertical lines through $x \in X$:
 - Intersections of critical points are multiple roots.
 - Intersections of intermediate points are simple roots.

- Connect intersections, based on multiplicity of roots.

The resulting curve is isotropic to C.
To build a mesh \mathcal{M} from a surface \mathcal{S}:

1. Find all slab points X and insert intermediate x-coordinate.
2. For each $x_i \in X$, intersect \mathcal{S} with the yz-plane through x_i. Build cross section using planar meshing.
3. Project cross sections onto xy-plane.
4. Connect critical points of polar variety. Regions are stacks of xy-monotone pieces.
5. Triangulate the regions using points from cross sections.
6. Multiplicate and raise the planar triangles to fill the 3D shape.

For distinct slab-points \mathcal{M} is ambient isotropic to \mathcal{S}.

vertices is bound by $O(d^7)$ for an algebraic surface of degree d.
Summary

We have looked at some approaches, each approach has different strength and weaknesses.

Approaches based on subdivision of space:

- Marching cubes approaches
 - produce consistent surface \mathcal{M}, but
 - cannot guarantee that \mathcal{M} is of correct topological type.

- Snyder’s adaptive algorithm
 - cannot handle singularities,
 - interval arithmetic must converge,
 - requires that generated faces are not tangent to S.

- Pantinga & Vegter’s small normal variation approach
 - creates an mesh isotopic to S, but
 - cannot handle singularities,
 - interval arithmetic must converge.
Delaunay-based approaches:

- Chew’s farthest point strategy
 - guarantees triangle size and shape, but
 - no guarantee that \mathcal{M} is of correct topological type.

- Boissonnat & Oudots ϵ-sample strategy
 - creates a mesh isotopic to *non-singular* S, but
 - and requires explicit apriori knowledge of lfs.

- Cheng, Dey, Ramos & Ray’s topological ball approach
 - creates a mesh *homeomorphic* to *non-singular* S,
 - without explicit knowledge of lfs, but
 - needs second order derivatives of f.

And finally an approach based on sweeping through space:

- Mourrain & Tecourt’s space-sweeping approach
 - creates a mesh *isotopic* to S with degenerate points, but
 - requires distinct slab-points, and
 - no control of triangle size and shape.