Differentiable but Exact Formulation of Density-Functional Theory

Simen Kvaal†, Ulf Ekström†, Andy Teale†‡, Trygve Helgaker†

†Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway
‡School of Chemistry, University of Nottingham, Nottingham, UK

CTCC, Department of Chemistry,
UiT the Arctic University of Norway, 18 February 2015
In DFT, the ground-state energy for a given potential v and electron number N is given by

$$E(v) = \min_{\rho \rightarrow N} (F(\rho) + (v|\rho))$$

Hohenberg–Kohn (HK) variation principle

where ρ is the density and where

$$F(\rho) = \min_{\Psi \rightarrow \rho} \langle \Psi | T + W | \Psi \rangle$$

Levy constrained-search density functional

$$(v|\rho) = \int v(r) \rho(r) \, dr$$

interaction of density with external potential

The solution of the HK minimisation problem is given by the Euler–Lagrange equation

$$\frac{\delta F(\rho)}{\delta \rho(r)} = -v(r) - \mu$$

Euler–Lagrange equation with chemical potential μ

- clearly, an underlying assumption is that F is differentiable
- however, F is everywhere discontinuous and therefore nondifferentiable

Outline:

- nondifferentiability of the universal density functional in DFT
- Moreau–Yosida regularisation of DFT with differentiable density functional
- consequences for Kohn–Sham theory

Discontinuity of universal density functional

- For a one-electron system, the universal density functional has a simple explicit form:
 \[F(\rho) = \frac{1}{2} \int |\nabla \rho^{1/2}(r)|^2 \, dr \]
 one-electron kinetic energy

- A one-electron Gaussian density of unit exponent has a finite kinetic energy:
 \[\rho(r) = \pi^{-3/2} \exp(-r^2), \quad F(\rho) = \frac{3}{4} \]

- Let \(\{\rho_n\} \) be a sequence that approaches \(\rho \) in the norm,
 \[\lim_{n \to +\infty} \| \rho - \rho_n \|_p = 0, \]
 while developing increasingly rapid oscillations of increasingly small amplitude:

- The kinetic energy \(F(\rho_n) \) is driven arbitrarily high in the sequence and \(F \) is not continuous:
 \[\lim_{n} F(\rho_n) = +\infty \neq F(\lim_{n} \rho_n) = \frac{3}{4} \]

- The universal density functional is everywhere discontinuous and hence nondifferentiable
The nondifferentiability of F makes it awkward to work with
- we shall develop a more regular DFT with a differentiable density functional
- we must first examine the relationship between E and F more carefully

Lieb showed that the energy and density functional are symmetrically related:

$$ F(\rho) = \sup_v (E(v) - (v|\rho)) \quad \text{the Lieb variation principle (1983)} $$

$$ E(v) = \inf_\rho (F(\rho) + (v|\rho)) \quad \text{the Hohenberg–Kohn variation principle (1964)} $$

These are alternative attempts at sharpening the same inequality into an equality

$$ E(v) \leq F(\rho) + (v|\rho) \iff F(\rho) \geq E(v) - (v|\rho) $$

In the language of convex analysis, E and F are said to be conjugate functions

$$ E(\text{concave and semi-cont.}) \iff F(\text{convex and semi-cont.}) $$

- such conjugate functions contain the same information, represented in different manners
- each property of one function is exactly reflected in some property of its conjugate function

Being a conjugate function, F is automatically convex and semi-continuous
- however, F is not continuous even though E is continuous
- for this, even more is required of E

Our strategy: to modify E so that F becomes continuous and differentiable
Concavity of the ground-state energy

The concavity of the energy $E(v)$ follows from two circumstances:
- the linearity of $H(v)$ changes the energy linearly from v_0 to v_1 for fixed Ψ_0
- the variation principle lowers the energy from Ψ_0 to Ψ_1 for fixed v_1

There are two cases to consider: **strict concavity** (left) and **nonstrict concavity** (right)

$$[H(v_0), H(v_1)] \neq 0 \Rightarrow \Psi_1 \neq \Psi_0 \Rightarrow \rho_1 \neq \rho_0 \text{ strict concavity}$$

$$[H(v_0), H(v_1)] = 0 \Rightarrow \Psi_1 = \Psi_0 \Rightarrow \rho_1 = \rho_0 \text{ non-strict concavity}$$

- note: the density is given by the derivative of the blue curve

We have **strict concavity and different densities** except if $v_1 - v_0 = c$ is a scalar
- the Hohenberg–Kohn theorem: the density determines the potential up to a constant
- with vector potentials, non-strict concavity occurs more generally
Being conjugate to E, the density functional F is convex and lower semi-continuous.

- Convexity ensures that all local minima are global in the HK variation principle.
- Lower semi-continuity allows functions to jump down but not up as limits are taken.

However, F is neither continuous nor differentiable.
Hohenberg–Kohn and Lieb variation principles

\[F(\rho) = \max_v \left(E(v) - (v|\rho) \right) \]

\[E(v) = \min_\rho \left(F(\rho) + (v|\rho) \right) \]
Moreau–Yosida regularisation of DFT

- The ground-state energy $E(\nu)$ is **concave but not strictly concave**

- We obtain a **strictly concave** energy E_γ by subtracting a term proportional to $\|\nu\|^2$:

 $$E_\gamma(\nu) = E(\nu) - \frac{1}{2}\gamma\|\nu\|^2, \quad \gamma > 0$$

 - such strict concavity is sufficient to guarantee continuity of its conjugate function
 - caveat: ν must be square integrable (Coulomb potential in a box)

- We now introduce the **density functional** F_γ in the usual manner, as the conjugate to E_γ:

 $$F_\gamma(\rho) = \max_\nu (E_\gamma(\nu) - (\nu|\rho)) \quad \text{Lieb variation principle}$$

 $$E_\gamma(\nu) = \min_\rho (F_\gamma(\rho) + (\nu|\rho)) \quad \text{Hohenberg–Kohn variation principle}$$

 - unlike F, the new density functional F_γ is **continuous and differentiable**

- This procedure is known as **Moreau–Yosida (MY) regularisation**

 - a standard technique in convex optimisation
Unregularised DFT

\[F(\rho) = \max_{\nu} \left(E(\nu) - (\nu|\rho) \right) \]

\[E(\nu) = \min_{\rho} \left(F(\rho) + (\nu|\rho) \right) \]

- **T. Helgaker (CTCC, University of Oslo)**
- **Differentiable but Exact Formulation of DFT**
- **UiT, 18 February 2015**
Moreau–Yosida regularised DFT

\[F_\gamma(\rho) = \max_v \left(E_\gamma(v) - (v|\rho) \right) \]

\[E_\gamma(v) = \min_\rho \left(F_\gamma(\rho) + (v|\rho) \right) \]
Moreau envelope F_γ of universal density functional F

- We have defined F_γ as the conjugate of E_γ by the Lieb variation principle:

$$F_\gamma(\rho_0) \overset{\text{def}}{=} \sup_v (E_\gamma(v) - (v|\rho_0))$$

- We may express F_γ explicitly in terms of the original density functional F as

$$F_\gamma(\rho_0) = \min_{\rho} \left(F(\rho) + \frac{1}{2\gamma} \| \rho - \rho_0 \|^2 \right) \quad \leftarrow \text{Moreau envelope } F_\gamma \text{ of } F$$

 - for each ρ_0, we minimise $F(\rho)$ with a penalty term $\| \rho - \rho_0 \|^2 / 2\gamma$
Moreau envelope F_γ of F

- The regularised density functional F_γ is known as the Moreau envelope of F
 - it is an everywhere finite, continuous and differentiable approximation to F
 - it is a lower bound to F but has the same minimum
 - it approaches F pointwise from below as $\gamma \to 0$

$$F_\gamma(\rho) = \min_{\tilde{\rho}} \left(F(\tilde{\rho}) + \frac{1}{2\gamma} \|\tilde{\rho} - \rho\|^2 \right)$$

- Moreau–Yosida regularisation with large γ (left), medium γ (middle), and small γ (right):
 - BLUE curves: strictly concave E_γ (dashed) tends to non-strictly concave E from below
 - RED curves: differentiable F_γ (dashed) tends to non-differentiable F from below
Moreau envelope illustration
Hohenberg–Kohn variation principle in MY DFT

\[E_\gamma(\nu) = \min_\rho \left(F_\gamma(\rho) + (\nu|\rho) \right) \]

Euler–Lagrange equation

- The Euler–Lagrange equation is now well defined:

\[\frac{\delta F_\gamma(\rho)}{\delta \rho(r)} = -\nu(r) - \mu \]

- Its solution \(\rho_\gamma \) yields the modified energy \(E_\gamma \) and therefore also the true energy \(E \):

\[E_\gamma(\nu) = F_\gamma(\rho_\gamma) + (\rho_\gamma|\nu) = E(\nu) - \frac{1}{2} \gamma \|\nu\|^2 \]

- More solutions exist when degeneracies are present

Quasi-densities

- The solution \(\rho_\gamma \) is related to the true ground-state density \(\rho_\nu \) in a simple manner:

\[\rho_\gamma = \rho_\nu - \gamma \nu \quad \text{‘depot’ = density – potential} \]

- Densities in MY DFT are not physical densities but pseudo-densities or quasi-densities
 - they may be negative and need not integrate to the correct number of electrons
 - however, they may always be decomposed in the above manner
MY regularised Kohn–Sham theory

- KS theory assumes a **noninteracting system with the same density as the physical system**
 - this assumption is unfounded: the noninteracting representability problem
- In Moreau–Yosida DFT, the two systems share the **same quasi-density**:
 1. the **interacting** Euler–Lagrange equation determines the quasi-density ρ^γ_v:

\[
\frac{\delta F^\gamma_v}{\rho^\gamma_v(r)} = -v(r) - \mu \quad \text{interacting system with differentiable } F^\gamma
\]

 2. the **noninteracting** Euler–Lagrange equation determines the Kohn–Sham potential v^γ_s:

\[
\frac{\delta (T^\gamma_s)}{\rho^\gamma_v(r)} = -v^\gamma_s(r) - \mu_s \quad \text{noninteracting system with differentiable } (T^\gamma_s)
\]

- A **regularised Kohn–Sham potential v^γ_s** exists for each external potential v:
 - same quasi-density but different physical densities:

\[
\rho_v = \rho^\gamma_v + \gamma v \quad \text{interacting density and potential}
\]
\[
\rho^\gamma_s = \rho^\gamma_v + \gamma v^\gamma_s \quad \text{noninteracting density and potential}
\]
 - the physical densities differ by an amount proportional to γ
Different regularisation metrics

- It is possible to work with more general MY regularisations:

\[E_\gamma(v) = E(v) - \frac{1}{2} \gamma \langle v | M | v \rangle \]

- Two choices of metric: \(M = I \) (overlap) and \(M = T \) (kinetic)

\[\langle v | I | v \rangle = \int |v(r)|^2 \, dr = \|v\|^2 \]
\[\langle v | T | v \rangle = \int |\nabla v(r)|^2 \, dr = \|\nabla v\|^2 \]

- The kinetic metric favours smooth potentials in the Lieb variation principle:

\[F_\gamma(\rho) = \max_v \left(E_\gamma(v) - \langle v | \rho \rangle \right) \]
\[= \max_v \left(E(v) - \langle v | \rho \rangle - \frac{1}{2} \gamma \|\nabla v\|^2 \right) \]

- related to the OEP regularisation of Heaton–Burgess, Bulat and Yang (2007)
Conclusions

- Universal density functional of DFT is an exceedingly complicated function of the density
 - it is discontinuous and nondifferentiable
 - ill-defined Euler–Lagrange equations and Kohn–Sham representability problem

- Moreau–Yosida regularisation gives a regular but exact DFT
 - we can build arbitrarily accurate differentiable universal density functionals
 - well-defined Euler–Lagrange equations and no Kohn–Sham representability problem

- Publication:

- Acknowledgements:
 - Ulf Ekström, Simen Kvaal, and Andy Teale
 - ERC advanced grant ABACUS
 - Norwegian Research Council for Centre of Excellence CTCC