Presentation of master thesis

Investigation of thermo-magnetic instability in superconducting NbN thin-films by automated real-time magneto-optical imaging

Karl Eliassen

Superconductivity group, AMCS
Department of Physics
University of Oslo

02. October 2008
Outline

Introduction
- General superconductivity
- Important topics for this thesis
- Goals for this thesis

Experimental methods and setup
- The magneto-optical imaging [MOI] method
- MOI experimental setup

Results and discussion
- Automation of setup
- Flux dynamics
- Phase diagram

Summary
What is a superconductor?

Basic properties

$T \leq T_c$

- No electrical resistivity
- Meissner effect

B_c, J_c Critical magnetic field and current density
What is a superconductor?

Basic properties

$T \leq T_c$

- No electrical resistivity
- Meissner effect

B_c, J_c Critical magnetic field and current density
What is a superconductor?

Basic properties

\[T \leq T_c \]

- No electrical resistivity
- Meissner effect

\[B_c, J_c \]

Critical magnetic field and current density
What is a superconductor?

Basic properties

- Fundamental length-scales:
 \(\xi \): Coherence length
 \(\lambda_L \): London penetration depth

- Type I and Type II
- (Abrikosov) vortices and pinning
What is a superconductor?

Basic properties

- Fundamental length-scales:
 - ξ: Coherence length
 - λ_L: London penetration depth

- Type I and Type II
 - (Abrikosov) vortices and pinning
What is a superconductor?

Basic properties

- Fundamental length-scales:
 - ξ: Coherence length
 - λ_L: London penetration depth

- Type I and Type II

- (Abrikosov) vortices and pinning
Critical state model

- The Bean model
- Thin-film superconductors
- Discontinuity lines (d-lines)
Critical state model

- The Bean model
- Thin-film superconductors
- Discontinuity lines (d-lines)
Critical state model

- The Bean model
- Thin-film superconductors
- Discontinuity lines (d-lines)
Thermo-magnetic instability

- Meta stable state
- Avalanche
- Big avalanche
Thermo-magnetic instability

- Meta stable state
- Avalanche
- Big avalanche
Thermo-magnetic instability

- Meta stable state
- Avalanche
- Big avalanche
Goals for this thesis

Investigate thermo-magnetic instabilities in NbN thin-film superconductors, at a wide range of magnetic fields and temperatures by:

- Automated real-time experiments
 - Design program in LabView to control experimental setup
- Automated processing of images
 - Develop an algorithm in Matlab for graphical recognition of magnetic flux avalanches,
 - and another for deciding the threshold fields for the formation of flux avalanches
- Construct a phase diagram showing the threshold fields as a function of temperature
Goals for this thesis

Investigate thermo-magnetic instabilities in NbN thin-film superconductors, at a wide range of magnetic fields and temperatures by:

- Automated real-time experiments
 - Design program in LabView to control experimental setup
- Automated processing of images
 - Develop an algorithm in Matlab for graphical recognition of magnetic flux avalanches,
 - and another for deciding the threshold fields for the formation of flux avalanches
- Construct a phase diagram showing the threshold fields as a function of temperature
Goals for this thesis

Investigate thermo-magnetic instabilities in NbN thin-film superconductors, at a wide range of magnetic fields and temperatures by:

- Automated real-time experiments
 - Design program in LabView to control experimental setup
- Automated processing of images
 - Develop an algorithm in Matlab for graphical recognition of magnetic flux avalanches,
 - and another for deciding the threshold fields for the formation of flux avalanches
- Construct a phase diagram showing the threshold fields as a function of temperature
Goals for this thesis

Investigate thermo-magnetic instabilities in NbN thin-film superconductors, at a wide range of magnetic fields and temperatures by:

- Automated real-time experiments
 - Design program in LabView to control experimental setup
- Automated processing of images
 - Develop an algorithm in Matlab for graphical recognition of magnetic flux avalanches,
 - and another for deciding the threshold fields for the formation of flux avalanches
- Construct a phase diagram showing the threshold fields as a function of temperature
The magneto-optical imaging [MOI] method

Faraday rotation

- Polarization plane of linearly polarized light is rotated in a dielectric medium, induced by a magnetic field.
- Angle of rotation (Θ_F) is decided by magnetic field (B), thickness of medium (d) and the Verdet constant (V).

$$\theta_F = V \cdot d \cdot H$$
The magneto-optical imaging [MOI] method
Magneto-optical indicator film

- Bismuth-substituted ferrite garnet sensor film
 - 5 mm gadolinium gallium garnet (GGG) substrate
 - 5 µm bismuth substituted yttrium iron garnet (Bi:YIG)
 - 0.1 µm mirror layer (often aluminium)
The magneto-optical imaging [MOI] method
Magneto-optical imaging technique

- Linearly polarization of high intensity light
- Sent through MOI-film and reflected back
- Filtered by analyser, only rotated light passes
- We have a visualization of the magnetic field passing through the MOI-film
The magneto-optical imaging [MOI] method
Magneto-optical imaging technique

- Linearly polarization of high intensity light
- Sent through MOI-film and reflected back
- Filtered by analyser, only rotated light passes
- We have a visualization of the magnetic field passing through the MOI-film
The magneto-optical imaging [MOI] method
Magneto-optical imaging technique

- Linearly polarization of high intensity light
- Sent through MOI-film and reflected back
- Filtered by analyser, only rotated light passes
- We have a visualization of the magnetic field passing through the MOI-film
The magneto-optical imaging [MOI] method
Magneto-optical imaging technique

- Linearly polarization of high intensity light
- Sent through MOI-film and reflected back
- Filtered by analyser, only rotated light passes
- We have a visualization of the magnetic field passing through the MOI-film
MOI experimental setup

sample

- Niobium Nitride (NbN) thin-film superconductor (Senapati et al. 2006)
 - Size: 2.4 mm × 4.8 mm
 - Thickness: 2000 Å
 - Grown on a single crystal (100) magnesium oxide (MgO)
- Mounted on sample-holder, with MOI film on top
MOI experimental setup

sample

- Niobium Nitride (NbN) thin-film superconductor (Senapati et al. 2006)
 - Size: 2.4mm × 4.8mm
 - Thickness: 2000Å
 - Grown on a single crystal (100) magnesium oxide (MgO)
- Mounted on sample-holder, with MOI film on top
MOI experimental setup

equipment

1. He-flow cryostat with resistive coils above and below
2. 12bit digital output camera, 1.4Mpixel resolution
3. Leica DMRM polarization research microscope
4. Power supply
5. Temperature controller
LabView: CEFA4.vi

Automation of setup

- Initialization
- Control
 - Increase and decrease field
 - Acquire image
 - Adjust exposure time
- Termination
LabView: CEFA4.vi

Automation of setup

• Initialization

• Control
 ▶ Increase and decrease field
 ▶ Acquire image
 ▶ Adjust exposure time

• Termination

• Front panel
Matlab
Algorithm for graphical recognition of magnetic flux avalanches

- Two adjacent images are subtracted
 - Difference image
 - “Noise filter”
 - 16bit (12bit) to 8bit conversion
 - Only new flux avalanches
- Divide image into 23x23 pixel squares
Matlab

Algorithm for graphical recognition of magnetic flux avalanches

- Two adjacent images are subtracted
- Difference image
 - “Noise filter”
 - 16bit (12bit) to 8bit conversion
 - Only new flux avalanches
- Divide image into 23x23 pixel squares
Matlab
Algorithm for graphical recognition of magnetic flux avalanches

- Two adjacent images are subtracted
- Difference image
 - “Noise filter”
 - 16bit (12bit) to 8bit conversion
 - Only new flux avalanches
- Divide image into 23x23 pixel squares
Matlab

Algorithm for graphical recognition of magnetic flux avalanches

- Are there any dendritic flux avalanches?
 - Calculate light intensity in each square
 - Intensity above threshold gives “1” (white)
- If two adjacent squares have a “1”, we have an avalanche
- Lowest and highest B-field giving flux avalanches are recorded, both for increasing and decreasing fields
Matlab

Algorithm for graphical recognition of magnetic flux avalanches

- Are there any dendritic flux avalanches?
 - Calculate light intensity in each square
 - Intensity above threshold gives “1” (white)
- If two adjacent squares have a “1”, we have an avalanche
- Lowest and highest B-field giving flux avalanches are recorded, both for increasing and decreasing fields
Matlab

Algorithm for graphical recognition of magnetic flux avalanches

- Are there any dendritic flux avalanches?
 - Calculate light intensity in each square
 - Intensity above threshold gives “1” (white)
- If two adjacent squares have a “1”, we have an avalanche
- Lowest and highest B-field giving flux avalanches are recorded, both for increasing and decreasing fields
Matlab

Algorithm for graphical recognition of magnetic flux avalanches

- Are there any dendritic flux avalanches?
 - Calculate light intensity in each square
 - Intensity above threshold gives “1” (white)

- If two adjacent squares have a “1”, we have an avalanche

- Lowest and highest B-field giving flux avalanches are recorded, both for increasing and decreasing fields
Matlab

Algorithm for graphical recognition of magnetic flux avalanches

- Are there any dendritic flux avalanches?
 - Calculate light intensity in each square
 - Intensity above threshold gives “1” (white)
- If two adjacent squares have a “1”, we have an avalanche
- Lowest and highest B-field giving flux avalanches are recorded, both for increasing and decreasing fields
Flux dynamics

Size of flux avalanches

- Increase in size with increasing applied field
- Decrease in size with decreasing applied field
- Increase in size with increasing temperature
Flux dynamics

Size of flux avalanches

- Increase in size with increasing applied field
- Decrease in size with decreasing applied field
- Increase in size with increasing temperature
Flux dynamics

Size of flux avalanches

- Increase in size with increasing applied field
- Decrease in size with decreasing applied field
- Increase in size with increasing temperature
Flux dynamics
Sample-spanning flux avalanches

- Sample-spanning avalanches at $T \geq 7$ K
- Increasing applied field; avalanche filling most of the superconductor with vortices
- Decreasing applied field:
 - Second discontinuity line forms
 - Vortex avalanches draining these high vortex density areas
Flux dynamics

Sample-spanning flux avalanches

- Sample-spanning avalanches at $T \geq 7$ K
- Increasing applied field; avalanche filling most of the superconductor with vortices
- Decreasing applied field:
 - Second discontinuity line forms
 - Vortex avalanches draining these high vortex density areas
Flux dynamics
Sample-spanning flux avalanches

- Sample-spanning avalanches at $T \geq 7$ K
- Increasing applied field; avalanche filling most of the superconductor with vortices
- Decreasing applied field:
 - Second discontinuity line forms
 - Vortex avalanches draining these high vortex density areas

![Image of flux dynamics](image-url)
Flux dynamics

Secondary flux avalanches

- Avalanches seem to cross the central d-line, but only with decreasing applied field
 - No inertia or Lorentz force to do this
 - Primary avalanche reaching the d-line triggers secondary avalanches on the other side
 - These avalanches drain the second d-line into central d-line
Flux dynamics

Secondary flux avalanches

- Avalanches seem to cross the central d-line, but only with decreasing applied field
 - No inertia or Lorentz force to do this
 - Primary avalanche reaching the d-line triggers secondary avalanches on the other side
 - These avalanches drain the second d-line into central d-line
Flux dynamics
Secondary flux avalanches

- Avalanches seem to cross the central d-line, but only with decreasing applied field
 - No inertia or Lorentz force to do this
 - Primary avalanche reaching the d-line triggers secondary avalanches on the other side
 - These avalanches drain the second d-line into central d-line
Flux dynamics

Secondary flux avalanches

- Avalanches seem to cross the central d-line, but only with decreasing applied field
 - No inertia or Lorentz force to do this
 - Primary avalanche reaching the d-line triggers secondary avalanches on the other side
 - These avalanches drain the second d-line into central d-line
Phase diagram

Hysteretic behaviour

- Experiments carried out for
 - $T=4\,\text{K} - 10\,\text{K}$, $\Delta T=1\,\text{K}$
 - Plus $T=8.5\,\text{K}$ and $T=9.5\,\text{K}$

- Increasing field phase diagram
- Decreasing field phase diagram
- Hysteretic behaviour between $T=7\,\text{K}$ and $9.5\,\text{K}$
Experiments carried out for:
- $T=4\text{ K} - 10\text{ K}, \Delta T=1\text{ K}$
- Plus $T=8.5\text{ K}$ and $T=9.5\text{ K}$

- Increasing field phase diagram
- Decreasing field phase diagram
- Hysteretic behaviour between $T=7\text{ K}$ and 9.5 K
Experiments carried out for:
- $T=4\,\text{K} - 10\,\text{K}$, $\Delta T=1\,\text{K}$
- Plus $T=8.5\,\text{K}$ and $T=9.5\,\text{K}$

Increasing field phase diagram

Decreasing field phase diagram

Hysteretic behaviour between $T=7\,\text{K}$ and $9.5\,\text{K}$
Phase diagram
Hysteretic behaviour

- Experiments carried out for
 - $T=4$ K - 10 K, $\Delta T=1$ K
 - Plus $T=8.5$ K and $T=9.5$ K
- Increasing field phase diagram
- Decreasing field phase diagram
- Hysteretic behaviour between $T=7$ K and 9.5 K
Phase diagram
Threshold field and critical current density

- Functional dependance of B^{th} on J_c: $B^{th} = B^{th}(J_c)$
- Magnetic field profile
- Higher J_c gives higher B^{th}_2
- No hysteresis for $T<7$ K

aYurchenko et.al. 2007
Phase diagram
Threshold field and critical current density

- Functional dependance of B^{th} on J_c: $B^{th} = B^{th}(J_c)$
- Magnetic field profile
 - Higher J_c gives higher B_2^{th}
 - No hysteresis for $T<7$ K

\[^a\text{Yurchenko et.al. 2007}\]
Functional dependance of B^{th} on J_c: $B^{th} = B^{th}(J_c)$

- Magnetic field profile
- Higher J_c gives higher B_2^{th}
- No hysteresis for $T<7$ K

\(^a\)Yurchenko et.al. 2007
Phase diagram
Threshold field and critical current density

- Functional dependance of B^{th} on J_c: $B^{th} = B^{th}(J_c)$
- Magnetic field profile
- Higher J_c gives higher B_2^{th}
- No hysteresis for $T<7$ K

Yurchenko et al. 2007
Summary

- **Automated real-time MOI experiments** and **Automated processing of MO-images** makes the investigation of thermo-magnetic instabilities more precise and efficient.
- A number of **flux-dynamic effects** have been observed.
- A phase diagram of the threshold fields as a function of temperature shows a **hysteretic behaviour** for the upper thresholds (B_{2}^{th}) for $T=7$ K to $T=9.5$ K

Outlook
- More quantitative studies of the threshold field hysteresis.
- Studies are needed on correlation between ramp rate and threshold fields in different superconducting materials.
- The tools developed in this thesis is well suited for continued studies of thermo-magnetic instabilities.
Summary

• Automated real-time MOI experiments and Automated processing of MO-images makes the investigation of thermo-magnetic instabilities more precise and efficient.

• A number of flux-dynamic effects have been observed.

• A phase diagram of the threshold fields as a function of temperature shows a hysteretic behaviour for the upper thresholds (B_{2}^{th}) for T=7 K to T=9.5 K

• Outlook
 ▶ More quantitative studies of the threshold field hysteresis.
 ▶ Studies are needed on correlation between ramp rate and threshold fields in different superconducting materials.
 ▶ The tools developed in this thesis is well suited for continued studies of thermo-magnetic instabilities.