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Cosmology in ~five slides



1) The Big Bang model
The basic ideas of Big Bang:

• The universe expands today
– Therefore it must have previously been smaller 
– Very early it must have been very small

• When a gas is compressed, it heats up
– The early universe must have been very hot

• High-energy photons destroys particles
– Only elementray particles may have existed very 

early
– More complex particles was formed as the 

temperature fell

Important epochs in the CMB history of the universe:
• Creation (!) – about 14 billions years ago
• Inflation       – fast expansion about 10-35 s

after Big Bang; structures forms
• Recombination – the temperature falls below

3000K about 380,000 years after  
Big Bang; hydrogen is formed



2) Inflation and initial conditions
• We observe that the universe is 

– very close to flat (euclidean) 
– isotropic (looks the same in all 

directions)

• Why? Best current idea: Inflation!
– Short period with exponential 

expansion 
– The size of the universe increases 

by a factor of 1023 during 10-34

seconds!

• Implications:
– The geometry is driven towards flat
– All pre-inflation structure is washed 

(streched) out

• But most importantly: The universe is filled with a plasma consisting of high-
energy photons and elementary particles 

• Quantum fluctuations created small variations in the plasma density



3) Gravitational structure formation



4) Cosmic background radiation
• The universe started as a 

hot gas of photons and free 
electrons 

– Frequent collisions implied 
thermodynamic equilibrium

– Photons could only move a 
few meters before 
scattering on an electron

• The gass expanded quickly, 
and therefore cooled off

• Once the temperature fell 
below 3000� K, electrons and 
protons formed neutral 
hydrogen

• With no free electrons in the 
universe, photons could 
move freely through the 
universe!

Today
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The CMB is our oldest and 
cleanest source of information in 

the early universe!



Mathematical description of 
CMB fluctuations



CMB observations and maps
• A CMB telescope is really just an expensive TV antenna
• You direct the antenna in some direction, and measure a voltage

– The higher the voltage, the stronger the incident radiation
– The stronger the incident radiation, the hotter the CMB temperature

• You scan the sky with the antenna, and produce a map of the 
CMB temperature 

• Often displayed in the Mollweide projection:

North pole
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Equator
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CMB observations and maps
• We are more interested in physics than in the details of a CMB map

• Different physical effects affect different physical scales
– Inflation works on all scales, from very small to very large
– Radiation diffusion only works on small scales

� Useful to split the map into well-defined scales



Fourier transforms
• ”Theorem”: Any function may be expanded into wave functions

• In flat space, this is called the Fourier transform:

– |ak| describes the amplitude of the mode (ie., wave)
– The phase of ak determines the position of the wave along the x axis

• The Fourier coefficents are given by 

0 100 200 300 400 500
-0,1

0

0,1

0 100 200 300 400 500

Time
-0,03

-0,02

-0,01

0

0,01

0,02

A
m

pl
itu

de

0 100 200 300 400 500

Time
-0,03

-0,02

-0,01

0

0,01

0,02

A
m

pl
itu

de

0 100 200 300 400 500

Time
-0,03

-0,02

-0,01

0

0,01

0,02

A
m

pl
itu

de
�

0 100 200 300 400 500

Time
-0,04

-0,03

-0,02

-0,01

0

0,01

0,02

0,03

0,04

A
m

pl
itu

de



The power spectrum
• For ”noise-like” phenomena, we are only interested the amplitude of 

the fluctuations as a function of scale
– Remember that the CMB is just noise from the Big Bang!
– The specific position of a given maximum or minimum is irrelevant 

irrelevant

• This is quantified by the power spectrum,  P(k) = |ak|2
– Power of a given scale = the square of the Fourier amplitude
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Laplace’ equation on the sphere
• The Fourier transform is only defined in flat space
• The required basis wave functions in a given space is found by solving 

Laplace’ equation:

• Since the CMB field is defined on a sphere, on has to solve the 
following equation in spherical coordinates (where                               ):

• This is (fortunately!) done in other courses, and the answer is

for � ³ 0 and m = - �, ..., �

� � �� � � � �� � ��� � �



Spherical harmonics
• The spherical harmonics are wave functions on the sphere

– Completely analogous to the complex exponential in flat space

• Instead of wave number k, these are described by � and m
� ��determines ”the wave length” of the mode

� � is the number of waves along a meridian

– m determines the ”shape” of the mode 
� �� is the number of modes along equator

m = 0

m = 1

m = 2

m = 3

m = 4

� = 4



Relationship between � and scale

• If � increases by one, the number of 
waves between 0 og 2� increases 
by one

• The wavelength is therefore

• This only holds along equator
• For a general mode (summed over 

m) we say more generally that the 
typical ”size ”of a spot is  

� � �

� � �

� � �

� � 	

� � 




Spherical harmonics transforms
”Theorem”: Any function defined on the sphere may be expanded 

into spherical harmonics:

The expansion coeffients are given by
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Spherical harmonics transforms



Spherical harmonics transforms



The angular power spectrum
• The angular power spectrum 

measures amplitude as a 
function of wavelength

• Defined as an average over 
over m for every l:
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Theoretical and observed spectrum
• There are two types of power spectra:

1. Given a specific map, compute

This is the observed spectrum of a given realization

2. Given an ensemble of maps (think thousands of independent 
realizations), compute 

This is the ensemble averaged power spectrum

• The physics is given by      , while we only observe  
– All CMB measurements are connected with an uncertainty called cosmic 

variance



Theoretical and observed spectrum
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Physics and the 
CMB power spectrum



Overview of the CMB spectrum 
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Main idea 1: Gravitation vs. pressure

• The early universe was filled with baryonic matter (yellow balls) and 
photons (red spring), interacting in a graviational potential set up by 
dark matter (blue line)

– Matter concentrations attract each other because of gravity
– But when the density increases, the pressure also increases � repulsion



Main idea 1: Gravitation vs. pressure

• The universe consists of an entire landscape of potential wells and peaks

• The baryon-photon plasma oscillates in this potential landscape
– Sound waves propagate through the universe 

• The baryon density corresponds directly to the CMB temperature
– Areas with high density become cold spots in a CMB map
– Areas with low density become warm spots in a CMB map



Main idea 2: Acoustics and the horizon
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• Fourier decompose the density field, and look at one single mode 
enkelt mode

• Remember from AST4220: The horizon is how far light has travelled 
since the Big Bang

– Gravity can only act within a radius of ~ct

If the horizon is much smaller than 
the wavelength, nothing happens! 



Main idea 2: Acoustics and the horizon

0 2 4 6 8 10

Distance (arbitrary units)
-4

-2

0

2

4

D
en

si
ty

 c
on

tr
as

t, D
r/

r
 (

10
-5

)

If the horizon is much larger than
the wave length, then the mode first start to grow, 

and then oscillate! 

ct

• Fourier decompose the density field, and look at one single mode 
enkelt mode

• Remember from AST4220: The horizon is how far light has travelled 
since the Big Bang

– Gravity can only act within a radius of ~ct



Main idea 2: Acoustics and the horizon

• Inflation sets up a flat spectrum of fluctuations

• Shortly after inflation, the horizon is small
– Only small scales are processed by gravity and pressure

• As time goes by, larger and larger scales start to oscillate

• Then, one day, recombination happens, and the CMB is ”frozen”
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Main idea 2: Acoustics and the horizon
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• Question: What can these fluctuations tell us about the 
processes that acts in the universe?



Inflation from low �’s
• The size of the horizon at recombination is today ~1� on the sky

– This corresponds to multipoles � ~ 180� / 1� ~ 200
– Scales larger than this are only weakly processed by gravity and pressure

• The CMB field at � < 50 is a ”direct” picture of the fluctuations 
generated by inflation!

• Some predictions from inflation:
– The fluctuations are Gaussian and isotropic
– The spectrum is nearly scale invariant [P(k) = A kn, n ~ 1]

• There is no characteristic scale
• The fluctuations are equally strong on all scales (ie., flat spectrum)
• The relevant parameters for initial conditions from inflation are  

– an amplitude A
– a tilt parameter ns, that should be close to 1

• By fitting this function to real data at ���� 50, we get a direct estimate of  
A and ns!



The geometry of space from the first peak

• According to GR, light propagates along geodesics in space
– In flat space, these are straight lines
– In open spaces, the geodesics diverge
– In closed spaces, the geodesics converge



The geometry of space from the first peak

• Assume that we know:
– the size of the horizon at recombination

• Given by the properties of the plasma (pressure, density etc.) 

– The distance to the last scattering surface
• Given by the expansion history of the universe

• The geometry of the universe is given by the angular size of the horizon

• The first acoustic peak is a standard ruler for the horizon size
– If the first peak is at � ~220, then the universe is flat
– If the first peak is at � > 220, then the universe is open
– If the first peak is at � < 220, then the universe is closed
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The geometry of space from the first peak

Low density

High density



The baryon density from higher peaks
• The baryon density can be measured very 

accurately from the higher-ordered peaks

• Idea: More baryons means heavier load

1. The load falls deeper

2. If there are few baryons, these won’t affect the 
gravitational potential

� Symmetric oscillations around equlibrium

3. If there are many baryons, these add to the 
potential during compressions

• Compressions are stronger than decompressions
• But the power spectrum don’t care about signs!

� First and third peak are stronger than the second 
and fourth!



The baryon density from higher peaks

Much baryons

Little baryons



• High �’s correspond to ”very small” physical scales
– The initial fluctuations from inflation are washed out by photon diffusion
– The power spectrum decays exponentially with �

• The precise damping rate depends on all cosmological parameters

Exponential damping at high �’s

10 100 1000

Multipole moment, l

10
1

10
2

10
3

10
4

P
ow

er
 s

pe
ct

ru
m



Exponential damping at high �’s

• High �’s correspond to ”very small” physical scales
– The initial fluctuations from inflation are washed out by photon diffusion
– The power spectrum decays exponentially with �

• The precise damping rate depends on all cosmological parameters
– Example: High baryon density � short free path for photons � less diffusion
– Example: High DM density � old univers at recombination � much diffusion

• High-� spectrum gives us a consistency check on other parameter estimates



Summary of main effects
• The cosmic background radiation was formed when the temperature in the 

universe fell below 3000°K, about 380,000 years aft er Big Bang

• The gas dynamics at the time determined the properties of the fluctuations in 
the CMB field

• Main effects that affect the CMB spectrum:
– Inflation                                    � amplitude and tilt of primoridal structure

– Gravitation vs. radiation pressure � sound waves 
� acoustic peaks

– High baryon density � heavy load in the waves
� strong compressions
� odd peaks stronger than even peaks

– Photon diffusion on small scales � exponential dampling at high �’s

– Lots of other effects too, but generally more compliated and less intuitive...



Summary
• Assumption: The very first structures were generated by inflation

– These later grew by gravitational interaction, and formed the structures we 
see today

• Before recombination, the universe was opaque
– Free electrons prevented light from travelling more than ~1 meter

• When electrons and protons formed neutral hydrogen, light could travel 
freely
– At this time, the CMB radiation was formed
– Happened ~380,000 years after Big Bang

• The CMB can be observed today, and we measure its power spectrum
– The power spectrum is highly sensitive to small variations in many 

cosmological parameters

• Our goal: To quantitatively predict the CMB spectrum given 
cosmological parameters!


