# ECON4910 Environmental Economics Spring 2010

Karine Nyborg (Lecture 1 - 5, 12, 13) Michael Hoel (Lecture 6 - 11)

# Why study environmental economics?



Climate change



Toxic waste, radioactivity



Local pollution



Biodiversity



Noise



Acid rain



Wilderness preservation

### Why study environmental economics?

- Economic activity -> environmental problems
  - emissions to air, water, soil
  - land use, noise & light pollution
- Environmental problems -> economic loss
  - Negative impacts on productivity: reduced health of labor force, increased capital depreciation
  - Direct negative impacts on human well-being: reduced visibility, reduced health
- Negative impacts on ecosystems

### About this course

Applying microeconomic theory for systematic analysis of environmental problems and policy

- Emphasis:
  - Markets, incentives and policy (rather than ecology)
  - Analytical tools (rather than factual knowledge)

ECON 4910 Environmental Economics, Spring 2011

Readings listed in **bold types** constitute the curriculum. Other listed readings are recommended.

| Week | Date  | Lecture       | Topics                                                                                                              | Readings<br>(Listings in <b>bold</b> are the<br>curriculum)                                          |
|------|-------|---------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 3    | 17.01 | 1             | Flow pollution in a simple, static model (Nyborg)                                                                   | Perman et al. Ch 6 (6.8 – 6.10<br>can be skipped.) General<br>background: Perman Ch. 5,<br>part III. |
| 4    | 24.01 | 2             | Market outcomes (Nyborg)                                                                                            | Perman et al. Ch 6, cont.                                                                            |
| 5    | 31.01 | 3             | Bargaining Policy instruments: Taxes, subsidies, licences (Nyborg)                                                  | Perman et al. Ch 7                                                                                   |
| 6    | 07.02 | 4             | Policy instruments: Tradeable permits<br>Instrument choice under uncertainty<br>(Nyborg)                            | Perman et al. Ch 7<br>Perman et al. Ch. 8                                                            |
| 7    | 14.02 | 5             | Instrument choice under uncertainty<br>Enforcement (Nyborg)                                                         | Perman et al. Ch. 8<br>Heyes (1998)                                                                  |
| 8    |       | No<br>lecture | Work with voluntary term paper                                                                                      |                                                                                                      |
| 9    | 28.02 | 6             | Optimal environmental taxation in the<br>presence of other taxes (Hoel)                                             | Bovenberg (1999)<br>Hoel (2008)                                                                      |
| 10   | 07.03 | 7             | Environmental policy and pollution<br>reducing technological development<br>(Hoel)                                  | Hoel (2010), Greaker,<br>Golombek and Hoel (2010)                                                    |
| 11   | 14.03 | 8             | International environmental problems<br>and international environmental<br>agreements (Hoel)                        | Perman et al: sec. 10.1-10.3<br>Hoel (2005)<br>Barrett (2006)                                        |
| 12   | 21.03 | 9             | Stock Pollution Problems (Hoel)                                                                                     | Perman et al: sec. 6.9 and ch                                                                        |
| 13   | 28.03 | 10            | Climate change and climate policy (Hoel)                                                                            | The Stern Review<br>Hoel et al. (2009)<br>Weitzman (2007)                                            |
| 14   | 04.04 | 11            | Discounting (Hoel)                                                                                                  | Perman et al., ch. 3.1-3.4.<br>Dasgupta (2008)                                                       |
| 15   | 11.04 | 12            | Voluntary contributions                                                                                             | Nyborg and Rege (2003)<br>Lyon and Maxwell (2008)                                                    |
| 16   | 02.05 | 13            | Monetary valuation of the environment<br>The ethics and politics of environmental<br>cost-benefit analysis (Nyborg) | Perman et al., Ch. 3.1-3.4.                                                                          |

# Teaching

- Curriculum: Reading list & lectures
  - Lectures: Motivation, explanation
  - Seminars: Problem solving, discussion
  - Own reading: Details; repetition; material not covered in lectures
- Previous exams:

http://www.sv.uio.no/econ/studier/admin/eksamen/tidligere-eksamensoppgaver/eksamensoppgaver%20master/econ4910/

- Note: Course & exams may vary between years

### Voluntary term paper

- Sign up **TODAY or 24.01**, get partner (list to be posted on web)
- Assignment: to be posted on web **14.02**.
- No teaching week 8 work with assignment
- Lecture **28.02** (Hoel): Bring your paper to class, exchange papers with partner
- Solution to be posted on web page 28.02
- After class: Correct and comment your partner's paper
  - Is the main argument understood? Is it well explained? Precise?
  - Are formal models applied in useful & meaningful ways? Why/why not?
  - Important points missing? Superfluous material included?
  - Mistakes/errors? Notation well defined?
- Lecture **07.03**: Bring your partner's paper, with your comments/corrections, exchange papers. (Recommended: After class coffee & discussion!)

#### Remarks before we start

- Assume knowledge of
  - Basic micro, welfare economics, game theory
  - Basic mathematics ++
  - Brush-up: See Perman et al. 2003 (esp. Ch.5)
- Learning outcomes:
  - Intuitive understanding of results and mechanisms
  - Ability to use economic methodology to analyze environmental issues

Note: Many ways to analyze issues at hand (models, terminology, more/less formal). Use the one you prefer. Goal: demonstrate ability to use economic concepts & methods to gain systematic understanding of issues at hand.

## Remaining part of this lecture:

- Public goods and externalities
- A simple economic model of pollution

# Public goods

- Definition: A good that satisfies
  - non-rivalry: Person A's consumption of a public good does not preclude person B's consumption
  - non-excludability: If the good is accessible to person A, it is also accessible to person B
- · Example: Clean air
  - Non-rivalry: My enjoyment of good air quality does not reduce the air quality left to others
  - Non-excludability: If I can enjoy clean air, I cannot stop others from enjoying it too
- Public goods (environmental quality) and public bads (pollution)

### Pure and impure public goods

- Here: Focus on pure public goods
- Impure public goods:
  - Congestion (rivalry)
  - Costly excludability



### **Externalities**

- Perman et al., p. 134:
  - "when production or consumption decisions of one agent have an impact on the utility or profits of another in an unintended way, and when no compensation/payment is made by the generator of the impact to the affected party."
- Effects on others (positive or negative) which are not compensated by market prices
- Does the existence of a public good imply the existence of an externality?
  - Yes: if someone changes the public good level, this must produce an externality
- Does the existence of an externality imply that there must be a public good?
  - No: ice cream melting and dripping on your friend's dress

### Types of externalities

- Production to consumption
  - Industrial waste spills near a beach
- Production to production
  - Industrial waste spills near another factory's freshwater intake
  - Research and technological "spillover"
- Consumption to consumption
  - Private cars, pedestrians with asthma
- Consumption to production
  - Noise from partying neighbors to office building
- What about nature?
  - In economics, usually: Consumers' valuation of nature

#### **Pollution**

- Stock vs. flow
  - Does pollution accumulate? (Build-up of concentrations: CO<sub>2</sub> vs. ground level ozone)
  - Do damages accumulate/depend on previous emissions? (Acid rain precipitation and buffer capacities; oceans as carbon sinks.)
- Uniformly mixing vs. non-uniformly mixing
  - Does location matter?
  - CO<sub>2</sub> vs. acid rain: Location of CO<sub>2</sub> emissions unimportant. Location of sulphur/nitrate emissions crucial for local precipitation acidity; marginal environmental damages differ sharply with recipient location, due to varying buffer capacities.

### Damages of pollution

- M = total emissions of a uniformly mixing flow pollutant
- Assume: D(M) = Environmental damages = a convex and increasing function of M



- Gradually reduced natural restitution capacity
- Increasing marginal valuation of environmental quality

### Benefits of pollution

- Pollution allows for
  - low-cost production (no/low abatement costs)
  - low-cost consumption
  - "Benefits of allowing pollution"
- Assume: B(M) = The social benefits of pollution (gross, i.e. not corrected for environmental damages) = an increasing and concave function of emissions
  - Higher pollution levels -> lower gain of further increase in M
- Limited benefits:
  - Assume: There is a level of pollution  $\hat{M}$  for which further pollution yields no benefits.

# Benefits and damages, uniformly mixing flow pollutant



## How much pollution is optimal?

- Net social benefits: NB(M) = B(M) D(M)
- Maximize net social benefits NB(M):
  - Differentiate NB(M) with respect to M
  - First order condition for interior maximum M\*:

$$B'(M^*) - D'(M^*) = 0$$

or 
$$B'(M^*) = D'(M^*)$$

M\* = the M maximizing net social benefits.

Net social benefits are maximized when marginal benefits equal marginal damages

• Second order conditions satisfied because B is increasing and concave and D increasing and convex.

# Benefits and damages, uniformly mixing flow pollutant





# A very simple, but rather vague, model

- What are the "benefits" and "damages"? (Consumption? Justice? Animal rights?)
- What are the *normative reasons* for calling some effects "benefits" (i.e. *good*) and others "costs" (*bad*)?
- How are they measured? (Utility? Dollars? Birds?)
- How/why do they arise? (Markets? Planning?)
- Who gets them? (Losers versus gainers)
- B'(M\*) = D'(M\*) is true regardless...
- But to use this for anything practical at all (better understanding of policy, incentives etc.) we need to specify.

### A more specific model

- Consumers: Preferences for private good *x*, pure public good *E* (environmental quality)
- Production to consumption externality: Profit maximizing producers of x pollute the environment
- Competitive market: Producers take input and product prices as given
- Emissions create
  - Benefits: Utility from private goods produced
  - Damages: Disutility from reduced environmental quality

## Ways to reduce emissions

- "End of pipe" cleaning
- Cleaner inputs
- Changed technology
- Reduced production level

## The production function

- Producer j's production of x,  $y_j$ , is given by
- $(1) \quad y_i = f(m_i)$

 $m_j$  = polluting emissions from firm j's production. Assume: there exists a  $\hat{m}_j < \infty$  such that if  $m_j \ge \hat{m}_j$ , f'=0. If  $m_j < \hat{m}_j$ , f'>0 and f''<0.

- As if: emission is a production input
  - For any fixed production level  $y_j$ : emissions  $m_j$  can only be reduced at the cost of increasing other inputs (labor, capital)
  - If other inputs are kept fixed: Higher production can only be achieved through higher emissions
  - Interpretation of  $f(m_j)$ : The maximal production possible for firm j, given that emissions equal  $m_j$  and other inputs are kept at exogenously fixed levels.



# Abatement cost: a mirror of the production function

 Abatement (cleaning) is the firm's emission reduction compared to "baseline" emissions:

$$a_j = \hat{m}_i - m_j$$

Abatement cost: Lost production value due to cleaning

$$c(a_j) = f(\hat{m}_i) - f(m_j)$$

• Marginal changes in abatement:  $c'(a_i) = f'(m_i)$ 

$$\frac{\partial c(a_j)}{\partial a_j} = \frac{\partial [f(\hat{m}_j) - f(m_j)]}{\partial m_j} \frac{\partial m_j}{\partial a_j} = -f'(m_j)(-1) = f'(m_j)$$
Since  $f$  is increasing and concave in emissions, the

• Since f is increasing and concave in emissions, the abatement cost function is increasing and convex in abatement. Also,  $c_i(0) = 0$ .



### On production and abatement

- Background for our production function:
  - $F(L^p_{j}, K^p_{j})$  = firm j's output  $y_j$  as a function of labor and capital **used directly in production**,  $L^p_{ij}$  and  $K^p_{ij}$
  - $a_j = (\hat{m}_j m_j) = A(L^a_j, K^a_j)$ : An increasing function of labor and capital used for **cleaning**,  $L^a_j$  and  $K^a_j$
  - Total labor and capital use for j:  $L_i = L^p_i + L^a_i$ ,  $K_i = K^p_i + K^a_i$
  - Output of x as a function of **total** labor/capital inputs is lower the more of the inputs are used for **abatement**:  $y_i = F^T(L_i, K_i, m_i)$

Output: increasing in total labor use, capital use, emissions allowed

If  $L_i$  and  $K_j$  are kept fixed, we can write

$$y_i = f(m_i)$$
 where  $f' > 0$ .

### **Profits**

- Producer j's profits: Production (x is numeraire, price = 1) less fixed costs b<sub>j</sub> (other inputs, fixed) less costs paid for emissions (e.g. emission tax, permit price), if any
- (2)  $\pi_j = f(m_j) b_j \tau m_j$ where  $\tau = \text{unit price of emissions}$
- With no regulation,  $\tau = 0$ .

#### **Profit maximization**

- Max  $\pi_i = f(m_i) b \tau m_i$  with respect to  $m_i$
- Differentiate, get first order condition for interior max:  $f'(m_i) - \tau = 0$  or  $f'(m_i) = \tau$
- If  $\tau$  = 0: F.o.c. requires  $m_j = \hat{m}_i$  (because  $f'(\hat{m}_i) = 0$ ).
- If  $\tau > 0$ ,  $m_j < \hat{m}_j$ : If emissions are costly, they will be reduced (profit maximizers will choose f' > 0).
- If emissions are costless to the firm: Profit maximization gives no abatement
- Assume: Fixed costs b low enough to allow  $\pi_i > 0$ .

### Benefits of pollution

- B(M): Total production of x as a function of the sum of emissions from all (profit maximizing) firms, that is
- $B(M) = \sum_{i} f(m_i)$

where j = 1,...,K, and K = # of firms.

- Some distributions of emissions might be wasteful
- B(M) gives the maximum production of x for any level of pollution M.
- Since  $f(m_i)$  is concave, B(M) is concave too.
- Note: With this definition, benefits are measured in units of the private (numeraire) good.

# Next time

- Continued: the benefits of pollution
- On the damage function
- Market solution: Pareto inefficiency
- Can bargaining (unregulated market) solve the efficiency problem?