Constrained Delaunay Triangulations (CDT)

Recall:
“Definition 1” (Constrained triangulation). A triangulation Δ with prespecified edges or breaklines between nodes.

Motivation:
- Geological faults in oil recovery
- Rivers, roads, lake boundaries in GIT
- Repr. non-convex boundaries and holes
- Linear features in CAD models
- Meshing for FEM (boundaries, interior & exterior)
Algorithm III from Preliminaries

Given a predefined constraint $E_{i,j}$. Suppose that the endpoints p_i and p_j are in Δ.

1. For all T_i in Δ,
 If $(Int(T_i) \cap E_{i,j} \neq \phi)$,
 remove T_i from Δ

We get one or more regions R_i on each side of $E_{i,j}$ inside simple closed polygond. (More than one if $E_{i,j}$ intersects nodes.)

2. Triangulate each region R_i with Algorithm I (Protruding point removal).

- May include holes and arbitrary exterior boundary
Delaunay Triangulation of a PSLG

We will generalize the theory of Delaunay triangulation from $\Delta(P)$ to $\Delta(G)$ where $G = G(P,E_c)$ is a PSLG (Planar Straight Line Graph).

E_c are constrained edges. The endpoints of E_c are in P.

Recall from conventional Delaunay triangulations:

- MaxMin angle criterion
- Lexicographical ordering of indicator vectors
- Definition of local- and global optimum
- The circle criterion (will be redefined)
- The dual (Voronoi diagram) will not be considered here! (involved and not so useful)

DEFINITION (Visibility). p_i and p_j are visible to each other if $\overline{p_ip_j}$ does not intersect the interior of any edge in E_c.
DEFINISJON (CDT). A CDT $\Delta(G)$ of a PSLG $G(P, E_c)$ is a triangulation containing the edges E_c such that $C(t)$ of any triangle t in $\Delta(G)$ contains no point of P in its interior which is visible from all the three nodes of t.

DEFINISJON: Modified circle criterion (relaxed)

DEFINISJON: Edges in $\Delta(G)$ that are not in E_c are called Delaunay edges; triangles in $\Delta(G)$ are called Delaunay triangles.

![Diagram](attachment:diagram.png)

a) $G(P, E_c)$ b) $DT(P)$ c) $CDT(G)$
if $E_c = \phi \Rightarrow G = P$ and $\Delta(G) = \Delta(P, \phi) = \Delta(P)$; a conventional Delaunay triangulation.
Generalization of the theory to CDTs
(Brief, consult cited papers for details)

In (b), \(e'\) is constrained

Lemma. The modified circle criterion and the MaxMin angle criterion are equivalent for strictly convex quadrilaterals.

Recall: *indicator vector, lexicographical measure, ...*

Lemma(\(^*\)). The *indicator vector* (of a constrained triangulation) becomes *lexicographically larger each time* an edge of a strictly convex quadrilateral is swapped according to the Delaunay swapping criteria.

Basis for Lawson’s LOP Algorithm
LOP applied to a $\Delta(G)$, where G is a PSLG:

1. Start with an arbitrary $\Delta(G)$

2. Repeat swapping of edges according to modified circle criterion

- Does the LOP converge when applied to $\Delta(G)$?
- What does it converge to?
- Do we reach a global optimum?

Lemma (*) and the fact that the number of possible triangulations of G is finite guarantees that the algorithm terminates after a finite number of edge swaps.

\[\Downarrow \]

Definition. Locally optimal edge:

1. When the decision is not to swap it in the LOP.
2. Edges in E_c and boundary edges are locally optimal by default.

Definition. Locally optimal triangulation; accordingly.
THEOREM. All interior edges of a triangulation $\Delta(G)$ ($G \equiv G(P, E_c)$) are locally optimal

$$\uparrow$$ (if and only if)

the modified circle criterion holds for all triangles.

Proof. See Exercise in lecture notes.

So, LOP yields a CDT in accordance with

DEFINITION (CDT).

THEOREM. A triangulation $\Delta(G)$ is a CDT in accordance with **DEFINITION (CDT)**

$$\uparrow$$ (if and only if)

its indicator vector is lexicographically maximum.

Proof. See Exercise with guidelines in lecture notes. (Difficult since a dual construction (Voronoi) cannot be used.)
Uniqueness of a CDT can be deduced from the proof (under the usual assumption that no four points of P are cocircular).

Unique characterization of Delaunay edge and Delaunay triangle in A CDT (Recall, edges in E_c are not Delaunay edges):

THEOREM (Delaunay edge). Edge e_{ij} between points p_i and p_j of P is Delaunay

\[\updownarrow \text{(if and only if)} \]

p_i and p_j are visible to each other and there exists a circle passing through p_i and p_j that does not contain any points of P in its interior visible from both p_i and p_j.

Proof. See Exercise in lecture notes.
THEOREM (Delaunay triangle). Triangle t with nodes p_i, p_j and p_k is Delaunay

\triangleright (if and only if)

$C(t)$ contains no point of P in its interior which is visible from both p_i, p_j and p_k.

Proof. See Exercise in lecture notes.
Algorithms for Constrained Delaunay Triangulation

Overview:
Similar schemes as for conventional Delaunay, but
1. predefined constrained edges, and
2. modified circle criterion.

Only incremental algorithms are considered here: basic operations:

- inserting a constrained edge into a CDT, and
- inserting a node into a CDT.
Given a PSLG $G(P, E_c)$ where endpoints of E_c are in P.

Algorithm (Compute $\Delta(G)$):

1. Compute $\Delta(P, \phi)$ (conventional Delaunay)

2. for each e in E_c
 insert e into $\Delta(P, E'_c)$ and update to a CDT.
 \[E'_c \leftarrow E'_c \cup e \]

3. (add additional points into $\Delta(G)$)

Recall from conventional Delaunay: two schemes for inserting a point p:

- remove triangles in (star shaped) influence region R^p and retriangulate

- split t which contains the insertion point into three new triangles and apply \texttt{recSwap} procedure three times.
Inserting an Edge into a CDT

“Insert” constrained edge e_c between p_a and p_b in $\Delta(P,E_c) \rightarrow \Delta(P,E_c \cup e_c)$.

Influence region R^{e_c} of e_c in $\Delta(G)$ are triangles intersected by e_c

Note that no node is inserted or moved \Rightarrow only R^{e_c} is affected! (Recall Theorem)

Influence polygons, $Q^{e_c,L}$ and $Q^{e_c,R}$ on each side of e_c.

Obtain $\Delta(P, E_c \cup e_c)$ by triangulating $Q^{e_c,L}$ and $Q^{e_c,R}$ on each side of the constrained edge e_c separately using modified circle criterion:

“Step-by-step” approach with base line and growing circles:

Retriangulate one Q:

1. Let e_c be the first baseline

2. Start with a growing circle with $r = \infty$ and grow it into Q.

3. Make a triangle t with the first point p reached that is not separated from e_c with a constraint.

4. Chose a new base line e_c (an edge of t) and use the same circle.

5. GOTO 3
The point p is uniquely defined as the point in P that,

i) makes the largest angle at p spanned by the baseline e_b, and

ii) p is visible from the endpoints of e_b.

Note: No non-procedural approach as for point insertion.
Growing circles
Edge Insertion and Swapping

Recall:

\[T = 2V_I + V_B - 2 \quad (I) \]
\[E = 3V_I + 2V_B - 3 \quad (II) \]
\[E_I = 3V_I + V_B - 3 \quad (III) \]
\[(T = E - V + 1) \quad (IV) \]

that is, a new constraint edge between two existing nodes does not change the cardinality of edges or triangles.

This suggests that a new constrained edge can be “swapped in place”.
1. Swapping procedure for “inserting” a constraint e_c into $\Delta(P, E_c)$ (operating inside R^{e_c} only).

2. LOP applied to edges inside each of $Q^{e_c,L}$ and $Q^{e_c,R}$ to obtain $\Delta(P, E_c \cup e_c)$

The swapping procedure:

Principle: Swap edges away from the constrained edge e_c such that eventually e_c is included as an edge in the triangulation.

- Let $(p_a, u_1, \ldots, u_n, p_b)$ define the closed influence polygon $Q^{e_c,L}$ to the left of the directed line from p_a to p_b.

- Note how the vertices of the polygon are enumerated when it is multiply connected; see figure.

Consider a point u_m each time where the angle $\alpha_m < \pi$ and swap away edges radiating from u_m and intersecting e_c.

1. is it always possible to find a point u_m where $\alpha_m < \pi$?
2. is there always a swappable edge at u_m?
Lemma (⋆). A closed and simply connected polygon P has at least three interior angles smaller than π.

Proof. Let $\alpha_1, \ldots, \alpha_N$, $N \geq 3$, be the interior angles of P and suppose that k of them are smaller than π. From elementary geometry we know that the sum of the interior angles is $(N - 2)\pi$ and thus,

$$(N - 2)\pi = \sum_{i=1}^{N} \alpha_i = \sum_{\alpha_i < \pi} \alpha_i + \sum_{\alpha_i \geq \pi} \alpha_i.$$

We have $\sum_{\alpha_i \geq \pi} \alpha_i \geq (N - k)\pi$, which inserted above gives,

$$(k - 2)\pi \geq \sum_{\alpha_i < \pi} \alpha_i.$$

The right hand side is non-negative, so we have $k \geq 2$. But since $k > 0$ the right hand side is in fact positive and this gives $k \geq 3$. \blacksquare

Simply connected influence polygon:
Lemma; at least one vertex different from p_a and p_b where $\alpha_m < \pi$.

multiply connected: see exercise.
Illustration for Lemma.

- Suppose that there are r edges radiating from u_m and intersecting e_c; see figure.
- The endpoints of the r edges on the opposite side of e_c from u_m are denoted w_1, \ldots, w_r, numbered counterclockwise. Conventions $w_0 = u_{m-1}$ and $w_{r+1} = u_{m+1}$.

Lemma (★★). There is at least one edge radiating from u_m and intersecting e_c, where $\alpha_m < \pi$, that is a diagonal in a convex quadrilateral (and thus swappable).

Proof. The closed polygon defined by the sequence $(w_0, w_1, \ldots, w_r, w_{r+1})$ (not including u_m) has at least three interior angles smaller than π by Lemma. Thus, there is at least one point w_s, $1 \leq s \leq r$ such that the angle $\angle w_{s-1}w_s w_{s+1}$ is smaller than π. Then the quadrilateral with (u_m, w_s) as a diagonal must be convex since $\angle w_{s+1}, u_m, w_{s-1}$ is also smaller than π. \blacksquare
• Thus, all edges \((u_m, w_s), 1 \leq s \leq r\), where \(\alpha_m < \pi\), can be swapped away from \(u_m\) such that there are no edges left radiating from \(u_m\) and intersecting \(e_c\).
• Result: \(u_m\) is eliminated from the influence polygon.

Algorithm (\(\star\)) (eliminate \(u_m\), with \(\alpha_m < \pi\)):

1. \(\text{while } (r \geq 1)\)
2. Let \((u_m, w_s)\) be a diagonal in a convex quadrilateral \((u_m, w_{s-1}, w_s, w_{s+1})\).
3. Swap \((u_m, w_s)\) to \((w_{s-1}, w_{s+1})\)
4. \(r \leftarrow r - 1\)

Eventually, \(r = 1\) and and only one edge \((u_m, w_1)\) radiates from \(u_m\) and intersects \(e_c\).

\((u_m, w_1)\) is a diagonal in the quadrilateral \((u_m, u_{m-1}, w_1, u_{m+1})\) that is convex by Lemma.

When \((u_m, w_1)\) is swapped to \((u_{m-1}, u_{m+1})\) in the \(r\)'th cycle of the algorithm, \(u_m\) is isolated from \(e_c\) and eliminated from \(Q\); see \(u_1\) in figure.
Repeat Algorithm on
\[Q \setminus u_m = (p_a, u_1, \ldots, u_{m-1}, u_{m+1}, \ldots, u_n, p_b) \]
etc. and eventually on \(Q = (p_a, u_1, p_b) \).

Algorithm (Insert constrained edge \(e_c \))

1. while \(n \geq 1 \)
2. Find a point \(u_m, 1 \leq m \leq n \) where \(\alpha_m < \pi \)
3. Apply Algorithm (\(\star \)) to \(u_m \)
4. \(n \leftarrow n - 1 \)
5. \(Q_{e_c,L} \leftarrow (p_a, u_1, \ldots, u_{m-1}, u_{m+1}, \ldots, u_n, p_b) \)

When \(n = 1 \), \(Q = (p_a, u_1, p_b) \) and the interior angle \(\alpha_1 \) at \(u_1 \) is smaller than \(\pi \) by Lemma; see figure.

When \((u_1, w_1) \) is swapped to \((p_a, p_b) \) it takes the role as the constrained edge \(e_c \) that has \(p_a \) and \(p_b \) as endpoints.
Finally, apply LOP to edges inside influence polygons $Q^{e_c,L}$ and $Q^{e_c,R}$.

LOP terminates as CDT with e_c as a constraint!

Existence follows from Lemma (⋆), extended to multiply connected polygons, and Lemma (⋆ ⋆).
Inserting a Point into a CDT

Let $\Delta(P \cup p, E_c)$ be the CDT obtained by inserting a point p into a CDT $\Delta(P, E_c)$.

Exact limitation of R^p:

Lemma. A triangle t in $\Delta(P, E_c)$ will be modified when inserting a point p to obtain $\Delta(P \cup p, E_c)$ if and only if the circumcircle of t contains p in its interior and p is visible from all the three nodes of t.

Proof. The proof follows directly from Theorem (Delaunay triangle).
How can $\Delta(P \cup p, E_c)$ be obtained?

Alt. 1:

THEOREM. All new triangles of $\Delta(P \cup p, E_c)$ have p as a common node.

Proof. See Exercise in lecture notes.

$\Delta(P \cup p, E_c)$ can be obtained from $\Delta(P, E_c)$ by removing all triangles of R^p and connecting p to all points of Q^p; see Figure (b).

Alt 2, swapping procedure:

As for conventional Delaunay with this modification only: `recSwapDelaunay` must not swap constrained edges.