Applied Bioinformatics Exercise – Learning to know a new protein and working with sequences

In this exercise we will explore some databases and tools that can be used to get more insight into a new protein coding gene and the corresponding protein.

1. Open your internet browser and go to the website http://www.genenames.org. Here you find the database of the HUGO Gene Nomenclature Committee (HGNC) approved gene names. Search for OGG1 and go to the OGG1 page. What is the approved symbol and name for this gene and what is the chromosomal location?

Approved symbol: OGG1
Approved name: 8-oxoguanine DNA glycosylase
Location: 3p25.3 (Chromosome 3, short arm, band 25.3. p=short arm, q=long arm – arms separated by the centromere. Bands are visible with certain staining).

2. There are many links to other databases from the OGG1 page. Follow the “UniProt” link under “Protein resources”. What is the UniProtKB identifier for human OGG1? Is it in the Swiss-Prot or TrEMBL part of UniProtKB? (Hover the mouse over the “Reviewed” link under “Status” close to the top of the page) What does that tell you about the quality of this entry? Can you find any information about the function of this protein? Under the “Sequences” heading you will find the sequence of OGG1 (Isoform 1A, the “canonical” sequence). How many residues/amino acids are there in this variant of OGG1? How many other isoforms are there?

The identifier is O15527 and this is an entry in UniProtKB/Swiss-Prot. This means that a human curator/expert actually has checked this entry. Function: “DNA repair enzyme that incises DNA at 8-oxoG residues. Excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (FAPY) from damaged DNA. Has a beta-lyase activity that nicks DNA 3’ to the lesion.” There are 345 residues in the UniProtKB “canonical” sequence. There are 7 additional isoforms.

3. Go back to the genenames.org webpage for OGG1 and follow the “GenBank” link under the “Nucleotide sequences” category. What is the accession number for this GenBank entry? What is the identifier/accession for the corresponding protein? What is the length of this protein (click on the “/protein_id” link to find out)?

Accession: U96710
Protein Accession: AAB81132
Length of protein is 351 residues

4. Go back to the genenames.org webpage for OGG1 and follow the “RefSeq” link under the “Nucleotide sequences” category. What is the accession number for this RefSeq entry? What is the identifier/accession for the corresponding RefSeq protein? What is the length of this protein (follow the “/protein_id” link 2/3 down the page)? Is this the same length you found when following the GenBank link? Is it the same as the UniProtKB “canonical” sequence? Do you have any idea why?
Accession: NM_016821

Protein Accession: NP_058214
Length of protein is 424 residues
The lengths are not the same, most likely because they represent three different, predicted splice variants

5. Go back to the genenames.org webpage for OGG1 and follow the “Ensembl” link under the “Gene resources” category. Use the first link. What is the identifier for the human OGG1 gene? How many transcripts have Ensembl listed for OGG1? How many of these are protein coding? Do any of the Ensembl proteins have the same length as any of the three splice variants investigated above? If so, what are the transcript IDs for these?

Human OGG1 gene Ensembl identifier is ENSG00000114026
It is 18 transcripts, but only 14 (or 12) are predicted to encode a protein
Protein with transcript ID ENST00000302036 has 424 residues
None of the 14 has 351
Protein with transcript ID ENST00000344629 has 345 residues

6. Go back to the genenames.org webpage for OGG1 and follow the “Entrez Gene” link under the “Gene resources” category. What is the identifier (ID) for the human OGG1 gene in this database? How many transcripts are there listed for OGG1 here? In the “Related information” link on the right, click on “RefSeq Proteins”. How many proteins do you find here? Do any of the RefSeq proteins have the same lengths as the splice variants investigated above (except Ensembl)? If so, what are the protein accession identifiers for these? Click on the links to these proteins to find the accessions for the corresponding transcripts. What are they?

The identifier is 4968
There are 18 transcripts and 21 RefSeq proteins
None are 351 residues
NP_058214 has 424 residues, and the transcript is NM_016821
NP_002533 has 345 residues, and the transcript is NM_002542
7. Based on all the information above, what do you believe are the main functional isoforms of human OGG1 in vivo?

In brief, it is one big mess with 8 proteins in UniProtKB, 21 in RefSeq, and 14 proteins in Ensembl. None of these are the 351 residues protein which is the translation of the GenBank entry we were pointed to. UniProt/Swiss-Prot has a “canonical” sequence, but we find 7 other isoforms even in manually curated Swiss-Prot. It is far from obvious which variants are most important, if any. In this case, as often, the solution is to read the literature!

According to Klungland et al. “OGG1: From structural analysis to the knockout mouse”, in Oxidative Damage to Nucleic Acids (Landes Bioscience, Springer, 2007):

The cloning of the human OGG1 gene also uncovered the existence of two splice variants, α-hOGG1 and β-hOGG1 with an open reading frame (ORF) coding for peptides of 345 and 424 amino acids, respectively. The β-OGG1 gene structure appears to be absent in rodents. Later studies have identified several alternatively spliced forms of human OGG1 mRNAs, with the two variants previously mentioned being predominant. These two alternative spliced forms are localized to the nucleus (α-OGG1) and mitochondria (β-OGG1).

The 345 and 424 residues variants are α-OGG1 and β-OGG1, respectively, the nuclear and mitochondrial targeted isoforms. Quite possibly, many of the other splice variants we found above (in RefSeq, UniProt, and GenBank) represent “transcriptional junk”. In addition, many of the additional Ensembl variants are only computationally predicted with some bioinformatics algorithm. These variants most likely exist only on the computer and not in human cells at all!

This is important:

a. Some protein sequences in databases correspond to proteins that actually are present and have an important biological function in the organism – these are of course the ones we are interested in studying
b. Some protein sequences in databases are translations of mRNAs that in reality are never properly translated in the organism – they do not represent biologically relevant information.
c. Many protein sequences in databases are translations of mRNAs that have been computationally predicted from the genome sequence. In many (most?) cases, not the mRNA and certainly not the protein, exists in the organism.

8. Go to the Ensembl page for the OGG1 gene again: http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000114026

Note the names for α-OGG1 and β-OGG1. Halfway down the page you find a graphical illustration of the two isoforms under “Genes (Comprehensive Gene Annotations from GENCODE 27)”. What are the differences between the two isoforms (in terms of splicing)?
OGG1-203 is β-OGG1 while OGG1-205 is α-OGG1. The six 5’ exons appear to be the same, but the 7th exon is different in the two variants.

9. At the top of the page, click on the ENST00000344629 transcript (i.e. α-OGG1 or the 345 residues variant). On the left side of the page click on “Protein” under “Sequence” to see the protein sequence. It is displayed with alternating black and blue colouring, corresponding to sequence encoded by exon 1, 2, 3 and so on. Residues spanning an intron are show in red. Take a screen shot of the window with the displayed sequence and paste it into PowerPoint, Word or some other suitable program. Crop the picture to show only the protein sequence and the explaining text.

After cropping, the screenshot looks something like this:

10. Do the same for β-OGG1. What are the five last residues of the OGG1 protein that are identical in the two isoforms?
GWAQA (the last residues of exon nr. 6).

11. In order to see the exonic sequences click on “Exons” at the left hand side under “Sequence”. Again take a screenshot and crop to get a nice picture. Which two nucleotides are at the start of all introns? And at the ends? What is the start codon of OGG1 and what is the stop codon? What are the lengths of the 5’ and 3’ introns in β-OGG1? (Tip: you can hide variants by clicking on “Configure this page” on the left side)

All introns start with GT and end with AG. This is very common. According to a large study (http://nar.oxfordjournals.org/content/34/14/3955.full.pdf) >98% of all introns are of the GT-AG type. Less than 1% is GC-AG type, and these often have less efficient splicing. This may lead to alternative splicing (See below). Start and stop codons are ATG and TGA, respectively. The 5’ intron has 521 nucleotides, while the 3’ intron has 8992 nucleotides.
Pagani and Baralle (Nat. Rev. Genet. 5, 389 (2004)) explain splicing as follows,
12. Check the “Exons” link for the other main transcript. What are the lengths of the 5’ and 3’ introns in α-OGG1?

The 5’ intron has 521 nucleotides, obviously. It is exactly the same intron as in β-OGG1. The 3’ intron has 244 nucleotides.

13. Staying on the α-OGG1 “Exons” page, click on the “Configure this page” button on the left. Change “Flanking sequence at either...” to 1000 and tick “Show full intronic sequence”. Then click on the little “tick mark” in the upper right-hand corner to save the changes. Again take a screenshot and crop to get a nice picture of the first exons and introns.
14. Make sure that the “OGG1-205”-line in the table is selected, i.e. it is light blue (as seen below) and click on “Variant table” under “Genetic variation” on the left.

You get a table with many SNPs and other variants found in human individuals/populations. Use the “Consequence Type” filter and show only “Missense variants”. There are many columns. Try to find these columns: the ID for the SNP, position in chromosome, the two alleles, the allele frequency if it is known, the type of variation, the source database, the amino acid change (AA) and position of this residue in the protein (AA cord). The two columns at the right shows the output from two bioinformatics algorithms, SIFT and PolyPhen, that try to estimate if the amino acid change will affect the function of the protein.

Are there any missense variants in human α-OGG1 that have a relatively high frequency? Which residue does it affect and what is this residue mutated to? What do SIFT and PolyPhen think about this mutation?

The SNP rs1052133 has a minor allele frequency of 30.2%. This is a Ser326 to Cys mutation, often written as Ser326Cys or S326C. No other SNPs have a frequency of more than 2.8%. For S326C SIFT predicts “tolerated” and PolyPhen predicts “benign”. According to these predictors, S326C will most likely not change the function of α-OGG1 significantly.
15. Click on the rs1052133 link to go to the Ensembl page for this SNP/variation. Then click on the “Population genetics” link at the left. In the 1000 Genomes project data (Phase 3), which population has the highest ratio of G|G genotype (which means homozygote for Cys326)? Which population has the lowest? In each case, what are the G|G genotype ratios?

The highest is in the CDX population, Chinese Dai in Xishuangbanna, China. 42% have a G|G genotype. The lowest is in the TSI population (Toscana, Italy) with 1.0%. Also YRI (Yoruba, Nigeria), and other African and European populations are low (less than 2.5%).

According to several studies, individuals with the OGG1 Cys/Cys variant are more prone to get lung cancer.

17. Back in Ensembl, lick on the “Gene:OGG1” tab at the top of the page to go back to the information about the gene. Click on the “Orthologues” link at the left. What are orthologous genes? Is there an OGG1 ortholog in the ferret? Click on the ferret OGG1 gene identifier link (marked ENSMPUG00000017122). Click on the “Transcript ID” and then on “Protein” under “Sequence” at the left.

“Homologous sequences are orthologous if they were separated by a speciation event: when a species diverges into two separate species, the copies of a single gene in the two resulting species are said to be orthologous.” Yes, there is an OGG1 gene in the ferret genome.

Now go to the Jalview website (http://www.jalview.org) and “Launch Jalview Desktop” in the upper right-hand corner. Do “File” - “Input Alignment” - “from Textbox”. Copy the protein sequence from Ensembl and paste it into the textbox window with the header “ferret”. Use FASTA format, as you see below. If you do not know what that is, read about it here: http://en.wikipedia.org/wiki/FASTA_format
18. Go back to the human OGG1 “Orthologues” page. Do exactly as you did for the ferret OGG1 for the following species: cow, mouse (longest sequence), rat, squirrel, and human (α-OGG1). That is, go to the gene, find the protein sequence, copy the sequence and paste it into the Jalview textbox under the ferret sequence (See below). When you believe you know how to do this and you have had enough practising, you can copy the remaining sequences from below.
19. In the Jalview textbox window, press “New Window”. You get a window with 6 sequences. Do all the sequences have a Met residue at the N-terminus? If not, which one is missing it?

The N-terminal residue of the ferret sequence is Leu, all the other have Met. It is unlikely that the Leu is the actual start codon of this sequence. More likely, the start codon is Met7 (which in that case is Met1), or possibly Met11.

Get a few carnivore sequences from Ensembl, such as dog and panda, and paste them into a new textbox together with the ferret sequence. Press New Window. To more easily compare sequences, we align them. In this window, do “Web service” - “Alignment” - “Muscle with defaults”. This will run the Muscle multiple sequence alignment program on a machine somewhere else on the internet (most likely in Dundee, Scotland) and send the result back to your Jalview session.
This indicates that it is Met11 in the ferret sequence which is the actual start codon. Note that Met11 is conserved in all 3 species while no other Met (ATG) codons are near the N-terminus. Also, the 3 sequences are nearly 100% conserved downstream of Met11, but not upstream, indicating that this actually might be part of the 5’ UTR. If you take a look at the 5’ UTRs for these 3 carnivore sequences in Ensembl, you will find that there are no in-frame ATG start codons nearby and upstream in the sequence.

20. Go back to the first sequence window you made and align also these using Muscle as before. Are all the other sequences the same length at the N-terminus? If not, which is longer? Is it certain that it actually should be longer than the others?

The cow sequence appears to have an extra 2 N-terminal residues. However, it also has a Met3. The nucleotide sequence is therefore ATGxxxATG. It is difficult from the sequence alone to determine if it is the first or second ATG that is the actual start codon. Quite likely no-one has checked experimentally if bovine protein OGG1 has MEMSVVS or MSVVS at the N-terminus, so we cannot know for sure. It is also possible that both forms exist, and that the function of the protein is identical for the two variants.

21. Show the multiple sequence alignment with Clustalx colouring (Colour => Clustal). In the Jalview multiple sequence alignment window, you can move the mouse over the residues. You will then see the identity of the residue you are pointing to in the lower left corner of the window (See below).
Use this technique to find human α-OGG1 Ser326. Is this residue conserved in other mammals? Is Ser320 conserved?

Ser326, the residue affected by SNP rs1052133 investigated above, is not conserved in the other mammals. Ser320 is 100% conserved in the 6 mammals.

22. Find ferret OGG1 Glu189. Is there anything odd here? Can you find out what?

There is a single residue insertion in ferret OGG1 here, in a quite conserved segment of the protein. We better check it in Ensembl... The protein is found here:

http://www.ensembl.org/Mustela_putorius_furo/Transcript/Sequence_Protein?db=core;g =ENSMPUG00000017122;r=GL896899.1:32715972-32721358;t=ENSMPUT00000017267

Glu189 is encoded partly by exon 3 and exon 4. We click on the cDNA link at the left and locate the relevant part (below).
We have the codons CTG-GCT-GAA-GGG-CCA, that encodes L-A-E-G-P. However, if we guess that AAG with the yellow background is actually a part of the intron we get the protein sequence L-A-G-P. This splicing is also perfectly ok, since the intron ends with AG. We also get rid of the insertion, the extra Glu residue. If we click on the “Exons” link, we see that introns 1, 2 and 4-6 are normal GT-AG introns. However, intron 3 that we are fiddling with now is GT-AA! Impossible!!! For some unknown and stupid reason, the gene searching algorithm made a GT-AA intron, instead of a perfectly ok GT-AG intron. This created a most likely completely artificial insertion in the protein. Extremely likely, Glu189 does not exist in vivo, just in the computer...

23. Let us remove ferret Glu189 in JalView. Select the column containing Glu189 by clicking just above the ferret sequence. You get a red square as seen below. Then click “Edit” - “Delete” to get rid of this quite likely erroneous insertion.

24. In the middle of ferret OGG1 intron 3 (back in the Ensembl “Exons” page), there are a lot of nnnnnnnn. Why is that?

This is because the genomic sequence here is unknown. This part of the genome has not yet been sequenced.

25. Go to UniProt (http://www.uniprot.org) and click on the UniRef link. Search (at the top) in UniRef for human OGG1 (i.e. O15527). Ideally, O15527 should be in a single UniRef50 cluster, i.e. a group of homologs with more than 50% sequence identity. However, the various splice variants are currently (Oct 2017) found in 3 UniRef50 clusters. We will also see below that sequences that are clearly more than 50%
identical to human OGG1 is found in none of the 3 clusters. Clustering in UniRef does not appear to function very well… Focus on the UniRef50 cluster with the canonical O15527 variant (UniRef50_O15527). Click on the identifier for this cluster. How many proteins are there in this OGG1 50% cluster?

There are currently 236 proteins, but this will probably change with the next UniProt update.

26. Select the following sequences (by setting a tick mark at the left – show 250 sequences): O15527 (human α-OGG1), K7AAZ7 (Chimpanzee), and G3RZB6 (gorilla). Choose “Add to basket” and select “Selected cluster members”. Open your shopping basket and click “Full View”. Choose “Download” – “FASTA (canonical)” – Preview and copy the sequences into Jalview (using the input from textbox option). Also find, in UniProt, the sequences F7IC54 (marmoset) and H0XK07 from the galago and add them to the text box. Align the sequences with Muscle and color the alignment. Find the human α-OGG1 Ser326 residue. Does it appear to be conserved in primates?

Ser326 is conserved in all great apes, and all the “higher primates”. It is not conserved in galago, a prosimian, which is also a primate but more closely related to lemurs. This could be an indication that Ser326 has a common and unique function only in higher apes.

27. Go back to http://www.uniprot.org/uniprot/O15527 again. Can you find any information about S326C on this page?

It says “Common polymorphism in the Japanese population” (with some literature references) and “Corresponds to variant rs1052133”.

28. Can you find any Molecular function GO terms for OGG1 on this page? Give the ID for one of them.

Yes, “damaged DNA binding”, “endonuclease activity”, and “oxidized purine nucleobase lesion DNA N-glycosylase activity” (GO:0008534, had to click on the link to find this).
29. Click on the “oxidized purine nucleobase lesion DNA N-glycosylase activity” GO term link. Here you will find a lot of information about the protein annotation and how it is related to other molecular functions (notice there are 38,579 other proteins with the same GO annotation!).

30. Click on the “Ancestor Chart” to see the hierarchical connection of the GO terms, from more general to more specific function. Take a screenshot and paste the chart below.