Last updated Mon May 29 11:27:01 CEST 2006 by ingerbo[at]math[dot]uio[dot]no

Undervisningsside

Christin Borge
Seksjon for matematikk, Avdeling for lærerutdanning, Høgskolen i Vestfold
Våren 2006 M2: Funksjonslære
Noen stikkord:
8. februar: Funksjoner, kontinuitet (kap. 9 i 'Algebra og funksjonslære'), den deriverte.
13. februar: Den deriverte forts.; regneregler, maks og min, drøfting (kap. 10.1-10.4).
22. mars: Repetisjon. Den andrederiverte (kap. 10.5). Trigonometriske funksjoner. Sett 1 deles ut (leveres 3. april).
27. mars: Integrasjon (kap. 11); trappesummer.
3. april: Integrasjon forts. Sett 1 leveres. Sett 2 deles ut (leveres 24. april).
19. april : Volumberegninger; omdreiningslegemer.
24. april: Sett 2 leveres. Oppsummering.
PPU: Realfagsdidaktikk (matematikkdelen), 15 studiepoeng (samarbeid med naturfag v/Øyvind Wistrøm). Ordet 'felles' refererer til at både matematikkstudentene og naturfagstudentene er samlet.

Noen stikkord:
13. januar: Felles-samling: Diskutere fagplan og semesterplan. Forelesninger: 'Sjøberg-stoff': Fagdebatikk (Øyvind), Realfagets legitimitet (med vekt på matematikk) (Christin).
17. februar og 10. mars: Matematikk-samlinger (Christin): Gjennomgang av L06: Kunnskapsløftet for matematikk. Veiledning i forbindelse med oppgaver og forberedelse til praksis (uke 11-13). Diagnostisk undervisning m/oppgaver (basert på G. Brekkes hefte). Diskusjoner (bl.a. avisoppslag 11 grunner til å velge matte, Vil fjerne kalkulatoren). Presentasjoner av undervisningsopplegg (mye fra matematikk.org). Utdeling av diverse artikler og avisutklipp (til bruk som referanser i refleksjonsdokument)
21. april: Felles-samling: Diskutere mapper, praksis og ekskursjon. Forelesninger: Matematikkens utvikling og egenart (Christin), Drivhuseffekten -et eksempel på naturvitenskapens utvikling (Øyvind).
5. mai: Ekskursjon til Tusenfryd (påmelding på Skolenettet), Orrfugl-leik ved Merkedammen med diskusjoner (Øyvind). Innlevering av presentasjonsmappe (skriftlig eksamen).
2. juni: Muntlig eksamen. Tidspunkt:
10.00: Inger Lise Berntsen
10.30: Guro Huneide Hetland
11.00: Irene Ditmansen Schanche
11.30: Jørgen Lien
Rom: Se Servicetorget ved ankomst.


Om mappekravene: Foreløpig skal det jobbes med alle oppgavene som er gitt (ligger nedenfor). Krav til presentasjonsmappen blir gitt felles den 21. april, slik at vi samkjører med naturfag. Uansett, vi har muntlig blitt enige om at praksis- og refleksjonsoppgaven er med, og at de tre første oppgavene sys sammen, slik at det ikke blir for mange sider. Når det gjelder praksisoppgaven, blir dette tilsvarende som i høst: velg gjerne ut et konkret undervisningsopplegg og analyser dette. Det anbefales at grovarbeidet med oppgavene er gjort til 21. april slik at vi kan få diskutert og oppklart dette i fellesskap da.


Om presentasjonsmappen (skriftlig eksamen): (per 25. april, småjusteringer kan komme innen 26. april): Presentasjonsmappen skal leveres senest 5. mai på mail til meg. I tillegg må den også sendes skriftlig sammen med utfylt og signert egenerklæringsskjema til Servicetorget, Høgskolen i Vestfold, poststemplet senest 5. mai, og merket 'Presentasjonsmappe PPU, naturfagsdidaktikk'.
Innholdet i presentasjonsmappen skal ikke overstige 8 A4 sider (metatekst og referanser er ikke inkludert i disse sidene). Selve innholdet skal baseres på mappeoppgavene (link nedenfor): Oppgavene 1-3 'slås sammen' til en oppgave der oppgave 2 og 3 gjøres med utgangspunkt i oppgave 1 (funksjoner). Oppgave 4 (praksis): en rapport som beskriver og drøfter utprøvingen av et undervisningsopplegg. Oppgave 5 besvares slik den står.

Noen linker:
Til felles-samlingene:
Matematikk-linker:

M3: Lineær algebra
Noen stikkord:
12. januar: Lineære ligningssystemer. Kapittel om lineære ligningssystemer (pensum). Det vil bli delt ut oppgavesett 1 (som inkluderer oppgavene i kapittelet nevnt ovenfor) som det skal jobbes med i forbindelse med de første øktene, og som skal leveres 26. januar (mappekrav). Settet er ganske stort, og vil kreve jevn jobbing.
17. januar: Matriser.
19. januar: Matriser og lineære ligningssystemer. Gjennomgår oppgavene 2.4, 2.10., 2.6, 2.9 og 2.8 i boka (Rinvold).
24. januar: Gauss-eliminasjon (Hvordan løse et lineært ligningssystem ved hjelp av radoperasjoner på den augmenterte matrisen til ligningssystemet). Håndskrevne notater deles ut.
26. januar: Levere oppgavesett 1. Oppgavesett 2 (også mappekrav) deles ut. Gauss-eliminasjon fortsetter. Inverse matriser (s. 47 i boka).
2. februar: Lineære avbildninger.
7. februar: Lineære avbildninger forts. Snakke rundt oppgave 4.23. Oppgaveregning.
14. februar: Levere sett 2 (oppgave 5 skal ikke leveres, og NB: feil i fasit på oppgave 1.2e) fra sett 1). Oppsummering, og i den forbindelse: ortogonale matriser, egenverdier og egenvektorer.
Høsten 2005 M2: Sannsynlighetsregning og statistikk
31. oktober, 7. november: Sannsynlighetsregninger (eksempler), stokastisk variabel, forventning og varians (kap. 5 i Lysø).
14. november: Normalfordeling (kap. 8 i Lysø). Oppgavesett 1 med innlevering 28. november.
28. november: Tilnærme binomiske sannsynligheter med normalfordeling (bruker kap. 6 og 7, som Signe har gjennomgått).
7. desember: Estimering: Konfidensintervall for en binomisk p (kap. 9 i Lysø; med hovedvekt på 9.2).
14. desember: Estimering: Hypotesetesting om en binomisk p (kap. 10 i Lysø; til og med 10.4). Oppsummering og gjennomgang av oppgavesett.

M2: Matematikkens historie
22. august: Historie-kompendium, Tallet 0.
Oppgaver til innlevering (to eksemplarer) 31. august (1. del av mappe): Fingertall, Tallprodusenten.
31. august: Strekkoder, Personnummer.
Oppgaver til innlevering (to eksemplarer) 5. september (2. del av mappe): Dele med 2, 3 5 og 11, Øyboerne.
5. september: Det gylne snitt, Broene i Kønigsberg, Magiske kvadrater.
Oppgaver til innlevering (to eksemplarer) 14. september (3. del av mappe): Brevveksling og kake med gift (kakestykkene skal være formlike).
14. september: Fibonaccitallene, Stambrøker.
Oppgave til innlevering 23. september (4. del av mappe): Refleksjonsdokument: Oppgavelaging
Våren 2005 M3: Lineær algebra
M2: Funksjonslære