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Abstract
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of conditional lexicographic probabilities.
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1. Introduction

One of the major problems in the theory of extensive games is the following: how should
a player react when he finds himself at an information set that contradicts his previous be-
lief about the opponent’s strategy choice? Different approaches have been proposed to this
problem. Ben-Porath (1997) and Reny (1992) have formulated rationalizability and equi-
librium notions based omeak sequentiality, in which a player is allowed to believe, in
this situation, that his opponent will no longer choose rationally. Battigalli and Siniscalchi
(2002) have shown that Pearce’s (1984ensive form rationalizability can be character-
ized by assuming that a player, in such a situation, should look for the highest degree of
“strategic sophistication” that is compatible with the event of reaching this information set,
and stick to this degree until it is contradicted later on in the game. Perea (2002, 2003)
suggests that the player, in such a situation, may revise his conjecture about the opponent’s
utility function in order to rationalize her “surprising” move, while maintaining common
belief of rational choice at all information sets. The most prominent position, however, is
that the player should still believe that his opponent will choose rationally in the remainder
of the game; this underlies concepts that promote backward induction. We are concerned
with such concepts in the present paper.

We definesequential rationalizability by imposing common ‘certain belief’ of the event
that each player believes that the opponent chooses rationally at all her informatidn sets.
We definequasi-perfect rationalizability by imposing common ‘certain belief’ of the event
that each player has preference for cautious behavior (i.e., at every information set, one
strategy is preferred to another if the former weakly dominates the latter) and believes that
the opponent chooses rationally at all her information sets. Since these are non-equilibrium
concepts, each player need not be certain of the beliefs that the opponent has about the play-
er's own action choice. However, lagsuming that each player is certain of the beliefs that
the opponent has about the player’s own action choice, we obtain epistemic characteriza-
tions of the corresponding equilibrium concepsjuential andquasi-perfect equilibrium.

When applied to generic games with perfect information, both sequential and quasi-perfect
rationalizability yield the backward induction procedure. To avoid the issue of whether
(and if so, how) each player’s beliefs about the action choice of his opponents are stochas-
tically independent, all analysis is limited to two-player games.

For the above mentioned definitions and characterizations, we must describe what a
player believes both conditional on reaching his own information sets (to evaluate his ra-
tionality) and conditional on his opponent reaching her information sets (to determine his
beliefs about her choices). In other words, we must specify a system of conditional beliefs
for each player. There are various ways to do so. One possibilitdsditional proba-
bility system (CPS) where each conditional belief is a subjective probability distribdtion.
This is sufficient to model sequentiality in the current context. Another possibility, which is
sufficient to model quasi-perfectness in the current context, is to apply a single sequence of

1 ‘Certain belief; which is the operator we will use for the interactive epistemology, will be defined in Sec-
tion 2.4. An event is said to be ‘certainly believed’ if the complement is deemed subjectively impossible.

2 We use Myerson’s (1986) terminology. In philosophical literature, related concepts are called Popper mea-
sures. For an overview over relevant literature and analysis, see Halpern (2003).
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Fig. 1.1 and its strategic form.

subjective probability distributions—a so-callbsticographic probability system (Blume

et al., 1991a, LPS)—and derive the conditional beliefs as the conditionals of such an LPS.
Since each conditional LPS is found by constructing a new sequence which includes the
well-defined conditional probability distributions of the original sequence (see footnote 3),
each conditional belief is itself an LPS.

However, quasi-perfectness cannot always be modelled by a CPS since the modelling
of preference for cautious behavior may require lexicographic probabilities. To see this,
considerlt of Fig. 1.

In this game, if player 1 believes that player 2 chooses rationally, then player 1 must
assign probability one to player 2 choosidigHence, if each (conditional) belief is as-
sociated with a probability distribution—as is the case with the concept of a CPS—and
player 1 believes that his opponent chooses rationally, then player 1 is indifferent between
his two strategies. This is inconsistent with quasi-perfectness, which requires players to
have preference for cautious behavior, meaning that player3 prefersD to U.

Moreover, sequentiality cannot always be modelled by means of conditionals of a single
LPS since preference for cautious behavior is induced. To see this, consider a modified ver-
sion of I'; where an additional subgame is substituted for€h®)-payoff, with all payoffs
in that subgame being smaller than 1. If player 1's conditional beliefs over strategies for
player 2 is derived from a single LPS, then a well-defined belief conditional on reaching
the added subgame entails that player 1 deems possible the event that player 2 ¢hooses
and hence, player 1 prefefsto U. This is inconsistent with sequentiality, under whigh
is a rational choice.

We therefore introduce a new way of describing a system of conditional beliefs, called
a system of conditional lexicographic probabilities (SCLP). In contrast to a CPS, an SCLP
may induce conditional beliefs that are represented by LPSs rather than subjective prob-
ability distributions. In contrast to the system of conditionals derived from a single LPS,
an SCLP need not include all levels in the sequence of the original LPS when determining
conditional beliefs.

It is our aim to model sequential rationalizability (and equilibrium) and quasi-perfect
rationalizability (and equilibrium) within the same epistemic model. By embedding the
notion of an SCLP in an epistemic model with a set of epistemic types for each player, we
will be able to model quasi-perfectness as a special case of sequentiality. For eagh type
of any player, #; is described by an SCLP, inducing a behavior strategy for each opponent
typet; that is deemed subjectively possibledyThe event that “playerbelieves that the
opponent;j chooses rationally at each information set” can then be defined as the event
where playet is of a typer; that, for each subjectively possible opponent typénduces
a behavioral strategy which is sequentially rational gixvemown SCLP.
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An SCLP ensures well-defined conditional beliefs representing nontrivial conditional
preferences, while allowing for flexibility w.r.t. whether to assume preference for cautious
behavior. Preference for cautious behavior, as needed for quasi-perfect rationalizability, is
obtained by imposing the following additional requirementrds SCLP for each condi-
tioning event: if an opponent strategy-type pair, ¢;) is compatible with the event ang
is deemed subjectively possible hythen(s;, ¢;) is in the support of type’s conditional
belief.

The concept of sequential rationalizability is related to various other concepts proposed
in the literature. Already in Bernheim (1984) there are suggestions concerning how to
define non-equilibrium concepts that involve rational choice at all information sets. By
requiring rationalizability in every subgame, Bernheim defines the conceptbgame
rationalizability—which coincides with our definition of sequential rationalizability for
games of almost perfect information—but no epistemic characterization is offered. Bern-
heim (1984, p. 1022) claims that it is possible to define a concept of sequential rational-
izability, but does not indicate how this can be done. After related work by Greenberg
(1996), sequential rationalizability was finally defined by Dekel et al. (1999, 2002), whose
concept coincides with ours in our two-player setting. Our definition of quasi-perfect ratio-
nalizability is new. Dekel et al. (1999) and Greenberg et al. (2003) consider also extensive
game concepts that lie between equilibrium and rationalizability; such concepts will not be
considered here.

Our paper is organized as follows. In Section 2 we define the concept of an SCLP
and introduce the epistemic model that will be used throughout the paper. In Section 3
we present our epistemic characterizations of sequential and quasi-perfect equilibria and
define the concepts of sequential and quasi-perfect rationalizability. In Section 4 we inves-
tigate the relationship to other rationalizability concepts, while in Section 5 we show how
sequential and quasi-perfect rationalizability promote backward induction. In Section 6 we
discuss the restriction to two-player games. A representation result for SCLP is established
in Appendix A. Proofs of the main characterization results are contained in Appendix B,
while proofs of others results are available on request.

2. Playersasdecision makers

In this section, we introduce some definitions and notation in order to model the players
in an extensive game as decision-makers under uncertainty.

2.1. A system of conditional lexicographic probabilities

Consider a decision-maker under uncertainty, andrldde a finite set of states. The
decision-maker is uncertain about what stateFirwill be realized. LetF* (C F) be
the nonempty subset of states that the decision maker deems subjectively possible. Write
F*:={ECF|ENF*+#@}. Let Z be a finite set of outcomes. For alyc F*, the
decision-maker is endowed with complete and transitive conditional preferences over all
functions that to each element &f assigns an objective randomization @nAny such
function is called an Anscombe and Aumann (19&&)on E.
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Refer to the collection of conditional preferences for Bl F* as asystem of con-
ditional preferences. We show in Proposition A.1 of Appendix A how such a system of
conditional preferences can be represented by our novel notion of an SCLP (cf. Section 1).
To introduce this notion formally, we need some preliminaries.

Letv:Z — R be a vNM utility function, and abuse notation slightly by writingp) =
> .z P(2)u(z) wheneverp € A(Z) is an objective randomization.

A lexicographic probability system (LPS) consists of. levels of subjective probabil-
ity distributions: if L > 1 and,V¢ € {1, ..., L}, ug € A(F), theni = (u1, ..., uz) is an
LPS onF. Let LA(F) denote the set of LPSs afi. Write supph := UeL=1 suppug. If
Suppr N E # @, denote byk |z = (u], ... /’L/L\E) the conditional oft on E .2 Write, for any
Le{l,...,L}, e := (1, ..., o).

Definition 1. A system of conditional lexicographic probabilities (SCLP)(x, £) on F with
supportF* consists of

e an LPSA = (u1,..., ur) € LA(F) satisfying supp. = F*, and
e afunctiont : 7* — {1, ..., L} satisfying
() suppie) NE #9,
(i) £(D) > ¢(E)wheneve®) # D C E, and
(i) £({e}) = £ whenevel € suppu,.

The interpretation is that the conditional belief @his given by the conditional on
E of the LPSA¢(g), rep)lE = (17, - - -, MQ(E”E). To determine preference between acts
conditional onE, first calculate expected utilities by means of the top level probabil-
ity distribution, .}, and then, if necessary, use the lower level probability distributions,
Wy, -+ Wy gy £+ 1€XiCOgraphically to resolve ties. The functiéthus determines, for every
eventE, the number of levels of the original LPSthat can be used, provided that they
intersect withE, to resolve ties between acts conditionalnCondition (i) ensures well-
defined conditional beliefs that represent nontrivial conditional preferences. Condition (ii)
means that the system of conditional preferences is dynamically consistent, in the sense
that strict preference between two acts would always be maintained if new information,
ruling out states at which the two acts lead to the same outcomes, became available. To
motivate condition (iii), note that i € suppu, and£({e}) < ¢, then it follows from con-
dition (ii) that i, could as well ignore without changing the conditional beliefs.

A full support SCLP (i.e., an SCLP wherg&* = F) combines the structural implication
of a full support LPS—namely that conditional preferences are nontrivial—with flexibility
w.r.t. whether to assume the behavioral implication of any conditional of such an LPS—
namely that the conditional LPS’s full support induces preference for cautious behavior.
A full support SCLP is a generalization of both

3 le.,Vee {1,..., L|E}, /42(~) = i, (|E), where the indices, are given bykg = 0, kg = min{k|ui (E) > 0
andk > kg_1} for ¢ > 0, and {k|ug(E) > 0 andk > k| g} = ¥, and whereuy, (-|E) is given by the usual
definition of conditional probabilities; cf. Blume et al. (1991a, Definition 4.2).
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(1) Conditional beliefs described by a single full support LPS (u1, ..., ur): let, for
all E € 7*, ¢(E) = L. Then the conditional belief of is described by the conditional
of A\ONnE, A|g.

(2) Conditional beliefs described by a CPS: let, forale F*, ¢(E) = min{£| suppig N
E # @¢}. Then, it follows from conditions (ii) and (iii) of Definition 1 that the full sup-
port LPSA = (u1, ..., #r) has non-overlapping supports (i.e.js alexicographic
conditional probability system in the terminology of Blume et al., 1991a, Defini-
tion 5.2) and the conditional belief of is described by the top level probability
distribution of the conditional ok on E. This corresponds to the isomorphism be-
tween CPS and lexicographic conditional probability system noted by Blume et al.
(19914, p. 72) and discussed by Halpern (2003).

However, a full support SCLP may describe a system of conditional beliefs that is not
covered by these special cases. The following is a simple exampl&*LetF = {d, e, f}

and A = (u1, u2), whereu1(d) = 1/2, u1(e) = 1/2, andu(f) = 1. If £(F) =1 and

¢(E) = 2 for any other non-empty subsgt then the resulting SCLP falls outside cases
(1) and (2).

2.2. An extensive game

Consider a finitextensive game formwith two players. Assume that there are no chance
moves, and that the extensive game form satisfies perfect recall. Denétetbg collec-
tion of information sets controlled by playerFor every information set € H;, let A(h)
be the set of actions available /at A pure strategy for playeri is a functions; which
assigns to every information skte H; some actiors; (h) € A(h). Denote bys; the set
of pure strategies for playér where there, in the subsequent analysis, is no need to dif-
ferentiate between pure strategiesSjrthat differ only at non-reachable information sets.
Write S = §1 x S2 and denote by the set of terminal nodes (or outcomes). Lef — Z
map strategy profiles into terminal nodes, and refé5io S», z) as the associatesttategic
game form.

Let, for eachi, v; : Z — R be a vNM utility function that assigns a payoff to any out-
come. Then the pair of the extensive game form and the vNM utility functionsus)
constitutes a finiteextensive game I'. Let G = (81, S2, u1, u2) be the associated finite
strategic game, where for eachi, the vNM utility function u; :S — R is defined by
u; =v; oz (i.e.,u;(s) =v;(z(s)) for anys = (s1, s2) € S). Assume that, for each there
exists, s’ € § such that; (s) > u; (s').

Foranyh € H1U Ho, let S; (h) be the set of strategigasfor which there is some strategy
s; such that(s;, s;) reaches:. For anyh and any node € i, denote byS(x) = S1(x) x
S2(x) the set of pure strategy profiles for whiehs reached, and writg(h) := |, o, S(x).

By perfect recall, it holds tha$ () = S1(h) x S2(h) for all information sets:. For anyh,
h' € H;, h (weakly) precedes’ if and only if S(h) 2 S(h’). For anyh € H; anda € A(h),
write S; (h, a) ;= {s; € S;(h) | s;(h) = a}.

A behavior strategy for playeri is a functiono; that assigns to every € H; some
randomizatiors; (h) € A(A(h)) on the set of available actions.Afe H;, denote by; |,
the behavior strategy with the following properties:
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(1) at playeri information sets preceding, o;|; determines with probability one the
unique action leading tb, and
(2) at all other player information setsg; |, coincides witho;.

Say thaio; is outcome-equivalent to a mixed strategy; (e A(S))) if, for any s; € S;, o;
and p; induce the same probability distribution over terminal nodes. Foraay;, o; |,
is outcome-equivalent to some € A(S; (h)).

2.3. Types

When an extensive game form is turned into a decision problem for each player, the
uncertainty faced by a player concerns the action choice of his opponent at each of her
information sets, the belief of his opponent about the player’s own action choice at each of
his information sets, and so on.type of a player in an extensive game form corresponds
to a vNM utility function and a belief about the action choice of his opponent at each of
her information sets, a belief about the belief of his opponent about the player’s own action
choice at each of his information sets, and so on.

An implicit model with a finite set of type profile§;, = Ty x T>, describes such hierar-
chies of beliefs. Each typg € T; of any playeri corresponds té's vNM utility function
v; and a system of conditional beliefs 6px T;. For givent; e T; (i.e., for given belief of
J abouti’s action choice at eadne H;, belief of j abouti’s belief aboutj’s action choice
at eachh € H;, and so on)s;’s belief about,’s action at somé:’ € H; can be derived
from his conditional belief or§; (k") x {t;} since the set of actions availableret A(h'),
corresponds to a partition ¢f; (7).

For eachy; € T;, let T”' (S T;) be the non-empty set of opponent types thateems
subjectively possible. Also assume that, forsglle S; and¢; € T}, ; deems(s;, t;)
subjectively possible. This means that conditional behefs are well- defmed for aneyent
(S S; xT;)ifand only if E; N (S; x T");ﬁ@ Note that{S;(h) x T; | h € H;} is the
set of events that are objectlvely observablet,b;Hence condltlonal beliefs are always
well-defined for such events since, for ang H;,

(S0 x Tj) N (S5 x Tf) = (Sj(h) x TH) #1.

By describing the system of conditional beliefs by means of an SCLP, our construction,
formulated within the strategic game form, can be summarized as follows.

Definition 2. For given vNM utility functions(v1, v2) on A(Z), anepistemic model for a
strategic game forniSy, S», z) consists of

o for each playet, a finite set of typed;, and
o for each type; of any playeri, and SCLR(A, £) on §; x T; with supportS; x T;".

To illustrate this use of our notion of an SCLP, consider again the game of Fig. 1. Sup-
pose thatll = {11} x {t2}, and lett = (u7, u5) € LA(S2 x {t2}) be such thap] assigns
probability one tad, #2) andu2 assigns positive probability 1Qf, 72). If £1(S2 x {t2}) =1
then the SCLP corresponds to a CPS, whilifS» x {r2}) = 2, then all conditional beliefs
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are conditionals of’2. Condition (i) of Definition 1 requires thaf ({(f, 2)}) = 2, while
condition (ii) implies thatt’2({(d, t2)}) > €2(S2 x {t2}). Hence, the functiort”? yields
flexibility w.r.t. whether to assume preference for cautious behavior, while ensuring that all
conditional beliefs are well-defined.

2.4. Certain belief

In Definition 2 we allow for the possibility that each player deems some opponent types
subjectively impossible, corresponding to an SCLP that does not have full support along
the type dimension. Therefore, the epistemic operator ‘certain belief’ (meaning that the
complement is subjectively impossible) can be derived from the epistemic model and de-
fined for events that are subsetslafx T». For anyA C Ty x T, say that atr1, t2) playeri
certainly believesthe eventA if (71, 1) € K; A, where

mA:ﬂm@enanmxﬁgA}

Say that there isnutual certain belief of A C Th x T at (11, 12) if (11, 12) € KA, where
KA :=K1AN KA. Say that there isommon certain belief of A C Ty x T at (11, r2) if
(f1,12) e CKA,whereCKA:=KANKKANKKKAN---.

2.5. Preferences over strategies

In an extensive game, playémakes decisions at his information sets. At every in-
formation seth € H;, the combination of’'s vNM utility function v; andz;’s conditional
belief onsS; (k) x T, determines complete and transitive preferen;eff’;snn the set of acts
from S;(h) x T; to Z. Since each strategy € S;(h) is a function that assigns(s;, s;)
to any (s;, ;) € S;(h) x T; and is thus an act fron§; (k) x T; to Z, we have that=]
determines complete and transitive preferences; 0n.

The choice function for type ¢; of any player: is a functioanf that assigns to every
h € H; t;'s set of rational strategies:

Ci'(h) :={si € S;(h) | si =) s{ forall s] € S;(h)}.

3. Sequential and quasi-perfect rationalizability

In this section, we use the concept of an SCLP to formalize the requirement that each
player believes that the opponent chooses rationally at each of her information sets, given
her preferences at these information sets. This enables us

e to characterize sequential (Kreps and Wilson, 1982) and quasi-perfect (van Damme,
1984) equilibriunt* and

4 The concept of a quasi-perfect equilibrium differs from Selten’s (1975) extensive form perfect equilibrium
by the property that, at each information set, the player taking an action ignores the possibility of his own future
mistakes.
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o to definesequential and quasi-perfect rationalizability as non-equilibrium analogues
to the concepts of Kreps and Wilson (1982) and van Damme (1984) in two-player
extensive games.

3.1. Sequentiality

In our setting a behavior strategy is not an object of choice, but an expression of the
system of beliefs of the other player. Say that the behavior stra;t]lé‘éjyisinduced for ¢;
byt if t; € T;" and, for allh € H; anda € A(h),

;
t,’|t/' M[l(Sj(hva)3t])
o; (@) = ==
’ wi (Sj(h). 1))

where¢ is the first levele of A% for which uf (S;(h),t;) > 0, implying thatu restricted
to S;(h) x {z;} is proportional to the top level probability distribution of the LPS that
describes;’s conditional belief onS; (k) x {z;}. Here,ujj (Sj(h),t;) is a short way to
write uf (S;(h) x {t;}). Similarly for 1} (S;(h, a), t;).

Say that the behavior strategyis sequentially rational for ¢; if,

Vh € H;, 0|, is outcome-equivalent to some mixed strateg;ﬁ(n[?f" (h)).

Define the event that playéris of a type thainduces asequentiallyrational behavior
strategy for any opponent type that is deemed subjectively possible:

|

. ) . . .
[isr;]:= {(tl, 0)eTLxTr | ‘v’t} IS T;’,a ! is sequentially rational fou;}

J
Write [isr] := [isr1] N [isr2] for the event where both players are of such a type.

Note that the behavior strategy induced n‘plby t; specifies;’s belief revision policy
about the behavior of,, as it defines probability distributiorsso at player; information
sets that arenreachable givent;’s initial belief aboutr’;’s behavior. Hence, if the true type
profile (z1, t2) is in [isr;], then playeti believes that each subjectively possible opponent
type t} chooses rationally also at playgrinformation sets that contradigts initial be-
lief about the behavior of;. The above observation explains why we characterize a
sequential equilibrium as a profile of induced behavior strategies at a type prdfige]in
where there is mutual certain belief of the type profile (i.e., for each player, only the true
opponent type is deemed subjectively possible).

Before doing so, we define sequential equilibrium. Plasgebeliefs over past opponent
actions ati's information sets is a functiog; that to anyh € H; assigns a probability
distribution over the nodes ih. An assessmer, 8) = ((o1, 02), (B1, B2)), consisting
of a pair of behavior strategies and a pair of beliefs, is consistent if there is a sequence
(o™, BMnen Of assessments converging (@ 8) such that for every:, o” is completely
mixed andg” is induced by using Bayes'’ rule. Ib; ando; are any behavior strategies
for i andj, andg; are the beliefs of, then let, for eachh € H;, u;(0;, 0}; Bi)|, denotei’s
expected payoff conditional din, given the beliefs; (k), and given that future behavior is
determined bys; ando;.
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Definition 3. An assessmen, 8) = ((o1, 02), (81, B2)) is asequential equilibrium if it
is consistent and it satisfies for eaicand every: € H;,

ui(0i, 05 Bi)|ln = Maxu; (of.0j: Bi)|,-
o.

i

The characterization result can now be stated; it is proven in Appendix B.

Proposition 4. Consider a finite extensive two-player game I". A profile of behavior strate-
gieso = (01, 02) can be extended to a sequential equilibrium if and only if there exists an
epistemic model with (11, 2) € [isr] such that (1) there is mutual certain belief of {(71, 72)}
at (r1, 1), and (2) for each i, o; isinduced for #; by ¢;.

For the “if” part, it is sufficient that there is mutual certain belief of the beliefs that
each player has about the action choice of his opponent at each of her information sets.
We do not need the stronger condition that (1) entails. Hence, higher order certain belief
plays no role in the characterization, in line with the fundamental insights of Aumann and
Brandenburger (1995).

We nextdefine the concept of sequentially rationalizable behavior strategies as induced
behavior strategies under common certain beli¢fsi.

Definition 5. A behavior strategy; for i is sequentially rationalizablein a finite extensive
two-player gamd" if there exists an epistemic model with, t2) € CK[isr] such thab;
is induced for; by ¢;.

It follows from Proposition 4 that a behavior strategy is sequentially rationalizable if it
is part of a profile of behavior strategies that can be extended to a sequential equilibrium.
Since a sequential equilibrium always exists, we obtain as an immediate consequence that
sequentially rationalizable behavior strategies always exist.

3.2. Quasi-perfectness

Impose the additional requirement that for each typsf any playeri the full LPS A%
is used to form the conditional beliefs over opponent strategy-type pairs. Formally, let
be the number of levels in the LBS and define the event

[cau;]:= {(t1,12) € T1 x T2 | £(S; x Tj) = L}.

Sincel’i is non-increasing w.r.t. set inclusiofy, r2) € [cau; ] implies thatti (E ;) = L for
all subsetsE'; of S; x T; with well-defined conditional beliefs. Due to the assumption that
A has full support ors; (cf. Definition 2), (11, t2) € [cau;] means that;’s choice func-
tion never admits a weakly dominated strategy, thereby inducing preferencaufmus
behavior. Writgcau] := [caup] N [cauz].

We nowcharacterize the concept of a quasi-perfect equilibrium as profiles of induced
behavior strategies at a type profile[iar] N [cau] where there is mutual certain belief of

5 We are grateful to the referee for making this observation.
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the type profile. To state the definition of quasi-perfect equilibrium, we need some pre-
liminary definitions. Define the concepts of a behavior representation of a mixed strategy
and the mixed representation of a behavior strategy in the standard way (cf., e.g., Myer-
son, 1991, p. 159). If a behavior strateglyand a mixed strategy; are both completely
mixed, ando; is a behavior representation pf or p; is the mixed representation of;,
then,Yh € H;, Va € A(h),

pj(Sj(h,a))
pj(Si(h))
If p; is a completely mixed strategy ands H;, let p;|, be defined by

o;(h)(a) =

piln(sj) =1 PiS;®) if 5 €8;(h),

, otherwise
If o; is any behavior strategy farando; is a completely mixed behavior strategy far
then abuse notation slightly by writing, for eakle H;,
wi (07, o) n = ui(pi, pjln),

wherep; is outcome-equivalent t@;|, andp; is the mixed representation of.

Definition 6. A behavior strategy profile = (o1, 02) is aquasi-perfect equilibriumif there
is a sequencé ), cn of completely mixed behavior strategy profiles converging such
that for each’ and every: € N andh € H;,

ui(oi, oj’-’)|h = maxu; (o7, U}‘)

1

|h'

The characterization result can now be stated,; it is proven in Appendix B.

Proposition 7. Consider a finite extensive two-player game I". A profile of behavior strate-
gies o = (01, 02) is a quasi-perfect equilibrium if and only if there exists an epistemic
moded with (71, 12) € [isr] N [cau] such that

(1) thereis mutual certain belief of {(¢1, r2)} at (11, 2), and
(2) for eachi, o; isinduced for #; by ¢;.

As for Proposition 4, higher order certain belief plays no role in this characterization.
We nextdefine the concept of quasi-perfectly rationalizable behavior strategies as in-
duced behavior strategies under common certain belig&df [cau].

Definition 8. A behavior strategy; for i is quasi-perfectly rationalizable in a finite exten-
sive two-player gamé' if there exists an epistemic model with, t2) € CK ([isr] N [cau])
such thab; is induced for; by ¢;.

It follows from Proposition 7 that a behavior strategy is quasi-perfectly rationalizable if
it is part of a quasi-perfect equilibrium. Since a quasi-perfect equilibrium always exists, we
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obtain as an immediate consequence that quasi-perfectly rationalizable behavior strategies
always exist.

Propositions 4 and 7 imply the well-known result that every quasi-perfect equilibrium
can be extended to a sequential equilibrium, while Definitions 5 and 8 imply that the set of
quasi-perfectly rationalizable strategies is included in the set of sequentially rationalizable
strategies. To illustrate that this inclusion can be strict, condiger Fig. 1 (cf. Section 2).

Both concepts predict that player 2 playswith probability one. However, only quasi-
perfect rationalizability predicts that player 1 plaswith probability one. Preferrindd
to U amounts to preference for cautious behavior since by chodsipigyer 1 avoids the
risk that player 2 may choosgé

4. Relation to other rationalizability concepts

In this section, we explore the relationship between sequential and quasi-perfect ra-
tionalizability, on the one hand, and the concepts of rationalizability, permissibility, weak
sequential rationalizability, extensive form rationalizability, and proper rationalizability, on
the other hand. We have observed in the previous section that sequential and quasi-perfect
rationalizability may be seen as non-equilibrium analogues to the concepts of sequential
and quasi-perfect equilibrium. Formally, this means that sequential equilibrium is obtained
from sequential rationalizability by adding the requirement that there be mutual certain
belief of the type profile, and likewise for quasi-perfect equilibrium. Similarly, rational-
izability, permissibility, weak sequential rationalizability, and proper rationalizability may
be viewed as non-equilibrium analogues to Nash equilibrium, strategic form perfect equi-
librium, weak sequential equilibrium, and proper equilibrium, respectively. Tables 1 and 2
summarize the relations between the above mentioned equilibrium and rationalizability
concepts, respectively, and provide relevant references.

We now proceed by showing the relations as stated in the second table. For this, it is
useful to state the following definition: say that the mixed stratpjd)t/ is induced for ¢;
by 1 if 1; € T} and, for alls; € S,

i (sj.tj)
1 (Sj,1))

where is the first levele of A for which uf (S;,;) > 0.

tilt;
D j(sj) =

Table 1
Relationship between different equilibrium concepts

Proper equilibrium
Myerson (1978)

Strategic form perfect equil. < Quasi — perfect equilibrium
Selten (1975) van Damme (1984)
\ \
Nash equilibrium <« Weak sequential equilibrium <« Sequential equilibrium
Reny (1992) Kreps and Wilson (1982)
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Table 2
Relationship between different rationalizability concepts
Common ... believes the ... believes the ... believes the
cert. belief  oppon. chooses oppon. chooses oppon. chooses
that each rationally only rationally at rationally at
player... in the whole all reachable all info. sets
game info. sets
... Is cautious Proper
and respects [n.a] [n.a] rationalizability
preferences Schuhmacher (1999)
Permissibility 1
Borgers (1994) Quasi-perfect
... Is cautious [n.a] Brandenburger (1992)«  rationalizability
Dekel and Fudenberg (1990) (defined here)
Rationalizability 1 I
...isnot Weak sequential Sequential
necessarily Bernheim (1984) rationalizability <« rationalizability
cautious Pearce (1984) Ben-Porath (1997) Dekel et al. (1999, 2002)
Does not imply Does not imply Implies
backward ind. backward ind. backward ind.

4.1. Properness

Say that each player respects opponent preferences in the sense of deeming one oppo-
nent strategy infinitely more likely than another if the opponent prefers the one to the other
(cf. Blume et al., 1991b), as captured by the following event:

[resp;]:= {(11,12) € T1 x T2 | Vi) € T;", (sj,1;) >" (s}, 1;) whenever; 1 si}.

Here, > is the “infinitely more likely” relation given;'s system of conditional beliefs
(cf. Appendix A), and, for eacky. € T;", %’.;' denotes the complete and transitive prefer-
ences on§; determined byj’s VNM utility function v; and;'s belief onS; x 7;. Write
[resp] := [respy] N [resp;].

Building on Blume et al. (1991b, Proposition 5), Asheim (2001, Proposition 1) shows
that proper equilibrium in two-player games can be characterized as a profile of induced
mixed strategies at a type profile jresp] N [cau] where there is mutual certain belief
of the type profile. Moreover, Asheim (2001, Proposition 3) can be used to show that
Schuhmacher’s (1999) concept of properly rationalizable strategies corresponds to induced
mixed strategies under common certain beliefre$p] N [cau].

Any proper equilibrium in the strategic form corresponds to a quasi-perfect equilib-
rium in the extensive form (cf. van Damme, 1984). The following result (the proof of
which is available on request) shows, by Proposition 7 and Asheim (2001, Proposition 1)
this relationship between the equilibrium concepts and establishes, by Definition 8 and
Asheim (2001, Proposition 3), the corresponding relationship between the rationalizability
concepts. Furthermore, it means that the two cells in Table 2 to the left of ‘proper rational-
izability’ are not applicable.
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14 r
L|22]| 22

4,1 1,0
R| 30| 0,3

Fig. 2. > and its strategic form.

Proposition 9. For any epistemic model and for each player i,

[resp;1 N K;[cau;] < [isr;].

From the proof of Mailath et al. (1997, Proposition 1) one can conjecture that quasi-
perfect rationalizability in every extensive form corresponding to a given strategic game
coincides with proper rationalizability in that game. However, for any given extensive form
the set of proper rationalizable strategies can be a strict subset of the set of quasi-perfect
rationalizable strategies, as illustrated Byof Fig. 2.

Here, quasi-perfect rationalizability only precludes the plaR @fith positive probabil-
ity. However, sinceM strongly dominate®, it follows that 2 preferg to r if she respects
1's preferences. Hence, onfywith probability one is properly rationalizable for 2, which
implies that onlyM with probability one is properly rationalizable for 1.

4.2, \Weak sequentiality and permissibility

Say that a mixed strategy; is weak sequentially rational for ; if,
VYheH; st supmp;NSi(h)+#9, suppp; N S;(h) € C}' (h),

and define the event that players of a type that induces a weak sequentiabyional
mixed strategy for any opponent type that is deemed subjectively possible:

liwr]:={(t1,12) € T x T2 | vt} e TJ.”' , p;flt’ is weak sequentially rational fmjr}.
Write [iwr] := [iwrq] N [iwr2].
Note that the mixed strategy induced i9rby t; may be interpreted ag's initial be-

lief about the behavior of’,. In contrast to thebehavior strategy induced for} by #,
as defined in Section 3.1, the induceiked strategy gives no information about haw
revises his belief about the behaviorr?fat player; information sets that arenreach-

able given;’s initial belief aboutt}’s behavior. Hence, if the true type profile, 2) is

in [iwr;], then player believes that each subjectively possible opponent tymhooses
rationally at player; information sets that do not contradi¢cs initial belief about the be-
havior Oft}. However, and this is the crucial difference when compared to the case where

(11, 1) € [isr;]: (11, t2) € [iwr;] entailsno restriction on how; revises his beliefs aboqt’s
behavior conditional om;. reaching “surprising” information sets. The above observation
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explains why weak sequentially rationalizable (coined ‘weak extensive form rationaliz-
able’ by Battigalli and Bonanno, 1999) strategies can be shown to correspond to induced
mixed strategies under common certain beliefiof].

Say that a mixed strategy; is rational for ¢; if p; € A(Ci’"), where
Cl = {sieSi \ si =" 5] forall s € S; },

1

where =’ denotes the preferences Sndetermined byi’'s vNM utility function v; and
ti's belief onS; x T;, and define the event that playeis of a type thatnduces aational
mixed strategy for any opponent type that is deemed subjectively possible:

. ol .
lirj]:={(t1,12) € Ty x T2 | Vit € T;’,pj ’ is rational forz’ }.

Write [ir] := [ir{] N [ir2]. Then (see, e.g., Asheim and Dufwenberg, 2003, Proposition 5.2)
permissible strategies correspond to induced mixed strategies under common certain belief
of [ir] N [cau]. Of course, by instead considering common certain beligifrdfwe obtain
a characterization of ordinary rationalizability.

The following result (the proof of which is available on request) establishes the remain-
ing relationships between the rationalizability concepts of Table 2.

Proposition 10. For any epistemic model and for each player i,
lisr;] S [iwr;] S [ir;] and [ir;]1N K;[cau;] < [iwr;].

Sincelir;]1N K;[cau;] C [iwr;], the cell in Table 2 to the left of ‘permissibility’ is not ap-
plicable, and permissibility refines weak sequential rationalizability. Fig. 1 (cf. Section 1)
shows that the inclusion can be strict: Permissibility, but not weak sequential rationalizabil-
ity, precludes that player 1 play$ in Iy. Since[isr;] C [iwr;], Definition 5 entails that
sequential rationalizability refines weak sequential rationalizability. Sfiscg] C [ir;],
Definition 8 entails that quasi-perfect rationalizability refines permissibility. That the two
latter inclusions can be strict, is illustrated By of Fig. 3 (introduced by Reny, 1992,
Fig. 1).

Here permissibility only precludes the play of at 1's second decision node. This
can be established by applying the Dekel-Fudenberg (1990) procedure (i.e., one round
of weak elimination followed by iterated strong elimination) which eliminates a strat-
egy if and only if it is not permissible. Since all terminal nodes yield different payoffs,
weak sequential rationalizability leads to the same conclusidowever, only the play

1 2 1 3 d f
F f F 3 ol22] 22
D d D
FD| 1,1 0,0
2 1 0
5 1 0 FF| 1,1 3,3

Fig. 3. I'3 and its strategic form.

6 To see how our characterization of weak sequential rationalizability is consistent @ji) in I3, let
Ty = {11} with A1 = ((1,0), (0, 1)) (assigning probabilities tad, t) and (f,t) respectively), and» = {5}



30 G.B. Asheim, A. Perea / Games and Economic Behavior 53 (2005) 1542

of F with probability one at both of 1's decision nodes and the play @it 2’s single
decision node are quasi-perfectly/sequentially rationalizable. This follows from Propo-
sition 11 of Section 5, showing that the latter concepts imply lekward induction
procedure.

4.3. Extensive formrationalizability

Extensive form rationalizability (EFR) (Pearce, 1984; Battigalli, 1997; Battigalli and
Siniscalchi, 2002) is an iterative deletion procedure where, at any information set reached
by a remaining strategy, any deleted strategy is deemed infinitely less likely than some
remaining strategy. Even though EFR only requires players to choose rationally at reach-
able information sets and preference for cautious behavior is not imposed, EFR is different
from weak sequential rationalizability. Unlike all concepts in Table 2, EFR yifdds
ward induction in common examples like the ‘Battle-of-the-Sexes-with-Outside-Option’
and ‘Burning Money’ game$.EFR also leads to thieackward induction outcome. How-
ever, unlike proper, quasi-perfect and sequential rationalizability, EFR need not promote
the backward induction procedure.

5. Relation to backward induction

The following result shows how sequential (and thus quasi-perfect and, by Propo-
sition 9, proper) rationalizability implies the backward induction procedure in perfect
information games. A finite extensive gameis of perfect information if, at any infor-
mation set: € H1 U H», h = {x}; i.e.,h contains only one node. It generic if, for eachi,

v; (z) # v;i (z') whenever; andz’ are different outcomes. A generic extensive game of per-
fect information has a unique subgame-perfect equilibrium in pure strategies. Moreovetr, in
such games the backward induction procedure yields in any subgame the unique subgame-
perfect equilibrium outcome.

Proposition 11. Consider a finite generic extensive two-player game of perfect informa-
tion I'. If there exists an epistemic model with (71, t2) € CK[isr] and, for each i, o; is
induced for 1; by ¢;, then o = (01, 02) is the subgame-perfect equilibrium.

Since sequentially rationalizable strategies always exist, there is an epistemic model
with (11, r2) € CK[isr], implying that the result of Proposition 11 is not empty.

with A2 = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) (assigning probabilities taD, t1), (FD, t1), and(F F, t1), respectively).
Then, independently of ho#! and¢2 are specified(ty, 1) € CK[iwr], and, for each, p; is induced for; by
tj, wherep1(D) =1 andpz(d) = 1.

7 By strengthening permissibility, Asheim and Dufwenberg (2003) define a rationalizability cofudbpper-
missible sets, which is different from those of Table 2 as well as EFR, as it yields forward induction, but does not
always promote backward induction.
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6. Concluding remarks

Throughout this paper, we have analyzed assumptions about plageets, leading to
events that are subsetsTf x T». We can still make probabilistic statements about what a
player “will do,” by considering the beliefs of the other player.

For the concepts in the left and center columns of Table 2, we can do more than this,
if we so wish. E.g., when characterizing weak sequential rationalizability, we can consider
the event of rational pure choice at all reachable information sets, and assume that this
event is commonly believed (where the term ‘belief’ is used in the sense of ‘belief with
probability one’). These assumptions yield subsetSiot 71 x Sz x T», leading to direct
behavioral implications within the model.

This does not carry over to the concepts in the right column. It is problematic to define
the event of rational pure choice at information sets, since reaching a non-reachable
information set may contradict rational choice at earlier information sets. Also, if we con-
sider the event of (any kind of) rational pure choice, then we cannot use cowertam
belief, since this—combined with rational choice—would prevent well-defined conditional
beliefs after irrational opponent choices. However, common belief (with probability one)
of the event that each player believes his opponent chooses rationally at all information
sets doesot yield backward induction in generic perfect information games, as shown in
the counterexample of Asheim (2002, Fig. 2). Comnaeriain belief is essential for our
analysis of the concepts in the right column of Table 2; this complicates obtaining direct
behavioral implications.

In this paper, we have restricted our attention to games with two players. A natural
question which arises is whether, and if so, how, the present analysis can be extended to
the case of three or more players. In order to illustrate the potential difficulties of such an
extension, consider a three player game in which player 3 has an informatibrmsitt
two nodesx andy, wherex is preceded by the player 1 actiorand the player 2 action
andy is preceded by the player 1 actibrand the player 2 actios. Suppose that player 3
views b andc¢ as suboptimal choices, and hence player 3 deeinginitely more likely
thanb, and deemd infinitely more likely tharc. Then, player 3's LPS dt over player 1's
strategy choice and player 3's LPSiabver player 2's strategy choice do not provide suf-
ficient information to derive player 3's relative likelihoods attached to nadassd y, and
these relative likelihoods are crucial to assess player 3's rational behavioHance, in
addition to the two LPSs mentioned above, we need another, aggregated, LPS for player 3
ath over his opponents’ collective strategy profiles.

The key problem would then be what restrictions to impose upon the connection be-
tween the LPSs over individual strategies on the one hand and the aggregate LPS over
strategy profiles on the other hand. Both classes of LPSs are needed, since the former are
crucial in order to evaluate the beliefs about rationality of individual players, and the lat-
ter are needed in order to determine the conditional preferences of each player, as shown
above. This issue is closely related to the problem of how to characterize consistency of as-
sessments in algebraic terms, without the use of sequences (McLennan, 1989a; McLennan,
1989b; Battigalli, 1996; Kohlberg and Reny, 1997; Perea et al., 1997). In these papers, the
consistency requirement for assessments has been characterized by means of conditional
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probability systems, relative probability systems and lexicographic probability syStems,
satisfying some appropriate additional conditions. Perea et al. (1997), for instance, use a
refinement of LPS in which, at every information set, not only an LPS over the available
actions is defined, but moreover the relative likelihood level between actions is “quantified”
by an additional parameter, whenever one action is deemed infinitely more likely than the
other. This additional parameter makes it possible to derive a unique aggregate LPS over
action profiles (and hence also over strategy profiles). A similar approach can be found in
Govindan and Klumpp (2002). Such an approach could possibly be useful when extending
the analysis in this paper to the case of more than two players. For the moment, we leave
this issue for future research.
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Appendix A. A representation result for SCLP

Consider the setting of Section 2.1. Writg andy for acts onE e 2\ {@}. A binary
relation on the set of acts ofi is denoted by:=g, wherexg =g Yg means thakg is
preferred orindifferent toyg. As usual, let- ¢ (preferred to) and~ g (indifferent to) denote
the asymmetric and symmetric parts:ef. Assume that=¢ satisfies

Axiom 1 (Order). =g is complete and transitive.

Axiom 2 (Objective independence). X, > ¢ (respectively~ ) X iff yX + (1 —y)ye >k
(respectively~g) yx} + (1 — y)yr whenever O< y < 1 andyg is arbitrary.

for any E € 2F\ {4}, and the following axiom if and only if£ € F*,
Axiom 3 (Nontriviality). There exisikg andyg such thakg >r yg.

where the numbering of axioms follows Blume et al. (1991a), henceforth referred to as
BBDa. Say that € F* is deemednfinitely more likely than f € F (e > f) if
Xie.f) >le.f) Yie.r) Whenevem() > yie)-

Let, for any D € 2E\{#}, xp denote the restriction of to D. Define theconditional
binary relation’=g p by X}, =g|p X} if, for someyg, (X,,Ye\p) =g (X},.YE\D)- BY
Axioms 1 and 2, this definition does not dependygn Assume that- satisfies

8 Cf. Hammond (1994) and Halpern (2003) for analyses of the relationship between these notions.
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Axiom 4" (Conditional Archimedean property). Ve € E, 30 < y <8 < 1 such tha#x/, +
(1= 8)XE >Elie) YE > Elfe) ¥ X + (L — y)XE wheneve'y >} YE > E|(e} X -

for any E < 2\ {#}.
The collection{=g| E € F7*} is called asystem of conditional preferences on the set of
statesF. Assume that=g| E € F7*} satisfies the following axioms:

Axiom 5° (Non-null state independence). X >} Yie} iff X(r} >(r} Yir} Whenever
e, f € F*, andxy, sy andyy,, r) satisfyx, r)(e) = X(e, r}(f) andyie, rj(€) = Yie, 1} (f).

Axiom 6* (Dynamic consistency). Xp >p Yp whenevexg >gp Yg and¥ # D C E.

Axiom 7* (Compatibility). There exists a binary relatios;. satisfying Axioms 1, 2, and'4
such thair >}|E yr wheneveg >g yrp and@ £ E C F.

Note that, for any evenk € F*, the decision-maker’s actual conditional preferences
over acts orE are given by=g, while, .9.,=r|g and%j}lE are auxiliary binary relations.

In their Theorem 3.1 BBDa show that a binary relation satisfying a set of axioms can be
represented by a vNM utility function and an LPS. They impose Axioms 1-3 ‘aaiobde,
as well as Axiom 5 (non-null state independence), which coincides with our Axidmab
setting wherexp >p (respectively~p) yp iff Xxg >g|p (respectively~g|p) yr whenever
W#+DCE.

The following representation result extends BBDa’s Theorem 3.1. For two utility vec-
torsv andw, let v >; w denote that, whenever, > v,, there exist¥’ < ¢ such that
vy > wy, and let>; and=;, denote the asymmetric and symmetric parts, respectively.

Proposition A.1. The following two statements are equivalent:

(1) (a) »=f satisfiesAxioms 1, 2, and 4’ if E € 2F'\{#}, and Aiom 3if and only if E € F*,
and
(b) the system of conditional preferences {=g |E € F*} satisfies Axioms 5%, 6%,
and 7*.
(2) There exist a VNM dtility function v: A(Z) — R and an SCLP(2, £) on F with sup-
port F* that satisfies, for any E € F7*,

Xg =Yg Iff

(Zué(e)v(xE(w))

ecE

UE)|E UE)|E

>L (Zué(e)v(y;;(e))) ,

=1 veE =1

where Ay)le = (17, ..., HZ(E”E) isthe conditional of gy on E.

Proof. (1) implies (2). Since=g is trivial if £ ¢ F*, we may w.l.o.g. assume that Ax-
iom 7* is satisfied with;’;lE being trivial for anyE ¢ F*.

Consider any € F*. Since=(, satisfies Axioms 1-3, and 4implying BBDa’s Ax-
iom 4 since{e} has only one state), it follows from von Neumann—Morgenstern expected
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utility theory that there exists a vNM utility functiony,, : A(Z) — R such thatvy,; rep-
resents=;. By Axiom 5%, we may choose a common vNM utility functiento represent
={e) for all e € F*. Since Axiom 7 implies, for anye € F*, ??He} satisfies Axioms 1-3,
and 4, and furthermorexr >%.,, Yr Whenevex. >} y(c}, we obtain thab represents
7F|e) fOr all e € F*. It now follows that=7. satisfies Axiom 5 of BBDa.

By BBDa, Theorem 3.1;=7 is represented by and an LPSA = (u1,..., 1) €

L A(F) satisfying supp. = F*. Consider anyt € F*. If Xxg > Y iff Xp >’;|E yr, then

LIE LIE

> (Zu@(e)v(yf;(e))) :

Xg e Y iff (ZeeE uz(ew(xE(e)))
ecE =1

where A|g = (u’l,...,/,e’LlE) is the conditional ofA on E, implying that we can set
WE)=L.
Otherwise, le¥(E) € {0, ..., L — 1} be the maximunt for which it holds that

LE L|E
X >g Y if (Zuz,(ew(xE(e))) >1 (Zu;,(ew(yE(e))) :
ecE =1

ecE =1

=1

where the r.h.s. is never satisfied ik min{¢’| suppry N E # @}, entailing that the impli-
cation holds for any such Define a set of pairs of acts dn, Z, as follows:

(XE, yE) e |iff
UE)|E UE)IE
(Zuz(e)v(xE(e))) =L (Zuz(@v(yE(e))) :
ecE =1 ecE =1

with (Xg,yg) € Z for any actsxg andyg on E if £(E) < min{¢|supp., N E # #}. Note
thatZ is a convex set. To show thatand )| g represent=g, we must establish that
Xg ~g YE Whenever(xg,Yg) € Z. Hence, suppose there exisis:, yr) € Z such that
Xg > YE. It follows from the definition oft (E) that there exist$x,, ;) € Z such that

XpreYe and Y pumia(@v(Xp(e) < Y peeysa()v(Yi ().

eckE ecE

Objective independence gfz now implies that, if 0< y < 1, then

yXe + (1 —y)Xg =g vYE + Q= y)Xg =E yYE + (1= y)Y;
hence, by transitivity of-,

yXe + Q= y)Xp =g yYE + (1= y)YE. (A1)
However, by choosing sufficiently small, we have that

> eEya@v(yXxe(e) + (1—y)Xg (@)

eckE

<Y e1@v(yye© + (L= y)Yg(e).

ecE

SinceZ is convex so thatyxg + (1 — )X, yye + (1 — y)yy) € Z, this implies that
yXF 4+ Q= y)Xp <5p vYF+ A= y)YE. (A2)
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Since (A.1) and (A.2) contradict Axiom*7 this shows thatxg ~g yg whenever
(Xg,YE) € Z. This implies in turn that (E) > min{£| suppr¢ N E # @} since=g is non-
trivial. By Axiom 6*, £(D) > ¢(E) wheneve) = D C E. Finally, since, for any € F*,
Xie} (e} Yiey Iff Xp >*F\{e} yr, we have that({e}) = L, implying £({e}) > £ whenever
e € suppug.-

(2) implies (1). This follows from routine argumentsc

Appendix B. Proofsof Propositions4, 7, and 11

For the proofs of Propositions 4 and 7 we use two results from Blume et al. (1991b,
henceforth referred to as BBDDb). To state these results, we introduce the following notation.
Let A = (u1,..., uz) be an LPS on a finite sét and letr = (rq, ..., r1_1) € (0, D1,
Then,rOx denotes the probability distribution an given by the nested convex combina-
tion

A—rpur+r[A—rauz+r2[A—r3)uz+ral...1...]].
Lemma B.1. Let (p"),cn be a sequence of probability distributions on a finite set F.

Then, there exists a subsequence p™ of (p™),en, anLPSA = (1, ..., ur) and a sequence
r™ of vectorsin (0, 1)“~1 converging to zero such that p” = r™ i for all m.

The following lemma is a variant of Proposition 1 in BBDb.

Lemma B.2. Let player i's preferences, ', over acts on S; be represented by v; and
M=(u, ..., uy) € LA(S)). Then,

(@) s; > s; ifand only if for every sequence (") ,en in (O, 1)L=1 converging to zero there
is a subsequence ™ such that
Z (rmD)Li)(sj)ui(si, 5j) > Z (rkai)(sj)u,-(si’, )
8j 5j
for all m, and

(b) the same result would hold if the phrase “ for every sequence. ..
some sequence...” .

is replaced by “ for

Proof. (a) Suppose that >' s;. Then, there is somee {1, ..., L} such that
ZME(Sj)Mi(Si,Sj) = ZM@(Sj)ui(S{,Sj) (B.1)
5 5j

forall ¢ < k and

Z/L;((Sj)ui(si,sj)>Z;Lf((sj~)ui(si/,sj). (B.2)

5 5
Let (*"),en be a sequence if®, 1)~ converging to zero. By (B.1) and (B.2),
Z (r”Dki)(sj)ui(si, 5j) > Z (r”D)»i)(sj)ui(s;, )

5j 8
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if n is large enough. The other direction follows directly from the proof of Proposition 1 in
BBDb. The proof of part (b) follows from the proof of Proposition 1 in BBDli

_ For the proofs of Propositions 4 and 7 we need the following definitions. Let the LPS
A =(uf, ..., 1uy) € LA(S;)) have full support or;. Say that the behavior strategy is
induced by A’ if for all h € H; anda € A(h),

1£,(S(h, @)
AT
wheref = min{¢’| supmz, N S;(h) # P}. Moreover, say that players beliefs over past
opponent actiong; areinduced by ; if for all 2 € H; andx € h,
1y (Sj(x))
1 (S ()
where¢ = min{¢/| supphl, N S; (h) # B}

oj(h)(a) =

Bi(h)(x) =

Proof of Proposition 4. (Only if) Let (o, 8) be a sequential equilibrium. Theg, g8) is
consistent and hence there is a sequénée,y of completely mixed behavior strategy
profiles converging t@ such that the sequen¢g”),n of induced belief systems con-
verges tog. For eachi and alln, let p!' € A(S;) be the mixed representation f . By
Lemma B.1, the sequenc{@}’)neN of probability distributions onS; contains a subse-

quencep’! such that we can find an LPS = (u, ..., uy ) with full support onS; and a
sequence of vectord® e (0, 1)“~* converging to zero with

pT S D)\.i

for all m. W.l.0.g., we assume th@f; =r"0M foralln e N.

We first show that.” induces the behavior strategy. Letd; be the behavior strategy
induced by’ By definition,Vh € H;, Ya € A(h),

we(Sih.@) L ("OA)(S (k. a))
ph(Si(h)) — n=oo (r"OA)(S;(h))
(S (h, a))

aj(h)(a) =

wherel = min{¢’| suppki, N S;(h) # }. For the fourth equation we used the fact tb‘?‘tt
is the mixed representation of'. Hence, for each, A" inducess;.
We then show that’ induces the beliefs;. Let 5; be playeri’s beliefs over past oppo-

nent actions induced by . By definition,Vi € H;, Vx € h,
wh(S;(x)) _ i r"OA (S (x))
py(Sj(hy)  n=>o0 r"OA (S (h))

— lim W_ lim Bl'(h)(x) = B;i(h)(x)
= lm p;‘,(Sj(h))_n%oo i = Pi s

Bi(h)(x) =
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wheref = min{¢/| suppkz, N S;(h) # @}. For the fourth equality we used the facts tb?t
is the mixed representationef andg;" is induced by'. Hence, for each, Al inducess;.

We now define the following epistemic model. LEt = {1} and T»> = {2}. Let, for
eachi, (1) (A", ¢%) be the SCLP with suppor§; x {r;} where i coincides with the
Al constructed above, and (2J (Ej) = min{£|supm2 NE; #p}forall @+#) E; C
S; x {tj}. Then, itis clear that there is mutual certain belief @i, 72)} at (11, r2), and for
eachi, o; is induced for; by ¢;. It remains to show thaty, 7o) € [isr].

For this, it is sufficient to show, for eachthato; is sequentially rational fag . Suppose
not. By the choice of', it then follows that there is some information et H; and
some mixed strategy; € A(S;(h)) that is outcome-equivalent tg|;, such that there exist
si € Si(h) with p;(s;) > 0 ands; € S;(h) having the property that

“i(si’ “2 |s,-(h)) < ui(sl-/, /‘Z |sj(h))’
where¢ = min{¢/| supp, N (Sj(h) x {t;}) # ¥} and iy |s; ) € A(S;(h)) is the condi-
tional probability distribution or§; (%) induced byMZ’. Recall that;u;" is the¢-th level of
the LPSAi. Since the belief@; and the behavior strategy are induced by, it follows
thatu; (s, 11 |s; ) = wi(si. 05 Bi)ln andu; (s}, wi ls,m) = ui (s}, o; Bi)|n and hence

ui(si, s Bi)ln <ui(si.oj: Bi)],,-
which is a contradiction to the fact that, 8) is sequentially rational.

(If) Suppose that there is an epistemic model with t2) € [isr] such that there is mu-
tual certain belief of (11, )} at (1, 2), and for eachi, o; is induced for; by ¢;. We show
thato = (o1, 02) can be extended to a sequential equilibrium.

For each, letA’ = (ui, ..., ut) € LA(S;) be the LPS coinciding with'r, and let;
be playeti’s beliefs over past opponent choices inducedbyVrite 8 = (B1, B2). We first
show that(o, 8) is consistent.

Choose sequencegs”),cn in (0, 1)X~1 converging to zero and let the sequences
(p’]?)neN of mixed strategies be given m? =r"0A! for all n. Sincer’ has full support on
S; for everyn, p;? is completely mixed. For every, let 0}' be a behavior representation
of p;-’ and letg;" be the beliefs induced by]" We show tha(a;?),,eN converges t@; and
that(8"),en converges t@;, which imply consistency ofo, ).

Note that the inducement of; by 7; depends on’ through, for eact € H;, M; , where
£ =min{¢/| supmg, N (S;(h) x {t;}) #@}. This implies that; is induced by, Sinceo]’.l
is a behavior representation p} ando;; is induced byr!, we have¥h € H;, Va € A(h),

n . n i
lim 6" (h)(@) = lim PGy, rONS;(ha))
n=o0 - n=oo ph(Sj(h))  nmoo r"ON (Sj(h)
1 .
SRy a),
wy(Sj(h))
wherel = min{¢’| supmi, N S;(h) #9d}. Hence,(a]’?),,eN converges to;.

Sincep! is induced byo}' anda]’? is a behavior representation p;, and furthermore,
B; is induced by\!, we haveYh € H;, Vx € h,



38 G.B. Asheim, A. Perea / Games and Economic Behavior 53 (2005) 1542

nes; .
im B () = lim LT MOS0
n—00 n=>00 p (Sj(h)) — n—o0 r"OA(S;(h))
(S ()
=—=§ h ’
uics iy

wherel = min{¢’| supp\i/ N S;(h) #¥}. Hence,(B;")nen cONverges tep;.
This establishes thdt, B) is consistent.
It remains to show that for eachandVvh € H;,

ui(0i,05; B)ln =m<’;1Xui(G,~’,0j;/3i)’h~
9
Suppose not. Theny;(o;,0;; Bl < ui(o/,0j; Bi)|n for someh € H; and someo;.
Let p; € A(S;(h)) be outcome-equivalent te;|,. Then, there is some € S;(h) with
pi(si) > 0 and soma; € S; (h) such that

wi(si.0j: B)ln <ui(si.oj: Bi)|,-

Since the beliefg; and the behavior strategy; are induced by./, it follows (using the
notation that has been introduced in the ‘only if’ part of this proof) that;, o;; ;)| =

wi (si, i |s;amy) andu; (s, o5 Bi)ln = ui (s}, g Is;n) | and hence
1 / t;
ui (si, my |sj(h)) <ui(s, 1y |sj(h))’
which contradicts the fact that is sequentially rational for;. This completes the proof

of this proposition. O

Proof of Proposition 7. (Only if) Let (01, 02) be a quasi-perfect equilibrium. By defini-
tion, there is a sequence”), n of completely mixed behavior strategy profiles converg-
ing to o such that for eachand every: € N andh € H;,

ui(ai, 07)|h = ”:ﬁx“z (Ui/’ 0';1)

i

i

For eachj and everyn, let p;? be the mixed representation of. By Lemma B.1, the
sequencep?)neN of probability distributions or§; contains a subsequenp? such that
we can find an LPS.! = (Hir e /LiL) with full support onS; and a sequence of vectors
r™ e (0, 1)L~ converging to zero with

pT —m D)\.i

for all m. W.l.0.g., we assume th@f; =r"0) foralln e N.

By the same argument as in the proof of Proposition 4, it follows thanduces the
behavior strategy ;. Now, we define an epistemic model as follows. [Tgt= {r1} and
T, = {2}. Let, for eachi, (1) A" be the LPS or$; x {t;} which coincides with/, and (2)
0 (S; x {t;}) = L. Then, itis clear that there is mutual certain belief@f, r2)} at (11, 12),
and for eachi, o; is induced for; by ¢;. It remains to show that, 1) € [isr] N [cau].
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Since, obviously(t1, r2) € [cau], it suffices to show, for each thato; is sequentially
rational forz;. Fix a playeri and leth € H; be given. Letp; (e A(S;(h))) be outcome-
equivalent tas; |, and letp” be the mixed representation @f. Then, sincgoq, 07) is a
guasi-perfect equilibrium, it follows that

wilpio pily) =, max Cui(pf. pjly)

for all n. Hence,p; (s;) > 0 implies that
Z p]|h(sj)u (shsj)_ max Z p7|h(sj)ul(sl/ssj) (83)

sjeS;(h) €Sih g es:ny

for all n. Let A’|;, be the conditional of.! on S;(h). Sincep;? = r"OA! for all n there

exist vectors"|;, converging to zero such th@tjﬂh =r"|,0M|;, for all n. Together with
Eqg. (B.3) we obtain thap; (s;) > 0 implies

Z (r"nOA 1) (s )ui (si, ;) = max Z (r"1nOA 1) (s ui (], s7). (B.4)

sj€S;j(h) SESiM § e51h)

We show thatp; (s;) > 0 Imp|IES€, € C “(h). Suppose that; € S; (h)\C” (h). Then, there
is somes’ € S; (h) with s >hs, By applylng Lemma B.2(a) in the case of actsSih), it
follows thatr” |» has a subsequenc@ | for which

D (M noN ) Spui(ssi) > Y (P O ) ()i (si 57)

SjGSj(h) SjESj(/’l)

for all m, which is a contradiction to (B.4). Henceg,e Cf" (h) wheneverp; (s;) > 0, which
implies thatp; € A(C} (h)). Hence,o;]; is outcome equivalent to some € A(C} (h)).
This holds for every: € H;, and hence; is sequentially rational fof; .

(If) Suppose, there is an epistemic model with #,) € [isr] N [cau] such that there is
mutual certain belief of(r1, £2)} at (¢4, 12), and for bothi, o; is induced fors; by ¢;. We
show that(o1, o) is a quasi-perfect equilibrium.

For eachi, letA! = (i}, ..., u%) € LA(S;) be the LPS coinciding with’ and let, for
everyh € H;, A'|; be the conditional of’ on S;(h). Since(t1, 1) € [cau;], A'|; describes
i's conditional belief ors; (7). Choose sequencés’) ey in (0, 1)£-1 converging to zero
and let the sequencep;f)neN of mixed strategies be given m;’ = ") for all n. Since

A has full support ons; for everyn, p" is completely mixed. For every, let o” be
a behavior representation pf. Sincex induceso;, it follows that (U"),,EN converges
to o;; this is shown explicitly under the ‘if’ part of Proposition 4. Hence to establish that
(01, 02) is a quasi-perfect equilibrium, we must show that, for ea@ndvn € N and
Vh e Hi,
ui(ai,a}’)|h =m§1Xui(ai’,G;’)|h. (B.5)
%
Fix a playeri and an information sét € H;. Let p; (€ A(S;(h))) be outcome-equivalent
too;|,. Then, Eq. (B.5) is equivalent to

wlpepfly) = max (. )
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for all n. Hence, we must show that (s;) > 0 implies that

> Pl Gpuitsi sy = max S~ pl|, spuilsis)) (8.6)

sjeS;(h) €St s )

for all n. In fact, it suffices to show this equation for infinitely mamnysince in this case we
can choose a subsequence for which the above equation holds, and this would be sufficient
to show that(o1, o2) is a quasi-perfect equilibrium.
Since, by assumptiom; is sequentially rational for;, o;|; is outcome equivalent to
some mixed strategy im(cff (h)). Hence,p; € A(Ci”' (h)). Let p;(s;) > 0. By construc-
tion, s; € C,."' (h). Suppose that; would not satisfy (B.6) for infinitely many. Then, there
exists soma; € S; (h) such that

Yo Pl spuiGsis) < Y Pl Gspuits]s))

s;€S;(h) s;€8;(h)

for infinitely manyn. Assume, w.l.o.g., that it is true for all Let A!|, be the conditional
of A onS;(h). Sincep;? ="' for all n there exist vectors’ |, converging to zero such

that p/j|n =" oAl|y, for all n. This implies that

Z (F"1nOA 1) (s ui (s 55) < Z (" 1nOA 1) (s ui (s], 5 )

SjESj(/’l) SjESj(h)

for all n. By applying Lemma B.2(b) in the case of acts §y(h), it follows thats; is
strictly preferred byr; to s; at 4, which is a contradiction to the fact that € Cl.”' (h).
Hence,p; (s;) > 0 implies (B.6) for infinitely many:, and as a consequencgey, o2) is a
quasi-perfect equilibrium. O

Proof of Proposition 11. For this proof we must derive some properties of the cer-
tain belief operator (cf. Section 2.4). It is easy to check &KatT) = T and K, = ¢,
and, for any events\ andB, K;ANK;B =K;(ANB), K;AC K;K;A, and—K;A C
Ki(—K;A), implying that, for any eventi, K;A = K;K; A. Write K9A := A and, for
eachg > 1, K8A := KK% 1A. SinceK;(ANB) = KiANK;B and K;K;A = K; A,

it follows Vg > 2, K8A = K1K8 1A N KoK8 1A C K1K1K82A N K2KoK8 2A =
K1K82A N Ko,K82A = K¢ 1A. Even though the truth axiomk{A C A) is not sat-
isfied, the present paper considers certain belief only of evetsI" that can be written
asA = A1N Az where, for each, A; = proj. A; x T;. Since each player certainly believes
his own type, mutual certain belief of any such evéninplies thatA is true:K A = K1AN
KA C K1A1 N KoAr = A1 N Az = A since, for eachi, K;A; = A;. Hence, (1)Vg > 1,
K8A C K¢ 1A, and (2)3g’ > 0suchthatk$A=KANKKANKKKAN---=CKA

for g > ¢’ sinceT is finite.

In a perfect information game, the actiore A(h) taken at the information sétdeter-
mines the immediate succeeding information set, which can thus be dehotedAlso,
any information set € Hy U H, determines a subgame. SEt! = Z (i.e., the set of
terminal nodes) and determi&3 for ¢ > 0 by induction:k € H8 if and only if i satisfies

max{g’ | 3h’ € H¢ anda € A(h) such that’ = (h,a)} = g — 1.
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In words,. € H¢ if and only if g is the maximal number of decision nodes betwkemd
a terminal node in the subgame determinedbl o is a profile of behavior strategies and
h € H1 U Hp, denote by |, the strategy profile with the following properties:

(1) atinformation sets precedirig o |;, determines with probability one the unique action
leading tok, and
(2) at all other information sets;|;, coincides witho.

Say thaio’ is outcome-equivalent to o” if o/ ando” induce the same probability distribu-
tion over terminal nodes.

In view of properties of the certain belief operator, it is sufficient to show forgay
0,...,maxg’ | H¢ # (J} that if there exists an epistemic model with, r2) € K8[isr]
and, for each, o; is induced fort; by ¢;, then,Vi € Hé, o|; is outcome-equivalent to
o*|n, wheres* = (o7, 0) denotes the subgame-perfect equilibrium. This is established
by induction.

(g = 0) Let (11, 12) € KOisr] = [isr] and, for each, o; be induced for; by tj. Let
h € H® and assume w.l.0.g. thate H;. Since(r1, 12) € [isr;] and j takes no action dt,
o is outcome equivalent to*|;,.

(g=1,...,maxg’ | H¢ ##}) Suppose that it has been establishecfot 0, ..., g —

1 that if there exists an epistemic model with, 1) € K¢'[isr] and, for each, o; is in-
duced fory; by ¢}, then,Vh' € HS, oy IS outcome-equivalent te*|, . Let (11,12) €
K#[isr] and, for each, o; be induced for; by ;. Leth € H$ and assume w.l.0.g. that
h € H;. Since(r1, 1) € K; K¢~ isr], it follows from the premise of the inductive step that
t;'s SCLP (M, ¢%) satisfies,\v’t} € T;i , Vh' € H; succeeding:, andVa’' € A(h'),

i (Sj(h'. ). 1]
1 (S (A, 1)
where/ is the first level¢ of A% for which ,u? (S;(h"), ;) > 0. Sincel is generic,o; is

sequentially rational for; only if o;(h) = o;*(h). Since(z1,12) € [isr;] and j takes no
action ath, it follows from the premise that|, is outcome-equivalent to*|,. O

=07 (W)(@),
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