Lecture 13

ECON 4910 Spring 2011

Monetary valuation
The ethics and politics of cost-benefit analysis

Readings:

Perman et al., Ch. 12

Perman et al., Ch. 3.1-3.4.

[If your read Norwegian: See also Nyborg, K. (2002): Miljø og nytte-kostnadsanalyse. Noen prinsipielle vurderinger, Rapport 5/2002, Oslo: Frisch Centre.]

Monetary valuation

- Max net benefits/Pareto optimum:
 - $\sum_{i}(MWTP_{i}) = MAC$
 - How to measure WTP?
- Theoretical issues
 - What is a marginal project?
 - WTP or WTA?
 - Private or political values?
- How to do it in practice?
 - Valuation methods

Marginal willingness to pay

- Homo Oeconomicus: $U_i = u_i(x_i, E)$
- MWTP = (u'_{iE}/u'_{ix}) (for improved E)
- WTP for small change dE: (u'_{iE}/u'_{ix}) dE
- "Marginal": (u'_{iE} /u'_{ix}) considered fixed

x MWTP = MRS

Non-marginal increase in E

- (u'_{iE}/u'_{ix}) = MRS cannot be considered constant
 - Cannot just use MRS· Δ E, since MRS not constant
 - Varies along the indifference curve (level of E (and x))
 - Varies across indifference curves (level of U)

Discrete environmental changes

- Large enough that MWTP changes due to the project
- Discrete benefit measures:
- **Compensating surplus:** The income change required to keep *i* at the initial utility level (but assuming that the environmental change takes place).
- **Equivalent surplus:** The income change required to secure *i* the utility level she would have had if the change took place (but assuming it *does not* take place).

Marginal change: CS = ESDiscrete change: CS ≠ ES

Non-marginal increase in E

- Compensating surplus: The income change required to keep *i* at the initial utility level (U⁰)
- = Willingness to pay

- Equivalent surplus: The income change required to keep i
 at the "after ΔE" utility level (U¹)
- = Willingness to accept (compensation requirement)

Non-marginal decrease in E

- WTP: Your willingness to pay to avoid ΔE
- = the *equivalent* surplus
- WTA: The compensation required to make you accept ΔE

CS and ES versus WTA and WTP

• If $\Delta E > 0$:

CS = WTP (to get ΔE)

ES = WTA (not getting ΔE)

• If ∆E < 0:

CS = WTA ("suffering" ΔE)

ES = WTP (to avoid ΔE)

WTA or WTP?

- Typically: WTA > WTP
 - more so if x and E are poor substitutes
- CS or ES
 - Which utility level is relevant?
 - Implicit: Property rights
 - Is the consumer "entitled to" the initial or ex post utility level?

Private or social values?

- Utility function: $U_i = u_i(x_i, E)$
- Social welfare function: W = V(U₁,..., U_n)
- i's view of social welfare: W_i = V_i (U₁,..., U_n)
- "What are you WTP to be as well off as before?"
 - Private value: based on properties of U_i
- "What do you think we should all be willing to pay?"
 - Social value: based on properties of $W_{\rm i}$
- May be very different

Monetary valuation in practice

- Methods for measurement of WTP
 - Direct methods: Surveys, voting
 - Indirect methods: Use of market prices/revealed preferences
- Motives:
 - Use value: WTP to go fishing, hiking etc
 - Existence value/non-use value: WTP to know that the environmental good exists
- Non-use values can only be elicited through direct methods

Indirect methods

- Even if no markets for environmental goods: Market goods may be closely tied to the *use* of environmental goods
- Some goods are complementary to E:
 - Fishing rod/clean water
 - Bus tickets to a national park
- Some goods are substitutes to E:
 - Bottled drinking water/ clean tap water
 - Noise isolating window glass / quiet outdoors environment
- By making appropriate assumptions about the relationship between the market good and the environmental good, use value of environmental good can be estimated.
- · Travel cost method, property prices, wages

Contingent valuation: Interview surveys

- «How much would you be willing to pay to improve air quality in Oslo by x pst.?»
- Problems:
 - Strategic reporting? (freeriding, support)
 - Misperceptions (what does «improve air quality by x pst.» mean?
 - Inexperience: Anchoring effects, framing effects
 - Costly
- Advantages:
 - Only way to measure existence values
 - Great flexibility: can ask almost anything

Cost-benefit analysis

- Project evaluation:
 - Are net benefits positive?
 - Are net benefits of a >net benefits of b?
- Standard cost-benefit analysis:

```
Calculate: \sum_{j} WTP_{i} - C

= \sum_{j} WTP_{i} - \sum_{j} C_{i}

= \sum_{j} (WTP_{i} - C_{i}) = \sum_{j} NWTP_{i}

where C_{i} = the cost i must cover
```

- If \sum_{i} WTP_i C > 0: Project defined as 'socially efficient'
- Present values (discounted)
- Marginal project (marg. values fixed)
- Here: disregard risk/uncertainty

Improvement: concepts

1. Pareto improvements

(PI)

2. Net benefits: $\Sigma(WTP) > C$

PI≠ PPI

= Potential Pareto improvements (PPI)(Hicks-Kaldor criterion)

- Costless redistribution & perfect info:
 - PPI -> PI is feasible (but is not implied)
 - If PI does not occur: relevant that it could have occurred?
- Costly redistribution & asymmetric info:
 - PPI -> PI may not be feasible (losers will exist)
 - Normative interpretation of standard CBA cannot be founded on the Pareto principle
 - Conflicting interests: Normative recommendations cannot be neutral

The social welfare function

- $W = w(U_1, ..., U_n)$ $w'_i > 0$
- · Welfarism: Only (human) utility matters
- What is a good society?
 - How should conflicting interests be balanced?
 - Inherently normative: no neutral or economically "correct" SWF exists
 - The regulator's view; an ethical observer; the analysts'...?

Welfare changes

- Project: Env. improvement dE, cost for person i C_i (= -dx_i)
- Will the project produce a welfare improvement?

$$W = w(U_{1} (x_{1}, E), ..., U_{n}(x_{n}, E))$$

$$dW = \sum_{i} [w'_{i} (-U'_{ix} C_{i} + U'_{iE} dE)]$$

$$= \sum_{i} [w'_{i} U'_{ix} (-C_{i} + (U'_{iE} / U'_{ix}) dE)]$$

$$= \sum_{i} [w'_{i} U'_{ix} (WTP_{i} - C_{i})]$$

$$= \sum_{i} [w'_{i} U'_{ix} (NWTP_{i})]$$
Change in social welfare: A weighted sum of everyone's

- net willingness to pay.
- \sum_{i} NWTP_i: welfare measure if welfare weights $\mathbf{w'}_{i} \mathbf{U'}_{ix}$ equal
- · If welfare weights are equal for all, standard CBA ranks projects according to social welfare.

On welfare weights

$$dW = \sum_{i} w'_{i} U'_{ix} (NWTP_{i})$$

- w';: Purely normative (how much emphasis should society put on person i's utility?)
 - Economic theory provides little guidance; must be discussed on a normative (ethical/political) basis.
- U'_{ix} (marginal utility of income): Descriptive, but not observable/verifiable
 - Requires cardinal & interpersonally comparable utility (standard utility concept: ordinal)
 - No generally accepted methodology exists to measure and compare U'_{ix} between individuals.
- The assumption that w'_i U'_{ix} is equal for all is not empirically verifiable.

Aggregation of WTP

- WTP as measure of individual benefits
 - Assume identical costs of projects a and b. Then,
 WTP_i (a) > WTP_i (b) ← (U_i | a) > (U_i | b)
- But: Cannot compare between individuals!
 WTP_i (a) > WTP_j (a) (dU_i | a) > (dU_j | b)
 Reason: money is not equally important to all
- If compensation is paid, no losers:

$$\sum_{j} WTP_{j}(a) > \sum_{j} WTP_{j}(b)$$
 (W|a) > (W|b) (due to PI)

• If compensation is NOT paid:

$$\sum_{j} WTP_{j}(a) > \sum_{j} WTP_{j}(b)$$
 (W|a) ?? (W|b) Depends on who loses & gains!

CBA and utilitarianism

• Unweighted utilitarianism:

$$W = U_1 + ... + U_n$$

i.e.
 $w'_i = 1$ for all i

- Will this ensure that CBA measures dW?
- Welfare weights: w'_iU'_{ix} -> U'_{ix} (since w'_i = 1)
- If U'_{ix} > U'_{jx}: w'_i = w'_j implies larger weight on i's WTP than j's (w'_i U'_{ix} > w'_i U'_{ix})
- If U'_{ix} > U'_{jx}: Standard CBA (equal weight on everyone's WTP) implies implicitly w'_i > w'_i
- Systematically favors those who care little about money (on the margin)

Normative aspects of CBA

- CBA measures social welfare effects if
 - compensations are paid: no losers
 - or: From a social welfare point of view, money is equally important for everyone
- · Main message:
 - CBA measures costs and benefits in money; but money is not utility (we do not know how to measure utility)
 - CBA /net benefits is a controversial measure of welfare change
 - If conflicts of interest (losers and winners): there exists no such thing as a "neutral" social benefit measure

Political parties and CBA

An index for attitudes towards use of CBA as policy tool. Higher number means more positive attitude (Source: Nyborg 1998, Nyborg and Spangen 1996)

CBA and decision-making

- Purpose 1: Make final ranking of projects
 - Must choose normative premises (choose SWF)
 - All relevant concerns must be valued in monetary terms (to be counted)
- Purpose 2: Provide factual input to a (democratic) debate between decision-makers with different normative views (SWFs)
 - Requires that information improves decision-makers' (intuitive) understanding of effects
 - Requires distinction factual/normative judgements
 - Valuation: needed only if it improves the intuitve understanding
 - Rule of thumb: the harder to value something in money, the harder it is to understand, intuitively, what that money value means

Thank you and good luck!