Lecture 4

ECON 4910, Environmental Economics Spring 2008

This lecture

- Policy instrument, cont.
 - Permit markets: Initial allocation of permits
 - Asymmetric information: Prices vs quantities
 - (Incentive compatibility: See Perman 8.3.4)
- Enforcement
 - Will rules be obeyed by firms?
 - If not, what should the regulator do?

Permit market

Suppliers: Firms with f_k'< P
 Demanders: Firms with f_k'>P

- If M^{max} = M* (Pareto optimal level, market produces equilibrium price P*=D'= t* (Pigou tax)
- If # of firms fixed: Uniform tax, uniform subsidy, and permit marked (perfect competition) are equivalent

Initial allocation of permits

- Allocation mechanisms (see Perman 7.4.2):
 - The regulator sells permits to firms: Fixed price or auction
 - The regulator gives permits to firms for free (e.g. "grandfathering": allocations based on firms' previous emissions)
- M^{max} is reached cost efficiently, regardless of
 - which firms get (most of) the initial allocations
 - whether firms must pay for initial allocations or not
 - This assumes that the # of firms is fixed
- Recall the Coase theorem:
 - Bargaining (here: trade) gives efficiency, independent of who has the property rights.
 - Permits: Pollution rights
- Initial allocation does affect income distribution

Industry size & composition

- What if number and composition of firms are not fixed?
- Free initial permits:
 - Higher profits (than with paid initial permits)
 - Size of industry higher (than with paid initial permits)
 - Recall: subsidies vs. taxes
- If only some firms get free permits
 - Cost advantage
 - composition of industry may be affected
 - Ex.: Grandfathering -> old firms get cost advantage over new firms; firms that did not abate before gets cost advantage over those who did

Combinations of tax and subsidy

- Deposit refund ("pant"):
 - Ex.: Bottles and cans, cars
 - Tax at purchase, subsidy at return
 - If no environmental damage is caused, tax is returned
- Green certificates
 - Production of green energy gives right to issue green certificate
 - Production of brown energy requires purchase of green certificate
 - Tax on brown energy, subsidy to green energy

Instrument choice under uncertainty

- Assume: Regulator's goal = Pareto efficiency
- Assume: Aggregate marginal damages are known
- If aggregate abatement cost function is known
 - tax and tradable permits are equivalent
 - Both can achieve PO: Total quantity M*, marginal abatement cost t*
- What if aggregate abatement costs are uncertain?
 - Genuinely uncertain; but realized after regulator moves, before firm moves
 - Not known by regulator (firms' private information)

Prices versus quantities

Weitzman (1974)

- Cost uncertainty matters for instrument choice damage uncertainty does not
- Taxes (prices): Good when MC is steep
 - Preferred when the marginal abatement cost curve (MC=B') is steeper (absolute slope is greater) than the marginal damage curve (MD=D')
- Permits (quantities): Good when MD is steep
 - Preferred when the marginal abatement cost curve (MC=B') is flatter (absolute slope is lower) than the marginal damage curve (MD=D')
- Intuition:
 - if marg. abatement costs increase quickly, extra abatement is costly
 - if marg. damages increase quickly, extra pollution creates a lot of damage
- Implicit assumption: Uncertainty about levels rather than slopes

Enforcement

- Readings: Heyes (1998), Perman et al. 8.4
 - classical paper: Becker (1968): Crime and Punishment: An Economic Approach, J.Pol.Econ. 76
- Enforcement:
 - Monitoring/detection: Are firms violating?
 - Sanctioning: Punishment of confirmed violators
- Will firms comply?
 - For simplicity: Consider the case of emission cap
 - Profit max. firm complies only if expected penalty of violating exceeds the firm's compliance cost
- What should the regulator do about it?
 - Sufficiently strict enforcement to ensure no violation?
 - Accept that some violation will occur?

Firms' compliance choice

- - What happens if rule is broken?
 - disregard difference between firms skip subscript k
- Discrete / continuous choice?
- · Risk neutral firms: Maximize expected profits
- · Perfect monitoring
 - if inspected, firm's compliance is revealed without error
- Enforcement policy:
 - Fixed monitoring probability q
 - Only inspected firms can be sanctioned
 - Penalty P (inspected firms) (unlucky notation: P is NOT permit price!):

```
If m \le m^{max}: P = P(m) = 0
```

If
$$m > m^{max}$$
: $P = P(m) \ge 0$, $P' \ge 0$

- Firm knows P(m) and q

Profit maximizing compliance levels

- Rather than taking the constraint m ≤ m^{max} as given, the firm maximizes expected profits, given that there may be costs associated both with abatement and violation:
- Max $E(\pi) = f(m) b E(P)$

$$= f(m) - b - qP(m)$$

with respect to m

• First order condition for interior solution:

$$\partial E\pi / \partial m = f' - qP' = 0$$
 $\Rightarrow f' = qP'$

- The firm will pollute until the marginal abatement cost equals the marginal expected penalty.
- Note: equivalent to Heyes, just slightly different notation and formalization
 - abatement costs vs. income from pollution; cost minimization vs. profit max., penalty as a function of emissions or violations

The penalty function

- Is the marginal penalty increasing in the degree of violation?
- · All of these P functions impose a penalty for violations
 - but their effect on emissions are very different:

- F.o.c.: f' = qP'
 - f' decreasing in m (because f is concave)
 - If qP' is increasing in m, there will be an interior solution: The firm pollutes until marginal expected penalty becomes higher than f'
 - If qP' is *not* increasing in *m*: May get corner solutions

The importance of marginal penalties

- Increasing or fixed marginal penalties $(P^1(m), P^3(m))$:
 - Profit max. emissions m*
- High absolute, but zero marginal penalties (P²(m)):
 - Corner solution: either m^{max} or m[^]

The importance of marginal penalties, cont.

- Decreasing marginal penalties (P⁴(m)):
 - at m**, f.o.c is fulfilled
 - But: If emissions increase marginally, revenue will increase more than expected penalty
 - Corner solution: either m^{max} or mⁿ

Firms' compliance

- Profit maximizing firms: Violate as long as the cost of compliance exceeds expected penalty
- The degree of violation depends on the *marginal* expected penalty (and marg. abatement cost)
 - decreasing marginal penalties may encourage full violation
- Note: If violation is profitable for the firm, and q and P are independent of compliance history, the firm will violate "forever" (even after it is caught).
 - Ex: q = 1, P'' > 0, $f'(m^{max}) > P'(m^{max})$
 - In this case, regulator knows that firm is violating, the firm is sanctioned, but still violates.

Regulator's response

- Sufficiently high penalties and/or monitoring probabilities can ensure full compliance
 - e.g.: q=1, P'(m^{max})> f'(m^{max}), and P''≥0
 - Credible threats of sufficiently harsh punishment can eradicate crime
- In practice: Expected penalty is limited
 - If monitoring is costly (inspection costs etc): Limited regulatory budget gives q<0
 - If sanctioning is costly (legal procedures etc): Limited reg.
 budget may limit the level of practically feasible penalties
 - If monitoring is imperfect: Type I and II errors, fairness
 - Fairness concerns, more generally: Reasonable/politically acceptable?

Regulator's response – general remarks

- Enforcement costs are real economic costs
 - Some goals may not be worth it, given the enforcement costs
 - Example of transaction costs
 - Arise (partly) because of information asymmetries and strategic incentives (private information on e.g. costs, emissions)
- Enforcement costs are not independent of the goal
 - Easy measurement/verification -> lower enforcement cost
- Relevant for all policy instruments
 - e.g.: collection of emission taxes requires knowledge of emission levels
- Enforcement and regulation must be considered jointly
- The regulator may have to take into account: Regulation will not be perfectly obeyed
 - Full compliance usually too expensive
 - Some taxes will be evaded; some illegal emissions will take place.

Next time: Project assessment and valuation

- Normative vs positive welfare economics
 - Distributional concerns
- Cost-benefit analysis
 - Theoretical underpinnings and ethical foundation
 - The use of CBA in practice
 - CBA and politics: How to handle the controversies in practice?
- Monetary valuation of environmental goods
 - Different valuation methods
 - Alternatives to monetary valuation