Modeling self-control problems I: Multi-self vs. temptation

Lectures in Behavioral economics
Fall 2014, Part 2

People have demand for commitment
Ariely & Wertenbroch (2002)

Experiment where the students in a course had to hand in three compulsory assignments before the final exam, they could choose deadlines, and were punished if the deadlines were not observed.

Result: Many choose deadlines before the end of the semester, & among these, students with evenly spread deadlines did better.

- Hyperbolic discounting leads to time-inconsistent preferences (Strotz, 1956), procrastination of tasks with immediate cost, and makes commitment desirable, given awareness of the self-contr. problems.
- Other ways to model the demand for commitment?

Present-biased preferences: \((\beta, \delta)\)-pref.

\[U'(c_1, \ldots, c_T) = u(c_t) + \beta \sum_{t=T+1}^{\infty} \delta^{t-t} u(c_t) \]

- Yields time-inconsistent preferences.

Behavior with time-inconsistent preferences

- **Naive behavior**: Choosing the best plan under the presumption that it will be followed.
- **Sophisticated behavior**: Choosing the best plan among those that will actually be followed.
- **Multi-self model of sophisticated behavior**: Let every decision node corresponds to a different “self”.

Outline

- ”Do it now or later”-article
 Interesting application of the multi-self approach showing that sophisticates need not realize better outcomes than naifs.

- Problems with the multi-self approach

- Alternative to the multi-self approach
 Direct modeling of temptation.

- Soft paternalism (”Nudge”)
“Do it now or later” O’Donoghue & Rabin (1999)

- Model:
 - Must perform an activity exactly once.
 - \(T < \infty \) periods in which to perform it.
 - Each period, choose to “do it” or “wait”.
 - If wait until period \(T \), must do it then.

- If activity is done in period \(t \), incur cost \(c_t \geq 0 \) and receive reward \(v_t \geq 0 \).
 - Reward schedule: \(v \equiv (v_1, \ldots, v_T) \)
 - Cost schedule: \(c \equiv (c_1, \ldots, c_T) \)

“Do it now or later” (2)

- Two cases:
 - Immediate costs: incur cost when you do it, receive reward after some delay.
 - Immediate rewards: receive reward when you do it, incur cost after some delay.

- Assume \((\beta, \delta)\)-preferences with \(\delta = 1 \) (for simplicity):
 - Period-\(t \) utility for “do it” in period \(\tau \geq t \):
 - For immediate costs: \(U^t = \begin{cases} \beta v_\tau - c_\tau & \text{if } \tau = t \\ \beta v_\tau - \beta c_\tau & \text{if } \tau > t \end{cases} \)
 - For immediate rewards: \(U^t = \begin{cases} v_\tau - \beta c_\tau & \text{if } \tau = t \\ \beta v_\tau - \beta c_\tau & \text{if } \tau > t \end{cases} \)

“Do it now or later”: Ex. with immediate costs

- \(T = 4 \)
- Reward schedule: \(v \equiv (0, 0, 0, 0) \)
- Cost schedule: \(c \equiv (3, 5, 8, 13) \)

- Period-\(t \) utility for “do it” in period \(\tau \geq t \):
 - Naïfs do it in period 4.
 - Sophisticates do it in period 2.

- Welfare comparisons of naïve & sophisticated behavior:
 - \(\tau = 2 \) is better than \(\tau = 4 \) at both \(t = 0 \), \(t = 1 \) and \(t = 2 \).
 - \(\tau = 2 \) cannot be compared with \(\tau = 4 \) at \(t = 3 \).
“Do it now or later”: Ex. with immediate rewards

\[T = 4 \quad \text{Reward schedule: } v = (3, 5, 8, 13) \]

\[\beta = \frac{1}{2} \quad \text{Cost schedule: } c = (0, 0, 0, 0) \]

<table>
<thead>
<tr>
<th>Period-t utility for “do it” in period (\tau \geq t):</th>
<th>(\tau = 1)</th>
<th>(\tau = 2)</th>
<th>(\tau = 3)</th>
<th>(\tau = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t = 0)</td>
<td>(\frac{3}{2}) ((4))</td>
<td>(\frac{5}{2}) ((3))</td>
<td>(4) ((2))</td>
<td>(\frac{13}{2}) ((1))</td>
</tr>
<tr>
<td>(t = 1)</td>
<td>(3) ((3))</td>
<td>(\frac{5}{2}) ((4))</td>
<td>(4) ((2))</td>
<td>(\frac{13}{2}) ((1))</td>
</tr>
<tr>
<td>(t = 2)</td>
<td>(5) ((2))</td>
<td>(4) ((3))</td>
<td>(\frac{13}{2}) ((1))</td>
<td></td>
</tr>
<tr>
<td>(t = 3)</td>
<td>(8) ((1))</td>
<td>(\frac{13}{2}) ((2))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Naifs do it in period 3.
- Sophisticates do it in period 1.

General lesson: Sophistication about future self-control problems can mitigate or exacerbate misbehavior

- **Proposition 2.** For both immediate costs and immediate rewards, \(\tau_s \leq \tau_n \).
 - **Why?** The future is always more promising from the point of view of a naif, since a sophisticate removes some future possibilities as unattainable without commitment. Hence, for a sophisticate the present is relatively more attractive, leading to the task being performed earlier.
 - **With im. costs: Naifs may procrastinate repeatedly even if \(\beta \) is close to 1.** Sophisticates with immediate rewards may procrastinate repeatedly even if \(\beta \) is close to 1.

General lesson: Even “small” self-control problems can cause severe welfare losses.
Procrastination example revisited

- A task to be performed at time 0, 1, 2, ..., or not at all.
 Immediate cost: 25. Benefits at the next stage: 125.
- \((\beta, \delta)\)-preferences with \(\beta = 1/2\) and \(\delta = 4/5\).

\[
\begin{align*}
\beta &= \frac{1}{2} \\
\delta &= \frac{4}{5} \\
\text{Immediate cost} &= 25 \\
\text{Benefits at the next stage} &= 125
\end{align*}
\]

Even better to do it at the next stage.

Sophisticated behavior with 3 periods

- Let every decision node correspond to a different “self” or “agent” of the decision-maker.
- Backward induction
 - A sophisticate does the task now, since else postponed for 2 periods.

Sophisticated behavior with 4 periods

- Backward induction
- A sophisticate does the task with a delay of 1 period.

Sophisticated behavior with odd # periods

- A sophisticate does the task now, since else postponed for 2 periods.

Sophisticated behavior with even # periods

- A sophisticate does the task with a delay of 1 period.

Conclusion: Multi-self model with sophisticated behavior may not be descriptively accurate

- Introduce naivete (or partial naivete) (O’Donoghue & Rabin, 1999, 2001)
- Is it “right” to apply the multi-self model?
Sophisticated behavior with ∞ periods

- Backw. induct. cannot be used since no last period
- It is an equilibrium (planning) to do the task in periods 0, 2, 4, ..., but not in periods 1, 3, 5, ...
- It is another equilibrium (planning) to do the task in periods 1, 3, 5, ..., but not in periods 0, 2, 4, ...
- If we impose that behavior is the same in all periods, conditional on the task not having been done, there is a unique equilibrium, where the task is done in each period with prob. $\frac{1}{2}$.

Demand for commitment

- Suppose the decision maker can purchase a commitment device costing c, ensuring that the task be done in the next period? What is the largest c?
- With an odd # periods, she does the task now with present payoff 25. Commitment to next period yields payoff $30 - c$. Hence, c cannot exceed 5.
- With an even # periods, she does the task in the next period anyway. Not interested in committing.
- With ∞ periods, she receives a payoff of 25. Commitment to next period yields payoff $30 - c$. Hence, c cannot exceed 5.

Temptation (Gul & Pesendorfer 2001)

- a_1: Doing the task
- a_0: Not doing the task

In standard consumer theory, if a_1 is preferred to a_0, then she has the following preference over menus:

$$\{a_1\} \succ \{a_0, a_1\} \succ \{a_0\}$$

In G & P’s analysis, if tempted by a_0 and gives in:

$$\{a_1\} \succ \{a_0, a_1\} \succ \{a_0\}$$

If tempted by a_0, but does not give in:

$$\{a_1\} \succ \{a_0, a_1\} \succ \{a_0\}$$

Temptation in a dynamic setting

(Gul & Pesendorfer 2004)

- No time-inconsistency; the future is discounted by δ
- Still, temptation yields a demand for commitment

Payoff when choosing a_1: $-25 + \frac{4}{5}125 - t$

Payoff when choosing a_0: $0 + \frac{4}{5}W_0$

Maximal payoff when task has not been done:

$$W_0 = \max\{75 - t, \frac{4}{5}W_0\}$$

$$\delta = \frac{4}{5}$$

t: Cost of temptation
Temptation in a dynamic setting (2)

Optimal not to give in at a low cost of temptation \((t < 75)\)
\[
W_0 = 75 - t > 0 \quad W_0 > 0 + \frac{4}{5}W_0
\]

Optimal to give in at a high cost of temptation \((t \geq 75)\)
\[
W_0 = 0 \quad W_0 \geq 75 - t
\]

Temptation and the demand for commitment

Assume that she can commit by paying \(c\) to doing the task in the next period (without being tempted).
\[
W_c = 0 - c + \frac{4}{5}(-25 + \frac{4}{5}125) = 60 - c
\]

Optimal to commit at a low cost of temptation \((t < 75)\) if
\[
W_c = 60 - c > 75 - t = W_0 \quad c < t - 15
\]

Optimal to commit at a high cost of temptation \((t \geq 75)\) if
\[
W_c = 60 - c > 0 = W_0 \quad c < 60
\]

Soft paternalism

- With procrastination, the status quo matters
- E.g. organ donation, savings decisions

Organ donation:
- Opt out. Austria: 99.98 % consent
- Opt in. Germany: 12 % consent
- Active choice. US driver’s licence