Molecular Magnetic Properties

Trygve Helgaker

Centre for Theoretical and Computational Chemistry
Department of Chemistry, University of Oslo, Norway

The 12th Sostrup Summer School
Quantum Chemistry and Molecular Properties
July 1–13 2012
Magnetic perturbations

In atomic units, the molecular Hamiltonian is given by

\[H = H_0 + \sum_i A_i(r_i) \cdot p_i + \sum_i B_i(r_i) \cdot s_i - \sum_i \phi_i(r_i) + \frac{1}{2} \sum_i A_i^2(r_i) \]

- orbital paramagnetic
- spin paramagnetic
- diamagnetic

There are two kinds of magnetic perturbation operators:
- the paramagnetic operator is linear and may lower or raise the energy
- the diamagnetic operator is quadratic and always raises the energy

There are two kinds of paramagnetic operators:
- the orbital paramagnetic operator couples the field to the electron’s orbital motion
- the spin paramagnetic operator couples the field to the electron’s spin

In the study of magnetic properties, we are interested in two types of perturbations:
- uniform external magnetic field \(B \), with vector potential

\[A_{\text{ext}}(r) = \frac{1}{2} B \times r \quad \text{leads to Zeeman interactions} \]

- nuclear magnetic moments \(M_K \), with vector potential

\[A_{\text{nuc}}(r) = \alpha^2 \sum_K \frac{M_K \times r_K}{r_K^3} \quad \text{leads to hyperfine interactions} \]

where \(\alpha \approx 1/137 \) is the fine-structure constant
Part 1: Molecules in an external magnetic field
- Hamiltonian in an external magnetic field
- gauge transformations and London orbitals
- diamagnetism and paramagnetism
- induced currents

Part 2: Magnetic resonance parameters
- Zeeman and hyperfine operators
- magnetizabilities
- nuclear shielding constants
- indirect nuclear spin–spin coupling constants
The nonrelativistic electronic Hamiltonian (implied summation over electrons):

\[H = H_0 + A(r) \cdot p + B(r) \cdot s + \frac{1}{2} A(r)^2 \]

The vector potential of the uniform (static) fields \(B \) is given by:

\[B = \nabla \times A = \text{const} \Rightarrow A_0(r) = \frac{1}{2} B \times (r - O) = \frac{1}{2} B \times r_0 \]

note: the gauge origin \(O \) is arbitrary!

The orbital paramagnetic interaction:

\[A_0(r) \cdot p = \frac{1}{2} B \times (r - O) \cdot p = \frac{1}{2} B \cdot (r - O) \times p = \frac{1}{2} B \cdot L_0 \]

where we have introduced the angular momentum relative to the gauge origin:

\[L_0 = r_0 \times p \]

The diamagnetic interaction:

\[\frac{1}{2} A^2(B) = \frac{1}{8} (B \times r_0) \cdot (B \times r_0) = \frac{1}{8} \left[B^2 r_0^2 - (B \cdot r_0)^2 \right] \]

The electronic Hamiltonian in a uniform magnetic field depends on the gauge origin:

\[H = H_0 + \frac{1}{2} B \cdot L_0 + B \cdot s + \frac{1}{8} \left[B^2 r_0^2 - (B \cdot r_0)^2 \right] \]

a change of the origin is a gauge transformation
Gauge transformation of the Schrödinger equation

- What is the effect of a gauge transformation on the wave function?
- Consider a general **gauge transformation** for the electron (atomic units):

\[A' = A + \nabla f, \quad \phi' = \phi - \frac{\partial f}{\partial t} \]

- It can be shown this represents a **unitary transformation** of \(H - i \partial / \partial t \):

\[
\left(H' - i \frac{\partial}{\partial t} \right) = \exp \left(-i f \right) \left(H - i \frac{\partial}{\partial t} \right) \exp \left(i f \right)
\]

- In order that the Schrödinger equation is still satisfied

\[
\left(H' - i \frac{\partial}{\partial t} \right) \Psi' \Leftrightarrow \left(H - i \frac{\partial}{\partial t} \right) \Psi,
\]

the new wave function must undergo a **compensating unitary transformation**:

\[\Psi' = \exp \left(-i f \right) \Psi \]

- All **observable properties** such as the electron density are then **unaffected**:

\[
\rho' = (\Psi')^* \Psi' = [\Psi \exp(-i f)]^* [\exp(-i f) \Psi] = \Psi^* \Psi = \rho
\]
Gauge-origin transformations

- Different choices of **gauge origin** in the external vector potential
 \[A_0 (r) = \frac{1}{2} B \times (r - O) \]

are related by **gauge transformations**:

\[A_G (r) = A_0 (r) - A_0 (G) = A_0 (r) + \nabla f, \quad f (r) = -A_0 (G) \cdot r \]

- The exact wave function transforms accordingly and gives gauge-invariant results:

 \[
 \psi_G^{\text{exact}} = \exp [-i f (r)] \psi_0^{\text{exact}} = \exp [i A_0 (G) \cdot r] \psi_0^{\text{exact}} \quad \text{rapid oscillations}
 \]

- **Illustration**: \(H_2 \) on the \(z \) axis in a magnetic field \(B = 0.2 \text{ a.u.} \) in the \(y \) direction
 - **wave function** with gauge origin at \(O = (0, 0, 0) \) (left) and \(G = (100, 0, 0) \) (right)

The exact wave function transforms in the following manner:

\[\psi_G^{\text{exact}} = \exp\left[i\frac{1}{2}B \times (G - O) \cdot r\right] \psi_0^{\text{exact}} \]

- this behaviour cannot easily be modelled by standard atomic orbitals

Let us build this behaviour directly into the atomic orbitals:

\[\omega_{lm}(r_K, B, G) = \exp\left[i\frac{1}{2}B \times (G - K) \cdot r\right] \chi_{lm}(r_K) \]

- \(\chi_{lm}(r_K) \) is a normal atomic orbital centered at \(K \) and quantum numbers \(lm \)
- \(\omega_{lm}(r_K, B, G) \) is a field-dependent orbital at \(K \) with field \(B \) and gauge origin \(G \)

Each AO now responds in a physically sound manner to an applied magnetic field

- indeed, all AOs are now correct to first order in \(B \), for any gauge origin \(G \)
- the calculations become rigorously gauge-origin independent
- uniform (good) quality follows, independent of molecule size

These are the London orbitals after Fritz London (1937)

- also known as GIAOs (gauge-origin independent AOs or gauge-origin including AOs)

Questions:

- are London orbitals needed in atoms?
- why not attach the phase factor to the total wave function instead?
Let us consider the FCI dissociation of H_2 in a magnetic field.

- **Full lines**: London atomic orbitals
- **Dashed lines**: AOs with gauge origin between atoms
- **Dotted lines**: AOs with gauge origin on one of the atoms

Without London orbitals, the FCI method is not size extensive in magnetic fields.
Diamagnetism and paramagnetism

- The Hamiltonian has **paramagnetic** and **diamagnetic** parts:
 \[H = H_0 + \frac{1}{2} BL_z + Bs_z + \frac{1}{8} B^2(x^2 + y^2) \]
 \(\leftarrow \) linear and quadratic \(B \) terms

- Most closed-shell molecules are **diamagnetic**
 - their energy **increases** in an applied magnetic field
 - induced currents oppose the field according to Lenz's law

- Some closed-shell systems are **paramagnetic**
 - their energy **decreases** in a magnetic field
 - relaxation of the wave function lowers the energy

- RHF calculations of the field-dependence for two closed-shell systems:

 - left: benzene: **diamagnetic dependence** on an out-of-plane field, \(\xi < 0 \)
 - right: BH: **paramagnetic dependence** on a perpendicular field, \(\xi > 0 \)
Transition from para- to diamagnetism

- However, all closed-shell systems become diamagnetic in sufficiently strong fields:

- One atomic unit field strength is 2.2×10^5 T
 - highest fields created in laboratories is 10^{-3} a.u.
- The transition occurs at a characteristic stabilizing critical field strength B_c
 - $B_c \approx 0.1$ for C_{20} (ring conformation) above
 - B_c is inversely proportional to the area of the molecule normal to the field
 - B_c should be observable for $C_{72}H_{72}$
Closed-shell paramagnetic molecules

- Ground and (singlet) excited states of BH along the z axis

$$|zz\rangle = |s_B^2\sigma_{BH}^2p_z^2\rangle, \quad |zx\rangle = |s_B^2\sigma_{BH}^2p_zp_x\rangle, \quad |zy\rangle = |s_B^2\sigma_{BH}^2p_zp_y\rangle$$

- All expectation values increase quadratically in a perpendicular field in the y direction:

$$\langle n|H_0 + \frac{1}{2}BL_y + \frac{1}{8}B^2(x^2 + z^2)|n\rangle = E_n + \frac{1}{8}\langle n|x^2 + z^2|n\rangle B^2 = E_n - \frac{1}{2}\chi_n B^2$$

- The $|zz\rangle$ ground state is coupled to the low-lying $|zx\rangle$ excited state by this field:

$$\langle zz|H_0 + \frac{1}{2}BL_y + \frac{1}{8}B^2(x^2 + z^2)|xz\rangle = \frac{1}{2}\langle zz|L_y|xz\rangle B \neq 0$$

- A paramagnetic ground-state with a double minimum is generated by strong coupling
Induced electron rotation

- The magnetic field induces a rotation of the electrons about the field direction:
 - the amount of rotation is the expectation value of the kinetic angular-momentum operator
 \[\langle 0 | \Lambda | 0 \rangle = 2E'(B), \quad \Lambda = r \times \pi, \quad \pi = p + A \]

- Paramagnetic closed-shell molecules (here BH):

 ![Energy vs. Angular momentum graph]

 - there is no rotation at the field-free energy maximum: \(B = 0 \)
 - the onset of paramagnetic rotation (against the field) reduces the energy for \(B > 0 \)
 - the strongest paramagnetic rotation occurs at the energy inflexion point
 - the rotation comes to a halt at the stabilizing field strength: \(B = B_c \)
 - the onset of diamagnetic rotation (with the field) increases the energy for \(B > B_c \)

- Diamagnetic closed-shell molecules:
 - diamagnetic rotation always increases the energy according to Lenz’s law
Expansion of the molecular energy in a magnetic field

Expand the molecular electronic energy in the external magnetic induction B:

$$E(B) = E_0 + B^T E^{(10)} + \frac{1}{2} B^T E^{(20)} B + \cdots$$

The molecular magnetic moment at B is now given by

$$M_{\text{mol}}(B) \overset{\text{def}}{=} -\frac{dE(B)}{dB} = -E^{(10)} - E^{(20)} B + \cdots = M_{\text{perm}} + \xi B + \cdots,$$

where we have introduced the permanent magnetic moment and the magnetizability:

$$M_{\text{perm}} = -E^{(10)} = -\left.\frac{dE}{dB}\right|_{B=0} \quad \leftarrow \text{permanent magnetic moment}$$

describes the first-order change in the energy but vanishes for closed-shell systems

$$\xi = -E^{(20)} = -\left.\frac{d^2E}{dB^2}\right|_{B=0} \quad \leftarrow \text{molecular magnetizability}$$

describes the second-order energy and the first-order induced magnetic moment

First-order energies for imaginary and triplet perturbations vanish for closed-shell systems:

$$\langle \text{c.c.} \left| \hat{\Omega}_{\text{imaginary}} \right| \text{c.c.} \rangle \equiv \langle \text{c.c.} \left| \hat{\Omega}_{\text{triplet}} \right| \text{c.c.} \rangle \equiv 0$$

Such molecules therefore do not have a permanent magnetic moment.
The magnetizability

- The electronic Hamiltonian in a uniform magnetic field:

\[H = H_0 + \frac{1}{2} \mathbf{B} \cdot \mathbf{L}_0 + \mathbf{B} \cdot \mathbf{s} + \frac{1}{8} [B^2 r_0^2 - (\mathbf{B} \cdot \mathbf{r}_0)^2] \]

- The molecular magnetizability of a closed-shell system:

\[\xi = -\frac{\text{d}^2 E}{\text{d}B^2} = \frac{1}{4} \left\langle 0 | \mathbf{r}_0 \mathbf{r}_0^T - \left(\mathbf{r}_0^T \mathbf{r}_0 \right) I_3 | 0 \right\rangle + \frac{1}{2} \sum_n \frac{\langle 0 | \mathbf{L}_0 | n \rangle \langle n | \mathbf{L}_0^T | 0 \rangle}{E_n - E_0} \]

- The isotropic part of the diamagnetic term is given by:

\[\xi_{\text{dia}} = \frac{1}{3} \text{Tr} \xi_{\text{dia}} = -\frac{1}{6} \left\langle 0 | x_0^2 + y_0^2 + z_0^2 | 0 \right\rangle = -\frac{1}{6} \langle 0 | r_0^2 | 0 \rangle \]

- Only the orbital Zeeman interaction contributions to the paramagnetic term:

\[\mathbf{S} | 0 \rangle \equiv 0 \quad \leftarrow \text{singlet state} \]

- for \(^1S \) systems (closed-shell atoms), the paramagnetic term vanishes altogether:

\[\frac{1}{2} \mathbf{L}_0 | ^1S \rangle \equiv 0 \quad \leftarrow \text{gauge origin at nucleus} \]

- In most (but not all) systems the diamagnetic term dominates:

<table>
<thead>
<tr>
<th>(10^{-30} \text{ JT}^{-2})</th>
<th>RHF</th>
<th>exp.</th>
<th>diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>-232</td>
<td>-218</td>
<td>-6.4%</td>
</tr>
<tr>
<td>(\text{NH}_3)</td>
<td>-289</td>
<td>-271</td>
<td>-6.6%</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>-315</td>
<td>-289</td>
<td>-9.0%</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>-374</td>
<td>-349</td>
<td>-7.2%</td>
</tr>
<tr>
<td>(\text{PH}_3)</td>
<td>-441</td>
<td>-435</td>
<td>-1.4%</td>
</tr>
</tbody>
</table>
The H_2 molecule

- Earth magnetism is 10^{-10} a.u., whereas NMR uses 10^{-3} a.u.
- In stellar atmospheres, much stronger fields exist
- Polar plots of the singlet (left) and triplet (right) energy $E(R, \Theta)$ at $B = 1$ a.u.

- Bond distance R_e (pm), orientation Θ_e (°), diss. energy D_e, and rot. barrier ΔE_0 (kJ/mol)

<table>
<thead>
<tr>
<th></th>
<th>singlet</th>
<th></th>
<th>triplet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>R_e</td>
<td>θ_e</td>
<td>D_e</td>
<td>ΔE_0</td>
</tr>
<tr>
<td>0.0</td>
<td>74</td>
<td>459</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>66</td>
<td>0</td>
<td>594</td>
<td>83</td>
</tr>
</tbody>
</table>
Part 1: Molecules in an external magnetic field
 - Hamiltonian in an external magnetic field
 - gauge transformations and London orbitals
 - diamagnetism and paramagnetism
 - induced currents

Part 2: Magnetic resonance parameters
 - Zeeman and hyperfine operators
 - magnetizabilities
 - nuclear shielding constants
 - indirect nuclear spin–spin coupling constants
Magnetic perturbations

In atomic units, the molecular Hamiltonian is given by

\[H = H_0 + \sum_i A_i(r_i) \cdot p_i + \sum_i B_i(r_i) \cdot s_i - \sum_i \phi_i(r_i) + \frac{1}{2} \sum_i A_i^2(r_i) \]

- orbital paramagnetic
- spin paramagnetic
- diamagnetic

There are two kinds of magnetic perturbation operators:

- the paramagnetic operator is linear and may lower or raise the energy
- the diamagnetic operator is quadratic and always raises the energy

There are two kinds of paramagnetic operators:

- the orbital paramagnetic operator couples the field to the electron’s orbital motion
- the spin paramagnetic operator couples the field to the electron’s spin

In the study of magnetic properties, we are interested in two types of perturbations:

- uniform external magnetic field \(B \), with vector potential
 \[A_{\text{ext}}(r) = \frac{1}{2} B \times r \quad \text{leads to Zeeman interactions} \]

- nuclear magnetic moments \(M_K \), with vector potential
 \[A_{\text{nuc}}(r) = \alpha^2 \sum_K \frac{M_K \times r_K}{r_K^3} \quad \text{leads to hyperfine interactions} \]

where \(\alpha \approx 1/137 \) is the fine-structure constant
Perturbation theory

- **The nonrelativistic electronic Hamiltonian:**
 \[H = H_0 + H^{(1)} + H^{(2)} = H_0 + A(r) \cdot p + B(r) \cdot s + \frac{1}{2} A(r)^2, \quad \mathbf{B}(r) = \nabla \times A(r) \]

- **Second-order Rayleigh–Schrödinger perturbation theory:**
 \[
 E^{(1)} = \langle 0 | A \cdot p + B \cdot s | 0 \rangle \\
 E^{(2)} = \frac{1}{2} \langle 0 | A^2 | 0 \rangle - \sum_n \frac{\langle 0 | A \cdot p + B \cdot s | n \rangle \langle n | A \cdot p + B \cdot s | 0 \rangle}{E_n - E_0}
 \]

- **Zeeman interactions** with uniform external field:
 \[A(r) = \frac{1}{2} \mathbf{B} \times \mathbf{r}_0 \quad \Rightarrow \quad H^{(1)}_Z = \frac{1}{2} \mathbf{B} \cdot \mathbf{L}_0 + \mathbf{B} \cdot \mathbf{s} \]

- **Hyperfine interactions** with nuclear magnetic moments \(10^{-8}\) a.u.
 \[A_K(r) = \alpha^2 \frac{\mathbf{M}_K \times \mathbf{r}_K}{r_K^3} \quad \Rightarrow \quad H^{(1)}_{\text{hf}} = \alpha^2 \frac{\mathbf{M}_K \cdot \mathbf{L}_K}{r_K^3} \]

 - **paramagnetic spin–orbit (PSO)**
 - **Fermi contact (FC)**
 - **spin–dipole (SD)**
Zeeman and hyperfine interactions
Taylor expansion of the energy

- Expand the energy in the presence of an external magnetic field \(B \) and nuclear magnetic moments \(M_K \) around zero field and zero moments:

\[
E (B, M) = E_0 + B^T E^{(10)} + \sum_K M_K^T E^{(01)}_K \\
+ \frac{1}{2} B^T E^{(20)} B + \frac{1}{2} \sum_K B^T E^{(11)}_K M_K + \frac{1}{2} \sum_{KL} M_K^T E^{(02)}_{KL} M_L + \cdots
\]

- **First-order terms** vanish for closed-shell systems because of symmetry
 - they shall be considered only briefly here

- **Second-order terms** are important for many molecular properties
 - magnetizabilities
 - nuclear shieldings constants of NMR
 - nuclear spin–spin coupling constants of NMR
 - electronic g tensors of EPR (not dealt with here)

- **Higher-order terms** are negligible since the perturbations are tiny:
 1) the magnetic induction \(B \) is weak \((\approx 10^{-4} \text{ a.u.})\)
 2) the nuclear magnetic moments \(M_K \) couple weakly \((\mu_0\mu_N \approx 10^{-8} \text{ a.u.})\)
First-order molecular properties

- The first-order properties are expectation values of $H^{(1)}$

- Permanent magnetic moment

$$
M = \langle 0 \left| H^{(1)}_Z \right| 0 \rangle = \langle 0 \left| \frac{1}{2} L_0 + s \right| 0 \rangle
$$

- permanent magnetic moment dominates the magnetism of molecules
- the molecule reorients itself and enters the field
- such molecules are therefore paramagnetic

- Hyperfine coupling constants

$$
A_K = \langle 0 \left| H^{(1)}_{hf} \right| 0 \rangle = \frac{8\pi\alpha^2}{3} \langle 0 \left| \delta(\mathbf{r}_K)s \right| 0 \rangle \cdot \mathbf{M}_K +
$$

- measure spin density at the nucleus
- important in electron paramagnetic resonance (EPR)
- recall: there are three hyperfine mechanisms: FC, SD and PSO

$$
H^{(1)}_{hf} = \frac{8\pi\alpha^2}{3} \delta(\mathbf{r}_K) \mathbf{M}_K \cdot \mathbf{s} + \alpha^2 \frac{3(\mathbf{s} \cdot \mathbf{r}_K)(\mathbf{r}_K \cdot \mathbf{M}_K) - (\mathbf{M}_K \cdot \mathbf{s})r_K^2}{r_K^5} + \alpha^2 \frac{\mathbf{M}_K \cdot \mathbf{L}_K}{r_K^3}
$$

- Note: there are no first-order Zeeman or hyperfine couplings for closed-shell molecules

$$
\langle \text{c.c.} \left| \hat{\Omega}_{\text{imaginary}} \right| \text{c.c.} \rangle \equiv \langle \text{c.c.} \left| \hat{\Omega}_{\text{triplet}} \right| \text{c.c.} \rangle \equiv 0
$$
Consider a molecule in an external magnetic field B along the z axis and with nuclear spins I_K related to the nuclear magnetic moments M_K as:

$$M_K = \gamma_K \hbar I_K \approx 10^{-4} \text{ a.u.}$$

where γ_K is the magnetogyric ratio of the nucleus.

Assuming free molecular rotation, the nuclear magnetic energy levels can be reproduced by the following high-resolution NMR spin Hamiltonian:

$$H_{\text{NMR}} = -\sum_K \gamma_K \hbar (1 - \sigma_K) B I_K z + \sum_{K>L} \gamma_K \gamma_L \hbar^2 K_{KL} I_K \cdot I_L$$

where we have introduced

- the nuclear shielding constants σ_K
- the (reduced) indirect nuclear spin–spin coupling constants K_{KL}

This is an effective nuclear spin Hamiltonian:

- it reproduces NMR spectra without considering the electrons explicitly
- the spin parameters σ_K and K_{KL} are adjusted to fit the observed spectra
- we shall consider their evaluation from molecular electronic-structure theory
Simulated 200 MHz NMR spectra of vinyllithium $^{12}\text{C}_2\text{H}_3^6\text{Li}$

- Experiment
- RHF
- MCSCF
- B3LYP
Expansion of closed-shell energy in an external field \mathbf{B} and nuclear magnetic moments \mathbf{M}_K:

$$ E(\mathbf{B}, \mathbf{M}) = E_0 + \frac{1}{2} \mathbf{B}^T \mathbf{E}^{(20)} \mathbf{B} + \frac{1}{2} \sum_K \mathbf{B}^T \mathbf{E}_K^{(11)} \mathbf{M}_K + \frac{1}{2} \sum_{KL} \mathbf{M}_K^T \mathbf{E}_{KL}^{(02)} \mathbf{M}_L + \cdots $$

Here $\mathbf{E}_K^{(11)}$ describes the coupling between the applied field and the nuclear moments:

- in the absence of electrons (i.e., in vacuum), this coupling is identical to $-I_3$:

$$ H_{Z}^{\text{nuc}} = -\mathbf{B} \cdot \sum_K \mathbf{M}_K \quad \leftarrow \text{the purely nuclear Zeeman interaction} $$

- in the presence of electrons (i.e., in a molecule), the coupling is modified slightly:

$$ E_K^{(11)} = -I_3 + \sigma_K \quad \leftarrow \text{the nuclear shielding tensor} $$

Shielding constants arise from a hyperfine interaction between the electrons and the nuclei

- they are of the order of $\alpha^2 \approx 5 \cdot 10^{-5}$ and are measured in ppm

The nuclear Zeeman interaction does not enter the electronic problem

- compare with the nuclear–nuclear Coulomb repulsion
Zeeman and hyperfine interactions

Diagram:

- Zeeman
- Hyperfine

Equations and symbols:

- $B \cdot \hat{s}$
- $\frac{1}{r^2}$
- $\frac{Z_K Z_L}{R_{KL}}$
- M_K
- Z_K
- Z_L
- M_L
- $\vec{m} = -\hat{s}$
- $\vec{m} = -\hat{s}$
- PSO
- $\frac{M_K \cdot \vec{b}_K}{\Gamma_K}$

Notations:

- SO
- FC + SD

Context:

- 12th Sostrup Summer School (2012)
- Trygve Helgaker (CTCC, University of Oslo)
- Molecular Magnetic Properties
Ramsey’s expression for the nuclear shielding tensors

Ramsey’s expression for nuclear shielding tensors of a closed-shell system:

\[
\sigma_K = \frac{d^2E_{el}}{dB dM_K} = \left\langle 0 \left| \frac{\partial^2 H}{\partial B \partial M_K} \right| 0 \right\rangle - 2 \sum_n \frac{\left\langle 0 \left| \frac{\partial H}{\partial B} \right| n \right\rangle \left\langle n \left| \frac{\partial H}{\partial M_K} \right| 0 \right\rangle}{E_n - E_0}
\]

\[
= \frac{\alpha^2}{2} \left\langle 0 \left| r_0^T r_K l_3 - r_0 r_K^T \right| 0 \right\rangle - \alpha^2 \sum_n \frac{\left\langle 0 \left| L_0 \right| n \right\rangle \left\langle n \left| r_K^{-3} L_K^T \right| 0 \right\rangle}{E_n - E_0}
\]

- The (usually) dominant **diamagnetic term** arises from differentiation of the operator:

\[
A(B) \cdot A(M_K) = \frac{1}{2} \alpha^2 r_K^{-3} (B \times r_0) \cdot (M_K \times r_K)
\]

- As for the magnetizability, there is no spin contribution for singlet states:

\[
S |0\rangle \equiv 0 \quad \leftarrow \text{singlet state}
\]

- For \(^1S\) systems (closed-shell atoms), the **paramagnetic term** vanishes completely and the shielding is given by (assuming gauge origin at the nucleus):

\[
\sigma_{\text{Lamb}} = \frac{1}{3} \alpha^2 \left\langle 1S \left| r_K^{-1} \right| 1S \right\rangle \quad \leftarrow \text{Lamb formula}
\]
Benchmark calculations of BH shieldings (ppm)

<table>
<thead>
<tr>
<th>Method</th>
<th>$\sigma^{(11\text{B})}$</th>
<th>$\Delta\sigma^{(11\text{B})}$</th>
<th>$\sigma^{(1\text{H})}$</th>
<th>$\Delta\sigma^{(1\text{H})}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>-261.3</td>
<td>690.1</td>
<td>24.21</td>
<td>14.15</td>
</tr>
<tr>
<td>MP2</td>
<td>-220.7</td>
<td>629.9</td>
<td>24.12</td>
<td>14.24</td>
</tr>
<tr>
<td>CCSD</td>
<td>-166.6</td>
<td>549.4</td>
<td>24.74</td>
<td>13.53</td>
</tr>
<tr>
<td>CCSD(T)</td>
<td>-171.5</td>
<td>555.2</td>
<td>24.62</td>
<td>13.69</td>
</tr>
<tr>
<td>CCSDT</td>
<td>-171.8</td>
<td>557.3</td>
<td>24.59</td>
<td>13.72</td>
</tr>
<tr>
<td>CCSDTQ</td>
<td>-170.1</td>
<td>554.7</td>
<td>24.60</td>
<td>13.70</td>
</tr>
<tr>
<td>CISD</td>
<td>-182.4</td>
<td>572.9</td>
<td>24.49</td>
<td>13.87</td>
</tr>
<tr>
<td>CISDT</td>
<td>-191.7</td>
<td>587.0</td>
<td>24.35</td>
<td>14.06</td>
</tr>
<tr>
<td>CISDTQ</td>
<td>-170.2</td>
<td>554.9</td>
<td>24.60</td>
<td>13.70</td>
</tr>
<tr>
<td>FCI</td>
<td>-170.1</td>
<td>554.7</td>
<td>24.60</td>
<td>13.70</td>
</tr>
</tbody>
</table>

- TZP+ basis, $R_{\text{BH}} = 123.24$ pm, all electrons correlated
<table>
<thead>
<tr>
<th></th>
<th>HF</th>
<th>CAS</th>
<th>MP2</th>
<th>CCSD</th>
<th>CCSD(T)</th>
<th>exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>413.6</td>
<td>419.6</td>
<td>424.2</td>
<td>418.1</td>
<td>418.6</td>
<td>410 ± 6 (300K)</td>
</tr>
<tr>
<td>H</td>
<td>28.4</td>
<td>28.5</td>
<td>28.9</td>
<td>29.1</td>
<td>29.2</td>
<td>28.5 ± 0.2 (300K)</td>
</tr>
<tr>
<td>H₂O</td>
<td>328.1</td>
<td>335.3</td>
<td>346.1</td>
<td>336.9</td>
<td>337.9</td>
<td>323.6 ± 6 (300K)</td>
</tr>
<tr>
<td>H</td>
<td>30.7</td>
<td>30.2</td>
<td>30.7</td>
<td>30.9</td>
<td>30.9</td>
<td>30.05 ± 0.02</td>
</tr>
<tr>
<td>NH₃</td>
<td>262.3</td>
<td>269.6</td>
<td>276.5</td>
<td>269.7</td>
<td>270.7</td>
<td>264.5</td>
</tr>
<tr>
<td>H</td>
<td>31.7</td>
<td>31.0</td>
<td>31.4</td>
<td>31.6</td>
<td>31.6</td>
<td>31.2 ± 1.0</td>
</tr>
<tr>
<td>CH₄</td>
<td>194.8</td>
<td>200.4</td>
<td>201.0</td>
<td>198.7</td>
<td>198.9</td>
<td>198.7</td>
</tr>
<tr>
<td>H</td>
<td>31.7</td>
<td>31.2</td>
<td>31.4</td>
<td>31.5</td>
<td>31.6</td>
<td>30.61</td>
</tr>
<tr>
<td>F₂</td>
<td>−167.9</td>
<td>−136.6</td>
<td>−170.0</td>
<td>−171.1</td>
<td>−186.5</td>
<td>−192.8</td>
</tr>
<tr>
<td>N₂</td>
<td>−112.4</td>
<td>−53.0</td>
<td>−41.6</td>
<td>−63.9</td>
<td>−58.1</td>
<td>−61.6 ± 0.2 (300K)</td>
</tr>
<tr>
<td>CO</td>
<td>−25.5</td>
<td>8.2</td>
<td>10.6</td>
<td>0.8</td>
<td>5.6</td>
<td>3.0 ± 0.9 (eq)</td>
</tr>
<tr>
<td>O</td>
<td>−87.7</td>
<td>−38.9</td>
<td>−46.5</td>
<td>−56.0</td>
<td>−52.9</td>
<td>−56.8 ± 6 (eq)</td>
</tr>
<tr>
<td>mean</td>
<td>−11</td>
<td>6</td>
<td>5</td>
<td>−0.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>mean abs</td>
<td>14</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

For references and details, see *Chem. Rev.* **99** (1999) 293.

- for exp. CO and H₂O values, see Wasylishen and Bryce, *JCP* **117** (2002) 10061
Kohn–Sham shielding constants (ppm)

<table>
<thead>
<tr>
<th></th>
<th>HF</th>
<th>LDA</th>
<th>BLYP</th>
<th>B3LYP</th>
<th>KT2</th>
<th>CCSD(T)</th>
<th>exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>F</td>
<td>413.6</td>
<td>416.2</td>
<td>401.0</td>
<td>408.1</td>
<td>411.4</td>
<td>418.6</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>28.4</td>
<td>28.5</td>
<td>28.9</td>
<td>29.1</td>
<td>29.2</td>
<td>28.5 ± 0.2</td>
</tr>
<tr>
<td>H₂O</td>
<td>O</td>
<td>328.1</td>
<td>334.8</td>
<td>318.2</td>
<td>325.0</td>
<td>329.5</td>
<td>337.9</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>30.7</td>
<td>30.2</td>
<td>30.7</td>
<td>30.9</td>
<td>30.9</td>
<td>30.05 ± 0.02</td>
</tr>
<tr>
<td>NH₃</td>
<td>N</td>
<td>262.3</td>
<td>266.3</td>
<td>254.6</td>
<td>259.2</td>
<td>264.6</td>
<td>270.7</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>31.7</td>
<td>31.0</td>
<td>31.4</td>
<td>31.6</td>
<td>31.6</td>
<td>31.2 ± 1.0</td>
</tr>
<tr>
<td>CH₄</td>
<td>C</td>
<td>194.8</td>
<td>193.1</td>
<td>184.2</td>
<td>188.1</td>
<td>195.1</td>
<td>198.9</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>31.7</td>
<td>31.2</td>
<td>31.4</td>
<td>31.5</td>
<td>31.6</td>
<td>30.61</td>
</tr>
<tr>
<td>F₂</td>
<td>F</td>
<td>−167.9</td>
<td>−284.2</td>
<td>−336.7</td>
<td>−208.3</td>
<td>−211.0</td>
<td>−186.5</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>−112.4</td>
<td>−91.4</td>
<td>−89.8</td>
<td>−86.4</td>
<td>−59.7</td>
<td>−58.1</td>
</tr>
<tr>
<td>CO</td>
<td>C</td>
<td>−25.5</td>
<td>−20.3</td>
<td>−19.3</td>
<td>−17.5</td>
<td>7.4</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>−87.7</td>
<td>−87.5</td>
<td>−85.4</td>
<td>−78.1</td>
<td>−57.1</td>
<td>−52.9</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>−11</td>
<td>−17</td>
<td>−26</td>
<td>−12</td>
<td>−7</td>
<td>0</td>
</tr>
<tr>
<td>mean abs</td>
<td>14</td>
<td>17</td>
<td>26</td>
<td>12</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Direct and indirect nuclear spin–spin couplings

The last term in the expansion of the molecular electronic energy in B and M_K

$$E (B, M) = E_0 + \frac{1}{2} B^T E^{(20)} B + \frac{1}{2} \sum_K B^T E^{(11)}_K M_K + \frac{1}{2} \sum_{KL} M_K^T E^{(02)}_{KL} M_L + \cdots$$

describes the coupling of the nuclear magnetic moments in the presence of electrons.

There are two distinct contributions to the coupling: the direct and indirect contributions

$$E^{(02)}_{KL} = D_{KL} + K_{KL}$$

The direct coupling occurs by a classical dipole mechanism:

$$D_{KL} = \alpha^2 R_{KL}^5 \left(R_{KL}^2 I_3 - 3 R_{KL} R_{KL}^T \right) \approx 10^{-12} \text{ a.u.}$$

- it is anisotropic and vanishes in isotropic media such as gases and liquids

The indirect coupling arises from hyperfine interactions with the surrounding electrons:

- it is exceedingly small: $K_{KL} \approx 10^{-16} \text{ a.u.} \approx 1 \text{ Hz}$
- it does not vanish in isotropic media
- it gives the fine structure of high-resolution NMR spectra

Experimentalists usually work in terms of the (nonreduced) spin–spin couplings

$$J_{KL} = h \frac{\gamma_K}{2\pi} \frac{\gamma_L}{2\pi} K_{KL}$$ ← isotope dependent
Zeeman and hyperfine interactions

\[\mathbf{B} \cdot \mathbf{s} \]

\[\mathbf{m} = -\mathbf{s} \]

\[\frac{1}{\mu_2} \]

\[SS, SO, OO \]

\[\mathbf{FC} + \mathbf{SD} \]

\[\frac{Z_k Z_L}{R_{KL}} \]

\[\mathbf{M}_k, \mathbf{M}_L \]

\[\mathbf{P}_k, \mathbf{P}_L \]

\[\mathbf{s}_0 \]
Ramsey's expression for indirect nuclear spin–spin coupling tensors

» The indirect nuclear spin–spin coupling tensors of a closed-shell system are given by:

\[K_{KL} = \frac{d^2 E_{el}}{dM_K dM_L} = \left\langle 0 \left| \frac{\partial^2 H}{\partial M_K \partial M_L} \right| 0 \right\rangle - 2 \sum_n \frac{\left\langle 0 \left| \frac{\partial H}{\partial M_K} \right| n \right\rangle \left\langle n \left| \frac{\partial H}{\partial M_L} \right| 0 \right\rangle}{E_n - E_0} \]

» Carrying out the differentiation of the Hamiltonian, we obtain Ramsey's expression:

\[K_{KL} = \alpha^4 \left[\left\langle 0 \left| \frac{\partial^4 H}{\partial M_K \partial M_L \partial M_L} \right| 0 \right\rangle - 2 \sum_n \frac{\left\langle 0 \left| \frac{\partial^3 H}{\partial M_K \partial M_L^2} \right| n \right\rangle \left\langle n \left| \frac{\partial H}{\partial M_L} \right| 0 \right\rangle}{E_n - E_0} \right] \]

- **Diamagnetic spin–orbit (DSO)**

\[\left\langle 0 \left| \frac{\partial^4 H}{\partial M_K \partial M_L \partial M_L} \right| 0 \right\rangle \]

- **Paramagnetic spin–orbit (PSO)**

\[\left\langle 0 \left| \frac{\partial^3 H}{\partial M_K \partial M_L^2} \right| n \right\rangle \]

\[\sum_n \frac{\left\langle n \left| \frac{\partial H}{\partial M_L} \right| 0 \right\rangle}{E_n - E_0} \]

\[\sum_n \frac{\left\langle n \left| \frac{\partial H}{\partial M_L} \right| 0 \right\rangle}{E_n - E_0} \]

- **Fermi contact (FC) and spin–dipole (SD)**

\[\left\langle 0 \left| \frac{\partial^4 H}{\partial M_K \partial M_L \partial M_L} \right| 0 \right\rangle \]

\[\sum_n \frac{\left\langle n \left| \frac{\partial H}{\partial M_L} \right| 0 \right\rangle}{E_n - E_0} \]

» the isotropic FC/FC term often dominates short-range coupling constants

» the FC/SD and SD/FC terms often dominate the anisotropic part of \(K_{KL} \)

» the orbital contributions (especially DSO) are usually but not invariably small

» for large internuclear separations, the DSO and PSO contributions cancel
Relative importance of the contributions to spin–spin coupling constants

- The isotropic indirect spin–spin coupling constants can be uniquely decomposed as:

\[J_{KL} = J_{DSO}^{KL} + J_{PSO}^{KL} + J_{FC}^{KL} + J_{SD}^{KL} \]

- The spin–spin coupling constants are often dominated by the FC term.
- Since the FC term is relatively easy to calculate, it is tempting to ignore the other terms.
- However, none of the contributions can be \emph{a priori} neglected (N\textsubscript{2} and CO)!

![Diagram showing the contribution of different terms to the spin–spin coupling constants for various molecules.](image-url)
Restricted Hartree–Fock theory and triplet instabilities

- The correct description of triplet excitations is important for spin–spin coupling constants.
- In restricted Hartree–Fock (RHF) theory, triplet excitations are often poorly described:
 - upon H_2 dissociation, RHF does not describe the singlet ground state correctly.
 - but the lowest triplet state dissociates correctly, leading to triplet instabilities.
 - more generally, the lowest RHF triplet excitations are underestimated.

Near such instabilities, the RHF description of spin interactions becomes unphysical.

<table>
<thead>
<tr>
<th>C_2H_4/Hz</th>
<th>$^1J_{CC}$</th>
<th>$^1J_{CH}$</th>
<th>$^2J_{CH}$</th>
<th>$^2J_{HH}$</th>
<th>$^3J_{cis}$</th>
<th>$^3J_{trans}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp.</td>
<td>68</td>
<td>156</td>
<td>-2</td>
<td>2</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>RHF</td>
<td>1270</td>
<td>755</td>
<td>-572</td>
<td>-344</td>
<td>360</td>
<td>400</td>
</tr>
<tr>
<td>CAS</td>
<td>76</td>
<td>156</td>
<td>-6</td>
<td>-2</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>B3LYP</td>
<td>75</td>
<td>165</td>
<td>-1</td>
<td>3</td>
<td>14</td>
<td>21</td>
</tr>
</tbody>
</table>
The calculation of spin–spin coupling constants is a challenging task. Spin–spin coupling constants depend on many coupling mechanisms:
- 3 singlet response equations and 7 triplet equations for each nucleus
- for shieldings, only 3 equations are required, for molecules of all sizes

Spin–spin coupling constants require a proper description of static correlation:
- the Hartree–Fock model fails abysmally
- MCSCF theory treats static correlation properly but is expensive

Spin–spin couplings are sensitive to the basis set:
- the FC contribution requires an accurate electron density at the nuclei
- steep s functions must be included in the basis

Spin–spin couplings are sensitive to the molecular geometry:
- equilibrium structures must be chosen carefully
- large vibrational corrections (often 5%–10%)

For heavy elements, a relativistic treatment may be necessary.
However, there is no need for London orbitals since no external magnetic field is involved.
Reduced spin–spin coupling constants by wave-function theory

<table>
<thead>
<tr>
<th></th>
<th>RHF</th>
<th>CAS</th>
<th>RAS</th>
<th>SOPPA</th>
<th>CCSD</th>
<th>CC3</th>
<th>exp*</th>
<th>vib</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>$^{1}K_{HF}$</td>
<td>59.2</td>
<td>48.0</td>
<td>48.1</td>
<td>46.8</td>
<td>46.1</td>
<td>46.1</td>
<td>47.6</td>
</tr>
<tr>
<td>CO</td>
<td>$^{1}K_{CO}$</td>
<td>13.4</td>
<td>−28.1</td>
<td>−39.3</td>
<td>−45.4</td>
<td>−38.3</td>
<td>−37.3</td>
<td>−38.3</td>
</tr>
<tr>
<td>N₂</td>
<td>$^{1}K_{NN}$</td>
<td>175.0</td>
<td>−5.7</td>
<td>−9.1</td>
<td>−23.9</td>
<td>−20.4</td>
<td>−20.4</td>
<td>−19.3</td>
</tr>
<tr>
<td>H₂O</td>
<td>$^{1}K_{OH}$</td>
<td>63.7</td>
<td>51.5</td>
<td>47.1</td>
<td>49.5</td>
<td>48.4</td>
<td>48.2</td>
<td>52.8</td>
</tr>
<tr>
<td></td>
<td>$^{2}K_{HH}$</td>
<td>−1.9</td>
<td>−0.8</td>
<td>−0.6</td>
<td>−0.7</td>
<td>−0.6</td>
<td>−0.6</td>
<td>−0.7</td>
</tr>
<tr>
<td></td>
<td>$^{1}K_{NH}$</td>
<td>61.4</td>
<td>48.7</td>
<td>50.2</td>
<td>51.0</td>
<td>48.1</td>
<td></td>
<td>50.8</td>
</tr>
<tr>
<td></td>
<td>$^{2}K_{HH}$</td>
<td>−1.9</td>
<td>−0.8</td>
<td>−0.9</td>
<td>−0.9</td>
<td>−1.0</td>
<td></td>
<td>−0.9</td>
</tr>
<tr>
<td>NH₃</td>
<td>$^{1}K_{CC}$</td>
<td>1672.0</td>
<td>99.6</td>
<td>90.5</td>
<td>92.5</td>
<td>92.3</td>
<td></td>
<td>87.8</td>
</tr>
<tr>
<td></td>
<td>$^{1}K_{CH}$</td>
<td>249.7</td>
<td>51.5</td>
<td>50.2</td>
<td>52.0</td>
<td>50.7</td>
<td></td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>$^{2}K_{CH}$</td>
<td>−189.3</td>
<td>−1.9</td>
<td>−0.5</td>
<td>−1.0</td>
<td>−1.0</td>
<td></td>
<td>−0.4</td>
</tr>
<tr>
<td></td>
<td>$^{2}K_{HH}$</td>
<td>−28.7</td>
<td>−0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>C₂H₄</td>
<td>$^{3}K_{cis}$</td>
<td>30.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>$^{3}K_{tns}$</td>
<td>33.3</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>$</td>
<td>\Delta</td>
<td>$</td>
<td>abs.</td>
<td>180.3</td>
<td>3.3</td>
<td>1.6</td>
<td>1.8</td>
<td>1.2</td>
</tr>
<tr>
<td>%</td>
<td>5709</td>
<td>60</td>
<td>14</td>
<td>24</td>
<td>23</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* at R_e

SOPPA: second-order polarization-propagator approximation
Reduced spin–spin coupling constants by density-functional theory

<table>
<thead>
<tr>
<th></th>
<th>LDA</th>
<th>BLYP</th>
<th>B3LYP</th>
<th>PBE</th>
<th>B97-3</th>
<th>RAS</th>
<th>exp*</th>
<th>vib</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>$1K_{HF}$</td>
<td>35.0</td>
<td>34.5</td>
<td>38.9</td>
<td>32.6</td>
<td>40.5</td>
<td>48.1</td>
<td>47.6</td>
</tr>
<tr>
<td>CO</td>
<td>$1K_{CO}$</td>
<td>−65.4</td>
<td>−55.7</td>
<td>−47.4</td>
<td>−62.0</td>
<td>−43.4</td>
<td>−39.3</td>
<td>−38.3</td>
</tr>
<tr>
<td>N$_2$</td>
<td>$1K_{NN}$</td>
<td>32.9</td>
<td>−46.6</td>
<td>−20.4</td>
<td>−43.2</td>
<td>−12.5</td>
<td>−9.1</td>
<td>−19.3</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>$1K_{OH}$</td>
<td>40.3</td>
<td>44.6</td>
<td>47.2</td>
<td>41.2</td>
<td>46.3</td>
<td>47.1</td>
<td>52.8</td>
</tr>
<tr>
<td></td>
<td>$2K_{HH}$</td>
<td>−0.3</td>
<td>−0.9</td>
<td>−0.7</td>
<td>−0.5</td>
<td>−0.6</td>
<td>−0.6</td>
<td>−0.7</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>$1K_{NH}$</td>
<td>41.0</td>
<td>49.6</td>
<td>52.3</td>
<td>47.0</td>
<td>50.1</td>
<td>50.2</td>
<td>50.8</td>
</tr>
<tr>
<td></td>
<td>$2K_{HH}$</td>
<td>−0.4</td>
<td>−0.7</td>
<td>−0.9</td>
<td>−0.7</td>
<td>−0.8</td>
<td>−0.9</td>
<td>−0.9</td>
</tr>
<tr>
<td>C$_2$H$_4$</td>
<td>$1K_{CC}$</td>
<td>66.6</td>
<td>90.3</td>
<td>96.2</td>
<td>83.4</td>
<td>92.9</td>
<td>90.5</td>
<td>87.8</td>
</tr>
<tr>
<td></td>
<td>$1K_{CH}$</td>
<td>42.5</td>
<td>55.3</td>
<td>55.0</td>
<td>50.0</td>
<td>51.4</td>
<td>50.2</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>$2K_{CH}$</td>
<td>0.4</td>
<td>0.0</td>
<td>−0.5</td>
<td>−0.2</td>
<td>−0.3</td>
<td>−0.5</td>
<td>−0.4</td>
</tr>
<tr>
<td></td>
<td>$2K_{HH}$</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>$3K_{cis}$</td>
<td>0.8</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>$3K_{tans}$</td>
<td>1.2</td>
<td>1.7</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
</tr>
</tbody>
</table>

| $|\Delta|$ | abs. | 11.2 | 5.9 | 3.1 | 6.4 | 2.6 | 1.6 | * at Re |
|------|------|------|------|------|------|------|------|--------|
| % | 72 | 48 | 14 | 33 | 14 | 14 | 14 | |
Comparison of density-functional and wave-function theory

- Normal distributions of errors for indirect nuclear spin–spin coupling constants
 - for the same molecules as on the previous slides

- Some observations:
 - LDA underestimates only slightly, but has a large standard deviation
 - BLYP reduces the LDA errors by a factor of two
 - B3LYP errors are similar to those of CASSCF
 - The CCSD method is slightly better than the SOPPA method
The Karplus curve

- Vicinal (three-bond) spin–spin coupling constants depend critically on the dihedral angle:
- $^{3}J_{HH}$ in ethane as a function of the dihedral angle:

![Graph showing the comparison between DFT and empirical values of $^{3}J_{HH}$ in ethane, with good agreement with the Karplus curve.]

- Good agreement with the (empirically constructed) Karplus curve
DFT can be applied to large molecular systems such as valinomycin (168 atoms)
- there are a total of 7587 spin–spin couplings to the carbon atoms in valinomycin
- below, we have plotted the magnitude of the reduced LDA/6-31G coupling constants on a logarithmic scale, as a function of the internuclear distance:

- the coupling constants decay in characteristic fashion, which we shall examine
- most of the indirect couplings beyond 500 pm are small and cannot be detected
Valinomycin $\text{C}_{54}\text{H}_{90}\text{N}_8\text{O}_{18}$

One-bond spin–spin couplings to CH, CO, CN, CC greater than 0.01 Hz

Trygve Helgaker (CTCC, University of Oslo)
Molecular Magnetic Properties
12th Sostrup Summer School (2012) 41 / 44
Valinomycin $\text{C}_{54}\text{H}_{90}\text{N}_{8}\text{O}_{18}$

Two-bond spin–spin couplings to CH, CO, CN, CC greater than 0.01 Hz
Valinomycin $C_{54}H_{90}N_8O_{18}$

Three-bond spin–spin couplings to CH, CO, CN, CC greater than 0.01 Hz

Trygve Helgaker (CTCC, University of Oslo)
Valinomycin $\text{C}_{54}\text{H}_{90}\text{N}_{8}\text{O}_{18}$

Four-bond spin–spin couplings to CH, CO, CN, CC greater than 0.01 Hz