ECON4260 Second lecture, topic 3:
Inequity aversion

Readings:
Fehr and Schmidt (1999)
Camerer (2003), Ch. 2.8, pp.101-104
Puzzles from experiments

Compared to self-interest model:

- Too much generosity & cooperation
 - Dictator, public good, trust games
 - Ultimatum games (genuine/strategic generosity?)
- Too much sanctioning
 - Ultimatum games, public good games
- Too conditional on others’ behavior
 - Ultimatum, public good, and trust games
- Too context dependent
 - Dictator games, Prisoners’ dilemma
Strange things happen in labs - so what?

- **Internal validity**: Replicability
 - Will others get the same result?
 - Was the experiment conducted professionally?
- **External validity**: Will similar results occur outside the lab?
 - Similarities between lab and outside world?
 - Dissimilarities: Which of them *matter*?
 - Refer to existing theories: Which differences would we, theoretically, expect to matter?
 - E.g.: ”In the real world, stakes are higher”
 - New experiment: Higher stakes!
Proposed explanations

• Inequity aversion
 – A preference for equal payoffs

• Reciprocity
 – A preference for repaying kindness with kindness and meanness with meanness

• Altruism
 – Caring for others’ payoff, or others’ utility

• Preferences for social approval
 – Prefers to be liked by others

• All of these involve ”non-standard” preferences (note: not irrationality!).
Preferences as explanations

• **Anything** can be "explained" by *ad hoc* assumptions on preferences!
 – Bill sleeps on the street
 – «Explanation»: Bill likes sleeping on the street

• For preferences to «explain» things: must be consistent with a wide array of data

• Input: knowledge from other disciplines (psychology, anthropology, biology, neurology)
https://www.youtube.com/watch?v=-KSryJXDpZo&feature=player_detailpage

(Frans de Waal: Capuchin monkey fairness experiment)
Preferences for equity

• What if some individuals dislike inequity?
 – Utility: Increasing in own income and in equity

• Dislike
 – any earning differences?
 – that others earn more than me?
 – that I earn more than others?

• Several models proposed in literature, see Sobel’s paper.
Fehr & Schmidt’s (1999) model of inequity aversion

- Individuals care about own income, advantageous inequity, and disadvantageous inequity
 - Disadvantageous counts most!
 - Simplification: Linearity, 2 persons

\[U_i = x_i - \alpha_i \max \{x_j - x_i, 0\} - \beta_i \max \{x_i - x_j, 0\} \]

where \(i \neq j \), \(\beta_i \leq \alpha_i \), \(0 \leq \beta_i < 1 \)

- Can alternatively be written:

\[
\begin{align*}
U_i &= x_i - \beta_i (x_i - x_j) \text{ if } x_i > x_j \\
U_i &= x_i - \alpha_i (x_j - x_i) \text{ if } x_i \leq x_j
\end{align*}
\]
2-person inequity aversion model

\[U_i = x_i - \alpha_i \max\{x_j - x_i, 0\} - \beta_i \max\{x_i - x_j, 0\} \]

where \(i \neq j \), and \(\beta_i \leq \alpha_i \), \(0 \leq \beta_i < 1 \)

All else given, \(i \) prefers \(j \)'s income to equal hers; \(i \)'s utility declines in their income *difference*, more so if \(i \) herself is worst off.
Ultimatum game: Inequity averse responder

- Responder, B, prefers high payoff to himself, and equality between himself and the proposer, A.
 - Reject: $\{x_A, x_B\} = \{0,0\}$
 - Accept: $\{x_A, x_B\} = \{(1-s)X, sX\}$

- If A offers $s = 0.5$: Will B accept?
 - Accept: same income difference as reject.
 - Accept: more income than reject.
 - B accepts.

- If A offers $s > 0.5$:
 - Accept: higher income difference than reject.
 - Accept: more income (for both) than reject.
 - Assumption $\beta_i < 1$: One will never throw away income to avoid advantageous inequality
 - B accepts.
Inequity averse responder (cont.)

- Offered share \(s < 0.5 \): Will B accept?
 - *Accept*: higher income difference than *reject*.
 - *Accept*: more income (for both) than *reject*.
 - No upper boundary on \(\alpha_i \): We may throw away income to avoid *disadvantageous* inequality.

\[
U_i = x_i - \alpha_i (x_j - x_i) \text{ if } x_i \leq x_j
\]

\[
U_B(\text{accept}) = sX - \alpha_B [(1-s)X - sX] = sX - \alpha_B [X - 2sX] = X[s - \alpha_B (1 - 2s)]
\]

\[
U_B(\text{reject}) = \text{ if } X[s - \alpha_B (1 - 2s)] < 0
\]

- *Reject* is preferred if \(X[s - \alpha_B (1 - 2s)] < 0 \)
- i.e. if \(s < \frac{\alpha_B}{1 + 2\alpha_B} \)
- Note: \(X \) doesn’t matter!
Example

- $\alpha_B = 2$, $\beta_B = 0.4$
- Offer from Proposer (A): $s = 0.2$

$$U_i = x_i - \alpha_i \max \{x_j - x_i, 0\} - \beta_i \max \{x_i - x_j, 0\}$$

$$U_B(\text{accept})$$

$$= 0.2X - 2 \max \{0.8X - 0.2X, 0\} - 0.4 \max \{0.2X - 0.8X, 0\}$$

$$= 0.2X - 2 \cdot 0.6X$$

$$= X (0.2 - 1.2)$$

$$= -X$$

$$U_B(\text{reject}) = 0$$

- B will reject, regardless of the size of the "pie" to be shared.
Inequity averse Proposer (A)

• Prefers high payoff to himself (A) and equality between himself and the responder (B).

• If A offers $s = 0.5$:
 – If B accepts: max. equality, less than max. income
 – Both self-interested and inequality-averse responders will accept $s = 0.5$

• Offered share $s > 0.5$:
 – If B accepts: less income to A than $s = 0.5$, and less equality
 – Proposer will never offer $s > 0.5$
Inequity averse Proposer (cont.)

- If A offers $s < 0.5$:
 - *If B accepts:* The lower s, the higher income for A, but the more inequality
 - Which is most important?
 - A’s utility when $s \leq 0.5$, given that B accepts:
 \[
 U_A = x_A - \alpha_A \max \{x_B - x_A, 0\} - \beta_A \max \{x_A - x_B, 0\}
 \]
 \[
 = (1-s)X - \beta_A[(1-s)X - sX]
 \]
 \[
 = X(s(2\beta_A - 1) + 1 - \beta_A)
 \]
 - This is increasing in s whenever $\beta_A > 0.5$
 - If acceptance were not a concern (dictator game), A would offer $s = 0$ if $\beta_A < 0.5$, $s = 0.5$ if $\beta_A > 0.5$, and be indifferent between any offer $s \in [0, 0.5]$ if $\beta_A = 0.5$.
Strategic interaction

• A must take into account: will B accept?
• Assume inequity averse preferences, common knowledge:
 \[\alpha_A = \alpha_B = 2, \beta_A = \beta_B = 0.4 \]
• Since \(\beta_A < 0.5 \), A would prefer to keep all of X himself, despite his inequity aversion.
• However, B will reject if
 \[
 s < \frac{\alpha_B}{1 + 2\alpha_B} = \frac{2}{5} = 0.4
 \]
• Knowing this, A offers \(s = 0.4 \) (or: *slightly more*).
• B accepts.
Self-interested Proposer (A), inequity-averse Responder (B)

- Let $\alpha_A = 0$, $\beta_A = 0$, $\alpha_B = 2$, $\beta_B = 0.4$
 - Common knowledge
- Responder will reject if $s < 0.4$
 - Threat is credible, due to B’s inequity aversion
- Knowing this, Proposer will offer 0.4
- No difference between the behavior of self-interested and inequity-averse Proposers!
If Proposer does not know Responder’s type

- A must consider the probability that B is inequity-averse.
- If possible (in the lab, it is usually not!), a self-interested B would pretend being inequity-averse.
- The existence of inequity-averse types can make self-interested types behave as if they were inequity-averse too.
Competition

• Responder or proposer competition:
 – Observed outcomes usually very inequitable
 – 1 person reaps (almost) all gains, others get (almost) nothing.

• Double auction markets:
 – Observed outcomes usually conform nicely to the self-interest model

• Do such results contradict the assumption that (at least some) players are inequity averse?
n-person inequity aversion

- Fehr-Schmidt model with n individuals:
 - Normalizes inequity aversion by the number of others (otherwise every new player k would decrease i’s utility unless $x_k = x_i$)
 - Self-oriented: compares himself to everyone else, but does not care about inequality between others
 - Crucial question: What’s the relevant peer group?

\[
U_i(x_i) = x_i - \alpha_i \frac{1}{n-1} \sum_{j \neq i} \max\{x_j - x_i, 0\} \\
- \beta_i \frac{1}{n-1} \sum_{j \neq i} \max\{x_i - x_j, 0\}
\]
Proposer competition

- You’re selling a house
 - No sale: your gain is 0 (you’re moving, no rental market).
 - For any interested buyer: value is X.
- Buyer = Proposer (A), seller = Responder (B)
- Sales process:
 1. Potential buyers i give sealed offers s_iX
 2. You accept preferred offer, or reject all (no sale). If indifferent, buyer picked randomly.
 3. Sale: your payoff is s_hX (h is the buyer). Buyer’s gain is $(1-s_h)X$. No sale: All get payoff 0.
- If only 1 potential buyer: Standard ultimatum game.
- Assume:
 - 10 potential buyers.
 - Your $\beta_B < 0.5$, so you will pick the highest offer.
Proposer competition – cont.

• Self-interest prediction:
 – Several proposers offer $s=1$, which is accepted
 – If several buyers value house at X, you will get X.

• Assume: Every player is inequity-averse
 – If buyer i’s offers is rejected, he will experience unfavourable inequity: His payoff=0, someone else’s>0
 – If his offer is accepted, there will be inequity anyway, but his income will increase, and the inequity can be turned to his advantage
 – The only (subgame perfect) Nash equilibrium is that at least two proposers offer $s=1$, of which one is accepted.
Why doesn’t inequity aversion affect outcome with proposer competition?

- "No single player can enforce an equitable outcome. Given that there will be inequality anyway, each proposer has a strong incentive to outbid his competitors in order to turn part of the inequality to his advantage and to increase his own monetary payoff.” (Fehr and Schmidt 1999, p.834)

- No buyer can secure less disadvantageous inequality between himself and the monopolist (you) by offering you a relatively low share: If he tries, you can just pick someone else’s offer. Thus, inequity aversion becomes irrelevant.
Criticisms of Fehr-Schmidt model

• Linearity
 – Dictator games: Dictator A will give either 0 (if $\beta_A < 0.5$) or 0.5 (if $\beta_A > 0.5$)
 – Possible modification: Utility concave in inequity

• Who is the reference group?
 – Lab: All subjects in experiment? Opponent(s)?
 – Outside lab...?

• Flaws and aggressive marketing?
 – Binmore and Shaked (JEBO 2010)
 – See http://www.wiwi.uni-bonn.de/shaked/rhetoric/

• Micro data across games not consistent with fixed individual α’s and β’s (Blanco, Engelmann, Normann 2011)
Next time: Reciprocity

• A preference to repay kind intentions by kind actions, and mean intentions by mean actions

• Readings:
 – Camerer, C. (2003), pp. 105-117 (Compendium; Ch. 2.8.4 can be skipped).
 – Sobel, J. (2005), Section 3.4