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Abstract—Skilled workers are crucial to the success of software development. The current practice in research and industry
for assessing programming skills is mostly to use proxy variables of skill, such as education, experience, and multiple-choice
knowledge tests. There is as yet no valid and efficient way to measure programming skill. The aim of this research is to develop a
valid instrument that measures programming skill by inferring skill directly from the performance on programming tasks. Over two
days, 65 professional developers from eight countries solved 19 Java programming tasks. Based on the developers’ performance,
the Rasch measurement model was used to construct the instrument. The instrument was found to have satisfactory (internal)
psychometric properties and correlated with external variables in compliance with theoretical expectations. Such an instrument
has many implications for practice, for example, in job recruitment and project allocation.

Index Terms—skill, programming, performance, instrument, measurement

1 INTRODUCTION

OFTWARE engineering folklore states that the skill
Sof programmers is crucial to the success of soft-
ware projects [27], [42]. Consequently, being able to
measure skill would be of great interest in such
work as job recruitment, job training, project person-
nel allocation, and software experimentation. In such
contexts, an individual’s capacity for programming
performance is usually evaluated through inspection
of their education and experience on CVs and through
interviews. Sometimes standardized tests of intelli-
gence, knowledge, and personality are also used. Even
though such methods may indicate an individual’s
level of skill, they do not measure skill per se.

Skill is one of three factors that directly affect the
performance of an individual [32]. The two other
factors are motivation and knowledge. Motivation is
the willingness to perform. An overview of studies
on motivation of software developers can be found
in [14]. Knowledge is the possession of facts about
how to perform. Much research on programming
knowledge can be found in the novice-expert liter-
ature of the 1980s [119], [127]. Other factors, such as
experience, education, and personality, also indirectly
affect individual performance through their influence
on motivation, knowledge, and skill [105], [126]. In
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contrast, we are interested in how skill can be mea-
sured directly from programming performance. Con-
sequently, our research question is, to what extent is
it possible to construct a valid instrument for measuring
programming skill?

In accordance with the most commonly used def-
inition of skill, from the field of psychology [62],
we define programming skill as the ability to use
one’s knowledge effectively and readily in execution
or performance of programming tasks. Consistent
with this definition, we constructed and validated
an instrument for measuring programming skill by
adhering to the principles given in [92], [95], [97]. The
implicit assumption was that the level of performance
a programmer can reliably show across many tasks
is a good indication of skill level. This approach
is also commonly used within research on exper-
tise [53]. In the construction of the instrument, we
sampled 19 programming tasks of varying degrees of
difficulty, taken from prior experiments or developed
by ourselves. To determine the difficulty of the tasks,
we hired 65 developers from eight countries to solve
the tasks.

The construction and validation of the instrument
has not been reported before. However, the instru-
ment has already been used to investigate whether
a psychological theory of cognitive abilities can be
applied to programmers [16] and to investigate how
skill moderates the benefit of software technologies
and methods [18]. It has also been used to select
programmers as research subjects in a multiple-case
study [115]. Moreover, the instrument is at present
used in commercial pilot setting to measure the skill of
employees and candidates from outsourcing vendors.

This research concerns an instrument for measuring
programming skill. However, the article may also
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guide the construction and validation of instruments
for measuring other aspects of software engineering.

The remainder of this article is structured as fol-
lows. Section 2 describes the theoretical background
and fundamental concepts. Section 3 describes the
steps involved in the construction of the instrument.
Sections 4 and 5 describe, respectively, the internal
and external validation of the instrument. Section 6
discusses the answer to the research question, contri-
butions to research, implications for practice, limita-
tions, and future work. Section 7 concludes.

2 FUNDAMENTAL CONCEPTS

This section describes the theory of skill, models
for measurement, operationalizations of performance,
and instrument validity. Fig. 1 shows how the funda-
mental concepts involved are related. The skill mea-
sure is indicated by the performance of an individual
on a set of tasks. Each task is thus an indicator [40],
which in turn is defined by a scoring rule that is
applied to the time and quality of task solutions (i.e.,
a “response” in the figure). The arrows show the
direction of reading and causality. The part of the
model with arrows pointing downwards constitutes
a reflective model. The part with arrows pointing up-
wards constitutes a formative model [50].

2.1 Theory of Skill

In this work, skill is considered as a specific type
of ability, albeit with some distinguishing features.
Generally, all human abilities are “defined in terms
of some kind of performance, or potential for per-
formance” [33, p. 4]. “The term ability ...may re-
fer to measures of ...an underlying latent variable,
which is presumed to be a continuous monotonic
increasing function of the observed measures of per-
formance” [60, p. 122]. Thus, skill has—together with
concepts such as aptitude, achievement, capacity,
competence, expertise, and proficiency—a monotonic
relation to performance.

This positive relation is also an assumption in
research on expertise, where reliably superior per-
formance on representative tasks is one of several
extended aspects of expertise [55]. According to
Ericsson, “[a]s long as experts are given representative
tasks that capture essential aspects of their expertise,
they can rely on existing skill and will exhibit the
same stable performance as they do in everyday
life” [52, p. 52].

Unlike some abilities, skill is a psychological vari-
able that can be defined theoretically. Over 80 years
ago, Pear [96] recommended using the term for higher
levels of performance and then only in conjunction
with well-adjusted performance. According to Fitts
and Posner [62], the acquisition of skill consists of
three overlapping phases. During the initial, cognitive
phase, an individual uses controlled processing of
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performance, and time and quality

information to acquire facts on how to perform a task
successfully. This phase is sometimes referred to as the
knowledge acquisition phase, where declarative facts
(i.e., knowledge) “concerned with the properties of
objects, persons, events and their relationships” [102,
p. 88] are acquired. In the second, associative phase,
facts and performance components become intercon-
nected and performance improves, with respect to
both number of errors and time. In the third, au-
tonomous phase, tasks are accomplished fast and pre-
cisely with less need for cognitive control.

Although much of the earlier research on skill
was conducted on motor skills, Anderson and other
researchers devoted much attention to the research
on cognitive skills in general during the 1980s (e.g., [4])
and programming skills in particular (e.g., [5], [6], [111])
using Fitts and Postner’s [62] early work. Ander-
son [5] noted that the errors associated with solving
one set of programming problems was the best pre-
dictor of the number of errors on other programming
problems. We now examine how such insights can be
used in the development of a model for measuring
skill.

2.2 Model for Measurement

A model for measurement explicates how measurement
is conceptualized in a specific context [58], [91]. The
choice of a measurement model also exposes the



assumptions that underlie one’s effort to measure
something [22].

It is common in software engineering to use the
term “measurement” according to Stevens’ broad def-
inition from 1946: “the assignment of numerals to
objects or events according to rules” [120, p. 667]; see,
for example, the early paper by Curtis [41]. However,
Stevens’ definition of measurement is irreconcilable
with scientific measurement as defined in physics:
“Scientific measurement is . .. the estimation or discovery
of the ratio of some magnitude of a quantitative attribute to
a unit of the same attribute” [93, p. 358]. More generally,
Stevens’ definition is not universally accepted [97]
because even meaningless rules can yield measure-
ments, according to this definition [21], also see [58].

A challenge is that Stevens’ definition is commonly
used in software engineering, while scholars [58], [59]
advocate that measurement in software engineering
should adhere to the scientific principles of measure-
ment [79], [81]. This call for increased rigor was an-
swered by calls for pragmatism; if the stricter defini-
tion of measurement was applied, it “would represent
a substantial hindrance to the progress of empirical
research in software engineering” [26, p. 61]. Conse-
quently, the term “measurement” is used according to
varying levels of rigor in software engineering. At one
extreme, a researcher merely asserts that measurement
is achieved, or else the researcher is silent about this
issue altogether. At the other extreme, a researcher
may rigorously test whether a quantitative measure
has been obtained for a phenomenon, for example,
through testing whether the data conforms to the
requirements of additive conjoint measurement [87].

In this work, we chose the Rasch measurement
model, which resembles additive conjoint measure-
ment, albeit from a probabilistic viewpoint [24]. Al-
though this viewpoint is still being debated [83], the
use of probability is central to science in general [67]
and experimentation in particular [108]. Nevertheless,
for the present work, it suffices to point out that the
Rasch model allows more and better tests of whether
measurements are achieved according to a rigorous
definition of measurement.

2.3 Rasch Measurement Model

Many types of models are available to assess psy-
chological abilities such as skill. These models often
present questions or tasks (called items) to an indi-
vidual and then an estimate (preferably, a measure)
of an individual’s ability can be calculated from the
sum-score of the item responses. In item response
theory (IRT) models, estimates of item difficulty and
consistency of responses across people and items are
central.

The original Rasch model [101] is a type of IRT
model by which skill can be measured. The ability
of a person j is denoted 3;, and the difficulty of an

item ¢ is denoted ;. X;; is a random variable with
values 0 and 1 such that X;; = 1 if the response is
correct and X;; = 0 if the response is incorrect when
person j solves item i. The probability of a correct
response is:

eBi—di

The Rasch model typically uses some form of max-
imum likelihood function when estimating 3 and 4.
The model uses an interval-logit scale as the unit of
measurement. A logit is the logarithmic transforma-
tion of the odds. Humphry and Andrich [70] discuss
the use of this unit of measurement in the context of
the Rasch model.

The original Rasch model is classified as a uni-
dimensional model; that is, ability is measured along
only one dimension. Furthermore, the model is called
the dichotomous Rasch model because only two score
categories are available (e.g., incorrect and correct).

Andrich derived the polytomous Rasch model [7]
as a generalization of the dichotomous model. The
polytomous model permits multiple score categories
0,...,M;, where M; is the maximum score for an item
i. Bach higher score category indicates a higher ability
(and therefore also an increased difficulty in solving
correctly), which enables evaluations of partially cor-
rect solutions. This is an attractive feature for our
work and we therefore used the polytomous Rasch
model.

A requirement of the polytomous, unidimensional
Rasch model is that score categories must be struc-
tured according to a Guttman-structured response
subspace [8]. For example, a response awarded a score
of “2” for an item ¢ indicates that the requirements for
scores 0, 1, and 2 are met and that the requirements
for scores 3 to M; are not met.

The Rasch model has been used in many large-scale
educational testing programmes, such as OECD’s Pro-
gramme for International Student Assessment [20].
The Rasch model has also been used to measure
programming ability in C [128], Lisp [98], and Pas-
cal [122], and to explain software engineering prac-
tices that are based on CMM [44].

2.4 Operationalization of Performance

When inferring skill, only performance that is under
the complete control of the individual is of inter-
est [32]. Performance may be evaluated with respect to
time and quality. A challenge in software engineering
is that software quality is not a unitary concept.
For example, McCall [89] lists 11 software quality
factors along with their expected relationships. Thus,
to answer which of two different solutions are of
higher quality, one must know which quality factors
should be optimized given the purpose of the task.
To illustrate, a calculator that supports division is



TABLE 1
Addressing validity aspects recommended by the APA guidelines

Aspect Description Addressed in section(s)
1: Task content Do the tasks as a whole span the dimension of the thing being measured? 3.1,3.2,06.1
2: Response Are the mental processes involved when solving the tasks representative of 2.1,3.2,6.1
process the psychological variable being measured?
3: Internal Does the structure of the response data (in dimensionality and reliability) 2.5,4.1-4.5, 6.1
structure conform to expectations?
4: Correlations with ~ Does the measure yield patterns in correlations with other variables that are 5.1,52,6.1

other variables

consistent with what is expected from theory or previous research?

APA also includes ““consequences of testing,”” which addresses social policies of testing. This aspect is beyond the scope of this article.

of higher quality than one that does not. Further,
a solution that gracefully handles an exception for
division by zero is better than a solution that crashes
when such an exception occurs.

In addition to dealing with different levels of qual-
ity when evaluating performance, it is a challenge to
deal with the tradeoff between quality of the solution
and the time spent on implementing the solution.
Generally, for two solutions of equal quality, the so-
lution that took the least time to implement denotes
higher performance. It is also trivial to classify an
incorrect solution that took a long time to implement
as lower performance than a correct solution that
took a short time. However, whether a high-quality
solution that took a long time to implement is of
higher performance than a low-quality solution that
took a short time is not a simple question. In general,
there are two main strategies for combining time and
quality to define performance [17]:

o Time fixed, quality = performance: Use a brief time
limit and let subjects solve tasks in predetermined
incremental steps; the number of successful steps
within the time limit defines performance.

o Quality fixed, negated time = performance: Use a
relaxed time limit with a high, expected chance of
a correct solution; the less time used, the higher
the performance.

A mix of the two main strategies is also possible.
In [17], we reanalyzed previously published experi-
ments and combined time and quality as performance
using a Guttman structure. Higher scores on task
performance were first assigned according to the time
fixed description described above. Correct solutions
were additionally assigned higher scores according to
the quality fixed description given above.

In addition to tasks that require a single solution,
the Guttman structure can also be used for testlets,
that is, for tasks where solutions are solved in multiple
steps and where each step builds upon the previous
step. A core issue in this article is the extent to which
programming performance on a set of tasks that are
scored using a Guttman structure can be used to
measure programming skill using the Rasch model.

2.5

According to Shadish, Cook, and Campbell, the use of
measurement theory is one of several ways to make
generalized causal inferences: “[r]esearchers regularly
use a small number of items to represent more general
constructs that they think those items measure, and
their selection of those items is rarely random” [108,
p- 349]. Therefore, it is important to address when
and how performance on a combined set of program-
ming tasks can be regarded as a valid measure of
programming skill. We use Borsboom, Mellenbergh,
and Van Heerden’s definition of validity: “[a] test is
valid for measuring an attribute if and only if (a)
the attribute exists and (b) variations in the attribute
causally produce variations in the outcomes of the
measurement procedure” [23, p. 1].

We distinguish validity from the process of evalu-
ating validity, that is, validation [23]. According to
the American Psychology Association (APA), support
for or evidence against validity may be addressed
according to the aspects shown in Table 1 [2].

When multiple observations of task performance
are used as indicators of skill (Fig. 1), it is possible
to address what is shared across observations. After
the common variance for skill is extracted from the
task performance data, what remains is error variance
(Fig. 2). This error, or residual, variance can be divided
in two: Random error variance is noise, which should be
reduced to the largest possible extent, but does not in
itself invalidate a measure. However, systematic error

Instrument Validity

Total variance
A

Common variance Error variance

Systematic Random

L )
Y
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Fig. 2. Variance components (adapted from [103])



TABLE 2
Activities of the construction phase

Activity Description

Purpose

Definition of programming
and scope of instrument

Defined and explained the area that the concept of
programming skill was meant to capture.

Clarify the area in which the instrument
should be used.

Task sampling and

construction

Obtained 19 tasks with heterogeneous
operationalizations across dimensions.

Obtain a set of tasks that span the
intended scope of the instrument.

Scoring rules for tasks

Developed preliminary scoring rules based on
different quality attributes for the 19 tasks.

Decide how combinations of time and
quality as performance should be scored.

Subject sampling
countries to participate.

Hired 65 subjects from nine companies in eight

Obtain a sample of industrial program-
mers with widely different backgrounds.

Data collection

The subjects solved the tasks over two days using
individual randomized task order.

Obtain programming performance data to
be used in the evaluation of scoring rules.

Data splitting

Split the subject data into one construction (7 =
44) and one validation (7 = 21) data set.

Establish two independent data sets for
instrument construction and validation.

Determining criterion for

evaluating scoring rules data to the Rasch model.

Used as the criterion the fit of task performance

Evaluate scoring rules that combine time
and quality as task performance.

Constructing and adjusting
scoring rules using Rasch
analysis

Combined time and quality using the scoring rules
for 17 tasks. Scoring rules for two tasks could not
be obtained and these tasks were removed.

Obtain a well-defined measure of task
performance.

variance indicates systematic patterns in the variance
that are not a part of the intended measure.

According to Messick [91], systematic error vari-
ance is one of the two major threats to (construct)
validity. This threat occurs when something other than
the variable being measured systematically influences
observations in unintended ways; it is therefore called
construct-irrelevant variance.

The second major threat to validity is construct un-
derrepresentation, which occurs when central aspects
of the thing being measured are not captured [92]. For
example, if only one type of programming task is rep-
resented in the instrument, mono-operation bias may
occur; that is, other categories of programming tasks
are not captured. Similarly, if only type of evaluation
of task quality is used (e.g., unit test cases), mono-
method bias may occur; that is, other categories of
evaluation are not captured. Thus, even if the tasks
share a large proportion of common variance, they
may still not fully represent what one intends to
measure.

Reliability may be calculated in several ways [95],
but we will only focus on internal consistency reli-
ability, of which Cronbach’s coefficient alpha («) is
one instance where reliability is represented as the
average inter-correlations of tasks. As shown in Fig. 2,
internal consistency reliability comprises both com-
mon variance and systematic error variance. A high «
is therefore insufficient to conclude with respect to
validity, because the magnitude of the systematic error
variance is unknown.

3 INSTRUMENT CONSTRUCTION

The activities that we conducted to construct the
measurement instrument are shown in Table 2. Each

activity occurred chronologically according to the sub-
section structure.

3.1 Definition of Programming and Scope of In-
strument

We define programming as the activites of writing
code from scratch, and modifying and debugging
code. In particular, the last two activities also code
comprehension as a central activity. Although other
life-cycle activities such as analysis, design, testing,
and deployment are important, programming is the
dominant activity of software development. In a study
of four software projects [3], the proportion of pro-
gramming constituted 44 to 49 percent of all the
development activities, which is similar to what was
found in a survey of software developers conducted
at a programming-related forum (50%, n = 1490).!

Programming skill is related to performance on
programming tasks. The universe of tasks consists of
many dimensions, such as application domains, tech-
nologies, and programming languages. To increase
generalizability, we limited the scope of the instru-
ment to tasks that belonged neither to any particular
application domain nor to any particular software
technology. However, we are not aware of how to
measure programming skill independent of a pro-
gramming language. Therefore, we limited the scope
of our instrument to the widely used programming
language, Java.

3.2 Task Sampling and Construction

To obtain generalizable results, one would ideally use
random sampling of tasks [108]. However, there is no
such thing as a pool of all programming tasks that

1. www.aboutprogrammers.org



have been conducted in the last, say, five years from
which we could randomly sample tasks.

Alternatively, one could construct or sample tasks
that varied across all relevant dimensions and charac-
teristics. A programming task may have many char-
acteristics, including the comprehensiveness and com-
plexity of the task, the required quality of the solution,
and the processes, methods, and tools used to support
the fulfillment of the task. Additionally, characteristics
of the system on which the task is performed will
also affect the performance, for example, size and
complexity of the system, code quality, and accom-
panying artifacts (requirement specifications, design
documents, bug reports, configuration management
repositories, etc.). However, the number of possible
combinations of such characteristics is almost infi-
nite [49]. Therefore, one has to use convenience sam-
pling.

To help achieve generalizability into an industrial
programming setting, we purposively sampled typical
instances [108]. Thus, the set of tasks were selected or
constructed to capture a range of aspects of industrial
programming tasks to increase realism [112].

We also included some “toy tasks” to measure low-
skilled subjects. Another purpose was to investigate
whether the use of such tasks yields the same measure
of skill as the one yielded by using industrial tasks.
See Kane et al. [74] for a discussion on the use of
tasks with various degrees of realism in educational
measurement.

More generally, whether tasks with different char-
acteristics yield the same measure of skill, is an open
question. In our case, we varied task origin, lifecycle,
time limit, presence of subtasks, and evaluation type
to reduce their potential confounding effect as follows:

o Task origin was varied across previous experi-
ments (verbatim or modified), problems formu-
lated in books, general programming problems,
or tailored new tasks (we paid two professionals
to develop new tasks).

o Lifecycle was varied across write, maintain and
debug phases.

o Time limit was varied across a mix of short
(~10 minutes), medium (~25 minutes), and long
tasks (~45 minutes).

o Subtasks, which require multiple submissions (i.e.,
testlet structure; see Section 3.3), were used for
some of the tasks.

o Evaluation type was automatic, manual, or a com-
bination of automatic and manual (e.g., automatic
regression and functional testing combined with
manual evaluations of code quality).

Table 7 in Appendix A summarizes all characteristics
of the 19 tasks that were sampled or constructed for
the instrument.

3.3 Scoring Rules for Tasks

The decision on how to combine time and quality into
a single variable of task performance for a specific task
is operationalized in terms of scoring rules [17]. Each
scoring rule is uniquely associated with a specific
task. An example of a scoring rule that we con-
structed is shown in Table 3. Three subtasks extend
the functionality of the Library Application described
in Table 7: add an e-mail field to “create new” book
lender (Subtask A), allow an entry for e-mail and
make it persistent (Subtask B), and update all other
dialogue boxes in the application correspondingly
(Subtask C). The three subtasks were to be imple-
mented incrementally, where a correct solution for
Subtask B required a correct solution for Subtask A,
and a correct solution for Subtask C required correct
solutions for Subtasks A and B.

Quality was operationalized as correct (¢ = 1) or
incorrect () = 0) implementation of each of the sub-
tasks. Incorrect solutions for Subtask A (Q4 = 0) or
solutions submitted after the time limit of 38 minutes
(T3 = 0) received a score of “0”. Solutions submitted
within the time limit (738 = 1) received a score of
“1” if only Subtask A was correct (Q4 = 1), “2” if
both Subtasks A and B were correct (Qp = 1), and
“3” if Subtasks A, B, and C (Q¢c = 1) were correct.
Additionally, if Subtasks A, B, and C were correct, the
score was “4” if time was below 31 minutes (75; = 1)
and “5” if time was below 25 minutes (T35 = 1).

For most of the tasks, functional correctness was
the main quality attribute, which was evaluated au-
tomatically using test cases in JUnit and FitNesse. For
five of the tasks, the quality attributes were manually
evaluated to some extent. Examples of such attributes
were code readability, good use of object-oriented
principles, and redundancy of code. (See Table 7 for
more details.) A challenge with manual evaluation is
that it may be hard to perform consistently. There-
fore, we refrained from using subjective evaluations
of quality, such as “poor” or “good.” Instead, we
used scoring rubrics where each score was uniquely
associated with a requirement that could be evaluated
consistently, for example, “is an abstract base class
used in X?” Using scoring rubrics this way helps
achieve objective assessments given that the rater
has sufficient knowledge in the area. In the example

Time
Correctness Tss=0 Tss=1 T3=1 Tx=1
Oc=1 0 3 4 5
Op=1 0 2 2 2
0,=1 0 1 1 1
0,=0 0 0 0 0
TABLE 3

The scoring rule for the Library Application task



above, the rater must know how to identify an ab-
stract base class.

For all tasks, the time limits used were either based
on empirical data from earlier studies (see Table 7) or
results from pilot tests. Some strategies for deciding
on time limits in the scoring of performance are
provided in our previous work [17].

Each task description specified which quality focus
should be emphasized to help reduce potential con-
founding effects of having subjects working towards
different perceived goals. All the task descriptions
also stated that a solution was required to be correct,
or of acceptable quality, in order for a more quickly
submitted solution to be scored as being of higher
performance.

3.4 Subject Sampling

We contacted 19 companies in 12 countries with a
request to submit quotes for participation. We hired
65 developers from nine of the companies for two
full days. The companies were located in Belarus,
Czech Republic, Italy, Lithuania, Moldova, Norway,
Poland, and Russia. Company size was a mix of
small (less than 50 developers) and medium (less
than 250 developers). According to the categorization
by the companies themselves, there were 27 senior,
19 intermediate, and 19 junior developers. We re-
quested a fixed hourly price for each developer and
paid each company additionally for six hours of
project management, including recruiting subjects and
setting up infrastructure. The total cost for hiring the
subjects was approximately 40,000 euros.

We requested that individuals volunteer to par-
ticipate, be allowed to terminate the participation,
be proficient in English, and have experience with
programming in Java for the last six months. All the
subjects and companies were guaranteed anonymity
and none were given results. Therefore, no clear mo-
tivation for individual cheating or company selection
bias (e.g., by selecting the most skilled developers)
was present.

3.5 Data Collection

A support environment [12] for the experiment was
used to administer questionnaires, download task
descriptions and code, and upload solutions. Addi-
tionally, we developed a tool to run automatic and
semi-automatic test cases for quality and to apply
the scoring rules. A pilot test was conducted on the
task materials. All descriptions, tasks, and code were
written in English.

The subjects filled in questionnaires both before
beginning the programming tasks and upon comple-
tion. After solving an initial practice task, each subject
received the 19 tasks in an individually random-
ized order. The subjects used their regular integrated
development environment (IDE) to solve the tasks.

Those who finished all the tasks early were allowed
to leave, which ensured some time pressure [10], [11].
Without time pressure, it is difficult to distinguish
among the performance of the developers along the
time dimension.

To reduce the confounding effect of the subjects’
reading speed on their programming skill, they were
given 5 to 10 minutes to familiarize themselves
with the task description and documentation prior
to downloading code. The time used for the analysis
began when the code was downloaded and ended
when the solution was submitted.

3.6 Data Splitting

The true test of any model is not whether most of the
variance in the data can be accounted for but whether
the model fits equally well when new data becomes
available [61]. Overfitting occurs when adjustable
parameters of a model are tweaked to better account
for idiosyncrasies in the data that may not repre-
sent the population studied [36]. Because the ways
to combine time and quality variables into a single
performance variable are potentially infinite [17], a
concern was whether we would overfit the scoring
rules during instrument construction.

A common strategy to account for this problem is
to construct the model using one data set and subse-
quently use another data set to test hypotheses [43] or
other claims. Using generalizability theory [109], we
first investigated the magnitude of different sources
of variance for the experiment reported in [11]. This
analysis confirmed that variability between persons
and tasks was large, which was also reported in [45],
[100]. Therefore, we decided to use about two-thirds
of the available data (44 persons, 19 tasks) to construct
the instrument and the remaining one-third to check
for potential overfitting (21 persons, 19 tasks). We ran-
domly sampled two-thirds of the developers within
each company for the instrument construction data
set. The remaining one-third of the data was saved
for (and not looked at before) the validation phase
(Section 4).

3.7 Determining the Criterion for Evaluating Scor-
ing Rules

We measure skill from programming performance on
multiple tasks. As mentioned in Section 2.3, the poly-
tomous Rasch model uses multiple score categories
for each task. The scores for each task (item) i are
determined as a function X; on the set of individ-
uals, that is, for an individual j, X;; = X;(j). The
function rule for X; is determined by the time used
to solve a specific task 7; and m quality variables
Qix, k = 1,...,m; that describe the task solution (see
Fig. 1). This rule is called a scoring rule for the item i:

X, = scoringrule;(Te, Qut, .-, Qum)- ()
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Fig. 3. Constructing and adjusting scoring rules prior to instrument validation

To measure skill, one must determine both the
maximum allowed score and a sensible scoring rule
for each of the tasks. However, which criteria should
be used to make such a decision? In some situations,
external criteria may be used. For example, the para-
meters in a model for measuring skill in sales can
be adjusted according to the actual net sales (external
criterion) [32]. However, within most other fields, it is
difficult to obtain a suitable external criterion [95]. For
example, it is problematic to use a supervisor’s rating
of overall performance as the external criterion for the
job performance of individuals [31]. More generally,
the idea of using an “ultimate criterion” has also
been described as “an idea that has severely retarded
personnel research” [30, p. 713] and as “truly one of
the most serious mistakes ever made in the theory of
psychological measurement” [23, p. 1065].

Given the lack of a valid external criterion for deter-
mining programming skill, we used the fit of task
performance data to the Rasch measurement model
as an internal criterion to determine the maximum
number of score points for any task and to evalu-
ate each scoring rule. Rasch analysis can determine
whether performance on each of the combinations of
available tasks and persons is mutually consistent. For
all n tasks, the question is whether the set of n—1 other
tasks are consistent with the current task. Each task
is thus evaluated analogously to Neurath’s bootstrap
process:

...in science we are like sailors who must
repair a rotting ship while it is afloat at
sea. We depend on the relative soundness
of all of the other planks while we replace
a particular weak one. Each of the planks
we now depend on we will in turn have
to replace. No one of them is a foundation,
nor a point of certainty, no one of them is
incorrigible [28, p. 43].

3.8 Constructing and Adjusting Scoring Rules
Using Rasch Analysis

Fig. 3 shows the steps involved in constructing and
adjusting scoring rules (cf. Neurath’s metaphor). In

Step 1, an initial set of scoring rules must be estab-
lished using bootstrapping. This set serves as the basis
for the evaluation of subsequent rules. To identify the
initial set of scoring rules in our case, we used Tasks 8,
9, and 17 (Table 7), for which we already had extensive
programming performance data available [10], [11],
[77], [78], [80]. We had determined a set of scoring
rules based on this data for these three tasks [17],
which became the initial set of scoring rules in the
construction of the instrument.

In Step 2, scoring rules are adjusted relative to each
other so that the pattern of performance of available
tasks is consistent according to Rasch analysis. In
our case, we adjusted the scoring rules to achieve
good overall model fit, as indicated by Pearson’s chi-
square test. We then had to check that each new
task increased measurement precision, that no task
displayed a misfit to the model, and that other model
fit indices were acceptable (see Section 4). A frequent
reason for misfit was too few or too many score
categories for a task (i.e., parameter M; in Equa-
tion 2). Space limitations prevent us from describing
the details of the analyses we performed using the
Rumm?2020 software [9]. (See, for example, [20], [129],
[130] for an introduction to Rasch analysis.)

In Step 3, the current model (i.e., the minimally
“floating ship”) is built upon by including one addi-
tional task at a time. Each new task, with its corre-
sponding scoring rule, has to yield consistent empiri-
cal results with the current model, similar to Step 2. If
an acceptable fit to the current model can be obtained
for the new task, it is imported into the current model,
and Step 2 is repeated. Otherwise, the task is deleted.

The process is repeated until no more tasks are
available. In our case, the two tasks that involved
concurrent programming (Tasks 18 and 19) were ex-
cluded because we could not identify well-fitting
scoring rules, leaving 17 tasks with acceptable model
fit for the construction data set. The two excluded
tasks were originally included to contrast measures
of programming skill based on tasks that involved
concurrent programming with tasks that did not in-
volve concurrent programming. However, a problem



TABLE 4
Activities of the internal validation phase

Activity Description

Purpose

Test for overfitting

Compared model fit with task difficulty parameters of
the two data sets. Two tasks were excluded.

Identify whether the scoring rules for the
construction data set were overfitted.

Test for unidimen-
sionality
were excluded.

Compared the two maximally different subsets of the
tasks to check for unidimensionality. Three tasks

Determine whether various subsets of the tasks
yield the same measure of skill.

Test for task model
fit model values and empirical data.

Investigated the residual variance and match between

Determine whether each task displays consistent
and well-fitting performance across subjects.

Test for person

Investigated residual variance and determined

Determine whether each subject displays

model fit whether subjects’ response patterns across tasks are consistent and well-fitting performance across
too random or too deterministic. tasks.

Check psychometric ~ Checked for reliability and targeting. Determine the final version of the instrument.

properties

we encountered was that the two concurrent tasks
were both difficult to solve and difficult to score
consistently. With only two tasks constituting a single
sub dimension, it is difficult to know whether they
could not be integrated into the instrument due to
problems arising from the difficulty of the tasks, or
problems with the scoring rules or task descriptions.
Therefore, at present, the relation between concurrent
programming and the existing tasks of the instrument
should be considered an unanswered question.

4 INTERNAL INSTRUMENT VALIDATION

We investigate aspects that may indicate a lack of in-
strument validity according to the activities in Table 4.
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We investigate whether a model based on the task per-
formance scores of one group of subjects fits equally
well the performance scores of another group of
subjects. The instrument was constructed using data
from 44 subjects. Another set of data from 21 subjects
was used for validation. If there were no overfitting
of the scoring rules created on the basis of the task
performance of the subjects in the construction data
set, the task performance scores of the validation sub-
jects would fit the Rasch model equally well. Tasks for
which there are differences between the two groups
of subjects should be removed from the instrument to
reduce the risk of model overfitting.

First, we verified that the two sets of subjects had
similar programming skill as measured by the instru-
ment: only negligible differences in mean skill (Ag =
0.02 logits) and distribution (ASDS = 0.10 logits)
were found. This indicates that the random allocation
of subjects to the two data sets was successful.

Second, a differential item functioning (DIF) anal-
ysis [95] was performed to investigate measurement
bias. Task 17 (see Table 7) showed statistically signifi-
cant DIF for the two data sets. By removing this task,
the overall model fit was significantly better (Ax, =

Test for Overfitting

5.42, Adf = 1, p = 0.02), as indicated by a test of
nested model differences [86]. Consequently, the task
was removed from the instrument.

Third, Task 13, the “Hello World” task, also con-
tributed negatively to model fit. In the debriefing
session after data had been collected, several subjects
expressed confusion about why this task had been
included. Even highly skilled individuals used up
to 10 minutes to understand what “the trick” was
with this task. It was therefore removed from the
instrument, thereby leaving 15 tasks to be validated.

We have now removed all the tasks that either
indicated overfitting during the construction process
(Section 3) or contained other problems that we be-
came aware of when we compared model fit for the
construction and validation data sets. To increase sta-
tistical power in the subsequent validation activities,
we joined the two datasets.

4.2 Test of Unidimensionality

Many different processes and factors are usually in-
volved when an individual performs a task. From
the perspective of the Rasch measurement model,
unidimensionality refers to whether it may still be
sufficient to only use one variable, programming skill,
for each individual to account for all non-random
error variance in the performance data (see Fig. 2).

It is a challenge to decide on an operational test
for determining unidimensionality. In the physical sci-
ences, two valid rulers must yield the same measure
of length within the standard error of measurement.
In contrast, the large standard errors of measurement
associated with single tasks makes it implacable to use
this approach. A solution is therefore to first combine
tasks into subsets of tasks to reduce the standard error
(by increasing the common variance in Fig. 2), and
then evaluate whether the subsets of tasks measure
the same (i.e., are unidimensional). However, how
does one determine the allocation of tasks into the
distinct subsets?



Smith [118] proposed a test that uses principal
component analysis (PCA) on item residuals (here:
task residuals) to determine the two sets of subtasks
that will yield the most different estimates of ability.
A task residual is the difference between the actual
(observed) and expected task performance score. For
example, an individual may score “2” on one task,
whereas the expected score from the Rasch model
would be “2.34” based on the individuals perfor-
mance on the other tasks. Smith’s test is based on
each task’s loading on the first residual principal
component. In terms of unexplained variance, all the
tasks that explain the largest part of the residual
variance in one direction comprise one subset used
to measure skill; all the tasks that explain the largest
part in the opposite direction comprise the contrasting
subset to measure skill. If the difference between the
two measures of skill deviates significantly from what
one would expect from a normal distribution, the test
is not unidimensional.

The result of Smith’s test for the 15 tasks showed
that the instrument was not unidimensional. The cor-
relations between the task residuals indicated that the
three debugging tasks (Tasks 14-16 in Table 7) con-
tributed negatively to instrument unidimensionality.
By removing these three tasks, Smith’s test indicated
acceptable unidimensionality (p = 0.046, low 95%
CI = 0.00). The visual representation of this result is
included as supplementary material to be available at
http:/ /ieeexplore.ieee.org.

Even though unidimensionality was acceptable, the
tasks loading on the first residual principal compo-
nent revealed that this component contained some
systematic error variance. The most different esti-
mates of skill by the two subsets were obtained
by assigning six relatively easy tasks (“Easy”) and
six relatively difficult tasks (“Difficult”) to the two
subsets. This indicates that a slight difficulty factor
is the source of the systematic error variance. The
two subsets of tasks are indicated in Table 8 in Ap-
pendix B, which reports the performance scores of all
65 subjects.

4.3 Test of Task Model Fit

In Section 4.1, we used overall model fit to determine
which tasks to remove. In this section, we inspect
that part of overall model fit which relates to tasks
and their residuals. Similar to the two types of error
variance, residuals can display systematic patterns or
be random noise. Ideally, there should be no system-
atic patterns, and the residuals should approximate a
random normal distribution [117]. We now describe
three standard Rasch analyses of the residuals.

First, if the residuals for two tasks are both ran-
dom noise, they should not covary. By convention in
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the Rasch community,? correlations larger than +0.3
may be problematic. For the 66 correlations investi-
gated (those below the diagonal of the 12 x 12 corre-
lation matrix of tasks) we found only four correlations
outside the acceptable region. We investigated the
corresponding tasks and found no substantive reason
for the residual correlations. We also ran five simu-
lations with data simulated to perfectly fit the model
and found a similar low frequency of unacceptable
correlations for all 65 persons and 12 tasks. Therefore,
we did not regard residual correlations as a major
threat for the instrument.

Second, to detect whether residual variance was
shared between tasks, we analyzed the residuals using
PCA. For the 12 tasks, 12 factors were extracted using
Varimax rotation (unlike Smith’s test, which uses a
solution where all the factors are orthogonal to each
other). For all the tasks, we found that the residual
variance loaded above £0.91 on one, and only one,
factor and that no task loaded higher than +0.31 upon
factors that were unique to other tasks. Consequently,
the residual variance was mostly unique for each
task, which in turn indicated independence among the
tasks.

Third, we investigated the extent to which there
was a match between the expected performance (ac-
cording to the Rasch model) on a task given a certain
skill level and the actual performance of an individual
(or group) with this skill level. The Rasch model
calculates estimates of person skill and task diffi-
culty using the available task performance data (see
Table 8). Based on the estimated task difficulty, the
expected task performance score for any skill level
can be calculated (e.g., if 3 = 6 =1 in Equation 1, the
expected task performance score is 0.50).

The actual performance on a task is calculated
using individuals that are divided into two (or more)
groups based on their skill level as calculated on the
basis of their performance on all the other tasks. The
mean task performance of such groups, for example,
below-average versus above-average skill, are then
contrasted with what is expected from the Rasch
model given the same skill levels as those of the two
groups, respectively.

A task residual is the difference between the ex-
pected and actual performance of all subjects on a
specific task. Using Rumm?2020, positive task residuals
indicate under-discrimination; that is, below-average
skill subjects perform better than expected and above-
average skilled subjects perform worse than expected.
Negative task residuals indicate over-discrimination,
which is the reverse of under-discrimination. Fig. 4
shows the standardized task residual and the esti-
mated difficulty for all the tasks. The size of the bub-
bles indicates the standard error of measurement of

2. Online resources, such as www.rasch.org, can provide insight
of such conventions and how they are applied. Nevertheless, many
conventions lack a documented rationale.
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each estimate. By convention in the Rasch community,
task residuals between —2.0 and 2.0 are acceptable
(i.e., £2 SD or roughly a 95% confidence interval) and
all the task residuals had acceptable, non-significant
values. Overall, this indicates a reasonable match
between the expected and actual performance on the
tasks.

4.4 Test of Person Model Fit

Similar to task model fit, the analysis of person model
fit also involves the inspection of standardized resid-
uals. The Rasch model assumes that people perform
according to a normal distribution around their true
level of skill (i.e., some randomness is assumed).
Using Rumm?2020, negative person residuals (here:
skill residuals) indicate too little variation in the perfor-
mance scores, whereas positive skill residuals indicate
too much variation [20].

Fig. 5 shows that the individual’s response pattern
in general fits the model; 5 of the 65 subjects have
unacceptable skill residuals, which is close to the
proportion of acceptable values by chance (3.25 per-
sons) given the sample size. The bubble size indicates
the standard error of measurement for the skill esti-
mate of each individual. Less skilled individuals have
higher standard errors of measurement than the more
skilled ones, because the measurement precision of
the Rasch model is not uniform; it is the smallest
when the difficulty of items matches the ability of
the subjects [51]. Fig. 5 also shows that, on average,
less skilled subjects are also more associated with
negative residuals than more skilled subjects who, to
some extent, are more associated with positive skill
residuals. An explanation is that it is more likely
that a highly skilled person completely fails a task
by accident than a lower-skilled person achieves the
highest possible score by accident (see [88] generally).

Another concern is whether the subjects increased
their performance throughout the two days they
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solved the tasks. Fig. 6 shows a box plot of the skill-
task residuals (actual minus expected performance for
each task for each individual) according to task order;
that is, the first box plot shows the distribution of the
first task solved by the subjects, the second box plot
shows the second task, etc.?

The subjects received the tasks in individual ran-
domized order (Section 3.5). Therefore, if a systematic
learning effect [108] or other improvements in perfor-
mance [52] were present, negative skill-task residuals

3. There are 19 locations for task order because 19 tasks were
originally given to the subjects, even though seven tasks were
removed later.
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TABLE 5
Descriptive statistics for Java skill and external variables
Variable type Variable N Mean  SD Min Max  Unit
Test based Java skill 65 —0.8 1.3 41 1.6 Logit
(objective) Java knowledge 60 21.7 4.8 7 29  Sum of correct answers
Working memory 27 0.1 2.2 -3.4 3.6 Sum of three standardized tests?
Test based Technical skills 65 11.5 1.9 5 15 Sum of 3 questionsb
(subjective) Managerial skills 65 25.9 4.2 17 34 Sum of 8 questions®
People skills 65 2.2 2.9 16 29  Sum of 6 questions®
Reported by others Developer category 65 2.1 0.8 1 3 Junior, intermediate or senior®
Self-reported Experience
Recent Java 65 26.6 21.4 0 75 Months
Java 65 40.0 25.2 2 130 Months
Programming 65 45.9 37.8 4 160  Months
Work 65 63.6 65.3 4 360 Months
Expertise
Java 65 3.5 0.9 1 5 5-category Likert scaled
Programming 65 3.7 0.7 2 5 5-category Likert scaled
Java LOC 64¢ 135k 253k 0.5k 1000k Lines of code
Motivation 65 8.4 1.1 6 10  10-category Likert scalef
Learned new things 65 3.5 0.9 1 5 5-category Likert scales

2 'The sums of perfectly recalled sets for each of the three tests were standardized and added. b Unsatisfactory = 1; marginal =
2; average = 3; good = 4; excellent = 5. ¢ Scored 1-3; assigned by closest supetvisor ot project manager. 4 Novice = 1; expert
= 5. ¢« Maximum = 10 (minimum = 1 is implied) ¢ One observation was removed as an extreme outlier according to Grubbs’

test. & Strongly disagree = 1; disagree = 2; neither = 3; agree = 4; strongly agree = 5.

would be overrepresented during the first tasks, and
positive skill-task residuals would be overrepresented
during the final tasks. There is a slight tendency
toward more negative skill-task residuals during the
first three tasks, which may be due to a few negative
outliers and no positive outliers. A plausible expla-
nation for the negative outliers is that developers are
more likely to make mistakes when they are new to
the programming environment.

Still, this effect appears to be small. When compar-
ing these results with simulated data, the effect size of
this “warm-up” was estimated to be 0.5 logits, at max-
imum, which translates to an odds ratio of e®® = 1.65.
A standardized effect size is a scale-free estimate that
enables relative comparisons of effect size estimates
based on different representations (e.g., correlation,
mean differences, and odds). By using a formula [38]
for converting logits into a standardized effect size
combined with software engineering conventions for
“small”, “medium”, and “large” effect sizes [72], the
warm-up effect can be classified as a small effect size.

4.5 Psychometric Properties of the Instrument

The internal consistency reliability (Section 2.2) of the
instrument was calculated using the person separa-
tion index (PSI) [121]. PSI expresses the ratio of the
“true” variance to the observed variance and can
be calculated even with missing data. PSI was 0.86.
Cronbach’s a was 0.85 for the subjects that had no
missing data for tasks (n = 61). Values for a above
0.70 are usually considered as sufficient for use [106].

The targeting of an instrument expresses to what

extent there is a good match between the difficulty
of the tasks and the skill of the developers who were
used to construct the instrument. The targeting can
be inspected by comparing the distribution of the task
difficulty with that of skill. The mean task difficulty is
set at 0 logits by Rumm2020. The standard deviation
was 1.12 logits. In contrast, the mean skill of the
subjects was —0.83 logits with a standard deviation
of 1.30 logits, which is much larger than that found
in a study of students (SD = 0.65 logits) [122]. That
the mean skill of the subjects is lower than the mean
difficulty of the tasks implies that the tasks at present
are too difficult for a low-skilled developer. Therefore,
the existing tasks of the instrument are at present best
suited to measure skill for medium to highly skilled
subjects.

5 EXTERNAL INSTRUMENT VALIDATION

Section 4 showed that the instrument has desirable in-
ternal psychometric properties. This section compares
and contrasts programming skill, as measured by the
instrument, with variables external to the instrument.

5.1 Correlations Between Programming Skill and
External Variables

Convergent validity is that variables that from theory
are meant to assess the same construct, should corre-
late in practice [29]. Conversely, divergent validity is
that variables that, in theory, are not meant to assess
the same construct, should not correlate in practice.
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TABLE 6
Cross correlations between Java skill and external variables

» @ B @ &6 ©6 O @ O 1w @nH 12 13 149 15 16
Java skill (1) — 60 65 65 65 65 27 65 64 65 65 65 65 65 65 65
Java knowledge 2) 0.64© — 60 60 60 60 24 60 59 60 60 60 60 60 60 6O
Java expertise (3) 0.46" 0.30" 65 65 65 27 65 64 65 65 65 65 65 65 65
Recent Java exp. (4) 037 0.27° 054 — 65 65 27 65 64 65 65 65 65 65 65 65
Prog. expertise (5) 0.36* 0.27° 0.57* 0.22 65 27 65 64 65 65 65 65 65 65 65
Java experience (6)  0.34" 0.26° 0.62" 0.59~ 039 — 27 65 64 65 65 65 65 65 65 65
Working memory (7)  0.34° 0.41* 0.00 -0.13 -0.16 003 — 27 27 27 27 21 27 27 27 27
Dev. category (8) 0.32" 0.22° 0.48~ 0.34™ 0.39~ 0.70" 0.03 64 65 65 65 65 65 65 65
Java LOC (9) 0.29° 0.43* 0.47~ 038~ 024 0.43* 0.44* 028 — 64 64 64 64 64 64 64
Technical skills (10)  0.28* 0.27* 0.43* 0.32* 0.56* 0.51" -0.26 0.38" 0.26" 65 65 65 65 65 65
People skills* (11) 0.16 027° 0.15 0.14 020 025 -0.07 014 015 044~ — 65 65 65 65 65
Prog. experience (12) 0.15  0.09 024" 0.13 0.43~ 058" 0.08 0.2~ 028" 036" 0.04 — 65 65 65 65
Work experience (13) 0.09  -0.02 020 0.02  0.36* 0.53* 0.19 0.58* 0.19 036 0.05 090" — 65 65 65
Managerial skills* (14) 0.06 0.24 035 0.33" 0.34* 0.20 -0.28 0.13 022 058" 042~ 007 009 — 65 65
Motivation (15) 0.05 0.09 -0.04 001 003 025 0.03 022 010 0.15 025 021" 026" 003 — 65
Learned things (16)  -0.40" -0.31" -0.36 -0.22" -0.13 -0.24* -0.28 -0.18 -0.15 -0.32"-0.23 -0.01 0.00 -0.27* -0.06 —

Correlations using Spearman’s p are below the diagonal and the number of subjects (N) for each variable is above the diagonal.

*Significant at p < 0.05; **significant at p < 0.01. * Using two-tailed tests of significance.

Table 5 shows the descriptive statistics for skill and
the external variables that we investigated.* Our main
concept, programming skill, was operationalized in
the instrument using Java as the programming lan-
guage; the variable is denoted javaSkill. The opera-
tionalization of the other, external variables is either
described throughout this section or is apparent from
the questionnaires to be available as supplementary
material at http://ieeexplore.ieee.org. The four ex-
perience variables and lines of code use ratio scale.
JavaSkill use interval scale. The remaining variables of
the table are all ordinal scale. The operationalization
of each variable is either described throughout this
section or included as supplementary material to be
available at http:/ /ieeexplore.ieee.org.

Table 6 shows the Spearman correlation p between
javaSkill and the external variables, sorted in descend-
ing order. For variables where no theory or prior
research has established in what direction the corre-
lations with skill should go, we used two-tailed tests
of significance. For the other variables, we used one-
tailed tests because the variables were investigated in
a confirmatory manner.

A commercially available test of Java knowledge
(javaKnowledge) was purchased from an international
test vendor for $ 7,000 and administered to 60 of
the 65 developers 1 to 4 months after they solved
the programming tasks. From this test, we sampled
30 multiple-choice questions that covered the same
domain as the tasks used in the skill instrument.
Table 6 shows that javaKnowledge was the variable
with the highest correlation with javaSkill. Because

4. Researchers interested in obtaining the raw data or using the
instrument may contact the first author. Agreements adhering to
the protocol described in Basili et al. [13] will be required.

knowledge and skill should be close to unity for
developers currently learning how to program, but
should diverge as skill evolves through the second
and third phase of skill acquisition (Section 2.1), we
split the individuals into two groups. For those with
javaSkill below the mean (see Table 5), javaKnowledge
and javaSkill were highly correlated (p = 0.52, p =
0.003, n 30). For those with javaSkill above the
mean, there was no correlation (p = 0.002, p = 0.990,
n = 30). Thus, the relation between programming
skill and knowledge was best represented using a
cubic trend line, as shown in Fig. 7. Overall, this
result is consistent with theoretical expectations and
implies that the instrument captures something other
than javaKnowledge as operationalized by the multiple-
choice test, thus demonstrating convergent and diver-
gent validity for the two groups, respectively.
Working memory is a system of the human brain
that temporarily stores and manages information.
In general, working memory capacity is central to
theories of skill acquisition [4], [35]. In particular,
working memory has been found to predict technical
skill acquisition [82] and programming skill acquisi-
tion to a large extent [111]. In our study, three tests
of working memory were acquired from Unsworth
et al. [123]. In the tests, the developers were re-
quired to memorize letters or locations while being
distracted by math (Ospan), symmetry (Sspan), or
English reading (Rspan) questions [123]. The tests
were administered to 29 of the developers using the
E-prime software (workingMemory). The reason for the
low N for this variable is that the software was not
available for the first half of the companies visited.
Furthermore, the software crashed for two of the
developers, which reduced N to 27. Table 6 shows



that workingMemory was significantly and positively
correlated with javaSkill, as expected. The distribution
of workingMemory was similar to that of the US stu-
dent population reported by Unsworth et al. [124].

In this study, experience was represented using
four variables. Total Java experience (javaExperience)
is the amount of time for which an individual has
been programming in Java. Recent Java experience
(recentJavaExperience) is the amount of time for which
an individual has been programming in Java con-
secutively up until present. Both variables corre-
lated significantly with javaSkill. Recent practice is
not commonly included as a variable in software
engineering experiments, but it should nevertheless
be central to performance because skills decrease
over time when they are not practiced. Table 6 also
shows a small correlation of 0.15 between javaSkill
and general programming experience (programming-
Experience), which may include exposure to languages
other than Java.This is consistent with the correlations
between programming experience and performance
found in two other large datasets, 0.11 and 0.05,
respectively [17]. General work experience (workEx-
perience), which may not involve programming, had
only 0.09 correlation with javaSkill. Consequently, the
order of the correlations for these four experience
variables with javaSkill is consistent with their close-
ness to Java programming. Because javaExperience
and recentJavaExperience are specializations of program-
mingExperience, which in turn is a specialization of
workExperience, not obtaining this order of correlations
would have indicated validity problems.

Lines of code (LOC) written in Java (javaLOC),
which is another experience-related variable, was also
significantly correlated with javaSkill (p = 0.29). This
result is consistent with the correlations between LOC
and programming performance found for two other
large datasets, 0.29 and 0.34, respectively [17].
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Among the self-reported variables in Table 6, Java
expertise (javaExpertise), which uses a 5-point Likert
scale from “novice” = 1 to “expert” = 5 (see Table 5),
had the highest, significant correlation of 0.46 with
javaSkill. This is similar to the correlation reported
in [1] between self estimates and objective measures
for math (r = 0.50) and spatial abilities (r = 0.52).
General programming expertise (programmingExper-
tise), which in this context is non-Java specific, was
also self-reported and used the same scale as did
javaExpertise. The correlation between programmingEx-
pertise and javaSkill was 0.36. This indicates that the
two correlations were also well ordered with respect
to their closeness to Java programming, similarly as
for the four experience variables.

The mean within-company correlation between
javaExpertise and javaSkill was 0.67 (range 0.36-1.00,
n = 9). This indicates that comparative self-rating of
expertise is better than absolute ratings, which is con-
sistent with people’s ability to judge in comparative
versus absolute terms in general [95].

We also administered a questionnaire, published
in [37], for rating the behavior of information tech-
nology personnel within the three dimensions of tech-
nical skills (technicalSkills), people skills (peopleSkills),
and managerial skills (managerialSkills). This ques-
tionnaire has previously been used by managers to
rate employees, but we adapted the questions to
be applicable in ratings of self. Table 6 shows that
only technicalSkills was significantly correlated with
javaSkill.

An individual’s motivation to spend as much effort
and energy during the study was self-reported using
a 10-point Likert scale (motivation). Table 6 shows an
insignificant, low correlation between motivation and
javaSkill (0.05). A strong positive correlation would
have been detrimental to validity because this would
have indicated that motivation is confounded with
the measure of skill. Nevertheless, those with high
skill are still more adversely affected by low motiva-
tion [75] because an individual with high skill and
low motivation would be measured at low skill (i.e.,
a large difference), whereas an individual with low
skill and low motivation would still be measured at
low skill (i.e., a small difference). Therefore, motiva-
tion continues to be a confounding factor in javaSkill,
although this limitation is not unique to us because
most empirical research is based on the assumption
of cooperative subjects.

Finally, the subjects were asked about the extent
to which they learned new things while solving the
19 tasks (learnedNewThings). Table 6 shows a statisti-
cally significant negative correlation between learned-
NewThings and javaSkill. This demonstrates divergent
validity, because people with high skill will likely not
learn new things when carrying out well-practiced
behavior.



5.2 Predicting Programming Performance

Predictive validity is traditionally regarded as an in-
tegral part of instrument validation [95]. We inves-
tigated how well the instrument predicted program-
ming performance on a set of tasks compared with
alternative predictors, such as the external variables
reported in the previous section. To reduce bias in
the comparison, the tasks of that being predicted
must be independent from the instrument. For con-
venience, we used the performance data from four
of the seven tasks that were removed from the in-
strument (Tasks 14-17 in Table 7). The tasks were
selected because they were easy to score with respect
to correctness and the subjects’ solutions varied in
both quality and in time (a variable that contain no
variance cannot be predicted). The remaining three
tasks either had little variance to be predicted (Task 13
“Hello World”) or would have required scoring rules
to be available (Tasks 18 and 19 both used subtasks
with quality attributes that varied in multiple dimen-
sions).

One may question why tasks that were previously
excluded from the instrument can be used in the
validation process. As we have described, there are
strict requirements for a task to be included in an
instrument for measuring programming skill. Predic-
tion, on the other hand, only requires that solving
the task should involve some degree of programming
skill.

Fig. 8 shows the correlation between the investi-
gated predictors and task performance with respect
to correctness and time on the four tasks, yielding a
total of eight correlations (circles) for each predictor.
Correctness was analyzed using point-biserial corre-
lation and time for correct solutions was analyzed
using Spearman’s p. The vertical lines divide between
small (S), medium (M), and large (L) correlations ac-
cording to the guidelines stated in [73]. The trend line
shows the mean of the correlations for each predictor
and confirms that instrument (i.e., javaSkill) was the
best predictor, ahead of javaKnowledge.

Fig. 8 also shows that the correlation between
task performance and the four experience variables
was small. A similar result was also found in an
early study of programming productivity across three
organizations [71]. That study found no association
between performance and experience for two of the
organizations, which employed developers with one
to nine years of programming experience. However,
in the third organization, which consisted of devel-
opers with only one to three years of experience,
performance and experience were related. Based on
these findings the authors conjectured that either
developers “learn their craft in a year and from
thereon additional experience makes little difference
[or] large individual differences in programming skill
[exist] but these are not related to number of years
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of experience” [71, p. 376]. We found a similar result
(not shown): The correlation between experience and
skill was largest during the first year of experience,
but then gradually diminished and disappeared com-
pletely after about four years. That these two variables
display an increasing but deaccelerating relationship
is expected from the log-log law of practice [94], as
well as research on expertise [54].

6 DISCUSSION

This section discusses the answer to the research
question, contributions to research, implications for
practice, limitations, and future work.

6.1 Measuring Programming Skill

Our research question was “to what extent is it pos-
sible to construct a valid instrument for measuring
programming skill?” We now discuss the validity of
the instrument according to the aspects of Table 1.
Task content regards the extent to which the 12 tasks
of the final instrument adequately represent the scope



we defined in Section 3.1. Only a few of the tasks
required the developer to optimize software quality
aspects other than functional correctness. For exam-
ple, many of the quality aspects in ISO 2196/25010
are underrepresented. We focused on functional cor-
rectness because it is a prerequisite for the other
quality aspects. For example, it is difficult to evaluate
the efficiency of two task solutions if they are not
functionally equivalent.

Nevertheless, the tasks combined are more compre-
hensive than in most experiments on programmers.
Both sample size and study duration are large com-
pared with experiments in software engineering in
general [114]. Compared with [122] and [128], who
also used the Rasch model to study “programming
ability”, our tasks are also more realistic—but also
time consuming—in the sense that developers must
submit code as their solution. Furthermore, our tasks
were structured around a programming problem that
may involve many programming concepts simultane-
ously, whereas [122] and [128] focused on “narrow”
problems, where one programming concept is eval-
uated per question. Thus, answering the question of
whether the tasks as a whole span the dimension that
one is trying to measure is difficult. One may argue
that adding yet another task (ad infinitum) would
better span the dimension one is aiming to measure.
There is no stop criterion; the choice of when to stop
is subjective. The universe of potential programming
tasks is infinite [49].

Response process concerns whether the mental pro-
cesses involved when solving the tasks are represen-
tative of programming skill. The processes involved
during software development are clearly more de-
manding than selecting (or guessing) the correct an-
swer to a short programming problem in multiple-
choice questions, such as in [122]. The open response
format (e.g., used in [128]) alleviates this problem,
but we regard questions such as “What kind of data
structure can be stored with this definition?” as akin to
assessing programming knowledge. In contrast, many
of the tasks were selected or constructed to capture
a range of aspects of industrial programming tasks.
For example, the tasks were solved in the developers’
regular programming environment, and many of the
tasks contained code that was too extensive to under-
stand in full. This increased the likelihood that the
developers used response processes similar to those
that they use in their daily work.

The internal structure of the data concerns the di-
mensionality and reliability of the measure of pro-
gramming skill (Section 4). Fundamental to state-
ments such as “developer A is more/less skilled than
developer B” is the assumption that one dimension
exists along which one can be more or less skilled.
Although programming has many facets, we found
that programming skill could be represented as a
unidimensional, interval-scale variable for the major-
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ity of the programming tasks we investigated. That
performance on different programming problems may
essentially be regarded as a single dimension was also
found in a study of students in a C++ course [65]. This
indicates that programming skill accounts for the ma-
jor proportion of the large differences observed in pro-
gramming performance (i.e., the “common variance”
in Fig. 2) reported elsewhere [41], [45], [66], [100].
However, there may be other explanations. Therefore,
we investigated other potential sources of construct-
irrelevant variance, but found only a slight warm-
up and task-difficulty effect. Furthermore, the ratio
of random error variance to common variance plus
systematic error variance (i.e., internal consistency
reliability) was found to be satisfactory. Compared
with [122], who used factor analysis to investigate
unidimensionality, the eigenvalue of our first factor
was larger (4.76) than the eigenvalue of their first
factor (2.81). This implies a greater proportion of
common variance to error variance in our study.

Programming skill, as measured by the instrument,
correlated with external variables in accordance with
theoretical expectations. More specifically, as shown
in Section 5.1, programming skill and programming
knowledge appeared to be strongly related for low to
medium skill levels, whereas they were unrelated for
medium to high skill levels. We also found that expe-
rience and expertise variables were both well ordered
with respect to their closeness to Java programming.
Convergent validity was found for variables such as
developer category, lines of code, and technical skills,
where divergent validity was present for managerial
and people skills, as well as motivation. Moreover, as
we have previously reported [16], we found that five
of the variables in Table 5 display a pattern in the cor-
relations that is consistent with Cattell’s investment
theory, see [34]. This psychological theory describes
how the effect of intelligence (in our context, working
memory) and experience on skill is mediated through
knowledge. Previous work by Anderson [5] showed
that the best predictor of programming errors on
tasks was the amount of error on other programming
problems. Similarly, we showed in Section 5.2 that
performance on a set of programming tasks was best
predicted by performance on another set of program-
ming tasks, that is, the instrument.

The APA [2] also regards validity generalization as
related to “correlations with other variables.” From
an analytical perspective, the generalizability of the
instrument is based on its connection to theory about
essential features [85], in which the concept of trans-
fer [60] is central when generalizing between instru-
ment and industry tasks. For example, Anderson et al.
used a software-based tutor that trained students in
500 productions (i.e., “if-then” rules) that comprise the
components of programing skill in LISP. They found
a “transfer from other programming experience to the
extent that this programming experience involves the



same productions” [6, p. 467]. Thus, when a program-
ming language such as C# is semantically similar to
Java on many accounts, one would expect that skill
in either language would transfer to a large extent
to the other language. We believe that the principle
of transfer also informs the generalizability of tasks
of the instrument, because these tasks involve many
concepts central to programming that are also present
in real-world tasks.

Concerning the generalizability across populations,
one would ideally randomly sample from the world’s
population of professional developers. In practice,
this is impossible. However, we managed to sample
professional developers from multiple countries and
companies. The extent to which the results generalize
to other populations of professionals (e.g., different
countries or types of companies) is an empirical ques-
tion that must be addressed in follow-up studies.

Overall, our investigation of validity indicates that
our instrument is a valid measure of programming
skill, even though a single study cannot answer this
conclusively. This inability to make conclusions is
similar to the challenge of confirming a theory. A
theory cannot be proved. Instead, it is only strength-
ened by its ability to escape genuine attempts at
falsification [99].

6.2 Contributions to Research

Theory-driven investigations are rare in empirical
software engineering [69], even though theory is of-
ten required to interpret and test results [99], [108].
In [113], we described how theories can enter soft-
ware engineering: unmodified, adapted, or built from
scratch. We applied an unmodified version of the
theory of skill and interpreted and tested expectations
from this theory “as is”, using professional software
developers (most other researchers use students). We
also applied the Rasch model, which can be regarded
as a non-substantive theory of how item difficulty
and person abilities interact, without modification.
However, to use programming performance data as
input to the Rasch model, we adapted the scoring
principles described in [68] to account for the time-
quality problems when scoring performance on pro-
gramming tasks [17].

Scoring rules are rarely justified or evaluated.
In [46], we justified, but did not evaluate, the use
of a five-point Likert scale for each indicator of key
factors of success in software process improvement.
In contrast, through the use of the Rasch model, we
have shown in this article how to evaluate the number
of score points and the scoring rule for each indicator.

We demonstrated methods for internal validation
through tests of overfitting, unidimensionality, and
person and task fit to the measurement model. For ex-
ample, we investigated whether practice effects were
a confounding factor [110] by analyzing residual vari-
ance. Moreover, we demonstrated that by requiring
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that residual variance be uncorrelated, the testability
of the proposed model is enhanced. In [46], we used
PCA to identify the factor structure of multiple scales,
but we did not investigate whether residual variance
between indicators for each factor was uncorrelated.

In [48], we showed that the meaning of a construct
can easily change as a result of variations in opera-
tionalizations. In the present study, we extended this
work to include empirical testing of whether opera-
tionalizations internally are mutually consistent and
derivable expectations from theory are met. By using
a convergent-divergent perspective [29], we showed
that the closer the variables were to programming
skill, the higher was the correlation.

The validity of empirical studies in software engi-
neering may be improved by using the instrument
to select subjects for a study, assign subjects to treat-
ments, and analyze the results. When selecting sub-
jects for a study, one should take into account that
the usefulness of a technology may depend on the
skill of the user [18]. For example, representativity is a
problem when students are used in studies for which
one wishes to generalize the results to (a category
of) professional developers [112]. The instrument can
be used to select a sample with certain skill levels.
For example, the instrument was used to select de-
velopers with medium to high programming skills in
a multiple-case study [115].

When assigning subjects to treatments, a challenge
is to ensure that the treatment groups are equal or
similar with respect to skill. A threat to internal valid-
ity is present when skill level is confounded with the
effect of the treatments. In experiments with a large
sample size, one typically uses random allocation to
achieve similar skill groups. However, in software
engineering experiments, the average sample size of
subjects is 30 [114] and the variability is usually large.
Even in an experiment with random allocation of
65 subjects, we found an effect (although small) in
the difference in skill [18]. By using the instrument for
assigning subjects to equally skilled pairs (instead of
groups), more statistically powerful tests can be used,
which in turn reduces threats to statistical conclusion
validity [47], [108].

Quasi-experiments are experiments without ran-
dom allocation of subjects to treatments. Random-
ization is not always desirable or possible; for ex-
ample, “the costs of teaching professionals all the
treatment conditions (different technologies) so that
they can apply them in a meaningful way may be
prohibitive” [73, p. 72]. To adjust for possible differ-
ences in skill level between treatments groups, and
thus to reduce threats to internal validity, a measure
of skill provided by the instrument may be used as a
covariate in the analysis of the results.

Similar to controlling for the level of skill, the
instrument may also be used to control for task
difficulty in software engineering experiments. Task



difficulty may both be a confounding factor and a
factor across which it may be difficult to generalize
the results. For example, in an experiment on pair pro-
gramming with junior, intermediate and senior Java
consultants [10], pair programming was beneficial for
the intermediate consultants on the difficult tasks. On
the easy tasks, there was no positive effect.

6.3

According to [32], job performance consists of eight
major components. One of them concerns job-specific
task proficiency, which is “the degree to which the in-
dividual can perform the core substantive or technical
tasks that are central to the job” [32, p. 46]. In a meta-
analysis with over 32,000 employees [104], work sam-
ple tests had the highest correlation with job perfor-
mance (0.54), followed by tests of intelligence (0.51),
job knowledge (0.48), and job experience (0.18). A
benefit of work sample tests is that they possess a
high degree of realism and thus appear more valid
to the individual taking the test, see generally [25].
However, they are more costly to develop and score
and more time-consuming to administer [74]. Like a
work sample test, our instrument uses actual perfor-
mance on tasks as the basis for inferring job-specific
task proficiency in the area of programming and,
consequently, would be useful for recruiting or project
allocation.

Work samples and our instrument may complement
each other. Work sample tests may include program-
ming tasks that are tailored for a highly specific job.
The result an individual receives on a work sample
test may be a composite of many factors, such as
domain-specific or system-specific knowledge. In con-
trast to most work-sample tests, as well as other prac-
tical programming tests used in-house in a recruiting
situation, our instrument aims to provide a measure
of programming skill based on a scientific definition
of measurement, that is, the claim that “something is
measured” can be falsified. Furthermore, the construc-
tion of the instrument is theory-driven and the vali-
dation has been performed according to the aspects
as reported above.

Many other criteria than correlations are involved
when comparing alternative predictors of job-specific
task proficiency. For example, work sample tests may
require relevant work experience to be applicable in
a concrete setting [104]. Time is also an important
factor: Grades from education or work experience
can be inspected within minutes, standardized tests
of intelligence or programming knowledge may be
administered within an hour, and the use of standard-
ized work samples, or our instrument, may require a
day. For example, exploratory work on a model for
assessing programming experience based on a ques-
tionnaire that can be quickly administered is outlined
in [57].

Implications for Practice
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If we had had only one hour available, time would
allow the use of a couple of tasks that fit the model
well and (combined) have a good span in task diffi-
culty. We chose Tasks 9 and 12 in Table 7 to be used
as a one-hour version of the instrument. Although the
measurement precision of the instrument is greatly
reduced by having only 2 tasks to measure skill
instead of 12, the validity of the instrument should
be unaffected because all the tasks still measure “the
same.” When calculating programming skill based
solely on those two tasks, the instrument was still
as good as the knowledge test (which took approx-
imately one hour to complete) in predicting program-
ming performance (cf. Fig. 8). Consequently, the in-
strument requires more time to predict programming
performance better than the alternatives. Therefore,
future work includes ways to retain the reliability and
validity of the instrument while reducing the time
needed to administer it.

As determined by the scope we defined, the in-
strument’s measure of programming skill is indepen-
dent of knowledge of a specific application domain,
software technology, and the concrete implementation
of a system. A developer with extensive knowledge
in any of these areas may perform better on a new
task within any of these areas than a developer with
higher programming skill but with less knowledge
in these areas. Creating a tailored version of the
instrument that combines programming skill with
specific knowledge within one or more of these areas
would require access to experts within each field that
must assist in the construction of new tasks for the
instrument. A pragmatic alternative to creating such
a tailored instrument, which must follow the steps
outlined in this paper, is to use our instrument for
measuring programming skill and combine it with
knowledge tests for a given domain, technology or
implementation.

Furthermore, the instrument appears to be best
for testing medium to highly skilled developers. To
make the instrument more suitable for less skilled
developers, one would need easier tasks. However, it
is a challenge to create an easy task that at the same
time resembles an industrial problem. In an industrial
system, even an apparently easy change of code may
have unintended consequences. Thus, making a small
change may require an understanding of a wider part
of the system, which in turn makes the task more
difficult to solve than originally indented.

The description of the tasks of the present instru-
ment is language independent. The program code for
each task is written in Java but can easily be translated
into other object-oriented languages. Tailoring the
instrument to non-object-oriented languages would
be more challenging, because what is considered a
high-quality solution might differ between language
paradigms. Concerning the test infrastructure, auto-
matic test cases would generally be easy to translate



into new programming languages, even though it
would be easier to modify the instrument to support
languages that can use the Java virtual machine. Note
that any major changes to the instrument due to
tailoring will require a new sample of developers to be
used to calibrate new task difficulty parameters. We
also recommend that difficulty parameters are verified
even though only minor changes to the instrument are
present, for example, if the tasks are translated into
another object-oriented language.

6.4 Limitations

The sample size of 65 subjects in this study is low. An
ideal sample size for the polytomous Rasch model is
around 250 subjects [84], even though authoritative
work on Rasch modelling has previously been con-
ducted on a sample size similar to ours (see [130]). An
increased sample size would have resulted in lower
standard errors of measurement in the estimated skill
and difficulty parameters (the parameters are shown
in Figs. 4 and 5). Increased measurement precision
due to larger sample size would have enabled the
detection of more cases of statistically significant dif-
ferences in skill level between developers.

Four of the twelve tasks in the final instrument
required manual evaluation of quality, which was
performed only by the first author. To reduce the
likelihood of bias, we used non-subjective scoring
rubrics (see Section 3.3). Still, multiple raters would
have increased confidence in results.

In the validation process, the three debugging tasks
were excluded because they contributed negatively to
unidimensionality, even though the contribution was
small. We do not know whether the negative contribu-
tion to unidimensionality is because debugging rep-
resents something slightly different than “program-
ming”, as we defined it, or because these three tasks
were atypical. For example, all the tasks were small,
had short time limits, and represented an “insight
problem” [107]; that is, one struggles for some time
until one obtains the insight needed to solve the prob-
lem. In practice, however, there are virtually no differ-
ences: The correlation between programming skill as
measured by the instrument with the debugging tasks
present (15 tasks) and programming skill as measured
by the instrument without the debugging tasks (12
tasks) present was r = 0.995.

Finally, we do not know to what extent the response
processes used when solving the tasks of the instru-
ment were representative of real-world programming.
This limitation could have been addressed by com-
paring think-aloud protocols [2] from industry pro-
gramming tasks with our instrument tasks. However,
we have previously found that such methods are
intrusive [76] and therefore would have been a serious
threat to the internal validity of the instrument if used
during instrument construction.
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6.5 Future Work

In addition to addressing the limitations just de-
scribed, this work yields several directions for future
work. One topic is how much developers differ in
their programming performance [41], [45], [66], [100].
The standard deviation of skill in our sample of
developers was 1.30 logits. To illustrate this variability,
if two developers are drawn from this sample at
random, one of the developers would display better
programming performance than the other one in
almost 4 out of 5 programming tasks on average.” The
instrument is used at present in an industrial context,
which gives us an opportunity for studying variability
in programming skill across various populations of
subjects and tasks.

We would also like to increase the understanding
of the conditions that are required to achieve high
skill levels. For example, to what extent is experience
important to achieve a high skill level? In our sample,
skill and experience covaried for the first four years of
experience. Additional experience was not associated
with higher skill level on average. However, the vari-
ability in skill level increased for those with extensive
experience. A deeper analysis of these data is needed.
In particular, we would like to contrast our data with
the 10,000 hours of deliberate practice required to
reach the highest levels of expert performance, as
stated in [54].

The use of the instrument in research and industry
will make the tasks known to a wider audience over
time, which, in turn, will reduce the usefulness of the
instrument. Therefore, it is important that new tasks
are continuously being developed and calibrated to be
included in the instrument. Thus, in the future, new
tasks will be used to measure skill the same way as
do the 12 existing tasks today.

To make the instrument more attractive for indus-
trial use, we aim to reduce the time needed to measure
skill while retaining precision. A benefit of the Rasch
model is that it facilitates computer adaptive testing,
which means that the difficulty of the next task given
to the subject depends on the score of the previous
task. This procedure maximizes measurement preci-
sion, thereby reducing the number of tasks required.

The use of our instrument in an industrial setting
also gives us an opportunity for investigating how
measures of programming skill complement experi-
ence, education, peer-ratings, and other indicators as
predictors of job performance.

7 CONCLUSION

We constructed an instrument that measures skill
by using performance on a set of programming

5. Our observed variability in skill, 1.3 logits, equals an odds ratio
of el'3 = 3.7; that is, the more skilled developer of the pair would
perform better with odds of 3.7:1, which is 3.7 out of 4.7 tasks.



tasks. From a theoretical perspective, the combina-
tion of theory-driven research and a strict definition
of measurement enabled rigorous empirical testing
of the validity of the instrument. From a practical
perspective, the instrument is useful for identifying
professional programmers who have the capacity to
develop systems of high quality in a short time.
This instrument for measuring programming skill is
already being used as the basis for new prototypes
and for further data collection, in collaboration with
industry.

APPENDIX A
See Table 7.

APPENDIX B
See Table 8.

ACKNOWLEDGMENTS

This work was supported by Simula Research Labo-
ratory and the Research Council of Norway through
grants no. 182567, 193236/140, and 217594/030. We
thank the anonymous referees for valuable comments,
Erik Arisholm and Jo Hannay for useful discussions
and feedback on an earlier version of this article,
Steinar Haugen, Gunnar Carelius, Arne Salicath, and
Linda Serlie for technical assistance, Steinar Haugen,
Sindre Mehus, Arne Salicath, Aleksey Udovydchenko,
and Alexander Ottesen for developing new tasks,
Magdalena Ivanovska for assistance with mathemat-
ical notation, Lenore Hietkamp for copyediting, and
the companies and developers who participated in the
study.

REFERENCES

[1] P L. Ackerman and S. D. Wolman, “Determinants and va-
lidity of self-estimates of ability and self-concept measures,”
Journal of Experimental Psychology: Applied, vol. 13, no. 2, pp.
57-78, 2007.

[2]  American Educational Research Association and American
Psychological Association and National Council on Measure-
ment in Education and Joint Committee on Standards for
Educational and Psychological Testing, Standards for educa-
tional and psychological testing. Washington, DC: American
Educational Research Association, 1999.

[3] B.C.D. Anda, D. L. K. Sjeberg, and A. Mockus, “Variability
and reproducibility in software engineering: A study of four
companies that developed the same system,” IEEE Transac-
tions on Software Engineering, vol. 35, no. 3, pp. 407—429, 2009.

[4] ]. R. Anderson, “Acquisition of cognitive skill,” Psychological
Review, vol. 89, no. 4, pp. 369-406, 1982.

[5] ——, “Skill acquisition: Compilation of weak-method prob-
lem solutions,” Psychological Review, vol. 94, no. 2, pp. 192—
210, 1987.

[6] J. R. Anderson, E. G. Conrad, and A. T. Corbett, “Skill
acquisition and the LISP Tutor,” Cognitive Science, vol. 13,
no. 4, pp. 467-505, 1989.

[7]1 ~D. Andrich, “A rating formulation for ordered response
categories,” Psychometrika, vol. 43, no. 4, pp. 561-573, 1978.

(8]

191
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

20

——, “Understanding the response structure and process in
the polytomous Rasch model,” in Handbook of polytomous item
response theory models: Developments and applications, M. L.
Nering and R. Ostini, Eds. New York: Routledge, 2010, pp.
123-152.

D. Andrich, B. Sheridan, and G. Luo, RUMM?2020 [computer
software], RUMM Laboratory, Perth, 2006.

E. Arisholm, H. Gallis, T. Dyba, and D. I. K. Sjeberg, “Eval-
uating pair programming with respect to system complexity
and programmer expertise,” IEEE Transactions on Software
Engineering, vol. 33, no. 2, pp. 65-86, 2007.

E. Arisholm and D. L. K. Sjeberg, “Evaluating the effect of
a delegated versus centralized control style on the main-
tainability of object-oriented software,” IEEE Transactions on
Software Engineering, vol. 30, no. 8, pp. 521-534, 2004.

E. Arisholm, D. I. K. Sjeberg, G. J. Carelius, and Y. Lindsjern,
“A web-based support environment for software engineering
experiments,” Nordic Journal of Computing, vol. 9, no. 3, pp.
231-247, 2002.

V. R. Basili, M. V. Zelkowitz, D. I. K. Sjeberg, P. Johnson, and
A. J. Cowling, “Protocols in the use of empirical software
engineering artifacts,” Empirical Software Engineering, vol. 12,
no. 1, pp. 107-119, 2007.

S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in software engineering: A systematic literature
review,” Information and Software Technology, vol. 50, no. 9-10,
pp. 860-878, 2008.

A. C. Benander, B. A. Benander, and J. Sang, “An empiri-
cal analysis of debugging performance—differences between
iterative and recursive constructs,” Journal of Systems and
Software, vol. 54, no. 1, pp. 17-28, 2000.

G. R. Bergersen and J.-E. Gustafsson, “Programming skill,
knowledge and working memory capacity among profes-
sional software developers from an investment theory per-
spective,” Journal of Individual Differences, vol. 32, no. 4, pp.
201-209, 2011.

G. R. Bergersen, J. E. Hannay, D. I. K. Sjeberg, T. Dyb4a, and
A. Karahasanovi¢, “Inferring skill from tests of programming
performance: Combining time and quality,” in Proceedings of
the International Symposium on Empirical Software Engineering
and Measurement. 1EEE, 2011, pp. 305-314.

G. R. Bergersen and D. L. K. Sjgberg, “Evaluating methods
and technologies in software engineering with respect to
developer’s skill level,” in Proceedings of the International
Conference on Evaluation & Assessment in Software Engineering.
IET, 2012, pp. 101-110.

J. Bloch, Effective Java programming language guide. Mountain
View, CA: Sun Microsystems, 2001.

T. G. Bond and C. M. Fox, Applying the Rasch model: Fun-
damental measurement in the human sciences. ~Mahwah, NJ:
Erlbaum, 2001.

D. Borsboom, Measuring the mind: Conceptual issues in contem-
porary psychometrics. New York: Cambridge University Press,

D. Borsboom, G. J. Mellenbergh, and J. van Heerden, “The
theoretical status of latent variables,” Psychological Review,
vol. 110, no. 2, pp. 203-219, 2003.

——, “The concept of validity,” Psychological Review, vol. 111,
no. 4, pp. 1061-1071, 2004.

D. Borsboom and A. Z. Scholten, “The Rasch model and
conjoint measurement theory from the perspective of psy-
chometrics,” Theory & Psychology, vol. 18, no. 1, pp. 111-117,
2008.

H. I. Braun, R. E. Bennett, D. Frye, and E. Soloway, “Scor-
ing constructed responses using expert systems,” Journal of
Educational Measurement, vol. 27, no. 2, pp. 93-108, 1990.

L. Briand, K. El Emam, and S. Morasca, “On the application
of measurement theory in software engineering,” Empirical
Software Engineering, vol. 1, no. 1, pp. 61-88, 1996.

F. P. Brooks, “No silver bullet: Essence and accidents of
software engineering,” IEEE Computer, vol. 20, no. 4, pp. 10—
19, 1987.

D. T. Campbell, “A phenomenology of the other one: Corri-
gible, hypothetical, and critial,” in Human action: Conceptual
and empirical issues, T. Mischel, Ed. New York: Academic
Press, 1969, pp. 41-69.



[29]

(30]

[31]

(32]

(33]
[34]

(35]

[36]

[37]

(38]

[39]
(40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

D. T. Campbell and D. W. Fiske, “Convergent and dis-
criminant validity by the multitrait-multimethod matrix,”
Psychological Bulletin, vol. 56, no. 2, pp. 81-105, 1959.

J. P. Campbell, “Modeling the performance prediction prob-
lem in industrial and organizational psychology,” in Hand-
book of industrial and organizational psychology, 2nd ed., M. D.
Dunnette and L. M. Hough, Eds. Palo Alto, CA: Consulting
Psychologists Press, 1990, vol. 1, pp. 687-732.

J. P. Campbell, M. B. Gasser, and F. L. Oswald, “The sub-
stantive nature of job performance variability,” in Individual
differences and behavior in organizations, K. R. Murphy, Ed. San
Francisco, CA: Jossey-Bass, 1996, pp. 258-299.

J. P. Campbell, R. A. McCloy, S. H. Oppler, and C. E. Sager, “A
theory of performance,” in Personnel selection in organizations,
N. Schmitt and W. C. Borman, Eds. San Francisco, CA:
Jossey-Bass, 1993, pp. 35-70.

J. B. Carroll, Human cognitive abilities: A survey of factor-analytic
studies. Cambridge: Cambridge University Press, 1993.

R. B. Cattell, Abilities: Their structure, growth, and action.
Boston, MD: Houghton-Mifflin, 1971/1987.

W. G. Chase and K. A. Ericsson, “Skill and working memory,”
The Psychology of Learning and Motivation, vol. 16, pp. 1-58,
1982.

C. Chatfield, “Model uncertainty, data mining and statistical
inference,” Journal of the Royal Statistical Society, Series A, vol.
158, no. 3, pp. 419-466, 1995.

M. A. Chilton and B. C. Hardgrave, “Assessing information
technology personnel: Towards a behavioral rating scale,”
DATA BASE for Advances in Information Systems, vol. 35, no. 3,
pp. 88-104, 2004.

S. Chinn, “A simple method for converting an odds ratio
to effect size for use in meta-analysis,” Statistics in Medicine,
vol. 19, no. 22, pp. 3127-3131, 2000.

A. Cockburn, “The Coffee Machine design problem: Part 1 &
2,” C/C++ Users Journal, May/June 1998.

B. P. Cohen, Developing sociological knowledge: Theory and
method, 2nd ed. Chicago: Nelson-Hall, 1989.

B. Curtis, “Measurement and experimentation in software
engineering,” Proceedings of the IEEE, vol. 68, no. 9, pp. 1144—
1157, 1980.

——, “Fifteen years of psychology in software engineering:
Individual differences and cognitive science,” in Proceedings of
the 7th International Conference on Software Engineering. 1EEE,
1984, pp. 97-106.

E. A. Dahl, M. Grotle, J. S. Benth, and B. Natvig, “Data
splitting as a countermeasure against hypothesis fishing:
With a case study of predictors for low back pain,” European
Journal of Epidemiology, vol. 23, no. 4, pp. 237-242, 2008.

S. Dekleva and D. Drehmer, “Measuring software engineer-
ing evolution: A Rasch calibration,” Information Systems Re-
search, vol. 8, no. 1, pp. 95-104, 1997.

T. DeMarco and T. Lister, Peopleware: Productive projects and
teams, 2nd ed. New York: Dorset House Publishing Com-
pany, 1999.

T. Dybd, “An instrument for measuring the key factors of
success in software process improvement,” Empirical Software
Engineering, vol. 5, no. 4, pp. 357-390, 2000.

T. Dyb4, V. B. Kampenes, and D. L. K. Sjeberg, “A systematic
review of statistical power in software engineering experi-
ments,” Information and Software Technology, vol. 48, no. 8, pp.
745-755, 2006.

T. Dybd, N. B. Moe, and E. Arisholm, “Measuring software
methodology usage: Challenges of conceptualization and op-
erationalization,” in Proceedings of the International Symposium
on Empirical Software Engineering. 1EEE, 2005, pp. 447-457.
T. Dyba, D. I. K. Sjeberg, and D. S. Cruzes, “What works
for whom, where, when, and why? On the role of context
in empirical software engineering,” in Proceedings of the In-
ternational Symposium on Empirical Software Engineering and
Measurement. ACM-IEEE, 2012, pp. 19-28.

J. R. Edwards and R. P. Bagozzi, “On the nature and direction
of relationships between constructs and measures,” Psycho-
logical Methods, vol. 5, no. 2, pp. 155-174, 2000.

S. E. Embretson, “The new rules of measurement,” Psycho-
logical Assessment, vol. 8, no. 4, pp. 341-349, 1996.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]
[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

21

K. A. Ericsson, “The acquisition of expert performance as
problem solving: Construction and modification of mediating
mechanisms through deliberate practice,” in The psychology
of problem solving, J. E. Davidson and R. ]. Sternberg, Eds.
Cambridge: Cambridge University Press, 2003, pp. 31-83.
K. A. Ericsson, N. Charness, P. J. Feltovich, and R. R. Hoff-
man, Eds., The Cambridge handbook of expertise and expert
performance. Cambridge: Cambridge University Press, 2006.
K. A. Ericsson, R. T. Krampe, and C. Tesch-Romer, “The
role of deliberate practice in the acquisition of expert per-
formance,” Psychological Review, vol. 100, no. 3, pp. 363-406,
1993.

K. A. Ericsson and J. Smith, “Prospects and limits of the
empirical study of expertise: An introduction,” in Towards
and general theory of expertise, K. A. Ericsson and J. Smith, Eds.
New York: Cambridge University Press, 1991, pp. 1-38.
H.-E. Eriksson and M. Penker, UML toolkit. New York: John
Wiley & Sons, 1997.

J. Feigenspan, C. Kastner, J. Liebig, , S. Apel, and S. Hanen-
berg, “Measuring programming experience,” in IEEE 20th
International Conference on Program Comprehension.  IEEE,
2012, pp. 73-82.

N. Fenton, “Software measurement: A necessary scientific
basis,” IEEE Transactions on Software Engineering, vol. 20, no. 3,
pp- 199206, 1994.

N. Fenton and B. Kitchenham, “Validating software mea-
sures,” Journal of Software Testing, Verification, and Reliability,
vol. 1, no. 2, pp. 27-42, 1991.

G. A. Ferguson, “On transfer and the abilities of man,”
Canadian Journal of Psychology, vol. 10, no. 3, pp. 121-131,
1956.

R. P. Feynman, The meaning of it all: Thoughts of a citizen-
scientist. New York: Basic Books, 1998.

P. M. Fitts and M. I. Posner, Human performance.
CA: Brooks/Cole, 1967.

A. E. Fleury, “Programming in Java: Student-constructed
rules,” ACM SIGCSE Bulletin, vol. 32, no. 1, pp. 197-201, 2000.
R. W. Floyd, “The paradigms of programming,” Communica-
tions of the ACM, vol. 22, no. 8, pp. 455-460, 1979.

R. Freedman, “Relationships between categories of test items
in a C++ CS1 course,” Journal of Computing Sciences in Colleges,
vol. 29, no. 2, pp. 26-32, 2013.

E. E. Grant and H. Sackman, “An exploratory investigation of
programmer performance under on-line and off-line condi-
tions,” IEEE Transactions on Human Factors in Electronics, vol.
HFE-8, no. 1, pp. 3348, 1967.

I. Hacking, The taming of chance.
University Press, 1990.

B. Hands, B. Sheridan, and D. Larkin, “Creating performance
categories from continuous motor skill data using a Rasch
measurement model,” Journal of Outcome Measurement, vol. 3,
no. 3, pp. 216-232, 1999.

J. E. Hannay, D. I. K. Sjeberg, and T. Dyba, “A systematic
review of theory use in software engineering experiments,”
IEEE Transactions on Software Engineering, vol. 33, no. 2, pp.
87-107, 2007.

S. M. Humphry and D. Andrich, “Understanding the unit
in the Rasch model,” Journal of Applied Measurement, vol. 9,
no. 3, pp. 249-264, 2008.

D. R. Jeffery and M. J. Lawrence, “An inter-organisational
comparison of programming productivity,” in Proceedings of
the 4th International Conference on Software Engineering. IEEE
Press, 1979, pp. 369-377.

V. B. Kampenes, T. Dyb3, J. E. Hannay, and D. L. K. Sjeberg,
“A systematic review of effect size in software engineering
experiments,” Information and Software Technology, vol. 49,
no. 11, pp. 1073-1086, 2007.

——, “A systematic review of quasi-experiments in software
engineering,” Information and Software Technology, vol. 51,
no. 1, pp. 71-82, 2009.

M. Kane, T. Crooks, and A. Cohen, “Validating measures
of performance,” Educational Measurement: Issues and Practice,
vol. 18, no. 2, pp. 5-17, 1999.

R. Kanfer and P. L. Ackerman, “Motivation and cognitive
abilities: An integrative/aptitude-treatment interaction ap-
proach to skill acquisition,” Journal of Applied Psychology,
vol. 74, no. 4, pp. 657-690, 1989.

Belmont,

Cambridge: Cambridge



(76]

[77]

[78]

[79]

(80]

[81]

[82]

(83]

(84]

(85]

[86]

(87]

(88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

A. Karahasanovi¢, U. N. Hinkel, D. I. K. Sjeberg, and
R. Thomas, “Comparing of feedback-collection and think-
aloud methods in program comprehension studies,” Be-
haviour & Information Technology, vol. 28, no. 2, pp. 139-164,
2009.

A. Karahasanovi¢, A. K. Levine, and R. C. Thomas, “Com-
prehension strategies and difficulties in maintaining object-
oriented systems: An explorative study,” Journal of Systems
and Software, vol. 80, no. 9, pp. 1541-1559, 2007.

A. Karahasanovi¢ and R. C. Thomas, “Difficulties experi-
enced by students in maintaining object-oriented systems: An
empirical study,” in Proceedings of the Australasian Computing
Education Conference. Australian Computer Society, 2007, pp.
81-87.

D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky, Foun-
dations of measurement. ~New York: Academic Press, 1971,
vol. 1.

K. Kvern, “Effects of expertise and strategies on program
comprehension in maintenance of object-oriented systems: A
controlled experiment with professional developers,” Mas-
ter’s thesis, Department of Informatics, University of Oslo,
2006.

H. E. Kyburg Jr., Theory and measurement.
Cambridge University Press, 1984.

P. C. Kyllonen and D. L. Stephens, “Cognitive abilities as
determinants of success in acquiring logic skill,” Learning and
individual differences, vol. 2, no. 2, pp. 129-160, 1990.

A. Kyngdon, “The Rasch model from the perspective of the
representational theory of measurement,” Theory & Psychol-
ogy, vol. 18, no. 1, pp. 89-109, 2008.

J. M. Linacre, “Sample size and item calibration stability,”
Rasch Measurement Transactions, vol. 7, no. 4, p. 328, 1994.

E. A. Locke, “Generalizing from laboratory to field: Ecological
validity or abstraction of essential elements?” in Generalizing
from laboratory to field setting: Research findings from industrial-
organizational psychology, organizational behavior, and human
resource management, E. A. Locke, Ed. Lexington, MA:
Lexington Books, 1986, pp. 3—42.

J. C. Loehlin, Latent variable models: An introduction to factor,
path, and structural equation analysis, 4th ed. Mahwah, NJ:
Lawrence Erlbaum, 2004.

R. D. Luce and J. W. Tukey, “Simultaneous conjoint measure-
ment: A new type of fundamental measurement,” Journal of
Mathematical Psychology, vol. 1, no. 1, pp. 1-27, 1964.

D. G. MacKay, “The problems of flexibility, fluency, and
speed-accuracy trade-off in skilled behavior,” Psychological
Review, vol. 89, no. 5, pp. 483-506, 1982.

J. McCall, “Quality factors,” in Encyclopedia of software engi-
neering, J. J. Marciniak, Ed. Wiley-Interscience, 1994, vol. 2,
pp- 958-969.

M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Ha-
gan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I. Utting, and
T. Wilusz, “A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students,”
ACM SIGCSE Bulletin, vol. 33, no. 4, pp. 125-140, 2001.

S. Messick, “Validity,” in Educational measurement, 3rd ed.,
R. L. Linn, Ed. New York: American Council on Educa-
tion/Macmillan, 1989, pp. 12-103.

——, “The interplay of evidence and consequences in the val-
idation of performance assessments,” Educational Researcher,
vol. 23, no. 2, pp. 13-23, 1994.

J. Michell, “Quantitative science and the definition of
measurement in psychology,” British Journal of Psychology,
vol. 88, no. 3, pp. 355-383, 1997.

A. Newell and P. Rosenbloom, “Mechanisms of skill acqui-
sition and the law of practice,” in Cognitive skills and their
acquisition, ]. R. Anderson, Ed. Hillsdale, NJ: Erlbaum, 1981,
pp- 1-56.

J. C. Nunnally and I. H. Bernstein, Psychometric theory, 3rd ed.
New York: McGraw-Hill, 1994.

T. H. Pear, “The nature of skill,” Nature, vol. 122, no. 3077,
pp. 611-614, 1928.

E. ]J. Pedhazur and L. P. Schmelkin, Measurement, design, and
analysis: An integrated approach.  Hillsdale, NJ: Lawrence
Erlbaum, 1991.

Cambridge:

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

22

P. Pirolli and M. Wilson, “A theory of the measurement
of knowledge content, access, and learning,” Psychological
Review, vol. 105, no. 1, pp. 58-82, 1998.
K. Popper, Conjectures and refutations.
Row, 1968.

L. Prechelt, “The 28:1 Grant/Sackman legend is misleading,
or: How large is interpersonal variation really?” University
of Karlsruhe, Tech. Rep. 18, 1999.

G. Rasch, Probabilistic models for some intelligence and achieve-
ment tests. Copenhagen: Danish Institute for Educational
Research, 1960.

P. N. Robillard, “The role of knowledge in software develop-
ment,” Communications of the ACM, vol. 42, no. 1, pp. 87-92,
1999.

R. J. Rummel, Applied factor analysis.
western University Press, 1970.

E. L. Schmidt and J. E. Hunter, “The validity and utility
of selection methods in personnel psychology: Practical and
theoretical implications of 85 years of research findings,”
Psychological Bulletin, vol. 124, no. 2, pp. 262274, 1998.

E. L. Schmidt, J. E. Hunter, and A. N. Outerbridge, “Impact
of job experience and ability on job knowledge, work sample
performance, and supervisory ratings of job performance,”
Journal of Applied Psychology, vol. 71, no. 3, pp. 432-439, 1986.
N. Schmitt, “Uses and abuses of coefficient alpha,” Psycho-
logical Assessment, vol. 8, no. 4, pp. 350-353, 1996.

J. W. Schooler, S. Ohlsson, and K. Brooks, “Thoughts beyond
words: When language overshadows insight,” Journal of Ex-
perimental Psychology: General, vol. 122, no. 2, pp. 166-183,
1993.

W. R. Shadish, T. D. Cook, and D. T. Campbell, Experimental
and quasi-experimental designs for generalized causal inference.
Boston: Houghton Mifflin, 2002.

R. J. Shavelson and N. M. Webb, Generalizability theory: A
primer. Thousand Oaks, CA: Sage Publications, 1991.

B. A. Sheil, “The psychological study of programming,” ACM
Computing Surveys, vol. 13, no. 1, pp. 101-120, 1981.

V. J. Shute, “Who is likely to acquire programming skills?”
Journal of Educational Computing Research, vol. 7, no. 1, pp.
1-24, 1991.

D. I. K. Sjeberg, B. Anda, E. Arisholm, T. Dyba, M. Jergensen,
A. Karahasanovi¢, E. F. Koren, and M. Voka¢, “Conducting
realistic experiments in software engineering,” in Proceedings
of the International Symposium Empirical Software Engineering,
2002, pp. 17-26.

D. L K. Sjeberg, T. Dybd, B. C. D. Anda, and J. E. Hannay,
“Building theories in software engineering,” in Guide to ad-
vanced empirical software engineering, F. Shull, J. Singer, and
D. L. K. Sjoberg, Eds. London: Springer-Verlag, 2008, pp.
312-336.

D. L K. Sjeberg, J. E. Hannay, O. Hansen, V. B. Kampenes,
A. Karahasanovic, N.-K. Liborg, and A. C. Rekdal, “A survey
of controlled experiments in software engineering,” IEEE
Transactions on Software Engineering, vol. 31, no. 9, pp. 733-
753, 2005.

D. I. K. Sjeberg, A. Yamashita, B. Anda, A. Mockus, and
T. Dyba, “Quantifying the effect of code smells on main-
tenance effort,” IEEE Transactions on Software Engineering,
vol. 39, no. 8, pp. 1144-1156, 2013.

S. S. Skiena and M. A. Revilla, Programming challenges: The
programming contest training manual. New York: Springer,
2003.

R. M. Smith, “The distributional properties of Rasch stan-
dardized residuals,” Educational and Psychological Measure-
ment, vol. 48, no. 3, pp. 657-667, 1988.

E. V. Smith Jr, “Detecting and evaluating the impact of
multidimensionality using item fit statistics and principal
component analysis of residuals,” Journal of Applied Measure-
ment, vol. 3, no. 2, pp. 205-231, 2002.

E. Soloway and K. Ehrlich, “Empirical studies of program-
ming knowledge,” IEEE Transactions on Software Engineering,
vol. SE-10, no. 5, pp. 595-609, 1984.

S. S. Stevens, “On the theory of scales of measurement,”
Science, vol. 103, no. 2684, pp. 677-680, 1946.
D. L. Streiner, Health measurement scales.
University Press, 1995.

New York: Harper &

Evanston, IL: North-

Oxford: Oxford



[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

A. Syang and N. B. Dale, “Computerized adaptive testing in
computer science: Assessing student programming abilities,”
ACM SIGCSE Bulletin, vol. 25, no. 1, pp. 53-56, 1993.

N. Unsworth, R. P. Heitz, J. C. Schrock, and R. W. Engle,
“An automated version of the operation span task,” Behavior
Research Methods, vol. 3, no. 37, pp. 498-505, 2005.

N. Unsworth, T. Redick, R. P. Heitz, ]. M. Broadway, and R. W.
Engle, “Complex working memory span tasks and higher-
order cognition: A latent-variable analysis of the relationship
between processing and storage,” Memory, vol. 17, no. 6, pp.
635-654, 2009.

M. Voka¢, W. Tichy, D. I. K. Sjeberg, E. Arisholm, and
M. Aldrin, “A controlled experiment comparing the main-
tainability of programs designed with and without design
patterns—a replication in a real programming environment,”
Empirical Software Engineering, vol. 9, no. 3, pp. 149-195, 2004.
D. A. Waldman and W. D. Spangler, “Putting together the
pieces: A closer look at the determinants of job performance,”
Human Performance, vol. 2, no. 1, pp. 29-59, 1989.

S. Wiedenbeck, “Novice/expert differences in programming
skills,” International Journal of Man-Machine Studies, vol. 23,
no. 4, pp. 383-390, 1985.

D. Wilking, D. Schilli, and S. Kowalewski, “Measuring the
human factor with the Rasch model,” in Balancing Agility
and Formalism in Software Engineering, ser. Lecture Notes in
Computer Science, B. Meyer, ]. R. Nawrocki, and B. Walter,
Eds. Berlin: Springer, 2008, vol. 5082, pp. 157-168.

M. Wilson, Constructing measures: An item response modeling
approach. Mahwah, NJ: Lawrence Erlbaum Associates, 2005.
B. D. Wright and G. N. Masters, Rating scale analysis.
Chicago: Mesa Press, 1979.

23



24

TABLE 7
Tasks sampled or constructed for the instrument
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TABLE 8
Task performance scores for the subjects in the final instrument

Task ID

Subject

11

12

10

6
1
1
0

Skill
-4.12
-3.89
-3.53
-3.53
-3.03
-2.70
-2.37
-2.37
-2.08
-2.08
-2.03
-1.82
-1.82
-1.82
-1.82
-1.82
-1.58
-1.58
-1.58
-1.58
-1.51
-1.36
-1.36
-1.36
-1.16
-0.97
-0.97
-0.97
-0.97
-0.97
-0.79
-0.79
-0.79
-0.61
-0.61
-0.61
-0.61
-0.45
-0.45
-0.28
-0.28
-0.12
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.20

0.20

0.25

0.35

0.35

0.35

0.35

0.35

0.51

0.51

0.68

Dataset

1D

C
C

1
1
1
1
2

C

1
1
1
1
2

13
14
15
16
17
18
19
20
21

1
1
1

C
v

1
2

1
2

1
1

22
23

24
25

2
2
2

26

27

28

3

29

30
31

32

33
34

35

2
2
2
2
2
2

36
37
38

A%

C
C
\Y%

39
40

41

1

42

43

44

45

46

47

48

49

50
51

52
53

54
55
56
57
58

(39}

60
61

1.01

63

1.58
1.58

64
65

Missing obsetvations ate denoted as —. C is the instrument construction and V the instrument validation data set; see
Section 3.6. Tasks ate sorted in increasing order of difficulty. Tasks 3, 4, 6, and 810 is the Easy subset desctibed in

Section 4.2; the remaining tasks is from the Difficult subset.



