Quantum-chemical calculations using
Gaussian-type orbital
and
Gaussian-type geminal
basis sets

T. Helgaker,
Centre for Theoretical and Computational Chemistry,
Department of Chemistry, University of Oslo, Norway;
Department of Chemistry, University of Durham, UK

Pål Dahle, Department of Chemistry, University of Oslo, Norway
Dan Jonsson, Department of Physics, Stockholm University, Sweden
Peter Taylor, Department of Chemistry, University of Warwick, UK

The 47th Sanibel Symposium
St. Simons Island, Georgia, USA
February 22–27, 2007
CI expansions and explicit correlation

- Experimental ionization potential of helium: 24.59 eV
 - Unsöld 1927: 20.41 eV (first-order perturbation theory)
 - Hylleraas 1928: 24.47 eV (CI expansion: slow convergence!)
 - Hylleraas 1929: 24.58 eV (explicit correlation: fast convergence!)
 - full agreement between experiment and quantum mechanics
 - the question of CI expansions vs. explicit correlation is still with us today

Overview

- We shall consider
 - cusp conditions and Coulomb hole
 - energy convergence and extrapolation
 - explicit correlation at the MP2 level of theory
 - Gaussian-type geminal (GTG) methods: GTG-n models
 - comparison with R12 and F12 theories as well as with extrapolation
 - some conclusions and recommendations
The electron cusp

• Consider the local energy of the helium atom

\[E_{\text{loc}} = \frac{(H\Psi)}{\Psi} \]

- for the exact solution to the Schrödinger equation, the local energy must be constant
- the electronic Hamiltonian has singularities at points of coalescence

\[H = -\frac{1}{2} \nabla_1^2 - \frac{1}{2} \nabla_2^2 - \frac{2}{r_1} - \frac{2}{r_2} + \frac{1}{r_{12}} \]

- the infinite potential terms must be canceled by infinite kinetic terms
- the first derivatives must be discontinuous at the singularities

• Nuclear and electronic cusp conditions (Slater 1928)

\[\left(\frac{\partial \Psi}{\partial r_i} \right)_{r_i=0, \text{ave}} = -Z\Psi (r_i = 0) \]

\[\left(\frac{\partial \Psi}{\partial r_{12}} \right)_{r_{12}=0, \text{ave}} = \frac{1}{2} \Psi (r_{12} = 0) \]

• The electronic cusp condition implies the existence of a Coulomb hole
The Coulomb hole

- For high accuracy in the energy, we need a good description of the Coulomb hole
 - calculations where we include one shell at a time: 1s, 2s2p, 3s3p3d, ...

\[\Psi^\text{CI}_N \rightarrow \Psi^\text{CI}_N + c_{12} r_{12} \Psi_{1s^2} \]

- CI wave functions \(\Psi^\text{CI}_N \) can only indirectly describe the Coulomb hole
- the inclusion of a single term linear in \(r_{12} \) vastly improves the description
- the cusp condition is satisfied

- Energetically, what matters is not the cusp but the hole
 - correlation functions \(f(r_{12}) \) different from \(r_{12} \) may in fact more easily create a hole

\[
\begin{align*}
 f(r_{12}) &= r_{12} & \text{linear} \\
 f(r_{12}) &= 1 - \exp(-\gamma r_{12}) & \text{exponential} \\
 f(r_{12}) &= 1 - \exp(-\gamma r_{12}^2) & \text{Gaussian}
\end{align*}
\]
Basis-set convergence

• Calculations on the helium atom using single-zeta Slater functions
 – standard CI expansion, CI-R12 expansion, the Hylleraas expansion

 - Left: log–lin plots of the error in the energy against the number of terms
 - Right: log–log plots of energy contributions against the principal quantum number n

• The standard CI expansion converges slowly but smoothly
 – the inclusion of a single R12 term reduces the error dramatically
 – each new shell contributes n^{-4} energy for CI and n^{-5} for CI-R12
The principal expansion and basis-set extrapolation

- The energy contribution from each AO in large CI calculations on helium:
 \[\varepsilon_{nlm} \approx An^{-6} \leftarrow \text{Carroll et al. (1979)} \]
 - the principal expansion: include all \(n^2 \) AOs of the same shell simultaneously

- We may now estimate the exact energy from a calculation truncated at \(n = X \):
 \[E_\infty = E_X + A \sum_{n=X+1}^{\infty} n^2n^{-6} \approx E_X + AX^{-3} \]
 - to eliminate \(A \), carry out a smaller calculation truncated at \(Y = X - 1 \):
 \[E_\infty = \frac{X^3E_X - Y^3E_Y}{X^3 - Y^3} \leftarrow \text{two-point extrapolation formula} \]

- Finally, we identify \(X \) with the cardinal number of Dunning’s cc-pV\(\text{X} \)Z basis sets
 - mean absolute errors of the CH\(_2\), H\(_2\)O, HF, N\(_2\), CO, Ne, and F\(_2\) energies:

<table>
<thead>
<tr>
<th>(mE_h)</th>
<th>DZ</th>
<th>TZ</th>
<th>QZ</th>
<th>5Z</th>
<th>6Z</th>
<th>R12</th>
</tr>
</thead>
<tbody>
<tr>
<td>plain</td>
<td>194.8</td>
<td>62.2</td>
<td>23.1</td>
<td>10.6</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>extr.</td>
<td>21.4</td>
<td>1.4</td>
<td>0.4</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extrapolation vs. explicit correlation

- For some purposes, extrapolation is competitive with explicit correlation
 - logarithmic errors in plain and extrapolated energies relative to R12

 - recent review on explicitly correlated methods
We have seen how standard methods converge slowly
- orbital products cannot easily model the Coulomb hole
- error proportional to X^{-3}, extrapolation is possible

A more fundamental solution is the use of explicitly correlated methods
- insert $f(r_{12})$ explicitly into the wave function
- accurate total energies obtainable without extrapolation

We shall now consider several such explicitly correlated methods
- the GTG method of Szalewicz, Jezierski, Monkhorst and Zabolitzky (1982)
- a mixed GTO–GTG method GTG-n explored by us

We shall consider small systems, asking the question
- what error reduction can be expected from these methods?

It is sufficient to consider Møller–Plesset theory
- the doubles contributions converge more slowly than higher excitations
Møller–Plesset theory

- Zero-order system represented by the Fock operator and the Hartree–Fock wave function

\[
H_0 = \sum_i F_i, \quad H_0 |\text{HF}\rangle = (\sum_i \varepsilon_i) |\text{HF}\rangle, \quad F_1 \phi_i(1) = \varepsilon_i \phi_i(1)
\]

- To first order in perturbation theory, electrons are correlated pairwise:

\[
\phi_{ij}(1, 2) = \phi_i(1)\phi_j(2) - \phi_j(1)\phi_i(2) \rightarrow \phi_{ij}(1, 2) + Q_{12} u_{ij}(1, 2)
\]

 - the first-order pair function \(u_{ij} \) may or may not depend on \(r_{12} \)
 - the strong-orthogonality (SO) operator \(Q_{12} \) ensures orthogonality to occupied pairs

\[
Q_{12} = [1 - P_{\text{occ}}(1)] [1 - P_{\text{occ}}(2)], \quad P_{\text{occ}} = \sum_i |\phi_i\rangle \langle \phi_i|
\]

- The first-order corrections are obtained by minimizing the Hylleraas functional

\[
J[u_{ij}] = 2 \left\langle u_{ij} \left| Q_{12} r_{12}^{-1} \right| \phi_{ij} \right\rangle + \left\langle u_{ij} \left| Q_{12} \left(F_1 + F_2 - \varepsilon_i - \varepsilon_j \right) Q_{12} \right| u_{ij} \right\rangle
\]

 - 3-electron integrals
 - 5(4)-electron integrals

 - this is Sinanoglu’s SO functional
 - the MP2 correlation energy can be written as the sum of pair energies

\[
E_{\text{corr}} = \sum_{ij} \varepsilon_{ij}, \quad \varepsilon_{ij} = \left\langle u_{ij} \left| Q_{12} r_{12}^{-1} \right| \phi_{ij} \right\rangle
\]
In Møller–Plesset theory, we minimize the SO functional for each orbital pair

\[
J[u_{ij}] = 2 \langle u_{ij} | Q_{12} r_{12}^{-1} | \phi_{ij} \rangle + \langle u_{ij} | Q_{12} (F_1 + F_2 - \varepsilon_i - \varepsilon_j) Q_{12} | u_{ij} \rangle
\]

3-electron integrals

4-electron integrals

In standard orbital-based theory, we use a CI-type expansion of each pair function:

\[
u_{ij} = \sum_{ab} C_{ij}^{ab} \phi_{ab}, \quad \langle \phi_{ij} | \phi_{ab} \rangle = 0
\]

- the pair functions are automatically orthogonal to \(\phi_{ij} \) and \(Q_{12} \) is not needed
- the Fock operator is diagonal in the occupied and virtual MOs

This leads to great simplifications in the SO functional:

\[
J_{\text{orb}}[u_{ij}] = 2C_{ij}^{ab} \langle \phi_{ab} | r_{12}^{-1} | \phi_{ij} \rangle + (C_{ij}^{ab})^2 (\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j)
\]

- only two-electron integrals needed

\[
C_{ij}^{ab} = -\frac{\langle \phi_{ab} | r_{12}^{-1} | \phi_{ij} \rangle}{\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j}
\]

A simple scheme but slow convergence!

- for more general first-order pair functions \(u_{ij} \), things become more difficult...
Gaussian-type geminal (GTG) theory

- In GTG theory, the pair functions are expanded in Gaussian-type geminals
 \[u_{ij} = A_{\text{anti}} \sum_v c_v \exp \left(-\alpha_v (r_1 - P_v)^2 - \beta_v (r_2 - Q_v)^2 - \gamma_v r_{12}^2 \right) \sigma_1 \sigma_2 \]
 - all exponents \(\alpha_v, \beta_v, \gamma_v \) and centers \(P_v, Q_v \) variationally optimized
 - a difficult nonlinear optimization of pair energies

- To avoid four-electron integrals for these \(u_{ij} \), Szalewicz et al. [CPL 91, 169 (1982)] modified Sinanoglu’s SO functional
 \[
 W[u_{ij}] = 2 \langle u_{ij} | Q_{12} r_{12}^{-1} | \phi_{ij} \rangle + \langle u_{ij} | \times (\tilde{F}_1 + \tilde{F}_2 - \epsilon_i - \epsilon_j) Q_{12} | u_{ij} \rangle
 \]
 where the shifted Fock operators are given by
 \[
 \tilde{F} = F + \eta_{ij} P_{\text{occ}}, \quad \eta_{ij} = \frac{1}{2} (\epsilon_i + \epsilon_j) - \epsilon_1 + \eta, \quad \eta > 0
 \]

- This weak-orthogonality (WO) functional is an upper bound to the SO functional:
 \[
 W[u_{ij}] \geq J[u_{ij}] \geq \epsilon_{ij}
 \]
 - equality for the exact first-order pair function
 - orthogonality controlled by a penalty function
 - only two- and three-electron integrals now remain
The linear GTG-\textit{n} model

- A mixed Gaussian-type-orbital (GTO) and Gaussian-type-geminal (GTG) expansion:

\[
\begin{align*}
\psi_{ij} &= \sum_{ab} C_{ij}^{ab} \phi_{ab} + \sum_{pq} \sum_{v} c_{ij}^{pq,v} \exp(-\gamma v r_{12}^2) \phi_{pq} \\
& \text{GTO part} + \text{GTG part}
\end{align*}
\]

- there are three levels of theory, depending on what geminals are included:

 - **GTG-0**: include only “doubly-occupied” geminals \(\exp(-\gamma v r_{12}^2) \phi_{ij} \)
 - **GTG-1**: include also “singly-excited” geminals \(\exp(-\gamma v r_{12}^2) \phi_{ai} \)
 - **GTG-2**: include also “doubly-excited” geminals \(\exp(-\gamma v r_{12}^2) \phi_{ab} \)

- We avoid nonlinear optimizations by using
 - standard atom-fixed GTOs
 - fixed GTO and GTG exponents

- The coefficients \(C_{ij}^{ab} \) and \(c_{ij}^{pq,v} \) are determined by minimizing the WO functional:
 - the solution of a linear set of equations for each orbital pair \(ij \)
 - all three-electron integrals are evaluated explicitly (expensive!)

- GREMLIN code written by Pål Dahle (DALTON module)
We use nine even-tempered GTG exponents ($\gamma_v = 1/9, 1/3, 1, 3, 9, 27, 81, 243, 729$)

- all-electron GTG-0, GTG-1, GTG-2 aug-cc-pCVTZ(spd) neon calculations

- for GTG-0, only GTGs with $\gamma \geq 1$ are important
- the three steepest GTGs improve mainly the $1s^2$ energy
- the diffuse GTGs are important for excited GTGs
- with all nine GTGs included, the energy is converged to within 0.1 mH
Level shifting and strong orthogonality

- The weak orthogonality functional depends on the level-shift parameter $\eta > 0$
 - large η improves orthogonality but pushes energy up

- Error in energy (mH) and nonorthogonal proportion of u_{ij} (right) as functions of η (left)
 - all-electron aug-cc-pCVTZ(spd) neon calculations
 - GTG-0, GTG-1, GTG-2,

- We have used the level shift $\eta = 0.1$ in all calculations
 - orthogonality increases with n in GTG-n
Helium and beryllium

- A comparison of the GTG-\(n\) models with standard MP2 theory
 - standard MP2, GTG-0, GTG-1, GTG-2,

- aug-cc-pVXZ for helium; 14s to 14s9p4d3f for beryllium

- As expected the use of GTG improves convergence considerably
 - errors reduced by several factors at the GTG-0 level of theory
 - errors reduced by an order of magnitude at the GTG-1 and GTG-2 levels of theory

- Our results are very close to nonlinear GTG, with variationally optimized exponents
 - helium: \(-37.3773\) mH; Patkowski et al.: \(-37.3775\) mH
 - beryllium: \(-76.355\) mH; Bukowski et al.: \(-76.358\) mH
Neon

- A similar behavior is observed for the neon atom:

- our best neon energy: -388.19 mH (best variationally bounded)
- Lindgren and Salomonsen: -388.31 mH
- Klopper and Samson: -388.24 mH
- Wind, Klopper and Helgaker: -388.29 mH

- GTG-0 reduces correlation error by a factor of three of four
 - for better results in a small basis, GTGs must be introduced into excited MO pairs
 - R12 theory introduces correlation factors only in doubly-occupied MO pairs
In R12 theory, the pair function is taken to have the form

\[u_{ij} = \sum_{ab} C_{ij}^{ab} \phi_{ab} + Q_{12} \sum_{kl} c_{ij}^{kl} f(r_{12}) \phi_{kl} \]

- explicit correlation only for doubly occupied pairs

To avoid three- and four-electron integrals, resolution of identity (RI) is invoked
- this dramatically improves performance
- application to large molecules possible—a hugely successful theory

A variety of correlation functions have been tried
- \(f(r_{12}) = r_{12} \): original R12 method of Kutzelnigg and Klopper
- \(f(r_{12}) = 1 - \exp(-\gamma r_{12}) \): Ten-no and others, F12 theory
- \(f(r_{12}) = 1 - \sum v c_v \exp(-\gamma_v r_{12}^2) \): May and Manby

In addition, various flavors of R12 theories exist, depending on:
- the form of the projector \(Q_{12} \) (against occupied or all MOs)
- the (non)neglect of certain exchange commutators (A and B)
- (no) use of the extended Brillouin theorem (EBT): \(F\phi_a = \varepsilon_a \phi_a \)

Unlike GTG-\(n \) theory, R12 theory is not variationally bounded
Neon: comparison of explicitly correlated methods I

 - Ansatz 1: all MO pairs projected out; Ansatz 2: occupied MO pairs projected out
 - Ansatz A: exchange commutator \([K, r_{12}]\) neglected; Ansatz B: \([K, r_{12}]\) included

 - GTGs fitted to \(\exp(-\zeta r_{12})\), numerical quadrature, \([K, r_{12}]\) neglected, EBC assumed

- The R12/2A’, R12/2B and MP2-geminal model (but we are lower than GTG-0)
 - MP2-geminal close to GTG-1! WO penalty? error cancellation?
• No diffuse functions—higher energies for low cardinal numbers

• R12-SO is similar to Ansatz 2 but with explicit 3-electron integration
 – follows GTG-0 curve closely (indicating that WO penalty is small)

• Excellent behavior of Ten-no’s MP2-geminal model (follows GTG-1 again)

• May et al. [PCCP 7, 2710 (2005)] suggested a problem with the correlation factor
 – advocated the use of linear combinations of Gaussian geminals rather than r_{12}
Small molecules

- The molecular correlation energies show the same performance

- We obtained the lowest ever energies for H$_2$ and HF
 - H$_2$: -34.252 mH with GTG-2/aug-cc-pVTZ
 - LiH: -72.877 mH with GTG-1/(14s9p4d3f/8s4p3d) [72.890 mH by Bukowski et al.]
 - HF: -384.41 mH with GTG-2/aug-cc-pCVTZ(spd,spd)

- Basis sets
 - H$_2$: aug-cc-pVXZ
 - LiH: uncontracted ANO (14s, 8s), (14s9p, 8s4p), (14s9p4d3f, 8s4p3d)
 - HF: aug-cc-pCVTZ subspaces (sp, s), (sdp, sp) (sdf, spd)
MP2 correlation energy (%) recovered

- All-electron correlation energies of Ne, HF, and H$_2$O in aug-cc-pCVXZ basis sets

<table>
<thead>
<tr>
<th></th>
<th>std</th>
<th>ext</th>
<th>GTG-0</th>
<th>GTG-1</th>
<th>GTG-2</th>
<th>2A’</th>
<th>2B</th>
<th>Ten-no</th>
</tr>
</thead>
<tbody>
<tr>
<td>DZ</td>
<td>68.2</td>
<td></td>
<td>87.8</td>
<td>97.2</td>
<td>99.2</td>
<td>96.2</td>
<td>91.1</td>
<td>96.9</td>
</tr>
<tr>
<td>TZ</td>
<td>88.3</td>
<td>96.8</td>
<td>96.3</td>
<td>99.8</td>
<td>100.0</td>
<td>99.1</td>
<td>98.0</td>
<td>99.1</td>
</tr>
<tr>
<td>QZ</td>
<td>94.8</td>
<td>99.6</td>
<td>98.5</td>
<td></td>
<td></td>
<td>99.8</td>
<td>99.4</td>
<td>99.7</td>
</tr>
</tbody>
</table>

- blue: more than 99% correlation energy for all systems

- Extrapolation works well, recovering more than 99% at the aug-cc-pCV[TQ]Z level

- The variational GTG-n sequence behaves in a very systematic manner
 - GTG-2 recovers 99% correlation energy in DZ basis and 100% in TZ basis

- The F12 methods appear to perform better than GTG-0
 - we believe that the WO penalty is small, indicating F12 error cancellation
 - the more rigorous R12/2B method is slightly better than GTG-0
 - the less rigorous R12/2A’ works well by error cancellation (overshoots H$_2$O in DZ)
 - Ten-no’s MP2-geminal is similar to R12/2A’ (also neglects exchange commutator)
 - QZ basis is necessary to recover consistently more than 99% correlation energy
MP2 correlation energies of small molecules (mH)

<table>
<thead>
<tr>
<th>system</th>
<th>this work(^a)</th>
<th>current best</th>
<th>energy recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>37.37729</td>
<td>37.37747(^b)</td>
<td>99.9995%</td>
</tr>
<tr>
<td>Be</td>
<td>76.355</td>
<td>76.358(^c)</td>
<td>99.996%</td>
</tr>
<tr>
<td>Ne</td>
<td>388.19</td>
<td>388.19</td>
<td>100%</td>
</tr>
<tr>
<td>H(_2)</td>
<td>34.252</td>
<td>34.252</td>
<td>100%</td>
</tr>
<tr>
<td>LiH</td>
<td>72.877</td>
<td>72.890(^c)</td>
<td>99.98%</td>
</tr>
<tr>
<td>HF</td>
<td>384.41</td>
<td>384.41</td>
<td>100%</td>
</tr>
</tbody>
</table>

\(^a\) GTG-2/TZ calculations except GTG-1/TZ for LiH
\(^b\) Patkowski, Bukowski, Jeziorski and Szalewicz, personal communication
\(^c\) Bukowski, Jeziorski and Rutkowski, JCP 110, 4165 (1999)
Conclusions

• There are two solutions to the basis-set problem of orbital-based quantum chemistry
 – extrapolation techniques
 – explicitly correlated methods
 – both can deliver an error reduction by an order of magnitude or more

• The modern development of explicit correlation began with GTG methods
 – high accurate but applicable only to small systems (nonlinear optimization)

• With R12 theory, explicitly correlated methods became (almost) routine
 – many-electron integrals avoided by RI, applicable too large systems

• The GTG-\(n \) approach combines elements of both these approaches
 – WO functional (variationally bounded), explicit three-electron integration

• The GTG-0 model typically recovers less correlation energy than does F12 theory
 – this could be a WO penalty but we note agreement with R12-SO theory
 – this could arise from error cancellation in F12 theory
 – it could be a combination

• To recover consistently more than 99% correlation energy, QZ basis is needed
 – DZ calculations give about 90% correlation energy