
Inferring Skill from Tests of Programming Performance:
Combining Time and Quality

Gunnar R. Bergersen
Department of Informatics,

University of Oslo and Simula
Research Laboratory, Norway

gunnab@ifi.uio.no

Jo E. Hannay
Simula Research Laboratory,

P.O. Box 134, NO-1325 Lysaker,
Norway

johannay@simula.no

Dag I. K. Sjøberg
Department of Informatics,

University of Oslo, P.O. Box 1080,
NO-0316 Oslo, Norway

dagsj@ifi.uio.no

Tore Dybå
Department of Informatics,

University of Oslo and
SINTEF, Norway

tore.dyba@sintef.no

Amela Karahasanović
SINTEF and Department of Informatics,

University of Oslo
P.O. Box 124 Blindern, NO-0314 Oslo, Norway

amela@sintef.no

Abstract—The skills of software developers are crucial to the
success of software projects. Also, controlling for individual
differences is important when studying the general effect of a
method or a tool. However, the way skill is determined in
industry and research settings is often ad hoc or based on
unvalidated methods. According to established test theory,
validated tests of skill should infer skill levels from well-
defined performance measures on multiple small,
representative tasks. We show how time and quality can be
meaningfully combined to a well-defined measure of small-task
performance, and hence a measure of programming skill. Our
results show significant and positive correlations between our
proposed measures of skill and variables such as seniority or
self-evaluated expertise. These methods for combining time
and quality are a promising first step to measuring
programming skill in industry and research settings.

Programming; skill; performance; time; quality; productivity

I. INTRODUCTION
The skills of individual software developers may have a
dramatic impact on the success of software projects. The
large differences in programming performance, reported in
the late 1960s, indicated performance differences of orders
of magnitude and more. Although more recent analysis [32]
and studies [13] indicate somewhat more conservative
estimates, companies that succeed in hiring the best people
will nevertheless achieve great economic and competitive
benefits [17,34,37].

Individual differences in skill also affect the outcome of
empirical studies in software engineering. When evaluating
alternative processes, methods, tools or other technologies,
skill levels may temper with the relative effect of using a
specific alternative. For example, in an experiment on the
effect of a centralized versus delegated control style, the
purportedly most skilled developers performed better on the
delegated control style than on the centralized one, while the
less skilled developers performed better on the centralized
one than on the delegated one [5]. In another experiment,

skill levels had a moderating effect on the benefits of pair
programming [4].

However, determining the skill level of software
developers is far from trivial. In the work life, there are
common-sense guidelines from experienced practitioners on
how to distinguish the good from the bad [37]. But there
seems to be consensus that this crucial human resource
management task remains hard. Often, job recruitment
personnel use tests that purport to measure a variety of traits
such as general cognitive abilities (intelligence), work and
life values, interests, as well as personality [20] to predict job
performance [11]. Research has, however, established that
work sample tests in combination with General Mental
Ability (GMA) are among the best predictors of job
performance [34]. GMA is a general aspect of intelligence
and is best suited for predicting performance on entry-level
jobs or job-training situations. This stands in contrast to work
sample tests that are task specific and are integrated in the
concept of job skill [15]. Although the predictive validity of
standardized work samples exceed that of GMA alone [11],
these predictors seem to yield the best results when they are
combined [34].

In the context of empirical studies in software
engineering, the notion of programming skill is generally not
well founded. This has led to studies that failed in adequately
correcting for bias in quasi-experimental studies [23]. Often
the more general concept of programming expertise is used,
with little validation. For example, in a recent study [20], we
conceptualized programming expertise as the level of
seniority (junior, intermediate, senior) of the individual
programmer as set by their superior manager. While bearing
some relevance to the consultancy market, this conceptuali-
zation is not sufficient to capture the skill of individual
programmers. The concepts of expertise and skill are
operationalized in vicarious ways in also other domains; see
[22] for a survey of operationalizations in IT management.

Whether the purpose of determining programming skill is
to recruit the best developers or to assess the usefulness of a
software engineering technology relative to levels of skill,

This is a preprint version of: Bergersen, G. R., Hannay, J. E., Sjøberg, D. I. K., Dybå, T., & Karahasanovic, A. (2011). Inferring skill
from tests of programming performance: Combining quality and time. In 3rd IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM'2011) (pp. 305-314). Banff, Canada: IEEE Computer Society. doi:10.1109/ESEM.2011.39

Accepted 2011-May-15 Not suitable for citation Copyright IEEE 2011

the most viable approach seems to be that candidates solve a
collection of small programming tasks. We used a single task
for this purpose in [5], but it was uncertain to what degree
bias may be present as a result of only using one task.
Generally, it seems non-trivial to identify the appropriate
collection of tasks from which one can infer a reasonably
accurate level of programming skill in an acceptable amount
of time. We are working on this challenge at present, but this
is not the focus of this paper.

The focus of this paper is as follows. Given a small set of
programming tasks, how does one infer the candidates’
programming skill from both the quality of the task solutions
and the time (effort) spent performing the tasks? It is well
recognized that the combination of quality and time task is
essential to define skill [15,16], but how to combine them in
practice is challenging. For example, how does one rank
programmers who deliver high quality slowly relative to
those who deliver lesser quality quicker? This paper
addresses such challenges and proposes a method for
combining quality and time for a task solution into a single
ordinal score of performance (i.e., low, medium, high).
Multiple performance scores are then aggregated to form a
ordinal approximation of programming skill. The method is
demonstrated by using data from two existing experiments.

Section 2 gives the theoretical and analytical background
for skill as a subdomain of expertise. Section 3 discusses
how quality and time are dealt with at present and describes
how to combine them when measuring performance. Section
4 reanalyzes existing data sets according to the arguments
given in the previous sections. Sections 5 discuss the results
and Section 6 concludes.

II. BACKGROUND

A. Expertise
Expertise is one of the classic concepts of social and
behavioral science. Expertise is usually related to specific
tasks within a given domain and does not in general transfer
across domains or tasks [15]. Expertise has several aspects;
we present five of these in Fig. 1 (a). The aspects are all
related. For example, in the usual descriptions of skill
acquisition [1,14,16], which is a subdomain of expertise, a
person starts by acquiring declarative knowledge which for
experts is qualitatively different in representation and
organization compared to novices [15,38]. Further, through
practice, declarative knowledge is transformed into
procedural skill, which at first is slow and error prone [16].
However, though extended experience, performance
improves and experts should converge on their
understanding of the domain for which they are an expert as
well [36] (i.e., consensual agreement). Experts should also
regard themselves as being experts, for example, through the
use of self-assessments. Overall, the desired effect of
expertise is superior performance on the tasks on which one
is an expert. In our context, this is performance on real-world
programming tasks, i.e., job tasks. It is, however, unreliable
and inefficient to predict future job performance by
observing actual job performance [11]. This is why it is

desirable to design quick tests based on how well an
individual reliably performs on representative tasks [15].

B. Skill
It is in the aspect of performance on small representative
tasks that we generally understand skill. Note that inferring
skill from a reliable level of performance on representative
tasks is not the same as defining it in terms of performance
on the job. Representative tasks in our context denote smaller
tasks which represent real-world tasks, and for which there
are well-defined measures of performance [15]. The
inference from performance on small representative tasks to
performance on the job requires an understanding of key
mechanisms at play shared between tasks in the two settings.
This is theory-driven generalization [33], based on the
economy of artificiality [21]. In the absence of, or as a
complement to strong theory, it is useful to seek
confirmation in how well skill measures coincide with other
aspects of expertise. This is relevant for skill in
programming.

Programming skill was investigated by Anderson et al.
[1,2] from a psychological perspective. They reported that
coding time and as well as the number of programming
errors decreased as skill improved. Further, programming in
LISP required the learning of approximately 500 if-then
rules. The acquisition of these rules followed a power-law
learning curve; the improvement in performance was largest
at first and then decelerated until an asymptote was reached.
Thus, the relationship between amount of practice (extended
experience) and performance was non-linear. However, if

Figure 1 Expertise (a) and skill as one aspect of expertise (b). The desired
effect of expertise is superior job performance.

This is a preprint version of: Bergersen, G. R., Hannay, J. E., Sjøberg, D. I. K., Dybå, T., & Karahasanovic, A. (2011). Inferring skill
from tests of programming performance: Combining quality and time. In 3rd IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM'2011) (pp. 305-314). Banff, Canada: IEEE Computer Society. doi:10.1109/ESEM.2011.39

Accepted 2011-May-15 Not suitable for citation Copyright IEEE 2011

amount of practice and performance were log-transformed,
an approximate linear trend was observed. This phenomenon
is widely observed and is therefore often referred to as the
log-log law of practice [31].

Fits and Posner [16] has extensively studied skill
acquisition. Within many different domains of expertise,
they found that with increased skill, the amount of errors in
performance decreases and the speed of which a task is
executed improves. Regarding measures of skill, they state:
“[t]he measure should take into account the length of time
taken to perform a skill as well as the accuracy with which it
is performed” [16, p. 85]. Therefore, the time and the more
general term for accuracy—namely quality—is intimately
linked to skill. At the same time, the term “performance” is
linked to all three concepts. Because skill, by its very
definition, affects performance, we can hierarchically
structure the five concepts expertise, skill, performance, time
and quality as in Fig. 1 (b). From the top, expertise, which
should affect job performance, is a generalization of skill.
Further, skill is inferred from multiple performances; as
already stated, reliably superior performance on
representative tasks is a requirement. At the bottom, time and
quality in combination dictate whether we regard
performance overall as, for example, high or low.

C. Measures of programming performamce
It is common in empirical software engineering to deal with
quality and time separately when analyzing results; i.e., one
studies performance in terms of quality and then in terms of
time, often under the assumption that the solution meets
some kind of criterion for correctness (see [4,5,7] for
examples). We acknowledge that for many studies, this is
acceptable. However, when the purpose is to characterize
individual differences, problems may occur.

Time is a ratio variable with an inverse relation to
performance (i.e., little time implies good performance).
Quality, on the other hand, may consist of plethora of
variables where each one may have complex relations to
each other and where all often cannot be optimized
simultaneously (see, e.g., [30]). Further, depending on how
quality is operationalized, these variables may have different
scale properties (i.e., nominal, ordinal, interval or ratio) or
other different propensities. Therefore, when aiming to
characterize individual differences, one is (a) forced to
disregard quality and report differences in time spent or (b)
only analyze time for observations that surpass some specific
level of quality (often correctness), thereby adhering to the
basic principle delineated by Thorndike and others in the
1920s: “the more quickly a person produces the correct
response, the greater is his [ability]” [12, p. 440, emphasis
added]. It is also possible to (c) devise acceptance tests that
forces everyone to work until an acceptable solution is
achieve. Generally, we regard this as, perhaps, the most
viable approach today, because individual variability is
expressed through time spent in total. However, by using (b)
or (c), large portions of the dataset may be excluded from
analysis, in particular when the proportion of correct
solutions is low.

At the most fundamental level of the time/quality
tradeoff problem, it is not given how to place programmers
who deliver high quality slowly relative to those who deliver
lesser quality quicker. In the datasets that are available to us,
correctness and time are often negatively correlated. This
indicates that the longer it takes to submit a task, the lower is
the likelihood of the solution being correct. Although this
may seem contrary to what may be expected (i.e., higher
quality requires more time, lower quality requires less time),
there are two important distinctions to be made: First, there
is a difference between quality in general and correctness
specifically. Second, there is also a difference between
within-subject and between-subject interpretations; when a
correct solution can be identified, a highly skilled individual
can arrive at this solution in less time and with higher quality
than a less capable individual (an inter-individual
interpretation). But given more time, a single individual can
generally improve an existing solution (intra-individual
interpretation).

Another challenge is to what degree an individual’s
performance in a study is reliable at a specific level or
incidentally high or low from time to time. One way to
address such concerns it to use multiple indicators of
performance [6,18]. Based on the same principles for
combining time and quality as performance which is
delineated in this article, we have already advanced the
measurement of skill using multiple indicators of
performance [9]. But, a detailed discussion on the principles
involved is needed and we will illustrate the approach using
larger datasets here.

D. Using the Guttman structure for time and quality
The two-by-two matrix in Fig. 2 has two possible values

for quality (low, high) and two possible values for time
(slow, fast). It should be easy to agree that in this simplified
example, “high performance” is represented by the upper
right quadrant (fast and high quality) whereas “low
performance” is represented by the lower left quadrant (slow
and low quality). Further, it should also be possible to agree
that the two remaining quadrants lie somewhere between
these two extremes, say, “medium performance”. However,
which one of the two alternatives one would rate as the better
one (or whether they should be deemed equal), is a value
judgment: In some instances, “fast and low quality” may be

Time

Quality

high

low

fast slow

Fast and
high quality

Slow and
low quality

Fast and
low quality

Slow and
high quality

Figure 2. Examples of scoring based on value judgments favoring
time and quality for “medium performances”.

This is a preprint version of: Bergersen, G. R., Hannay, J. E., Sjøberg, D. I. K., Dybå, T., & Karahasanovic, A. (2011). Inferring skill
from tests of programming performance: Combining quality and time. In 3rd IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM'2011) (pp. 305-314). Banff, Canada: IEEE Computer Society. doi:10.1109/ESEM.2011.39

Accepted 2011-May-15 Not suitable for citation Copyright IEEE 2011

deemed superior performance compared to “slow and high
quality”. To address how performance should relate to
different values for time and quality, we propose to use
principles as delineated by Louis Guttman.

The Guttman scale was originally developed to determine
whether a set of attitude statements is unidimensional [19].
In Guttman’s sense, a perfect scale exists if a respondent
who agrees with a certain statement also agrees with milder
statements of the same attitude. The Guttman structured
scoring rules we propose, utilize the same underlying
principle as the Guttman scale, albeit at a lower level of
abstraction (a scale is an aggregation of indicators, whereas
the structure we employ refers to the indicators themselves).
The approach utilizes general principles as delineated by
others [3], but which have only somewhat informally been
addressed by us so far [8]; overall the benefits of using the
Guttman structure is fundamental for some modern
measurement models which we address in Section 5 C as
further work.

With a Guttman structure it is possible to rank
combinations of quality and time relatively to each other as
well as being explicit about how different tradeoffs in time
and quality are scored. Performance on a programming task
is thus determined by a series of thresholds that are rank
ordered. Combined, these thresholds constitute a set of
ordered response categories (i.e., an ordinal variable).
Surpassing a given threshold implies all thresholds below
has been passed as well. This implies that for a score of, say
3 (of 5 possible), the thresholds for obtaining scores of 0, 1,
and 2 must have been passed, while the threshold for
obtaining score 4 has failed.

One may, further, express performance in terms of
quality and time by adding and adjusting score categories.
For example, a task that differentiates more on quality
aspects may be scored on multiple quality categories and a
task that also differentiates more on time aspects may have
more time categories. Conversely, one may deliberately
emphasize quality over time (or vice versa) by adjusting
score categories accordingly.

III. RESEARCH METHODS
In this section we describe how we combined time and
quality using multiple indicators; each indicator is the
performance as time and quality combined on a single task.
We show how we operationalized and reanalyzed two
different data sets, using different principles for score
operationalizations.

A. Data set 1
The first data set we reanalyzed is from a controlled quasi-
experiment [5]. In a one-day experiment, 99 consultants
from eight different software consultancy companies and 59
undergraduate and graduate students were paid to participate.
The treatment in the experiment was the control style of the
code (centralized versus delegated). Five programming tasks
were presented in succession to the subjects during the
experiment, which lasted one day. The first task i1 (pretest)
was identical for both treatment conditions. The four next
tasks, i2–i5 contained the treatment. We analyze only the first

four tasks here due to challenges present in using the last
task for our purpose (see Section 5 B).

For a Guttman-structured scoring rule, we used the
following approach for each task i1–i4: Let Q1, T1, T2 and T3
be dichotomous variables, scored as requirement not met = 0,
requirement met = 1. Let Q1 be functional correctness (as
reported by the original authors), scored as incorrect = 0 or
correct = 1. Let T3 be time < 3rd quartile, T2 be time <
median, T1 be time < 1st quartile. A Guttman structure for an
ordinal performance score for a single task that combines
quality and time is then defined by the Cartesian product
Q1×T3×T2×T1 as follows (x denotes either of 0, 1):

(0,x,x,x) = 0 (i.e., incorrect, time is irrelevant)
(1,0,x,x) = 1 (i.e., correct and very slow)
(1,1,0,x) = 2 (i.e., correct and slow)
(1,1,1,0) = 3 (i.e., correct and fast)
(1,1,1,1) = 4 (i.e., correct and very fast)

The matrix representation of this scoring rule is

illustrated in Table 1 (a). By using this structure, a solution
must be correct before time is taken into consideration.
Increasing scores for time are, further, only passed in order
(T3 before T2 and T2 before T1). Hence, for a single task i,
time and quality combined define an ordered response
category of performance. And the precedence of quality in
this type of scoring rule reflects the view that, for this study,
we do not consider a non-working solution to reflect high or
medium performance, even when it is developed quickly.

We also constructed two alternative Guttman-based
scoring rules to Q1×T3×T2×T1 that differentiate less on
time, but that is still based on the same Q1 as above:
Q1×T2×T1 uses three categories for time based on the 33rd
(T2) or 67th (T1) percentile; Q1×T1 only uses two categories
for time, which is above versus below the median. The range
of the overall performance score in all instances is equal to
the number of dichotomous score variables plus one, e.g.,
Q1×T3×T2×T1 has one variable for quality and three for
time, implying a total of five well ordered performance score
categories with a range of 0–4.

The procedure we have described so far for just described
was repeated for all four tasks. Because of different time
distribution for each task, the quartiles and medians for time
is calculated on a task-by-task basis. The resulting score
vector consist of four Guttman-structured score variables and
the sum of these, the sum score, is the ordinal skill scale.

TABLE I. SCORE ACCORDING TO TIME AND QUALITY THRESHOLDS

Score T3=0 T3=1 T2=1 T1=1
Q1=1 1 2 3 4
Q1=0 0 0 0 0

(a) Dataset 1

Score T2=0 T2=1 T1=1
Q2=1 2 3 4
Q1=1 1 1 1
Q1=0 0 0 0

(b) Dataset 2

This is a preprint version of: Bergersen, G. R., Hannay, J. E., Sjøberg, D. I. K., Dybå, T., & Karahasanovic, A. (2011). Inferring skill
from tests of programming performance: Combining quality and time. In 3rd IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM'2011) (pp. 305-314). Banff, Canada: IEEE Computer Society. doi:10.1109/ESEM.2011.39

Accepted 2011-May-15 Not suitable for citation Copyright IEEE 2011

For comparison, we also devised two alternative scoring
rules that combined quality and time for tasks by addition
(additive scoring rules). On a task–by-task basis, we
standardized quality and time (mean 0 and standard
deviation 1) before adding the standardized variables as a
composite score of performance. This was a manifestation of
treating “slow and high quality” as roughly equal to “fast and
low quality” (in Fig. 2), but where the continuous properties
of time is not forced into discrete categories. We name these
scoring rules Q+T and Q+lnT. Here, time was negated in
both instances and for the latter variable, time was log
transformed as well before negation. Finally, we constructed
scoring rules on the four quality variables alone (Q) and the
four time variables alone (T). (See Section 5 B for other
alternatives that we choose not to report).

It should be noted that the relation between the
performance score vector, i.e., the score of on each task, and
skill score, i.e., sum of performance scores, is a many-to-one
(surjective) function. For example, when using
Q1×T3×T2×T1, an individual with correct but very slow
solutions for all four tasks receives the sum score of 4. One
correct solution with very fast time and the other three tasks
incorrect, also receive the same sum score. But it is
problematic to talk about the latter instance as “reliably
(superior) performance” because such a response structure
exhibits superior performance on only a single task.

B. Data set 2
The second data set stems from three different quasi-
experiments which all used the same programming tasks.
During of one day, the subjects were required to perform
three different change tasks in a 3600 LOC library
application system that contains 26 Java classes. Two of the
studies used students as subjects; one study used
professionals. The study in [25] investigated the effects of
different comprehension strategies using 38 subjects; the
study in [24] compared feedback collection and think-aloud
methods for 34 subjects; and the study in [27] studied the
effects of expertise and strategies on program comprehension
for 19 subjects. Additionally, the same pretest task as in
Dataset 1 (i1) was used. However, one of the studies had
missing data for the last change task, thereby reducing the
number of available tasks for analysis from four to three.
Human graders scored the quality of each task on a five-
point scale using the following scheme:

0: nothing done on the task (no code changes)
1: failure, does not compile or no discernible functional

progress toward solution
2: functional anomalies, one or more subtasks are

achieved
3: functionally correct, major visual anomalies
4: functionally correct, only minor cosmetic anomalies
5: functionally correct, visually correct, i.e. “perfect

solution'”

We defined a Guttman structure Q1×Q2×Q3 for quality

dimension as follows: We decided that the original
categories 0 and 1 should be collapsed into a single category,

because neither might be preferred over the other. Thus,
variable Q1 was defined as “one or more subtasks achieved''
(category 2 above). Next, the Q2 variable was “functionally
correct, but with major visual anomalies allowed” (category
3), and Q3 was functionally correct with only minor visual
anomalies allowed (categories 4 and 5). For the time
dimension, we used T1×T2 to partition the time for those
individuals who passed Q3 into three groups. The matrix
representation of this scoring rule, denoted
Q1×Q2×Q3×T1×T2, is provided in Table 1 (b).

We also devised scoring rules using one and two
dichotomous quality variables as well: Q1×Q2×T2×T1 does
not separate between major and minor visual anomalies that
are otherwise correct. Further, Q1×T2×T1 only separate
between functionally correct solutions with major (or better)
visual anomalies from those that are not functionally correct.
Finally, we devised scoring rules for Q+T, Q+lnT, Q and T
using the same procedure as in Dataset 1, but using three
tasks instead of four.

C. Analysis method and handling of missing data
The analysis method for the two data sets, each using six
different score operationalizations, included the same four
basic steps. All time variables were negated (for T) or log
transformed and then negated (for Q+lnT, QlnT) in order to
increase interpretability so that high values indicate high
performance:

1) Use exploratory factor analysis.
We extracted the main signal in the data for each scoring rule
by Principal Component Analysis (PCA) using the analysis
software PASWTM 18.0. We used listwise deletion of
missing variables, regression for calculating the factor score,
and an unrotated (orthogonal) factor solution to maximize
interpretability of each factor. All factors with eigenvalues
above 1 are reported.

2) Inspect external and internal results
Operationalizations of the scoring rules were compared with
several experience variables. We report non-parametric
correlations (Spearman’s ρ, “rho”) unless otherwise noted.
We assumed that a valid scoring rule should correlate
moderately and positively with relevant background
variables such as developer category or and length of
experience. Because such variables are not influenced by our
investigated score operationalizations, we refer to this
analysis as external results.

Conversely, all the reported internal results are
influenced by how each scoring rule was constructed. For
internal results, we used the proportion of explained variance
for the first Principal Component (PC), which is analogue to
the sum score, as the signal-to-noise ratio for each scoring
rule. Cronbach’s α was used as a reliability coefficient which
expresses the internal consistency of the scores. To ascertain
the applicability of each score operationalization, we used
Root Mean Square Error of Approximation (RMSEA) as
reported in the analysis software AmosTM 18.0. This is a
parsimony-adjusted index in the sense that it favors models
with fewer parameters in a confirmatory model. We used a
tau-equivalent reflective measurement model with multiple
indicators [29]. This implies that all tasks receive the same

This is a preprint version of: Bergersen, G. R., Hannay, J. E., Sjøberg, D. I. K., Dybå, T., & Karahasanovic, A. (2011). Inferring skill
from tests of programming performance: Combining quality and time. In 3rd IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM'2011) (pp. 305-314). Banff, Canada: IEEE Computer Society. doi:10.1109/ESEM.2011.39

Accepted 2011-May-15 Not suitable for citation Copyright IEEE 2011

weight when calculating the sum score. All scoring rules are
further regarded as ordinal scale approximations of skill.

3) Handling of missing data
Each dataset contain some missing data. For solutions that
were not submitted, we applied the same basic principle as
the authors of Dataset 2: “non-working solutions or no
improvements in code” were equated with “nothing
submitted at all” and scored as incorrect. Additionally
Dataset 2 had some missing values for time. We did the
same as the owners of this dataset and removed these
observations altogether. Missing data pose a threat to validity
if data are not missing at random. We therefore analyzed our
results using data imputation as well. However, because the
same substantive results apply with or without data
imputation, we report results without imputation.

IV. RESULTS
In this section, we first report the correlations between the
investigated scoring rules and the subjects’ background
experience variables. Next, we report several indices that
must be inspected together, such as explained variance,
internal consistency and how well the scoring rules fit
confirmatory factor analysis. Finally, we highlight some
selected details about the scoring rules investigated.

A. External correlations
Table 2 shows correlations between experience variables and
the proposed score operationalizations for both datasets.
Developer category was only available for Dataset 1. In the
initial classification scheme (i.e., undergraduate = 1,
intermediate = 2, junior = 3, intermediate = 4, expert = 5)
insignificant and low correlations were present between
developer category and different scoring alternatives (rho =
0.05–0.12). However, because many graduate students
performed at levels comparable to seniors, it doubtful that
and this operationalization of expertise is a monotonically

increasing function of performance. When removing the two
student categories (1 and 2) from the analysis, the company-
assigned developer category complied to some extent with
individual results; all correlations were significant and
positive around 0.3.

The other experience variables were self assessed. Years
of programming experience (lnProfExp) is also an aspect of
extended experience. In general, the correlations for this
variable were low and insignificant for all scoring
alternatives, but were slightly improved having been log
transformed (a justifiable transformation given the log-log
law of practice discussed earlier). Java programming
expertise (SEJavaExp) is a single self-assessed variable
ranging from novice = 1 to expert = 5. This variable was
significantly and positively correlated around 0.3 with all of
the scoring alternatives for Dataset 1. However, for Dataset
2, the correlations were lower and less systematic, but
caution should be shown when interpreting this result due to
low n. Nevertheless, parametric correlations for this variable
were lower than the non-parametric correlations for both
datasets. Overall, self-assessed Java programming expertise
seems to have a non-linear but monotonically increasing
relation to the proposed score operationalizations. Self-
estimated Lines Of Code (lnLOCJava) in Java has positive
skew and kurtosis, but approximates a normal distribution
after log transformation. All scoring operationalizations were
significantly and positively correlated with LOC (around rho
= 0.3) with two exceptions: Q in Dataset 1 and T Dataset 2.

Nevertheless, even though the proposed scoring
alternatives are positively correlated with relevant experience
variables, only one of several required but not sufficient
hurdles may have been passed. The reason why correlations
alone can mainly provide negative (and not positive)
evidence for validity, is that it is uncertain what the “true”
correlation should be between a test score and a background
variable (see, e.g., [10]).

TABLE II. CORRELATIONS, FACTORS, EXPLAINED VARIANCE, RELIABLITY AND CONFIRMATORY FIT OF SCORING ALTERNATIVES

 Non-parametric Correlations rho (n) Fit indices
Dataset 1 Developer

Category
lnProfExp SEJavaExp lnLOCJava #f %E α RMSEA [lo90, hi90]

Q (99) 0.26** (157) 0.08 (158) 0.25** (158) 0.12 2 33.3 0.45 0.145 [0.086, 0.211]
T (93) 0.33** (152) 0.16* (152) 0.31** (152) 0.38** 1 47.9 0.54 0.189 [0.131, 0.253]
Q+T (93) 0.34** (152) 0.14 (152) 0.30** (152) 0.29** 1 48.7 0.65 0.096 [0.027, 0.166]
Q+lnT (93) 0.35** (152) 0.15 (152) 0.30** (152) 0.29** 1 52.6 0.70 0.093 [0.021, 0.163]
Q1×T1 (99) 0.31** (157) 0.07 (158) 0.33** (158) 0.29** 1 45.0 0.58 0.094 [0.023, 0.164]
Q1×T2×T1 (99) 0.33** (157) 0.11 (158) 0.31** (158) 0.29** 1 47.7 0.63 0.076 [0.000, 0.149]
Q1×T3×T2×T1 (99) 0.35** (157) 0.11 (158) 0.31** (158) 0.30** 1 49.4 0.65 0.074 [0.000, 0.147]

Dataset 2
Q NA (89) 0.12 (19) 0.14 (89) 0.36** 1 52.5 0.54 0.109 [0.000, 0.261]
T NA (89) –0.15 (19) –0.02 (89) 0.19 1 47.6 0.41 0.019 [0.000, 0.212]
Q+T NA (89) –0.01 (19) 0.10 (89) 0.35** 1 59.9 0.66 0.137 [0.000, 0.284]
Q+lnT NA (89) –0.02 (19) 0.10 (89) 0.34** 1 62.9 0.70 0.095 [0.000, 0.250]
Q1×T2×T1 NA (89) 0.01 (19) 0.03 (89) 0.30** 1 52.6 0.55 0.000 [0.000, 0.179]
Q1×Q2×T2×T1 NA (89) 0.05 (19) 0.23 (89) 0.34** 1 54.9 0.59 0.000 [0.000, 0.103]
Q1×Q2×Q3×T2×T1 NA (89) 0.09 (19) 0.22 (89) 0.33** 1 55.7 0.60 0.000 [0.000, 0.153]

n is the number of observations, ccategory is junior (3), intermediate (4) or senior (5) , lnProfExp is the log-transformed number of years of professional programming experience where part time experience
is counted as 25% of full time experience, JavaExp is the number of months of experience with the Java programming language, SEJavaExp is self-evaluated Java programming expertise on a scale from
novice (1) to expert (5), #f is the number of suggested factors by PCA, %E is percent total variance Explained by the first PC, α is Cronbach’s alpha, RMSEA is the Root Mean Square Error of
Approximation with 90% low (lo90) and hi (hi90) confidence intervals. Data not available for analysis are marked NA. Correlations significant at the 0.05 level (two-tailed) are marked *, correlations
significant at the 0.01 level are marked **.

This is a preprint version of: Bergersen, G. R., Hannay, J. E., Sjøberg, D. I. K., Dybå, T., & Karahasanovic, A. (2011). Inferring skill
from tests of programming performance: Combining quality and time. In 3rd IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM'2011) (pp. 305-314). Banff, Canada: IEEE Computer Society. doi:10.1109/ESEM.2011.39

Accepted 2011-May-15 Not suitable for citation Copyright IEEE 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

