Lecture 3

ECON 4910, Environmental Economics
Spring 2008

From last time: Consumers' purcase of emission reductions

• Condition for Pareto efficiency:

$$\sum_{i} (u'_{iE}/u'_{ix})z' = f_k' \qquad \text{(and} \qquad f_k' = f_l')$$

• If individual consumers can pay firms to reduce emissions (no transaction costs), consumer i's first order condition for utility max is:

$$(u'_{iE}/u'_{ix})$$
 z' = f'_k

- Note: This may correspond to *very small* contributions compared to the PO, or none at all (contributions *do not* sum up to PO!).
- Assume (for a moment) that individuals are identical.
 - Then (u'_{iE}/u'_{iX}) z' = MWTP for every i.
 - Individual utility max: MWTP= f'_k where i considers f'_k fixed.
 - Consider the case where one person "moves first" and increases his contribution until this holds.
 - Then, no-one else will act!

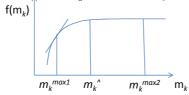
Bargaining & consumers' contributions

- The Coase Theorem:
 - If property rights are clearly assigned, and there are no transaction costs, private bargaining yields Pareto efficiency.
 - This holds regardless of whether the polluter or the victim holds the property right
 - See Perman Ch. 5.10.3
- External effects between two parties:
 - Define "transaction costs" as the costs of establishing a binding contract -> the Coase theorem holds
- Public goods:
 - For the Coase theorem to hold: "Transaction costs" must be defined to include all costs of establishing a binding agreement between all consumers (and firms), including all problems related to free-riding
 - The result becomes almost tautological: If there are no problems, there will be no problems....

Policy instruments

- Assume (will be relaxed later):
 - No uncertainty
 - no asymmetric information
 - costless lump-sum transfers are feasible
 - The number of firms, *K*, is fixed.

Command and control

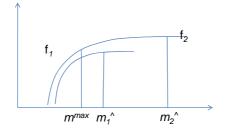

- Prohibitions, required actions/procedures
- In our model: Emission caps (non-tradeable quotas) or abatement requirement
 - Binding if $m_k^{max} < m_k^{\ \ \ } (m_k^{max} = \text{firm } k'\text{s emission cap})$
 - or if $a_k^{min} > 0$ $(a_k^{min} = m_k^{ } m_k = \text{firm } k \text{'s abatement})$
- Other measures used in practice:
 - Required technology ("best practice")
 - Required waste handling procedures
 - Required internal environmental reviews, skill requirements, safety procedures

Profit maximization with emission caps

- No explicit emission price $(\tau = 0)$
- Max $\pi_k = f_k(m_k) b_k$ with respect to m_k , s.t. $m_k \le m_k^{max}$
- Lagrangian: $L = f_k(m_k) b_k \lambda_k (m_k m_k^{max})$
- Kuhn-Tucker: Either
 - a) $\partial L/\partial m_k = f'_k \lambda_k = 0$
- $>f'_k = \lambda_k$

- b) $\lambda_k = 0$
- λ_k is called the *shadow price* of the restriction ($m_k \le m_k^{max}$): It reflects the marginal value of changing the restriction (its marginal cost)
- These two cases correspond to
 - a) The emission cap is binding $(m_k = m_k^{max})$
 - b) The cap is not binding $(m_k < m_k^{max})$

 m_k^{max1} : Binding emission cap m_k^{max2} : Non-binding emisison cap


Emission caps, cont.

- Non-binding restrictions:
- Binding restriction:
 - Firm behaves as if there were a price on emissions λ_k
 - i.e. $f'_k = \lambda_k$ and $m_k < m_k^{max} < m_k^{\hat{}}$
- If caps are set such that $\lambda_k \neq \lambda_i$:
 - Shadow prices differ between firms
 - Profit max: Marginal abatement cost differ between firms
 - The same amount of x could then have been provided with less emissions, by changing caps such that $f_k' = f_l'$ for all firms.
- Pareto efficiency
 - Recall criteria for Pareto optimality: $f_k' = f_l'$ and $\sum_i (u'_{iF}/u'_{ix})z' = f_k'$
 - Emission caps are Pareto efficient if caps are set such that

 $\lambda_k = \lambda_l = \sum_i (u'_{iE}/u'_{ix})z' = D'$ for all firms 1,...,K

Cost efficiency

- Cost efficiency: Reaching a given goal at least possible cost
 - Emission level: If production functions differ, an equal emission cap m^{max} for all is generally not cost efficient
 - Abatement level: If firms have different abatement cost functions, a common abatement requirement a^{min} is generally not cost efficient
 - Note: If $m_k^{\ \ }$ differs, these may not be equivalent

Ex.: m^{max} implies larger abatement for 2 than 1

Information and efficiency

- We have assumed: Perfect information
 - the regulator knows all firms' abatement costs perfectly
 - and the value of marginal damage
 - Then, command and control can be made Pareto and cost efficient simply by choosing the right levels for each firm
- If information about marginal damages is unavailable:
 - the regulator is unable to ensure PO
 - can still ensure cost efficiency, by setting caps such that $\lambda_k = \lambda_l$ for all k
- If information about individual cost functions is unavailable:
 - The regulator is unable to ensure, by setting emission caps/abatement requrements suitably, that $\lambda_k = \lambda_l$
 - Cannot ensure cost efficiency through emission caps/abatement req.

Emission taxes

• If there is a common unit price on emissions τ, we know (from lect.1) that for each firm k={1,...,K}, profit max. gives

$$f'_k(m_k) = \tau$$

- An emission tax is precisely that: A unit price on emissions
- Let t be a uniform emission tax (same for all emitters)
 - In practice, taxes are often not uniform (e.g. Norwegian CO₂ tax)!
- Then, profit max. gives $f'_k = f'_l = t$ for all $k = \{1,...,K\}$
- If $t = t^* = D' = \sum_i (u'_{iF}/u'_{ix})z'$: Pareto efficiency
- t* is called a Pigou tax (or Pigouvian tax): All externalities are internalized
- If $t \neq D'$: Cost efficiency $(f'_k = f'_l)$ for all emitters), not PO
- Note: A tax is a cost for the firm, but no real cost for society.

Uniform versus differentiated taxes

- Uniformly mixing flow pollutant
 - If taxes differ between emitters there is NOT cost efficiency
 - Marginal trade-offs by firms: Like situation with CAC and different shadow prices
 - Effects of CAC and diff. taxes may still differ: Exit/entry
- If emissions are not uniformly mixing
 - noise; local particle or NO_x pollution
 - marginal damages are greater for some sources
 - differentiated taxes may be efficient
 - More generally: instrument use should be differentiated
 - Read: Perman 6.7 and 7.5

Abatement subsidies

- Abatement subsidy s: For every emission unit abated, the firm receives s
- Max $\pi_k = f_k(m_k) b_k + sa_k$ (where $a_k = m_k^{\ \ } m_k$)
- Differentiate wrt. m_k -> first order condition for interior max:
 f'_k = s
- If s is the same for all firms: Cost efficiency
- If, in addition, $s = D' = \sum_i (u'_{iE}/u'_{ix})z'$: Pareto efficiency
- Recall Coase (1960):
 - Think of the regulator as a representative of the consumers (victims), demanding the compensation they would have demanded if (costlessly) coordinated.
 - It does not matter whether the "property right" to the air is given to the firm (subsidy) or to the regulator (tax); outcome is efficient anyhow.

Entry and exit

- Assume now: The number of firms is endogenous
- Potential entrants:
 - Assume that production functions $f_k(m_k)$ can be mimicked by newcomers, but newcomers may have higher fixed costs
- Entry: If $\pi_k > 0$ for at least one firm, new firms mimicking firm k will enter the market, unless their fixed costs are too high
- Exit: If π_k < 0 for a firm, it closes down
- In equilibrium: The marginal firm's profit = 0

Subsidies, entry and exit

- Consider the introduction of a subsidy s>0 per unit abatement $a_k = m_k^{\ \ } m_k^{\ \ }$
- Assume that firm A is a marginal firm: $\pi_A = 0$ initially.
- Before the subsidy (no regulation), $\pi_A = f_A(m_A^{\ \ \ }) b_A = 0$.
- Consider a potential entrant B, mimicking A's production function f_A, but with slightly higher fixed cost:

$$b_B = b_A + \varepsilon$$
 where $\varepsilon > 0$.

- Firm B will not produce initially: $\pi_B = f_A(m_A^{\ \ \ \ }) (b_A + \varepsilon) < 0$. - Corner solution: $m_B = 0$
- When s > 0 is introduced, then by cleaning one unit, firm B can get profits

$$\pi_B = f_A(m_A^{-1} - 1) - (b_A + \varepsilon) + s > 0$$
 whenever $\varepsilon < s$.

Recall: at $m_k^{\hat{}}$, $f'_k = 0$.

• b will move to interior solution: $f'_A = s \rightarrow \text{pollutes a lot more!}$

Effects of a subsidy

- Existing firms pollute less
 - with fixed # of firms: Uniform subsidy -> cost efficiency
- But: The industry is now more profitable than before
 - Total activity may increase
- In our example: There is now one more firm
- Which effect dominates?

Subsidies versus taxes

- Similar reasoning:
 - An emission tax will make the industry less profitable
 - An abatement subsidy makes the industry more profitable
- With fixed # of firms:
 - this difference is a pure transfer, no real cost
 - may matter for fairness; not for efficiency
- With endogenous # of firms:
 - subsidy gives higher activity before abatement
 - even if each pre-existing firm abates just as much with each instrument, there are more firms with the subsidy -> total emissions are higher.
- CAC: In-between-case; shadow price is just "shadow", not paid to/from the regulator.

Consumers: Taxes vs. subsidies

- Three consumption goods; two types of energy, and other
 - e1: dirty energy (e.g. coal), producer price q1, tax t
 - e²: clean energy (e.g. windpower), prod. price q², subsidy s
 - c: all other consumer goods, producer price p
 - Consumer price = producer price + t s.

Max $U = u(e^1, e^2, c, E)$

E is considered exogenous

s.t. $e^{1}(q^{1}+t) + e^{2}(q^{2}-s) + cp = F$

F = ex. income

• First order conditions:

 $(u'_{e1}/u'_{e2}) = (q^1+t)/(q^2-s)$ The same rel.price through t or s

 $(u'_{e1}/u'_{c}) = (q^{1}+t)/p$

 $(u'_{e2}/u'_{c}) = (q^{2}-s)/p$

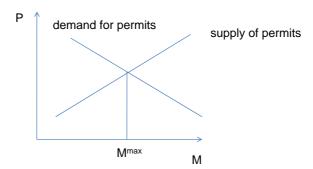
- Subsidy makes energy cheaper, relative to other consumption goods, than tax
- With subsidy, total energy demand is higher than with tax
 - If clean energy is not absolutely clean, emissions might increase

Tradable permits

- Total emission cap for society: Mmax
- Initial allocation (initial emission cap) for each firm k: m_k^0 , such that $\sum m_{\nu}^0 = M^{max}$
 - for the moment: consider # of firms fixed
- Firms can buy or sell permits
- If firms' abatment cost differ after initial permit allocation,
 - i.e. $f'_{k}(m_{k}^{0}) < f'_{l}(m_{l}^{0})$

for some k, l

there is room for "bargaining" between firms:


- Firm k can abate cheaper than firm I -> k sells a permit to I, I pays a price P such that $f'_k(m_k^0) < P < f'_l(m_l^0) -> Both benefits$
- A market for permits will arise
 - Demanders vs suppliers: determined by initial allocation and marginal costs
 - Trade occurs until every firm has the same abatement cost
 - In equilibrium, M^{max} is reached at least possible cost

Profit max with tradable permits

- Permit purchase: $m_k m_k^0$
- Permit sale: $m_k^0 m_k$ = negative purchase
- Assume perfect competition in the permit market, i.e. each firm considers the permit price P fixed
- Assume each firm considers m_k^0 exogenously fixed
- Max $\pi_k = f(m_k) b_k P(m_k m_k^0)$ wrt m_k
- Differentiate, get first order condition for interior max: $f_{k}' = P$
- Market price for permits P: Similar to a uniform tax
- Note: This holds even if the firm is a permit seller. Reason: Alternative value of permits

Permit market

- Suppliers: Firms with $f_k' < P$
- Demanders: Firms with $f_k' > P$

- At M^{max} , all firms have $f_k' = P \rightarrow cost$ efficiency
- If goals are set such that M^{max} = M* (PO level), then the market will produce the equilibrium price P=D'= t* (Pigou tax)

Next time

- More on instrument choice:
 - Initial allocation of permits: Free or not?
 - Uncertainty: Price vs quantity regulation?
- Enforcement
 - Will rules be kept?
 - If not, what should the regulator do?