LUARM
An audit engine for Insider misuse detection

George Magklaras
Center for Security, Communications and Network Research
University of Plymouth
http://www.cscan.org

http://luarm.sourceforge.net
Agenda

- Insider threat specification (what, how, why)
- Requirements for logging insider actions (and forensics)
- LUARM: Architecture and achievements
- What can be facilitated by LUARM and the future
Insiders (visually)
Defining the “insider”

“An insider is a person that has been legitimately empowered with the right to access, represent, or decide about one or more assets of the organization's infrastructure.”

http://www.dagstuhl.de/08302
Defining “Insider Threat Specification”

Insider Threat Specification is the process of using a **standardized vocabulary** to describe in an abstract way how the **aspects** and **behavior** of an insider **relate** to a security policy defined misuse scenario.
Protecting Against Insider Threats

Many physical, operational and cyber controls are being tailored to bridge the gaps between old, proprietary utility control systems and new security monitoring and management tools. This section provides recommendations based on specific roles, supply chain, cyber assets and psychosocial profiling.

Regardless of user’s level of trust, some basic controls apply to most trust groups, although they must be applied differently. These include:

1. Assessment of networks, systems, applications and access (as defined in Table 2)
2. Access controls and authentication
3. Application whitelisting
4. Monitoring for compliance, vulnerabilities, access (including physical), suspicious behavior, new system attempts to connect, and so on
5. Centralized management of security information and events, including alerts, reports and dashboards for drill down

Vital analyst/specialist questions

If I was about to respond to an incident (or even predict it) with a suspected insider and obtain evidence, how would I:

- Assess authentication and access controls?
- Monitor the systems/users in question?
- Present and correlate the collected info to make my case?
Insider Threat Specification monitoring

- **narrow down** the observable aspect and behavioral data to filesystem, process execution, network connection and hardware monitoring levels.

- “User x was able to launch process b at 16:48:32 which resulted in two connections to websites A and B and as a result left file loic.pro at 16:52:21 in user’s x Document area”
Temporal dimension of an Insider Threat

Event 1
1. Net access
2. Google query

Sub-block 3

Event 2
1. Net access
2. File download

Sub-block 2

Event 3
1. Installing file
2. File execution

Sub-block 1

Event 4
Using p2pclient To download Pirate material

Threat prediction
Threat detection

Security Policy line
System-level Insider Threat Logging “wish-list”

- OS agnostic
- The correct timing of records is important.
- Log records should have a well defined format.
- Integrity and availability of log data
- Correlation for user entity accountability.
System-level Insider monitoring and Forensics

Why a logging engine should complement forensics:

- The “observer effect”: No need to tamper with investigation source media [1].

-”Static” data forensic analysis can give a rather incomplete picture of an incident [1].

-”Dynamic” data forensic analysis (sequence of process events) can be built more easily in a logging engine rather than an OS forensic tool [2].
Volatile data versus a collection of time-ordered volatile data.

<table>
<thead>
<tr>
<th>File</th>
<th>Edit</th>
<th>View</th>
<th>Search</th>
<th>Terminal</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>[georgios@slartibartfast Volatility-1.3_Beta]$ python volatility connections -f xp-laptop-2005-07-04-1430.img</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Address</td>
<td>Remote Address</td>
<td>Pid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.0.0.1:1037</td>
<td>127.0.0.1:1038</td>
<td>3276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.0.0.1:1038</td>
<td>127.0.0.1:1037</td>
<td>3276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[georgios@slartibartfast Volatility-1.3_Beta]$ python volatility pslist -f xp-laptop-2005-07-04-1430.img</td>
<td>grep 3276</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>firefox.exe</td>
<td>3276</td>
<td>2392</td>
<td>7</td>
<td>189</td>
<td>Mon Jul 04 18:21:11 2005</td>
</tr>
<tr>
<td>[georgios@slartibartfast Volatility-1.3_Beta]$ python volatility files -f xp-laptop-2005-07-04-1430.img</td>
<td>grep -5 3276</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*********************************</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pid: 3256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>\dd\UnicodeRelease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>\WINDOWS\WinSxS\x86\Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.2180_x-ww_a84f1ff9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*********************************</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pid: 3276</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>\WINDOWS\WinSxS\x86\Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.2180_x-ww_a84f1ff9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>\WINDOWS\WinSxS\x86\Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.2600.2180_x-ww_a84f1ff9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>\Documents and Settings\Sarah\Application Data\Mozilla\Firefox\Profiles\z5vogzjr.default\parent.lock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>\Endpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>\AsyncConnectHlp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[georgios@slartibartfast Volatility-1.3_Beta]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of existing logging engines

There are many logging engines/frameworks and Security Event Managers (SEMs) out there. A sample:

- Syslogd[3], WinSyslog[4], RFC 5424
- OpenXDAS [5], Cisco MARS[6]
- Event Data Warehouse [7], Arc Sight Logger 4 [8]

Most of these solutions are geared towards network and application security events and/or data audit compliance.
LUARM

- **Log User Actions in Relational Mode**

- Written in Perl for rapid prototyping and Open Source.

- Uses MySQL to store the logs in a simple schema.

- Goal: Provide a prototype log engine for insider misuse researchers so that they are:
 - able to log user actions in detail.
 - able to use the logs to replay/study misuse incidents.
 - cross reference logged user data to forensic procedures.
LUARM architecture

Client 1
- netactivity.pl
- fileactivity.pl
- psactivity.pl
- hwactivity.pl

Client 2
- netactivity.pl
- fileactivity.pl
- psactivity.pl
- hwactivity.pl

Perl DBI

LUARM Client 1 Database
- mysql
- endpointresolver.pl
- ITPSL Compiler and Client registration modules

LUARM Client 2 Database

Server
LUARM relational schema

<table>
<thead>
<tr>
<th>fileinfo</th>
<th>netinfo</th>
<th>psinfo</th>
</tr>
</thead>
<tbody>
<tr>
<td>fileaccessid</td>
<td>endpointinfo</td>
<td>psentity</td>
</tr>
<tr>
<td>md5sum</td>
<td>md5sum</td>
<td>md5sum</td>
</tr>
<tr>
<td>filename</td>
<td>transport</td>
<td>username</td>
</tr>
<tr>
<td>location</td>
<td>sourceip</td>
<td>pid</td>
</tr>
<tr>
<td>username</td>
<td>sourcefqdn</td>
<td>ppid</td>
</tr>
<tr>
<td>application</td>
<td>destip</td>
<td>pcpu</td>
</tr>
<tr>
<td>fd</td>
<td>destfqdn</td>
<td>pmem</td>
</tr>
<tr>
<td>pid</td>
<td>sourceport</td>
<td>command</td>
</tr>
<tr>
<td>size</td>
<td>destport</td>
<td>arguments</td>
</tr>
<tr>
<td>cyear</td>
<td>ipversion</td>
<td>mediumtext</td>
</tr>
<tr>
<td>cmouth</td>
<td>cyear</td>
<td></td>
</tr>
<tr>
<td>cday</td>
<td>cmouth</td>
<td></td>
</tr>
<tr>
<td>chour</td>
<td>cday</td>
<td></td>
</tr>
<tr>
<td>cmin</td>
<td>chour</td>
<td></td>
</tr>
<tr>
<td>csec</td>
<td>cmin</td>
<td></td>
</tr>
<tr>
<td>dyear</td>
<td>csec</td>
<td></td>
</tr>
<tr>
<td>dmonth</td>
<td>dyear</td>
<td></td>
</tr>
<tr>
<td>dday</td>
<td>dmonth</td>
<td></td>
</tr>
<tr>
<td>dhour</td>
<td>dday</td>
<td></td>
</tr>
<tr>
<td>dmin</td>
<td>dhour</td>
<td></td>
</tr>
<tr>
<td>dsec</td>
<td>dmin</td>
<td></td>
</tr>
</tbody>
</table>

fileinfo table

- fileaccessid: bigint
- md5sum: text
- filename: varchar
- location: varchar
- username: tinytext
- application: text
- fd: tinytext
- pid: int
- size: bigint
- cyear: int
- cmouth: tinyint
- cday: tinyint
- chour: tinyint
- cmin: tinyint
- csec: tinytint
- dyear: int
- dmonth: tinyint
- dday: tinyint
- dhour: tinyint
- dmin: tinyint
- dsec: Tinyint
- application: text

netinfo table

- endpointinfo: bigint
- md5sum: text
- transport: tinytext
- sourceip: tinytext
- sourcefqdn: tinytext
- destip: tinytext
- destfqdn: tinytext
- sourceport: smallint
- destport: smallint
- ipversion: smallint
- cyear: int
- cmouth: tinyint
- cday: tinyint
- chour: tinyint
- cmin: tinyint
- csec: tinytint
- dyear: int
- dmonth: tinyint
- dday: tinyint
- dhour: tinyint
- dmin: tinyint
- dsec: Tinyint
- username: tinytext
- pid: int

psinfo table

- psentity: bigint
- md5sum: text
- username: tinytext
- pid: smallint
- ppid: smallint
- pcpu: decimal
- pmem: decimal
- command: text
- arguments: mediumtext
- cyear: int
- cmouth: tinyint
- cday: tinyint
- chour: tinyint
- cmin: tinyint
- csec: tinytint
- dyear: int
- dmonth: tinyint
- dday: tinyint
- dhour: tinyint
- dmin: tinyint
- dsec: Tinyint
- username: tinytext
- pid: int
LUARM query examples

- Find all accesses of the file 'prototype.ppt' by users 'toms' OR 'georgem' between 9:00 and 14:00 hours on 23/10/2009.

```sql
SELECT * FROM fileinfo WHERE filename='prototype.ppt' AND ((username='toms') OR (username='georgem')) AND cyear='2009' AND cmonth='10' AND cday='23' AND chour >= '9' AND chour <= '13' AND cmin >= '0' AND cmin >= '59';
```

- Find all USB devices that were physically connected to the system when users 'toms' OR 'georgem' were logged on 23/10/2009.

```sql
SELECT * from hwinfo WHERE devbus='usb' AND ((userslogged RLIKE 'toms') OR (userslogged RLIKE 'georgem')) AND cyear='2009' AND cmonth='10' AND cday='23' AND chour >= '9' AND chour <= '13' AND cmin >= '0' AND cmin >= '59';
```
What does the following do (hint: psinfo is the process execution table) and what does the sequence of actions of the examples specify?

```
select * FROM psinfo WHERE ((command='cp') OR (command='mv')) AND (arguments RLIKE 'prototype.ppt' AND arguments RLIKE '/media') AND ((username='georgem') OR (username='toms')) AND cyear='2009' AND cmonth='10' AND cday='23' AND chour >= '9' AND chour <= '13' AND cmin >= '0' AND cmin >= '59';
```
LUARM deployment hardware specs

- MySQL LUARM server:
 - 4 Gbytes of RAM and 4 processing cores
 - Disk space consumption in Gigabytes
 \[D_{cons} = n_{clients} \times 18 \times d_{archive} \]

 Example: 150 clients for 365 days of archiving \(\sim \) 1 Tbyte

- Data network: At least 100 Mbits/sec, maximum 20 Kbits/sec per client.

- LUARM client:
 - 2 processing cores and up to 300 Megs of RAM
 - Up to 30% of a single core on a moderately busy system.
LUARM achievements

- A prototype that proves Insider Threat oriented logging is feasible.

- Four large organizations and a number of beta testers (14) have deployed the engine with success in detecting 18 real misuse incidents and even a number of external events.

- Half of these incidents required the assistance of a forensic examiner who used LUARM data for guidance beyond existing forensic tool-kits.

- Deployment feedback indicates that apart from minor bugs, the engine is scalable to provide comprehensive monitoring for up to 300 client systems.
LUARM's future

-Strengthen the prototype security (SSL between client/server, cryptography deployment for temporal data written on disk)

- Windows and OSX platform ports.

-Ability to sanitize the audit data:
 - LUARM does not log file contents/network traffic payload.
 - still plenty of scope to protect the audit data from misuse (multi party access authentication, pseudo-anonymity of logged records.

-Enabling logging through hypervisor/VM engines.
References

Questions/joining the development

gmagklaras@gmail.com

http://luarm.sourceforge.net/