On Strongly Degenerate Convection–Diffusion Problems
Modeling Sedimentation–Consolidation Processes

R. Bürger

Institute of Mathematics A, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
E-mail: buerger@mathematik.uni-stuttgart.de

S. Evje

RF-Rogaland Research, Thormøhensgt. 55, N-5008 Bergen, Norway
E-mail: Steinar.Evje@rf.no

and

K. Hvistendahl Karlsen

RF-Rogaland Research, Thormøhensgt. 55, N-5008 Bergen, Norway; and
Department of Mathematics, University of Bergen, Johs. Bruns gt. 12, N-5008 Bergen, Norway
E-mail: kenneth.karlsen@mi.uib.no

Submitted by W. L. Wendland

Received March 20, 2000

We investigate initial-boundary value problems for a quasilinear strongly degenerate convection–diffusion equation with a discontinuous diffusion coefficient. These problems come from the mathematical modeling of certain sedimentation–consolidation processes. The existence of entropy solutions belonging to BV is shown by the vanishing viscosity method. The existence proof for one of the models includes a new regularity result for the integrated diffusion coefficient. New uniqueness proofs for entropy solutions are also presented. These proofs rely on a recent extension to second-order equations of Kružkov’s method of “doubling the variables.” The application to a sedimentation–consolidation model is illustrated by two numerical examples.

Key Words: degenerate convection–diffusion equation; entropy solutions; discontinuous diffusion coefficient; sedimentation–consolidation processes; BV solutions.
In this paper we consider quasilinear strongly degenerate parabolic equations of the type

\[\partial_t u + \partial_x (q(t)u + f(u)) = \partial_x^2 A(u), \]

\[(x,t) \in Q_T, A(u) := \int_0^u a(s) \, ds, a(u) \geq 0, \quad (1.1)\]

where \(Q_T := \Omega \times \mathcal{I}, \Omega := (0,1), \) and \(\mathcal{I} := (0,T). \) In general, we allow that the diffusion coefficient \(a(u) \) vanishes on intervals of solution values \(u, \) where \((1.1) \) is then of hyperbolic type; therefore this equation is also called hyperbolic–parabolic. Although equations of this type occur in a variety of applications, we focus here on the application to sedimentation–consolidation processes \([3, 8, 9]\), which leads to an initial-boundary value problem (IBVP) with mixed Dirichlet-flux boundary conditions (“Problem A”) or alternatively to an IBVP with two flux conditions (“Problem B”). It is well known that solutions of \((1.1) \) develop discontinuities due to the nonlinearity of the flux density function \(f(u) \) and the degeneracy of the diffusion coefficient. Therefore one has to consider entropy solutions in order to have a well-posed problem. Moreover, in regions where \((1.1) \) is hyperbolic, solution values propagate along straight-line characteristics which might intersect the lateral boundaries of \(Q_T \) from the interior and require the treatment of Dirichlet boundary conditions as entropy boundary conditions \([2, 7]\). A review of properties and known existence and uniqueness results related to the concept of entropy solutions for Eq. \((1.1) \), as well as an overview of numerical methods for strongly degenerate parabolic equations, is provided in \([11]\).

Our particular application justifies various assumptions on the coefficients of \((1.1) \) and on the initial and boundary data. Most notably, many constitutive equations proposed for these processes imply that \(a(u) = 0 \) for \(u \leq u_c \) and that \(a(u) \) jumps at \(u_c \) to a positive value, where \(u_c \) is a given constant, the so-called critical concentration. We therefore insist on using a discontinuous diffusion coefficient \(a(u) \). This case had not been covered by the previous existence and uniqueness analysis of Problem A by Bürger and Wendland \([6]\), which relies on relatively strong assumptions on the regularity of the coefficients of Eq. \((1.1) \) and on the initial and boundary data; in particular, \(a(u) \) is assumed to be continuously differentiable. We point out that the previous analysis \([6]\) was limited to Problem A and that Problem B has not been treated so far.

The first objective of this paper is to show existence of entropy solutions belonging to \(BV(Q_T) \) for these problems when the diffusion coefficient is
discontinuous. We show that smoothing out the jumps of \(a(u) \) and of the initial and boundary data by a standard mollifier technique will not cause new singularities when the smoothing parameter tends to zero in the vanishing viscosity method. As a part of the existence proof of Problem B, we show that the integrated diffusion coefficient \(A(u) \) belongs to the Hölder space \(C^{1,1/2}(Q_T) \). This is a significantly better regularity property compared to the result \(\partial_t A(u) \in L^2(\Omega) \) valid for Problem A.

The second objective of this paper is to present new uniqueness proofs for both problems based on the technique known as “doubling of the variables.” This technique was introduced in Kružkov's pioneering work [13] as a tool for proving the \(L^1 \) contraction principle for entropy solutions of scalar conservation laws and very recently was extended elegantly by Carrillo [10] to a class of degenerate parabolic equations. It is the extension in [10] that we adopt here to our initial-boundary value problems. We emphasize that these uniqueness proofs merely require that the functions \(f(u) \) and \(A(u) \) are locally Lipschitz continuous (\(a(u) \) may be discontinuous) and that they are not based on deriving jump conditions as in [24]. In fact, continuity of \(a(u) \) has been assumed in previous papers [6, 24, 25] in order to derive such jump conditions. Furthermore, the jump conditions—and thus the corresponding uniqueness proof—derived by Wu and Yin [25] (see also [7]) have at present no multidimensional analogue, whereas the uniqueness approach presented here also works in multidimensions [4]. Having said this, some new results dedicated to the solution of this problem are available; see Vol'pert [20].

We mention that to produce an entropy solution belonging to \(BV(Q_T) \), it is necessary to require that the initial function \(u_0 \) belongs to the class \(\mathcal{B} \) of functions for which \(TV(\partial_t A(u)) \) is uniformly bounded with respect to regularization. This condition is rather restrictive but is satisfied by most initial data occurring in the context of the sedimentation-consolidation problems. Our problems are also solvable for \(u_0 \in \mathcal{B} \) (say \(u_0 \in BV(\Omega) \)), but then it is only possible to show the existence of an entropy solution in the larger class \(C^{1/2}(\mathcal{F}; L^1(\Omega)) \cap L^*(\mathcal{F}; BV(\Omega)) \), also referred to as \(BV_{1,1/2}(Q_T) \) [22]. In this larger class, one cannot assume a priori that the traces of the entropy solution at the boundaries of \(Q_T \) exist. To resolve this problem one needs a reformulation of the concept of the solution that avoids these traces. Such a solution concept has been employed by Wu [22], but will not be considered here since it is not obvious how to prove the uniqueness of such solutions.

This paper is organized as follows. In Section 2, we recall some properties of mollifiers and related functions, state the initial boundary value problems with the respective pertaining assumptions on the data, and formulate definitions of entropy solutions. In Section 3, existence of entropy solutions is shown by the vanishing viscosity method, and the
improved regularity result valid for entropy solutions of Problem B is derived. Uniqueness of entropy solutions is shown in Section 4. In Section 5 we present two numerical solutions of the IBVP modeling sedimentation with compression, in which the assumptions for the existence of BV solutions are satisfied.

2. MATHEMATICAL PRELIMINARIES AND DEFINITION OF ENTROPY SOLUTIONS

2.1. Mollifiers and Related Functions

Let $\omega \in C_0^1(\mathbb{R})$ be a function satisfying $\omega \geq 0$, supp $\omega \subset (-1, 1)$, and $\|\omega\|_{L^1(\mathbb{R})} = 1$, and define a standard mollifier [16] with support in $(-h, h)$ by $\omega_h(x) = \omega(x/h)/h$. A C^∞ regularization of a bounded function $b(u)$ is then given by the convolution

$$(b * \omega_h)(u) := \int_{-h}^h b(u - v) \omega_h(v) \, dv.$$

Moreover, we define for sufficiently small $h > 0$ the functions

$$\varrho_h(x) := \int_{-\infty}^x \omega_h(\xi) \, d\xi, \quad \mu_h(x) := 1 - \varrho_h(x - 2h), \quad \nu_h(x) := \varrho_h(x - (1 - 2h)),$$

which have the property stated in the following lemma given in [24].

Lemma 1. Let $u \in L^1(\mathcal{F}; L^\infty(\Omega))$. If the traces $\gamma_{0u} := (\gamma u)(0, t)$ and $\gamma_{1u} := (\gamma u)(1, t)$ exist a.e. in \mathcal{F}, then we have for $\varphi \in C^\infty(Q_T)$,

$$\lim_{h \to 0} \int_{Q_T} \frac{\partial_t}{\partial_t} (\varphi(x, t)(\mu_h(x) + \nu_h(x))) u(x, t) \, dt \, dx = \int_0^T (\varphi(1, t) \gamma_{1u} - \varphi(0, t) \gamma_{0u}) \, dt.$$

2.2. Statement of Problem A

Problem A. We consider the IBVP

$$\begin{aligned}
\partial_t u + \partial_x(q(t)u + f(u)) &= \partial_x^2 A(u), \quad (x, t) \in Q_T, \\
n(x, 0) &= u_0(x), \quad x \in \overline{\Omega}, \\
u(1, t) &= \varphi_1(t), \quad t \in (0, T], \\
f(u(0, t)) - \partial_x A(u(0, t)) &= 0, \quad t \in (0, T].
\end{aligned}$$

A1, A2, A3, A4
where we assume that

\[f \text{ is continuous and piecewise differentiable, } f \leq 0, \text{ supp } f \subset [0, u_{\text{max}}], \]
\[\|f'\|_{\infty} \leq \infty, \quad (2.2) \]
\[a(u) \geq 0, \text{ supp } a \subseteq \text{ supp } f, \quad a(u) = 0 \text{ for } u \leq u_c, 0 < u_c < u_{\text{max}}, \]
(2.3)
\[q(t) \leq 0 \forall t \in \mathcal{F}, \quad TV_{\mathcal{F}}(q) < \infty, \quad TV_{\mathcal{F}}(q') < \infty. \quad (2.4) \]

Since \(A \) is monotonically non-increasing, \(\text{sgn}(k_1 - k_2)(A(k_1) - A(k_2)) = |A(k_1) - A(k_2)| \). Defining

\[a_\varepsilon(u) := ((a + \varepsilon) \ast \omega_\varepsilon)(u), \quad A_\varepsilon(u) := \int_0^u a_\varepsilon(s) \, ds, \quad \varepsilon > 0, \]

and \(\mathcal{U}_\varepsilon := [-\varepsilon, u_{\text{max}} + \varepsilon] \) for \(\varepsilon \geq 0 \), we can state the regularity assumption on \(u \) as

\[u_0 \in \mathcal{B} := \left\{ u \in BV(\Omega): u(x) \in \mathcal{U}_0 \forall x \in \Omega; \right. \]
\[\left. TV_{\Omega}(\partial_t A_\varepsilon(u)) < M_0 \text{ uniformly in } \varepsilon \right\}. \quad (2.5) \]

We comment on the assumption (2.5). First note that, if \(u_0 \in \mathcal{B} \), then also \(\bar{u}_0 \in \mathcal{B} \). This requirement is needed to show that the entropy solution of the initial-boundary value problem is \(L^1 \) Lipschitz continuous in time. It might be difficult to verify whether a given initial function belongs to \(\mathcal{B} \), but, for example, all piecewise constant functions defined on \(\Omega \) do so.

The boundary datum \(\varphi_1 \) is assumed to satisfy

\[0 \leq \varphi_1(t) \leq u_{\text{max}}, \quad t \in \mathcal{F}, \quad (2.6) \]
\[\varphi_1 \text{ changes its monotonicity behavior at most a finite number of times.} \quad (2.7) \]

In particular, we admit that the functions \(u_0 \) and \(\varphi_1 \) may possess jumps, and we note that (2.6) and (2.7) imply that \(TV_{\mathcal{F}}(\varphi_1) < \infty \). The assumptions (2.2)–(2.7) are essential in the proof of existence of an entropy solution belonging to \(BV(Q_T) \).

Remark 1. Of course, if \(a(\cdot) \) is sufficiently smooth, then the requirement that \(u_0 \in \mathcal{B} \) can be replaced by the requirement that \(TV_{\mathcal{F}}(\partial_t u_0) < M_0 \). In particular, the existence analysis conducted in [6] is contained in the analysis presented below.
2.3. Definition of Entropy Solutions of Problem A

Since weak, possibly discontinuous solutions are in general not unique, we need a selection principle or entropy criterion. This is included in the following solution concept. Wherever notationally convenient, we set

\[g(u, t) := q(t)u + f(u). \]

DEFINITION 1. A function \(u \in L^\infty(Q_T) \cap BV(Q_T) \) is an *entropy solution* of Problem A if the conditions

\[
\begin{align*}
\partial_t A(u) &\in L^2(Q_T); \\
\forall \varphi \in C^\infty((0,1] \times \mathcal{T}), \varphi \geq 0, \quad \text{supp } \varphi \subset (0,1] \times \mathcal{T}, \forall k \in \mathbb{R}:
\end{align*}
\]

\[
\begin{align*}
&\int_0^T \int_{Q_T} |u - k| \partial_t \varphi + \text{sgn}(u - k) \\
&\quad \times [g(u, t) - g(k, t) - \partial_t A(u)] \partial_x \varphi \, dx \, dt \\
&\quad + \int_0^T \left\{ -\text{sgn}(\varphi_k(t) - k) \\
&\quad \times [g(\gamma_1u, t) - g(k, t) - \gamma_1 \partial_x A(u)] \varphi(1, t) \\
&\quad + [\text{sgn}(\gamma_1u - k) - \text{sgn}(\varphi_k(t) - k)] \\
&\quad \times [A(\gamma_1u) - A(k)] \partial_x \varphi(1, t) \right\} \, dt \geq 0; \\
&\text{for almost all } t \in \mathcal{T}, \gamma_0(f(u) - \partial_x A(u)) = 0; \\
&\text{for almost all } x \in \Omega, \lim_{t \downarrow 0} u(x, t) = u_0(x),
\end{align*}
\]

are satisfied.

2.4. Statement of Problem B

PROBLEM B. We also consider Problem B which is obtained from Problem A if the boundary condition at \(x = 1 \), (A3), is replaced by the total flux condition

\[
(g(u, t) - \partial_x A(u))(1, t) = \Psi(t), \quad t \in (0, T].
\]
We have to assume that

\[\text{either } \Psi \equiv 0 \text{ or } \exists \xi > 0, M_g > 0: \xi a(u) - (q(t) + f'(u)) \geq M_g.\]

(2.12)

All other assumptions (2.2), (2.3), and (2.5) remain valid. Here, we assume that

\[\forall t \in \mathcal{T}: \min_{u \in \mathcal{U}_0} (g(u, t)) \leq \Psi(t) \leq 0, \Psi(t) \geq g(u_{\max}, t);\]

\[\text{TV}_T(\Psi) < \infty.\]

(2.13)

Problem B is also of interest in the application of the sedimentation-consolidation model, since frequently the feed flux \(\Psi\) rather than a boundary concentration \(\varphi_1\) is prescribed.

2.5. Definition of Entropy Solutions of Problem B

Here, the definition of the entropy solution is analogous to Definition 1.

Definition 2. A function \(u \in L^1(\Omega_T) \cap BV(\Omega_T)\) is an entropy solution of Problem B if (2.8) and (2.11) in Definition 1 are satisfied, if for all \(\varphi \in C^0_0(\Omega_T), \varphi \geq 0,\) and \(k \in \mathbb{R}\) the inequality

\[\int\int_{\Omega_T} \left[|u - k| \partial_t \varphi + \text{sgn}(u - k) [g(u, t) - g(k, t) - \partial_x A(u)] \partial_x \varphi \right] dt dx \geq 0\]

(2.14)

holds, if the boundary condition (2.10) is valid, and if

\[\gamma_1(g(u, t) - \partial_x A(u)) = \Psi(t) \text{ for almost all } t \in \mathcal{T}.\]

(2.15)

3. Existence of Entropy Solutions

3.1. Existence of Entropy Solutions of Problem A

Existence of entropy solutions is proved here by the vanishing viscosity method. Therefore we replace \(a(u)\) by \(a_\varepsilon(u)\) and use the regularizations \(f_\varepsilon(u) := (f * \omega_\varepsilon)(u),\) \(q_\varepsilon(t) := (q * \omega_\varepsilon)(t)\) and \(g_\varepsilon(u, t) := f_\varepsilon(u) + q_\varepsilon(t)u.\) Note that (2.2) implies that \(\text{supp } f_\varepsilon \subset \mathcal{U}_\varepsilon.\) The functions \(u_0\) and \(\varphi_1\) are replaced by smooth approximations \(u_0^\varepsilon\) and \(\varphi_1^\varepsilon\) with \(u_0^\varepsilon \to u_0\) in \(L^1(\Omega)\) and \(\varphi_1^\varepsilon \rightharpoonup \varphi_1\) in \(L^1(\mathcal{T})\) for \(\varepsilon \downarrow 0.\) The solution to the degenerate IBVP is then obtained as the limit for \(\varepsilon \downarrow 0\) of the family \(\{u_\varepsilon\}_{\varepsilon > 0}\) of smooth solutions of
the regularized parabolic IBVP (referred to as Problem A^ϵ):

\[\partial_t u^\epsilon + \partial_x(q_s(t)u^\epsilon + f_s(u^\epsilon)) = \partial_x^2 A_s(u^\epsilon), \quad (x,t) \in Q_T, \quad (A^\epsilon.1) \]

\[u^\epsilon(x,0) = u_0^\epsilon(x), \quad x \in \Omega, \quad (A^\epsilon.2) \]

\[u^\epsilon(1,t) = \varphi_1^\epsilon(t), \quad T \in (0,T], \quad (A^\epsilon.3) \]

\[(f_s(u^\epsilon) - \partial_x A_s(u^\epsilon))(0,t) = 0, \quad t \in (0,T]. \quad (A^\epsilon.4) \]

To ensure the existence of a smooth solution of Problem A^ϵ for any fixed value $\epsilon > 0$, the functions u_0^ϵ and u_1^ϵ have to satisfy first order compatibility conditions:

\[u_0^\epsilon(1) = \varphi_1^\epsilon(0), \quad (3.1a) \]

\[-[q_s(0) + f_s(u_0^\epsilon(1))](u_0^\epsilon)'(1) - \alpha'(u_0^\epsilon(1)) \left[(u_0^\epsilon)'(1) \right]^2 - \alpha(u_0^\epsilon(0))(u_0^\epsilon)'(1) - f_s(u_0^\epsilon(0)) = 0, \quad (3.1b) \]

\[\alpha(u_0^\epsilon(0))(u_0^\epsilon)'(0) - f_s(u_0^\epsilon(0)) = 0, \quad (3.1c) \]

where $\alpha(u) = a_s(u)$. In [6] it is required that the functions $a(u)$, u_0, and φ_1 already satisfy the smoothness conditions necessary for the existence of a smooth solution of the Problem A^ϵ. The compatibility conditions are established there by setting $\varphi_1^\epsilon = \varphi_1$ and $u_0^\epsilon(x) = u_0(x) + h^\epsilon(x)$, where h^ϵ satisfies $\|h^\epsilon\|_{L^1(\Omega)} = \sigma(\epsilon)$ with supp $h^\epsilon \subset [0, \epsilon] \cup [1 - \epsilon, 1]$. Moreover, in that paper, the functions u_0 and φ_1 are assumed to satisfy a priori the compatibility conditions (3.1) with respect to $a(u) = a(u)$, and the choice of h^ϵ ensures that (3.1) remains valid for $a(u) = a(u) + \epsilon$. Here, the regularity assumptions made in [6] are relaxed to (2.5) and (2.6). We set

\[x^\epsilon := (x - 2\epsilon)/(1 - 4\epsilon), \quad t^\epsilon := ((t - 2\epsilon)T)/(T - 2\epsilon), \quad (3.2) \]

\[\tilde{u}_0(x) := \begin{cases} u_0(1) & \text{for } x \geq 1 - 2\epsilon, \\ u_0(x^\epsilon) & \text{for } 2\epsilon < x < 1 - 2\epsilon, \\ -\epsilon & \text{for } x \leq 2\epsilon, \end{cases} \]

\[\tilde{\varphi}_1(t) := \begin{cases} u_0(1) & \text{for } t \leq 2\epsilon, \\ \varphi_1(t^\epsilon) & \text{for } 2\epsilon < t < T, \end{cases} \]

and define the regularized initial and boundary data by

\[u_0^\epsilon(x) := (\tilde{u}_0 * \omega_x)(x) \quad \text{for } x \in \overline{\Omega} \quad \text{and} \quad \varphi_1^\epsilon(t) := (\tilde{\varphi}_1 * \omega_t)(t) \quad \text{for } t \in \overline{T}. \]

Lemma 2. The functions u_0^ϵ and φ_1^ϵ satisfy the regularity assumptions necessary for the existence of a smooth solution of Problem A^ϵ and the first-order compatibility conditions (3.1). They also satisfy $u_0^\epsilon(x) \in \mathcal{U}_s$ for
Proof. The compatibility conditions (3.1) follow from
\[
\begin{align*}
\varphi(t) &= \phi(t), \\
\varphi(t) &= (\varphi(t))'(1) = 0, \\
\varphi(t) &= \varphi(0) = 0.
\end{align*}
\]
From \(u \geq 0 \), we obtain \(\varphi \geq 0 \) and \(u \geq -\varepsilon \). Since \(u_{\max} - \bar{u}_0(x) \geq 0 \) for all \(x \in \mathbb{R} \), we have
\[
0 \leq (u_{\max} - \bar{u}_0)(x) = u_{\max} - (\bar{u}_0 \ast \omega)(x) \quad \text{for } x \in \mathbb{R},
\]
that is, \(u_0 \leq u_{\max} \), and by the same argument \(\varphi \leq u_{\max} \). Furthermore, we have
\[
\begin{align*}
TV_R(u_0) &= TV_\Omega(u_0), \\
TV_R(\varphi) &= TV_\Omega(\varphi), \\
TV_R(\varphi_1) &= TV_\Omega(\varphi_1) + |u_0(1) - \varphi(0)|, \\
TV_R(\bar{u}_0) &= TV_\Omega(\bar{u}_0) + u_0(0) + \varepsilon.
\end{align*}
\]
Following (16), we show that mollifying the functions \(\bar{u}_0 \) and \(\varphi_1 \) does not increase their total variation, respectively. Recall that the total variation of a function \(g \in L^1(\mathbb{R}) \) can be expressed as
\[
TV(g) = \sup_{\varphi \in \mathcal{D}} \int g(x) \varphi'(x) \, dx, \quad \mathcal{D} := \{ \varphi \in C^1_0(\mathbb{R}) : \| \varphi \|_\infty \leq 1 \}.
\]
Then we have
\[
\begin{align*}
TV_R(u_0) &= \sup_{\varphi \in \mathcal{D}} \int_{-\varepsilon}^\varepsilon \int_{-\varepsilon}^{\varepsilon} \bar{u}_0(x-y) \omega_\varepsilon(y) \varphi'(x) \, dy \, dx \\
&= \sup_{\varphi \in \mathcal{D}} \int_{-\varepsilon}^\varepsilon \int_{-\varepsilon}^{\varepsilon} \bar{u}_0(x-y) \partial_\varepsilon(\omega_\varepsilon(y) \varphi(x)) \, dy \, dx.
\end{align*}
\]
Using the substitution \(\tilde{x} := x - y \), \(\tilde{y} := -y \), the symmetry \(\omega_\varepsilon(-y) = \omega_\varepsilon(y) \), and finally replacing \(\tilde{x} \) by \(x \) and \(\tilde{y} \) by \(y \) and setting \(\varphi_\varepsilon(x) := (\varphi \ast \omega_\varepsilon)(x) \),
we obtain from this

\[\text{TV}_\varepsilon(u_0^\varepsilon) = \sup_{\varphi \in \mathcal{D}} \int_{-\varepsilon}^{\varepsilon} \int \widetilde{u}_0(x, \omega_x(y) \varphi(x-y)) \, dx \, dy \]

\[= \sup_{\varphi \in \mathcal{D}} \int \widetilde{u}_0(x) \varphi'(x) \, dx, \]

and hence, noting that \(\{ \varphi \ast \omega_x : \varphi \in C_0^1(\mathbb{R}), \| \varphi \|_\infty \leq 1 \} \subset \mathcal{D}, \)

\[\text{TV}_\varepsilon(u_0^\varepsilon) \leq \sup_{\varphi \in \mathcal{D}} \int \widetilde{u}_0(x) \varphi'(x) \, dx = \text{TV}_\varepsilon(\widetilde{u}_0). \quad (3.3) \]

The inequality \(\text{TV}_\varepsilon(\varphi^\varepsilon) \leq \text{TV}_\varepsilon(\varphi), \) follows in the same way.

Lemma 3. Let \(u^\varepsilon \) be a smooth solution of Problem \(A^\varepsilon. \) Then there exist positive constants \(M_1, M_2, \) and \(M_3 \) such that the following estimates hold uniformly with respect to \(\varepsilon: \)

\[\| u^\varepsilon(x, t) \|_{L^\infty(Q_T)} \leq M_1, \quad (3.4) \]

\[\| \partial_x u^\varepsilon(x, t) \|_{L^1(\Omega)} \leq M_2 \quad \text{for all } t \in \mathcal{T}, \quad (3.5) \]

\[\| \partial_t u^\varepsilon \|_{L^1(Q_T)} \leq M_3. \quad (3.6) \]

Proof. For every \(\varepsilon > 0, \) Problem \(A^\varepsilon \) has a unique solution \(u^\varepsilon \in C^{2,1+\beta} \subset C^{2,1}(Q_T), \) \(\beta > 0. \) This is shown in [6] by applying the well-known results from [17]. The uniform boundedness of \(u^\varepsilon \) can be shown in a standard way by rewriting Problem \(A^\varepsilon \) in terms of \(\exp(-Kt)u^\varepsilon(x, t) \) and \(\exp(-Kt)(u_{\text{max}} + \varepsilon - u^\varepsilon(x, t)), \) where \(K > 0 \) is an arbitrary constant, and showing that these functions are nonnegative on \(Q_T; \) see [6]. Hence we have \(u^\varepsilon(x, t) \in \mathcal{V}_\varepsilon \) for \((x, t) \in Q_T; \) in particular, (3.4) is valid. Estimate (3.5) can be established here by following the derivation in [6], where more regularity was assumed on the initial and boundary data, and by arguing additionally that mollifying the data does not increase their respective one-dimensional total variations with respect to \(x \) and \(t. \) Similarly, the estimate (3.6) can be proved by following the derivation in [6], where assumption (2.7) is required. Here, the derivation of these estimates will be performed in detail for Problem B (see Section 3.2).

Estimates (3.4), (3.5), and (3.6) imply that the family \(\{ u^\varepsilon \}_{\varepsilon > 0} \) of solutions of Problem \(A^\varepsilon \) is bounded in \(W^{1,1}(Q_T) \subset BV(Q_T). \) Since \(BV(Q_T) \) is compactly imbedded in \(L^1(Q_T), \) there exists a sequence \(\varepsilon = \varepsilon_n \downarrow 0 \) such that \(\{ u^\varepsilon \} \) converges in \(L^1(Q_T) \) to a function \(u \in L^1(Q_T) \cap BV(Q_T). \) To
show that \(u \) is an entropy solution of Problem A, we must show that the integrated diffusion function \(A(u) \) possesses the required regularity.

Lemma 4. The limit \(u \) of solutions \(u^\varepsilon \) of Problem \(A^\varepsilon \) satisfies the condition (2.8).

Proof. Multiply equation (A.1) by \((u^\varepsilon - \varphi^\varepsilon(t)) \), integrate over \(Q_T \), and use the boundary conditions to obtain (see also [6])

\[
\iint_{Q_T} a(x)(u^\varepsilon)(\partial_x u^\varepsilon)^2 \, dx \, dt = -\int_0^1 \frac{1}{2}(u^\varepsilon)^2 - \varphi^\varepsilon(t)u^\varepsilon|_T \, dx - \iint_{Q_T} u^\varepsilon(\varphi^\varepsilon)'(t) \, dx \, dt \\
+ \iint_{Q_T} \partial_x u^\varepsilon g(x,u^\varepsilon,t) \, dx \, dt \\
+ \int_0^T (u^\varepsilon(0,t) - \varphi^\varepsilon(t))q^\varepsilon(t)u^\varepsilon(0,t) \, dt. \tag{3.7}
\]

It is easy to see that (3.7) implies that

\[
\iint_{Q_T} a(x)(u^\varepsilon)(\partial_x u^\varepsilon)^2 \, dx \, dt \leq 5M_1^2 + M_1M_3 + \|g\|_L^2TM_2 + \|q\|_L^2TM_1^2,
\]
so that \(|a^{1/2}(u^\varepsilon) \partial_x u^\varepsilon|_{L^1(Q_T)} \) is uniformly bounded with respect to \(\varepsilon \). However, since \(a(u^\varepsilon) \) is bounded, we can conclude that \(\|\partial_x A^\varepsilon(u^\varepsilon)\|_{L^1(Q_T)} \) is also bounded. Therefore, passing if necessary to a subsequence, \(\partial_x A^\varepsilon(u^\varepsilon) \to \partial_x A^\varepsilon \) weakly in \(L^2(Q_T) \) as \(\varepsilon \downarrow 0 \). Since \(A^\varepsilon(u^\varepsilon) \to A(u) \) a.e. as \(\varepsilon \downarrow 0 \), we conclude that \(A^\varepsilon(u^\varepsilon) \to A(u) \) a.e., and thus condition (2.8) holds.

Lemma 5. The vanishing viscosity limit \(u \) of solutions \(u^\varepsilon \) of Problem \(A^\varepsilon \) satisfies the entropy inequality (2.9) and the boundary condition (2.10).

For the proof, we need the following lemma given in [24].

Lemma 6. If \(v \in L^1(Q_T) \) and \(\partial_x v \) is an absolutely continuous measure, then for \(\varphi \in C^\infty(\overline{Q_T}) \) with \(\text{supp } \varphi \subset \overline{\Omega} \times \mathcal{F} \) there holds

\[
\iint_{Q_T} \partial_x \varphi \, v \, dx \, dt = \int_0^T (\gamma_0 v \varphi(1,t) - \gamma_0 v \varphi(0,t)) \, dt - \iint_{Q_T} \varphi \, \partial_t v \, dx \, dt.
\]

Proof of Lemma 5. We multiply the viscous equation (A.1) by \(\text{sgn}_\varphi(u^\varepsilon) - k) \varphi, \, \varphi \in C^\infty(Q_T), \, \varphi \geq 0, \, \text{supp } \varphi \subset (0,1) \times \mathcal{T}, \, k \in \mathbb{R}, \) integrate over
and use integration by parts to obtain
\[- \int_{Q_T} |u^\varepsilon - k|_T \partial_t \varphi \, dt \, dx \]
\[+ \int_0^T \operatorname{sgn}_x(u^\varepsilon(1, t) - k)[g_x(u^\varepsilon(1, t), t) - g_x(k, t)] \varphi(1, t) \, dt \]
\[- \int_{Q_T} \operatorname{sgn}_x(u^\varepsilon - k)(g_x(u^\varepsilon, t) - g_x(k, t)) \partial_x \varphi \, dt \, dx \]
\[- \int_{Q_T} \operatorname{sgn}_x(u^\varepsilon - k) \partial_x u^\varepsilon(g_x(u^\varepsilon, t) - g_x(k, t)) \varphi \, dt \, dx \quad (3.8)\]
\[= \int_0^T \operatorname{sgn}_x(u^\varepsilon(1, t) - k) \partial_x (A_x(u^\varepsilon))(1, t) \varphi(1, t) \, dt \]
\[- \int_{Q_T} \operatorname{sgn}_x(u^\varepsilon - k) \partial_x (A_x(u^\varepsilon) - A_x(k)) \partial_x \varphi \, dt \, dx \]
\[- \int_{Q_T} \operatorname{sgn}_x'(u^\varepsilon - k)(\partial_x u^\varepsilon)^2 a_x(u^\varepsilon) \varphi \, dt \, dx. \quad (3.9)\]

The last integral on the left-hand side of (3.9) vanishes when \(\eta \downarrow 0 \), while the last one is nonnegative. Noting that \(\nu_h(1) = 1 \) and \(\nu_h'(1) = 0 \), we obtain from this when \(\eta \downarrow 0 \) the inequality
\[\int_{Q_T} |u^\varepsilon - k| \partial_t \varphi + \operatorname{sgn}(u^\varepsilon - k)[g_x(u^\varepsilon, t) - g_x(k, t)] \partial_x \varphi \, dt \, dx \]
\[- \int_0^T \operatorname{sgn}(\varphi^\varepsilon(t) - k)(g_x(u^\varepsilon(1, t), t) - g_x(k, t) - \partial_x A_x(u^\varepsilon)(1, t)) \times \varphi(1, t) \nu_h(1) \, dt \]
\[- \int_0^T \operatorname{sgn}(\varphi^\varepsilon(t) - k)[A_x(u^\varepsilon) - A_x(k)] \partial_x (\varphi(x, t) \nu_h(x))(1, t) \, dt \]
\[+ \int_{Q_T} \operatorname{sgn}(u^\varepsilon - k)(A_x(u^\varepsilon) - A_x(k)) \partial_x^2 \varphi \, dt \, dx \geq 0. \quad (3.10)\]

We have
\[\int_{Q_T} \operatorname{sgn}(u^\varepsilon - k)(A_x(u^\varepsilon) - A_x(k)) \partial_x^2 \varphi \, dt \, dx \]
\[= \int_0^T \operatorname{sgn}(u^\varepsilon(1, t) - k)(A_x(u^\varepsilon(1, t)) - A_x(k))(\partial_x \varphi)(1, t) \, dt \]
\[- \int_{Q_T} \partial_t (\operatorname{sgn}(u^\varepsilon - k)(A_x(u^\varepsilon) - A_x(k))) \partial_x \varphi \, dt \, dx, \]
which, by using Lemma 1 and the fact that
\[\partial_t (\text{sgn}(u - k)(A(u) - A(k))) = \text{sgn}(u - k) \partial_t (A(u) - A(k)) \]
in the sense of measures, yields
\[
\int_{Q_T} \text{sgn}(u^\varepsilon - k)(A_x(u^\varepsilon) - A_x(k)) \partial_x^2 \varphi \, dt \, dx
\]
\[
\overset{\varepsilon \downarrow 0}{\longrightarrow} \int_0^T \text{sgn}(\gamma_x u - k)(A(\gamma_x u) - A(k))(\partial_x \varphi)(1, t) \, dt
\]
\[- \int_{Q_T} \text{sgn}(u - k) \partial_t (A(u) - A(k)) \partial_x \varphi \, dt \, dx. \]

Moreover,
\[
- \int_0^T \text{sgn}(\varphi^\varepsilon(t) - k)(A_x(u^\varepsilon) - A_x(k)) \partial_x \left(\varphi(x, t; \nu_h(x)) \right)(1, t) \, dt
\]
\[
= - \int_{Q_T} \text{sgn}(\varphi^\varepsilon(t) - k)(A_x(u^\varepsilon) - A_x(k)) \partial_x^2 (\varphi \nu_h) \, dt \, dx
\]
\[- \int_{Q_T} \partial_t (\text{sgn}(\varphi^\varepsilon(t) - k)(A_x(u^\varepsilon) - A_x(k))) \partial_x (\varphi \nu_h) \, dt \, dx
\]
\[
\overset{\varepsilon \downarrow 0}{\longrightarrow} - \int_{Q_T} \text{sgn}(\varphi(t) - k)(A(u) - A(k)) \partial_x^2 (\varphi \nu_h) \, dt \, dx
\]
\[- \int_{Q_T} \text{sgn}(\varphi(t) - k) \partial_t (A(u) - A(k)) \partial_x (\varphi \nu_h) \, dt \, dx. \]

Taking the limits $\varepsilon \downarrow 0$ and $h \downarrow 0$ and using Lemma 6, we obtain inequality (2.9) from (3.10). To verify that the limit satisfies the boundary condition (2.10), we multiply Eq. (A.4) by a test function $\Phi \in C^0(\mathcal{T})$ and integrate over \mathcal{T} to obtain
\[
0 = \int_0^T (f_x(u^\varepsilon) - \partial_x A_x(u^\varepsilon))(0, t) \Phi(t) \, dt
\]
\[
= - \int_{Q_T} \partial_t (f_x(u^\varepsilon) - \partial_x A_x(u^\varepsilon)) \Phi(t) \mu_h(x) \, dt \, dx
\]
\[- \int_{Q_T} (f_x(u^\varepsilon) - \partial_x A_x(u^\varepsilon)) \Phi(t) \mu'_h(x) \, dt \, dx
\]
\[
= \int_{Q_T} (\partial_t u^\varepsilon + q_x(t) \partial_x u^\varepsilon) \Phi(t) \mu_h(x) \, dt \, dx
\]
\[- \int_{Q_T} (f_x(u^\varepsilon) - \partial_x A_x(u^\varepsilon)) \Phi(t) \mu_h(x) \, dt \, dx. \quad (3.11)\]
The first integral on the right-hand side of (3.11) vanishes for \(h \downarrow 0 \). The boundary condition at \(x = 0 \) follows then from

\[
- \int_{Q_T} (f_x(u^\varepsilon) - \partial_x A_x(u^\varepsilon)) \Phi(t) \mu_x(x) \, dt \, dx
\]

\[
\varepsilon \downarrow 0 \quad \rightarrow \quad - \int_{Q_T} (f(u) - \partial_x A(u)) \Phi(t) \mu_x(x) \, dt \, dx
\]

\[
h \downarrow 0 \quad \rightarrow \quad \int_0^T \gamma_0(f(u) - \partial_x A(u)) \Phi(t) \, dt.
\]

Lemma 7. The limit function \(u \) of solutions \(u^\varepsilon \) of Problem \(A^\varepsilon \) satisfies the initial condition (2.11).

To prove Lemma 7, we need the following variant of Kružkov’s lemma [13] proved in [12].

Lemma 8. Assume that there exist finite constants \(c_1 \) and \(c_2 \) such that the function \(u : \Omega \times \bar{\mathcal{T}} \rightarrow \mathbb{R} \) satisfies \(\|u(\cdot, t)\|_c \leq c_1 \) and \(TV_0(u(\cdot, t)) \leq c_2 \) for all \(t \in \bar{\mathcal{T}} \), and that \(u(x, t) \) is weakly Lipschitz continuous in the time variable in the sense that

\[
\left| \int_0^{t_2} (u(x, t_2) - u(x, t_1)) \phi(x) \, dx \right| \leq \mathcal{E}(t_2 - t_1) \sum_{i=0}^n \|\phi^{(i)}\|_{L^\infty(\Omega)}
\]

\[\forall \phi \in C_0^\infty(\Omega), 0 \leq t_1 \leq t_2 \leq T.\]

Then there exists a constant \(c \), depending in particular on \(c_1 \) and \(c_2 \), such that the following interpolation result is valid:

\[
\|u(\cdot, t_2) - u(\cdot, t_1)\|_{L^1(\Omega)} \leq c(t_2 - t_1)^{1/(n+1)}, \quad 0 \leq t_1 \leq t_2 \leq T. \quad (3.12)
\]

Proof of Lemma 7. Multiplying Eq. (A\(^\varepsilon\).1) with a test function \(\phi \in C_0^\infty(Q_T) \) and using integration by parts, it is easy to see that the statement of Lemma 8 holds with \(n = 2 \), i.e., there exists a constant \(c \) such that

\[
\|u^\varepsilon(\cdot, \tau) - u_0\|_{L^1(\Omega)} \leq c\tau^{1/3}
\]

holds uniformly in \(\varepsilon \) for sufficiently small \(\tau > 0 \). This implies for \(\tau \downarrow 0 \) and \(\varepsilon \downarrow 0 \) that the initial condition (2.11) is satisfied. \(\blacksquare \)

As a consequence of Lemmas 2–5 and 7, we obtain

Theorem 1. Under the assumptions (2.2)–(2.7), Problem A admits an entropy solution \(u \).
3.2. Existence of Entropy Solutions of Problem B

To show the existence of entropy solutions of Problem B, we consider the regularized parabolic IBVP B^ε, which is obtained from Problem A^ε if the boundary condition $(A^\varepsilon.3)$ is replaced by

$$(q_\varepsilon(t)u^\varepsilon + f_\varepsilon(u^\varepsilon)) - \partial_x A_\varepsilon(u^\varepsilon))^1(1,t) = \Psi_\varepsilon(t), \quad t \in (0,T]. \quad (B^\varepsilon.3)$$

Here f_ε and A_ε denote the same regularizations as before. Obviously, the definition of u^ε_0 has to be modified slightly, here we set $u^\varepsilon_0(x) := (\widetilde{u}_0 * \omega_\varepsilon)(x)$ and $q_\varepsilon(t) := (\tilde{q} * \omega_\varepsilon)(t)$, where

$$\widetilde{u}_0(x) := \begin{cases} -\varepsilon & \text{for } x \geq 1 - 2\varepsilon, \\ u_0(x^\varepsilon) & \text{for } 2\varepsilon < x < 1 - 2\varepsilon, \\ -\varepsilon & \text{for } x \leq 2\varepsilon, \end{cases}$$

$$\tilde{q}(t) := \begin{cases} 0 & \text{for } t \leq 2\varepsilon, \\ \tilde{q}(t^\varepsilon) & \text{for } 2\varepsilon < t < T, \end{cases}$$

and $x^\varepsilon(x)$ and $t^\varepsilon(t)$ are defined in (3.2). The first-order compatibility conditions appropriate for Problem B^ε are then given by (3.1c) and the condition

$$q_\varepsilon(0)u^\varepsilon_0(1) + f_\varepsilon(u^\varepsilon_0(1)) - a_\varepsilon(u^\varepsilon_0(1))u^\varepsilon_0(1) = \Psi_\varepsilon(0), \quad (3.13)$$

valid at $x = 1, t = 0$. This condition is satisfied if we set $\Psi_\varepsilon(t) := (\tilde{\Psi} * \omega_\varepsilon)(t)$, where

$$\tilde{\Psi}(t) := \begin{cases} 0 & \text{for } t \leq 2\varepsilon, \\ \Psi(t^\varepsilon) & \text{for } 2\varepsilon < t < T. \end{cases}$$

As in the previous case, mollifying the functions $\widetilde{u}_0, \tilde{q}$, and $\tilde{\Psi}$ does not increase their respective total variations. By the classical theory of quasi-linear parabolic equations, Problem B^ε also has a smooth solution $u^\varepsilon \in C^{2+\beta,1+\beta/2}(Q_T)$ for a fixed value of $\varepsilon > 0$.

Lemma 9. Let u^ε be a solution of Problem B^ε. Then there exist positive constants C_1 and C_2 independent of ε satisfying

$$-C_1 \varepsilon \leq u^\varepsilon(x,t) \leq u_{\text{max}} + C_2 \varepsilon \quad \text{for } (x,t) \in \overline{Q_T}. \quad (3.14)$$

In particular, there exists a constant M_4 such that $\|u^\varepsilon\|_{L^1(Q_T)} \leq M_4$ holds uniformly in ε.

Proof. The maximum principle can be applied in a similar way as for Problem A and as in [6], but the treatment of the boundary $x = 1$ is...
different. Suppose that \(u^\varepsilon \) assumes a maximum at \((x = 1, t = t_0), 0 < t_0 \leq T\). Then \(\partial_x u^\varepsilon(1, t_0) \geq 0 \) must be valid; without loss of generality we may assume that \(\partial_x u^\varepsilon(1, t_0) > 0 \). Inserting this assumption into (B.3), which can be expressed as

\[
\partial_x u^\varepsilon(1, t) = \left[g_x(u^\varepsilon(1, t), t) - \Psi_x(t) \right]/a_x(u^\varepsilon(1, t)),
\]

(3.15)

reveals that then \(g_x(t)(u^\varepsilon(1, t_0), t_0) > \Psi_x(t_0) \) holds. Due to the regularity assumptions on \(f(u) \) and \(q(t) \), we may conclude from this that

\[
g(u^\varepsilon(1, t_0), t_0) > \Psi(t_0) + \mathcal{O}(\varepsilon).
\]

(3.16)

Since \(g(u, t) \leq \Psi(t) \) for \(u \geq u_{\text{max}} \), inequality (3.16) implies that \(u^\varepsilon(1, t_0) \leq u_{\text{max}} + \mathcal{O}(\varepsilon) \).

Now assume that \(u^\varepsilon \) assumes a local minimum at \((1, t_0)\); this implies \(\partial_x u^\varepsilon(1, t_0) \leq 0 \). Again we have to consider only the case \(\partial_x u^\varepsilon(1, t_0) < 0 \). This assumption yields \(g_x(u^\varepsilon(1, t_0), t_0) < \Psi_x(t_0) \). In view of \(\Psi(t) \leq q(t)u = g(u, t)u_{\text{max}} \), this cannot hold for \(-u > \mathcal{O}(\varepsilon) \), and we conclude that \(u(1, t_0) \geq \mathcal{O}(\varepsilon) \) is valid. These arguments, combined with the discussion of extrema of \(u^\varepsilon \) on the remaining parts of \(Q_T \) following the analysis of Problem A, imply that the estimate (3.14) is valid.

To derive estimates on the derivatives of \(u^\varepsilon \), we first need to prove the following lemma.

Lemma 10. Let \(u \) be the limit function of solutions \(u^\varepsilon \) of Problem B. Then \(\partial_x A(u) \in L^2(Q_T) \).

Proof. Multiplying Eq. (A.1) by \(u^\varepsilon \) and integrating over \(Q_T \), we obtain

\[
\int_{Q_T} a_x(u^\varepsilon)(\partial_x u^\varepsilon)^2 \, dt \, dx
\]

\[
= \int_0^T u^\varepsilon(a_x(u^\varepsilon) \partial_x u^\varepsilon - g_x(u^\varepsilon, t)) \big|_0^1 \, dt - \frac{1}{2} \int_{Q_T} \partial_t(u^\varepsilon)^2 \, dt \, dx
\]

\[
- \int_{Q_T} g_x(u^\varepsilon, t) \partial_x u^\varepsilon \, dt \, dx
\]

\[
= \int_0^T (u^\varepsilon(1, t) \Psi_x(t) + q_x(t)u^\varepsilon(0, t)) \, dt - \frac{1}{2} \int_0^1 (u^\varepsilon)^2 \big|_0^T \, dx
\]

\[
- \int_0^T G_x(u^\varepsilon, t) \big|_0^1 \, dt,
\]
where \(G_\varepsilon(u, t) := \int_0^t g_\varepsilon(s, t) \, ds \). Obviously, we have the uniform estimate

\[
\iint_{Q_T} a_\varepsilon(u^\varepsilon) \big(\partial_t u^\varepsilon \big)^2 \, dt \, dx \leq TM_\delta \left(\| \Psi_\varepsilon \|_\infty + \| q_\varepsilon \|_\infty + M_\delta + 2 \| G_\varepsilon \|_\infty \right) =: M_5,
\]

(3.17)

hence \(\partial_t A_\varepsilon(u^\varepsilon) \in L^2(Q_T) \) independently of \(\varepsilon \), and the conclusion of Lemma 10 follows as in the proof of Lemma 4.

We note that the regularity result expressed in Lemma 10 will be significantly improved in Section 3.3.

Lemma 11. Let \(u^\varepsilon \) be a solution of Problem \(B^\varepsilon \).

(a) In the case where \(\Psi = 0 \), there exists a constant \(M_6 \) such that the following estimate holds uniformly in \(\varepsilon \):

\[
\| \partial_t u^\varepsilon(\cdot, t) \|_{L^\infty(\Omega)} \leq M_6 \quad \text{for all } t \in \mathcal{T}.
\]

(b) In the case where \(\xi_\varepsilon a(u) - (q(t) + f'(u)) \geq M_8 \) for some positive constants \(\xi, M_8 \), there exists a constant \(M_6 \) such that the following estimate holds uniformly in \(\varepsilon \):

\[
\| \partial_t u^\varepsilon \|_{L^1(Q_T)} \leq M_6.
\]

In both cases, there exists a constant \(M_7 \) such that the following uniform estimate is valid:

\[
\| \partial_t u^\varepsilon(\cdot, t) \|_{L^1(\Omega)} \leq M_7 \quad \text{for all } t \in \mathcal{T}.
\]

Proof. Let approximations \(sgn_\eta \) and \(|\cdot|_\eta \) of the sign and modulus functions be given by

\[
sgn_\eta(\tau) := \begin{cases}
sgn(\tau) & \text{if } |\tau| > \eta, \\
\tau/\eta & \text{if } |\tau| \leq \eta,
\end{cases} \quad |x|_\eta := \int_0^x sgn_\eta(\xi) \, d\xi, \ \eta > 0.
\]

(3.21)

We first consider the estimate on \(\partial_t u^\varepsilon \). We define \(v^\varepsilon := \partial_t u^\varepsilon \) and \(w^\varepsilon := \partial_x u^\varepsilon \) and differentiate Eq. (A.1) with respect to \(t \) to obtain

\[
\partial_t v^\varepsilon = \partial_t \left(\partial_x (-g_\varepsilon(u^\varepsilon, t) + a_\varepsilon(u^\varepsilon)w^\varepsilon) \right) = \partial_x \left(\partial_t (-g_\varepsilon(u^\varepsilon, t) + a_\varepsilon(u^\varepsilon)w^\varepsilon) \right).
\]

(3.22)
Multiplying (3.22) by \(\text{sgn}_q(\varphi^e) \), integrating over \(Q_{T_0} := \Omega \times (0, T_0) \), \(0 < T_0 \leq T \), integrating by parts, and using the boundary conditions yields

\[
\iint_{Q_{T_0}} \partial_t |v^e|_q \, dt \, dx \\
\leq \int_0^{T_0} \text{sgn}_q(v^e) \left(-\Psi'_e(t) + q'_e(t) u^e(1, t) + q_e(t) v^e(1, t) \right) dt \\
- \iint_{Q_{T_0}} \text{sgn}_q(v^e) \partial_t v^e \left(a'_e(u^e) w^e - f'_e(u^e) - q_e(t) v^e \right) dt \, dx \\
- \iint_{Q_{T_0}} \text{sgn}_q(v^e) a_e(u^e) (\partial_t v^e)^2 \, dt \, dx \\
+ \int_0^{T_0} \text{sgn}_q(v^e) q'_e(t) u^e|_{t=0} \, dt - \iint_{Q_{T_0}} \text{sgn}_q(v^e) q'_e(t) w^e \, dt \, dx \\
=: I^1_\eta + I^2_\eta + I^3_\eta + I^5_\eta. \tag{3.23}
\]

Observe that

\[
I^1_\eta \xrightarrow{\eta \downarrow 0} \int_0^{T_0} \text{sgn}(v^e(1, t)) (\Psi'_e(t) + q'_e(t)) \, dt + \int_0^{T_0} q_e(t) |v^e(1, t)| \, dt \\
\leq \text{TV}_F(\Psi_e) + \text{TV}_F(q_e).
\]

By Saks' lemma, \(I^2_\eta \xrightarrow{\eta \downarrow 0} 0 \), and \(I^3_\eta \leq 0 \). Finally, we have \(|I^4_\eta| \leq 2T\|q_e\|_\eta \|u_{\max} + \varepsilon\| \) and

\[
I^5_\eta \xrightarrow{\eta \downarrow 0} I^5_0 := \int_0^{T_0} q'_e(t) \int_0^1 \text{sgn}(v^e) w^e \, dx \, dt. \tag{3.24}
\]

To evaluate the integral \(I^5_0 \), we have to derive the estimate on \(\partial_t u^e \).

(a) Let \(\Psi \equiv 0 \). To obtain an estimate on \(\partial_t u^e \), differentiate (A.1) with respect to \(x \). Setting \(w^e := \partial_x u^e \), we get

\[
\partial_t w^e + a'_e(q'_e(t) u^e + f'_e(u^e)) \\
= \partial_x^2 (a_e(u^e)) w^e. \tag{3.25}
\]
Multiplying Eq. (3.25) by \(\text{sgn}_\eta(w^\varepsilon) \), integrating over \(Q_T \), and using integration by parts yields

\[
\iint_{Q_T} \text{sgn}_\eta(w^\varepsilon) \partial_i w^\varepsilon \, dt \, dx
\]

\[
= \iint_{Q_T} \text{sgn}_\eta(w^\varepsilon) \partial_i^2 (a_\varepsilon(u^\varepsilon)w^\varepsilon - g_\varepsilon(u^\varepsilon, t)) \, dt \, dx
\]

\[
= \int_0^T \text{sgn}_\eta(w^\varepsilon) \partial_i (a_\varepsilon(u^\varepsilon)w^\varepsilon - g_\varepsilon(u^\varepsilon, t)) \big|_0^T \, dt
\]

\[
+ \iint_{Q_T} \text{sgn}_\eta(w^\varepsilon) \partial_i w^\varepsilon (\partial_x g_\varepsilon)(u^\varepsilon, t) w^\varepsilon \, dt \, dx
\]

\[
- \iint_{Q_T} \text{sgn}_\eta(w^\varepsilon) \partial_i w^\varepsilon a_\varepsilon(u^\varepsilon)(\partial_x w^\varepsilon)^2 \, dt \, dx
\]

\[
- \iint_{Q_T} \text{sgn}_\eta(w^\varepsilon) a_\varepsilon(u^\varepsilon)(\partial_x w^\varepsilon)^2 \, dt \, dx.
\]

From the nonnegativity of the last integral, the initial condition, and Eq. (A.1), we obtain

\[
\int_0^1 |w^\varepsilon(x, T)|_\eta \, dx
\]

\[
\leq \int_0^1 |(u^\varepsilon_0)'(x)|_\eta \, dx + \int_0^T \text{sgn}_\eta(w^\varepsilon(1, t)) \partial_i u^\varepsilon(1, t) \, dt
\]

\[
- \int_0^T (w^\varepsilon(0, t)) \partial_i u^\varepsilon(0, t) \, dt
\]

\[
+ \iint_{Q_T} \text{sgn}_\eta(w^\varepsilon) \partial_i w^\varepsilon (\partial_x g_\varepsilon)(u^\varepsilon, t) w^\varepsilon \, dt \, dx
\]

\[
- \iint_{Q_T} \text{sgn}_\eta(w^\varepsilon) \partial_i w^\varepsilon a_\varepsilon(u^\varepsilon)w^\varepsilon \, dt \, dx
\]

\[
= I_6^\varepsilon + I_7^\varepsilon + I_8^\varepsilon + I_9^\varepsilon + I_{10}^\varepsilon.
\]

From Saks' lemma (see [2, 18]) we infer that \(I_6^\varepsilon \to 0 \) and \(I_{10}^\varepsilon \to 0 \) for \(\eta \downarrow 0 \). By the boundary condition \((B.3)\), we have for \(\Psi \equiv 0 \) that \(w^\varepsilon(1, t) = g_\varepsilon(u^\varepsilon(1, t), t)/a_\varepsilon(u^\varepsilon(1, t)) \). We have therefore either \(w^\varepsilon(1, t) < 0 \) or \(w^\varepsilon(1, t) = 0 \). However, the latter is true if and only if \(u^\varepsilon(1, t) \) assumes the constant value \(-\varepsilon\) or \(u_{\text{max}} + \varepsilon\). Letting \(\bar{E} = \{ t \in [0, T]: u^\varepsilon(1, t) = -\varepsilon \) or
we note that \(\partial_t u^\varepsilon(1, t) = 0 \) a.e. in \(E \). We therefore conclude that

\[
I_0^T \eta \to \int_0^T \text{sgn}(w^\varepsilon(1, t)) \partial_t u^\varepsilon(1, t) \, dt = -\int_0^T \partial_t u^\varepsilon(1, t) \, dt = u^\varepsilon(1, 0) - u^\varepsilon(1, T). \tag{3.27}
\]

Applying the same argument to the boundary condition \(A^\varepsilon \), we have

\[
I^T \eta \to \int_0^T \text{sgn}(w^\varepsilon(0, t)) \partial_t u^\varepsilon(0, t) \, dt = \int_0^T \partial_t u^\varepsilon(0, t) \, dt = u^\varepsilon(0, T) - u^\varepsilon(0, 0). \tag{3.28}
\]

From (3.26) we obtain then for \(\eta \downarrow 0 \),

\[
\|\partial_t u^\varepsilon(\cdot, T)\|_{L^1(\Omega)} \leq \|(u_0^\varepsilon)\|_{L^1(\Omega)} + u^\varepsilon(0, T) - u^\varepsilon(1, T)
\leq \|(u_0^\varepsilon)\|_{L^1(\Omega)} + u_{\text{max}} + \varepsilon,
\]

which proves the estimate (3.18). Inserting this into (3.24) shows that \(I_0^T \leq T\|q_{\varepsilon}\|_{L^1(\Omega)} \). Consequently, the right-hand part of the limit for \(\eta \downarrow 0 \) of (3.23) is uniformly bounded in \(\varepsilon \). The estimate (3.20) follows since \(u_0 \in \mathcal{B} \) and hence \(\|u^\varepsilon(\cdot, 0)\|_{L^1(\Omega)} \) is uniformly bounded.

(b) In this part of the proof, we follow Wu [23]. We now assume that the second alternative of (2.12) holds, from which we may infer that

\[
\xi a(x, u^\varepsilon) - (q_{\varepsilon} + f_{\varepsilon}(u^\varepsilon)) \geq \tilde{M}_\varepsilon, \quad \tilde{M}_\varepsilon = M_\varepsilon + \phi(\varepsilon) > 0. \tag{3.29}
\]

Multiplying Eq. (A.1) by \(-\text{sgn}_\varepsilon(w^\varepsilon)\) and integrating over \(\Omega \) yields

\[
\int_0^1 \text{sgn}_\varepsilon(w^\varepsilon)(-q_{\varepsilon}(t) - f_{\varepsilon}(u^\varepsilon))w^\varepsilon \, dx
= -\text{sgn}(w^\varepsilon(1, t))(g_{\varepsilon}(u^\varepsilon(1, t)) - \Psi_{\varepsilon}(t))
+ \text{sgn}_\varepsilon(w^\varepsilon(0, t))f_{\varepsilon}(u^\varepsilon(0, t))
+ \int_0^1 \text{sgn}_\varepsilon(w^\varepsilon) \partial_t a_{\varepsilon}(u^\varepsilon)w^\varepsilon \, dx + \int_0^1 \text{sgn}_\varepsilon(w^\varepsilon)\nu^\varepsilon \, dx. \tag{3.30}
\]
Note that first integral on the right-hand part of (3.30) vanishes due to Saks’ lemma. For \(\eta \downarrow 0 \), we then obtain from (3.30)

\[
\int_0^1 (-q_\varepsilon(t) - f_\varepsilon'(u^\varepsilon))|w^\varepsilon| \, dx \leq 2\|f_\varepsilon\|_\infty + \|q_\varepsilon\|_\infty + \|\Psi_\varepsilon\|_\infty + \int_0^1 |v^\varepsilon| \, dx.
\]
(3.31)

Integrating (3.31) over \([0, T_0]\), we obtain

\[
\int_{Q_{T_0}} (-q_\varepsilon(t) - f_\varepsilon'(u^\varepsilon))|w^\varepsilon| \, dt \, dx
\]
\[
\leq T_0(2\|f_\varepsilon\|_\infty + \|q_\varepsilon\|_\infty + \|\Psi_\varepsilon\|_\infty) + \int_{Q_{T_0}} |v^\varepsilon| \, dt \, dx.
\]
(3.32)

From (3.17) we obtain

\[
\int_{Q_{T_0}} a_\varepsilon(u^\varepsilon)|w^\varepsilon| \, dt \, dx
\]
\[
\leq \left(\int_{Q_{T_0}} a_\varepsilon(u^\varepsilon) \, dt \, dx \right)^{1/2} \left(\int_{Q_{T_0}} a_\varepsilon(u^\varepsilon) (\partial_t u^\varepsilon)^2 \, dt \, dx \right)^{1/2}
\]
\[
\leq (T\|a_\varepsilon\|_\infty)^{1/2} M_G^{1/2} =: M_g.
\]
(3.33)

Consequently, adding \(\int_{Q_{T_0}} \xi a_\varepsilon(u^\varepsilon)|w^\varepsilon| \, dt \, dx \) to both sides of (3.32) yields

\[
\int_{Q_{T_0}} (\xi a_\varepsilon(u^\varepsilon) - q_\varepsilon(t) - f_\varepsilon'(u^\varepsilon))|w^\varepsilon| \, dt \, dx
\]
\[
\leq \xi M_g + T_0(2\|f_\varepsilon\|_\infty + \|q_\varepsilon\|_\infty + \|\Psi_\varepsilon\|_\infty) + \int_{Q_{T_0}} |v^\varepsilon| \, dt \, dx.
\]

In view of (3.29), we finally obtain

\[
\int_{Q_{T_0}} |w^\varepsilon| \, dt \, dx \leq M_g + \frac{1}{M_g} \int_{Q_{T_0}} |v^\varepsilon| \, dt \, dx,
\]
(3.34)

where \(M_g := \frac{\xi M_g + T_0(2\|f_\varepsilon\|_\infty + \|q_\varepsilon\|_\infty + \|\Psi_\varepsilon\|_\infty)}{\tilde{M}_g} \). Using (3.34) we obtain from (3.24) that

\[
I_0^\varepsilon \leq \|q_\varepsilon\|_\infty \left(M_g + \frac{1}{M_g} \int_{Q_{T_0}} |v^\varepsilon| \, dt \, dx \right).
\]
Using this estimate in (3.23) and sending $\eta \downarrow 0$, we see that v^ε satisfies the inequality

$$\int_0^1 |v^\varepsilon(x, T_0)| \, dx \leq \int_0^1 |v^\varepsilon(x, 0)| \, dx + M_{10} + M_{11} \int_0^{T_0} \int_0^1 |v^\varepsilon(x, t)| \, dt \, dx,$$

(3.35)

for some suitable constants M_{10} and M_{11}. Note that the first integral on the right-hand side is bounded since we assume $u_0 \in \mathcal{U}$. Using Gronwall’s lemma, we obtain from (3.35) the desired estimate (3.20). Finally, using (3.20) in (3.34) for $T_0 = T$ shows that (3.19) is also valid.

Remark 2. Note that we have not been able to establish that

$$\|\partial_x u^\varepsilon(\cdot, t)\|_{L^1(\Omega)}$$

is uniformly bounded when the second alternative of (2.12) holds.

As in Section 3.1, we may conclude from the estimates established by Lemmas 9–11 that there exists a sequence $\varepsilon = \varepsilon_n \downarrow 0$ such that the sequence of solutions $\{u_n^\varepsilon\}$ of solutions to Problem B^ε converges in $L^1(Q_T)$ to a function $u \in L^\infty(Q_T) \cap BV(Q_T)$. We now prove:

Lemma 12. The viscosity limit function u of solutions u^ε of Problem B^ε satisfies inequality (2.14) for all $\varphi \in C_0^\infty(Q_T)$, $\varphi \geq 0$, and $k \in \mathbb{R}$ and the boundary and initial conditions (2.10) and (2.15).

Proof. To show that u satisfies the integral inequality (2.14), we follow the first part of the proof of Lemma 5 by multiplying Eq. (A.1) by $\text{sgn}_\varepsilon(u^\varepsilon - k)\varphi$, $\varphi \in C_0^\infty(Q_T)$, $\varphi \geq 0$, and $k \in \mathbb{R}$, and letting $\eta \downarrow 0$ and $\varepsilon \downarrow 0$. Note that in this case no boundary terms appear. The verification of boundary condition (2.10) is, of course, exactly as in the second part of the proof of Lemma 5. Using the function ν_h instead of μ_h and starting from

$$0 = \int_0^T (g_\varepsilon(u^\varepsilon(1, t)) - \partial_x A_\varepsilon(u^\varepsilon(1, t)) - \Psi_\varepsilon(t)) \Phi(t) \, dt,$$

the boundary condition (2.15) can be verified in the same way. As for Problem A, the initial condition (2.10) can be inferred from the estimate (3.20).

Summarizing, we have:

Theorem 2. If (2.2)–(2.5) and (2.13) hold, then Problem B admits an entropy solution u.
3.3. An Improved Regularity Result for Entropy Solutions of Problem B

In Lemma 10, we proved that the vanishing viscosity solution \(u \) of Problem B satisfies \(\partial_t A(u) \in L^2(\Omega_T) \), as required by the definition of entropy solution. The purpose of this section is to show that \(A(u) \) is actually more regular than this; namely, we have that \(A(u) \) is Hölder continuous on \(\overline{\Omega_T} \).

Lemma 13. Let \(u^\varepsilon \) be a solution of Problem \(B^\varepsilon \). Then there exists a constant \(M_{12} > 0 \) such that the following estimate holds uniformly with respect to \(\varepsilon \):

\[
\left\| \partial_x A_x(u^\varepsilon) \right\|_{L^\infty(\Omega_T)} \leq M_{12}.
\]

(3.36)

Proof. Define \(V^\varepsilon := -q_\varepsilon(t)u^\varepsilon - f_\varepsilon(u^\varepsilon) + a_\varepsilon(u^\varepsilon) \partial_x u^\varepsilon \). Equation (A.1) can then be written as \(\partial_t u^\varepsilon = \partial_x V^\varepsilon \). Inserting this into (3.22), we obtain

\[
\partial_t(\partial_x V^\varepsilon) + \partial_x \left[\left(q_\varepsilon(t) + f_\varepsilon'(u^\varepsilon) \right) \partial_x V^\varepsilon + q_\varepsilon'(t)u^\varepsilon \right] = \partial_x \left(a_\varepsilon(u^\varepsilon) \partial_x V^\varepsilon \right) + C(t),
\]

(3.37)

which implies that \(V^\varepsilon \) satisfies an equation of the type

\[
\partial_t V^\varepsilon + \left[q_\varepsilon(t) + f_\varepsilon'(u^\varepsilon) \right] \partial_x V^\varepsilon + q_\varepsilon'(t)u^\varepsilon = \partial_x \left(a_\varepsilon(u^\varepsilon) \partial_x V^\varepsilon \right) + C(t).
\]

(3.38)

Evaluating (3.38) at \(x = 0 \) and using the boundary condition (A.4) yields \(C(t) \equiv 0 \). In view of Problem \(B^\varepsilon \), \(V^\varepsilon \) can be considered as the solution of the linear IBVP with Dirichlet boundary conditions

\[
\begin{align*}
\partial_t V^\varepsilon + \left[q_\varepsilon(t) + f_\varepsilon'(u^\varepsilon) \right] \partial_x V^\varepsilon + q_\varepsilon'(t)u^\varepsilon &= \partial_x \left(a_\varepsilon(u^\varepsilon) \partial_x V^\varepsilon \right), \\
x \in \Omega, \ t \in (0, T], \quad (3.39a) \\
V^\varepsilon(x, 0) &= -q_\varepsilon(0)u_0^\varepsilon(x) - f_\varepsilon(u_0^\varepsilon(x)) + a_\varepsilon(u_0^\varepsilon(x))(u_0^\varepsilon)'(x), \\
x \in \overline{\Omega}, \quad (3.39b) \\
V^\varepsilon(1, t) &= -\Psi_\varepsilon(t), \quad t \in (0, T], \quad (3.39c) \\
V^\varepsilon(0, t) &= -q_\varepsilon(t)u^\varepsilon(0, t), \quad t \in (0, T]. \quad (3.39d)
\end{align*}
\]

Since \(u_0 \in \mathcal{B} \), the right-hand part of Eq. (3.39b) is uniformly bounded in \(\varepsilon \), and so are those of (3.39c) and (3.39d). Thus, the maximum principle implies that there exists a constant \(\tilde{M}_{12} \) such that the uniform estimate \(\| V^\varepsilon \|_{L^\infty(\Omega_T)} \leq \tilde{M}_{12} \) holds; as a consequence, we have shown (3.36). \(\square \)
THEOREM 3. Assume that \(u^\varepsilon \to u \) a.e. in \(Q_T \) as \(\varepsilon \downarrow 0 \). Then there exists a subsequence \(\varepsilon_n \downarrow 0 \) such that \(A(u^\varepsilon_n) \to A(u) \) uniformly on \(\overline{Q}_T \) and

\[
A(u) \in C^{1,1/2}(\overline{Q}_T). \tag{3.40}
\]

Proof. We shall estimate the \(L^1 \) continuity in time of \(V^\varepsilon \) by applying Lemma 8. Integrating Eq. (3.39a) against a function \(\varphi \in C^1_0(\Omega) \), and exploiting the relation \(\partial_t V^\varepsilon = \partial_t u^\varepsilon \) and Lemma 11, we obtain for \(0 \leq t_1 < t_2 \leq T \),

\[
\left| \int_0^{t_1} (V^\varepsilon(x,t_2) - V^\varepsilon(x,t_1)) \varphi(x) \, dx \right| = \left| \int_0^{t_1} \left[\left(-\varepsilon \frac{f_\varepsilon(x)}{f_\varepsilon(x)} + f_\varepsilon'(u^\varepsilon) \right) \partial_t V^\varepsilon - q_\varepsilon u^\varepsilon \right. \right.
\]
\[
+ \left. \left(a_\varepsilon(u^\varepsilon) \partial_\varepsilon V^\varepsilon \right) \varphi(x) \right) \, dx \, dt \right|
\]
\[
= \left| \int_0^{t_1} -q_\varepsilon u^\varepsilon \varphi(x) \right.
\]
\[
+ \left[\left(q_\varepsilon(t) + f_\varepsilon'(u^\varepsilon) \right) V^\varepsilon - a_\varepsilon(u^\varepsilon) \partial_\varepsilon V^\varepsilon \right] \varphi(x) \right) \, dx \, dt \right|
\]
\[
\leq (t_2 - t_1) \left\{ \left\| q_\varepsilon \right\|_\infty M_1 \left\| \varphi \right\|_\infty
\right.
\]
\[
+ \left(\left\| q_\varepsilon \right\|_\infty + \left\| f_\varepsilon'(u^\varepsilon) \right\| \right) \tilde{M}_{12} + \left\| a_\varepsilon \right\|_\infty M_7 \left\| \varphi' \right\|_\infty \}.
\]

Applying Lemma 8, we obtain

\[
\exists M_{13} > 0: \left\| V^\varepsilon(\cdot,t_2) - V^\varepsilon(\cdot,t_1) \right\|_{L^1(\Omega)} \leq M_{13} \sqrt{t_2 - t_1}. \tag{3.41}
\]

We use this to obtain a continuity in time estimate of \(A_\varepsilon(u^\varepsilon) \). From the definition of \(V^\varepsilon \) we obtain

\[
A_\varepsilon(u^\varepsilon(x,t_2)) - A_\varepsilon(u^\varepsilon(x,t_1))
\]
\[
= \int_0^x \left\{ a_\varepsilon(u^\varepsilon(\xi,t_2)) \partial_\varepsilon u^\varepsilon(\xi,t_2) - a_\varepsilon(u^\varepsilon(\xi,t_1)) \partial_\varepsilon u^\varepsilon(\xi,t_1) \right\} \, d\xi
\]
\[
= \int_0^x \left\{ \left[q_\varepsilon(t) + f_\varepsilon'(u) \right] (u(\xi,t_2) - u(\xi,t_1)) \right.
\]
\[
+ V^\varepsilon(\xi,t_2) - V^\varepsilon(\xi,t_1) \right\} \, d\xi,
\]
and using the L^1 continuity in time estimates (3.20) and (3.41),
\[
\begin{aligned}
|A_{\varepsilon}(u^\varepsilon(x, t_2)) - A_{\varepsilon}(u^\varepsilon(x, t_1))| &\leq (\|q_\varepsilon\|_\infty + 2\|q_\varepsilon^\prime\|_\infty + \|f_\varepsilon\|_\infty)(t_2 - t_1) \\
&+ M_{13}\sqrt{t_2 - t_1}.
\end{aligned}
\tag{3.42}
\]

In view of Lemma 13 and (3.42), there exists a constant $M_{14} > 0$ independent of ε such that
\[
|A_{\varepsilon}(u^\varepsilon(x_2, t_2)) - A_{\varepsilon}(u^\varepsilon(x_1, t_1))| < M_{14}\left(|x_2 - x_1| + \sqrt{|t_2 - t_1|}\right),
\]
\[
\forall (x_1, t_1), (x_2, t_2) \in \overline{Q}_T.
\]

The Ascoli–Arzelà compactness theorem then yields the existence of a subsequence of $\{A(u^n)\}$ converging uniformly on \overline{Q}_T to a limit $\bar{A} \in C^{1,1/2}(\overline{Q}_T)$ and we conclude easily that $\bar{A} = A(u)$.}

Remark 3. If one could prove for the solution u^ε of Problem A^ε that $\varepsilon \partial_t u^\varepsilon(1, t)$ is bounded uniformly in ε, then, under some additional technical assumptions, it is easy to see that Theorem 3 would also be valid for Problem A.

4. UNIQUENESS OF ENTROPY SOLUTIONS

4.1. General Results

We consider Problem A or B and assume only that f and A are locally Lipschitz continuous functions. Observe that if u is an entropy solution of Problem A or B, then it is easy to see that the equality
\[
\iint_{Q_T} \{u \partial_t \varphi + [g(u, t) - g(k, t) - \partial_\varepsilon A(u)] \partial_\varepsilon \varphi\} \, dx \, dt = 0
\tag{4.1}
\]
holds for all $\varphi \in C_0^\infty(Q_T)$. An approximation argument will reveal that (4.1) holds also for all $\varphi \in L^2(\mathcal{F}; H^1_0(\Omega)) \cap W^{1,1}(\mathcal{F}; L^p(\Omega))$. This immediately implies that $\partial_\varepsilon u$ may be viewed as an element in $L^2(\mathcal{F}; H^{-1}(\Omega))$, since $\partial_\varepsilon A(u) \in L^2(Q_T)$ and obviously $u, g(u, t), A(u) \in L^p(Q_T)$ for all p. In what follows, we let $\langle \cdot, \cdot \rangle$ denote the usual pairing between $H^{-1}(\Omega)$ and $H^1_0(\Omega)$.

For later use, we introduce the function
\[
\mathcal{A}_\psi(z) = \int_{z_0}^z \psi(A(r)) \, dr,
\]
where $\psi: \mathbb{R} \to \mathbb{R}$ is a nondecreasing and Lipschitz continuous function and $z \in \mathbb{R}$. Recall that $A(u) = 0$ for $u \leq u_c$, $A(\cdot)$ is increasing in (u_c, u_{max}), and $A(u) = A(u_{max}) = A_{max}$ for $u \geq u_{max}$. Thus the range of $A(\cdot)$ is the interval $[0, A_{max}]$ and therefore $|A_\phi(k)|$ is bounded by $|z - z_0|\psi(A_{max})$.

We shall need the following “weak chain rule” (see [1, 10]), which is properly adapted here to our problem.

Lemma 14. Let $u: Q_T \to \mathbb{R}$ be a measurable function satisfying the following four conditions:

(a) $u \in L^r(Q_T) \cap C(\mathcal{F}; L^1(\Omega))$,
(b) $u(0) = u_0 \in L^r(\Omega)$,
(c) $\partial_t u \in L^2(\mathcal{F}; H^{-1}(\Omega))$, and
(d) $A(u) \in L^2(\mathcal{F}; H^1(\Omega))$.

Then, for a.e. $s \in \mathcal{F}$ and every nonnegative $\varphi \in C_0^\infty(Q_T)$ (for which $\partial_s^p \varphi |_{x=0,1} = 0$ for $p = 0, 1, 2, \ldots$), we have

$$
- \int_0^s \langle \partial_t u, \psi(A(u)) \varphi \rangle \, dt = \int_\Omega \int_0^s A_\phi(u) \partial_t \varphi \, dt \, dx
+ \int_\Omega A_\phi(u_0) \varphi(x, 0) \, dx
- \int_\Omega A_\phi(u(x, s)) \varphi(x, s) \, dx.
$$

Proof. The proof follows closely that of Carrillo [10]. In the following let φ be as in Lemma 14.

Note that A_ϕ is a nonnegative and convex function. Convexity implies that for a.e. $(x, t) \in Q_T$, we have

$$A_\phi(u(x, t)) - A_\phi(u(x, t - \tau)) \leq (u(x, t) - u(x, t - \tau))\psi(A(u(x, t))) \psi(A(u(x, t))),$$

where we define $u(t) = u_0$ for $t \in (-\tau, 0)$. Multiplying this inequality by $\varphi(x, t)$ yields

$$A_\phi(u(x, t)) \varphi(x, t) - A_\phi(u(x, t - \tau)) \varphi(x, t - \tau)
+ A_\phi(u(x, t - \tau))(\varphi(x, t - \tau) - \varphi(x, t))
= A_\phi(u(x, t)) \varphi(x, t) - A_\phi(u(x, t - \tau)) \varphi(x, t)
\leq (u(x, t) - u(x, t - \tau))\psi(A(u(x, t))) \varphi(x, t). \quad (4.2)$$
Note that \(u_0, \mathcal{A}_\phi(u_0) \in L^1(\Omega) \) and \(u, \mathcal{A}_\phi(u) \in L^2(\mathcal{T}; L^1(\Omega)) \). Dividing (4.2) by \(\tau \) and integrating over \(\Omega \times (0, s) \), we get

\[
\frac{1}{\tau} \int_\Omega \int_{s-\tau}^s \mathcal{A}_\phi(u(x,t)) \varphi(x,t) \, dt \, dx = \frac{1}{\tau} \int_\Omega \int_0^s \mathcal{A}_\phi(u_0(x)) \varphi(x,t-\tau) \, dt \, dx \\
+ \frac{1}{\tau} \int_\Omega \int_0^s \mathcal{A}_\phi(u(x,t-\tau)) (\varphi(x,t-\tau) - \varphi(x,t)) \, dt \, dx \\
\leq \frac{1}{\tau} \int_\Omega \int_0^s (u(x,t) - u(x,t-\tau)) \psi(A(u(x,t))) \varphi(x,t) \, dt \, dx.
\]

(4.3)

Since \(\varphi \in C^0(Q_T) \) and \(\partial_t A(u) \in L^2(\mathcal{T}) \), we have \(\psi(A(u)) \varphi \in L^2(\mathcal{T}; H^1_0(\Omega)) \). Therefore, exploiting that \(u \in C(\mathcal{T}; L^1(\Omega)) \) and \(\partial_t u \in L^2(\mathcal{T}; H^{-1}(\Omega)) \), we can let \(\tau \downarrow 0 \) in (4.3) and obtain

\[
\int_\Omega \mathcal{A}_\phi(u(x,s)) \varphi(x,s) \, dx - \int_\Omega \mathcal{A}_\phi(u_0) \varphi(x,0) \, dx \\
- \int_\Omega \int_0^s \mathcal{A}_\phi(u) \partial_t \varphi \, dt \, dx \\
\leq \int_0^s \langle \partial_t u, \psi(A(u)) \varphi \rangle \, dt,
\]

for a.e. \(s \in \mathcal{T} \). Convexity implies also that for a.e. \((x,t) \in Q_T \) and \(t > \tau \), we have

\[
\mathcal{A}_\phi(u(x,t)) - \mathcal{A}_\phi(u(x,t-\tau)) \\
\geq (u(x,t) - u(x,t-\tau)) \psi(A(u(x,t-\tau))).
\]

Multiplying this inequality by \(\varphi(x,t-\tau) \) yields

\[
\mathcal{A}_\phi(u(x,t)) \varphi(x,t) - \mathcal{A}_\phi(u(x,t-\tau)) \varphi(x,t-\tau) \\
+ \mathcal{A}_\phi(u(x,t)) (\varphi(x,t-\tau) - \varphi(x,t)) \\
= \mathcal{A}_\phi(u(x,t)) \varphi(x,t-\tau) - \mathcal{A}_\phi(u(x,t-\tau)) \varphi(x,t) \\
\geq (u(x,t) - u(x,t-\tau)) \psi(A(u(x,t-\tau))) \varphi(x,t-\tau). \quad (4.4)
\]

After dividing (4.4) by \(\tau \) and integrating over \(\Omega \times (\tau, s) \), we obtain

\[
\frac{1}{\tau} \int_\Omega \int_{s-\tau}^s \mathcal{A}_\phi(u(x,t)) \varphi(x,t) \, dt \, dx = \frac{1}{\tau} \int_\Omega \int_0^s \mathcal{A}_\phi(u(x,t)) \varphi(x,t) \, dx \, dt \\
+ \frac{1}{\tau} \int_\Omega \int_0^s \mathcal{A}_\phi(u(x,t)) (\varphi(x,t-\tau) - \varphi(x,t)) \, dt \, dx \\
\geq \frac{1}{\tau} \int_\Omega \int_\tau^s (u(x,t) - u(x,t-\tau)) \psi(A(u(x,t-\tau))) \\
\times \varphi(x,t-\tau) \, dt \, dx. \quad (4.5)
\]
Finally, similar to the case (4.3), letting $\tau \downarrow 0$ in (4.5), we get, for a.e. $s \in \mathcal{T}$,
\[
\int_{\Omega} \mathcal{A}_\eta(u(x,s)) \varphi(x,s) \, dx - \int_{\Omega} \mathcal{A}_\eta(u_0) \varphi(x,0) \, dx
- \int_{\Omega} \int_0^s \mathcal{A}_\eta(u) \partial_t \varphi \, dt \, dx
\geq \int_0^s \langle \partial_t u, \psi(A(u)) \rangle \, dt.
\]
This concludes the proof of the lemma.

The following lemma is an adaptation to our problem of Carrillo’s [10] main observation:

Lemma 15. Let u be an entropy solution of Problem A or B. Then, for any nonnegative $\varphi \in C_0^\infty(Q_T)$ and $k \in (u_\text{max}, u_{\text{max}})$, we have
\[
\int_{Q_T} \{ |u - k| \, \partial_s \varphi + \text{sgn}(u - k) \{ g(u,t) - g(k,t) - \partial_x A(u) \} \, \partial_x \varphi \} \, dt \, dx
= \lim_{\eta \downarrow 0} \int_{Q_T} \left(\partial_x A(u) \right)^\gamma \text{sgn}_\eta(A(u) - A(k)) \varphi \, dt \, dx.
\]
(4.6)

Proof. In what follows, we always let φ, k be as in the lemma and use the approximation sgn_η (see (3.21)) for the sign function. Introduce the function $\psi_\eta(z) = \text{sgn}_\eta(z - A(k))$, set $z_0 = k$, and note that it satisfies the hypothesis of Lemma 14, so that
\[
- \int_0^T \langle \partial_t u, \text{sgn}_\eta(A(u) - A(k)) \varphi \rangle \, dt = \int_{\Omega} \int_0^T \mathcal{A}_\eta(u) \, \partial_t \varphi \, dt \, dx.
\]
Since u satisfies (4.1) and $\text{sgn}_\eta(A(u) - A(k)) \varphi \in L^2(\mathcal{T}; H_0^1(\Omega))$, we have
\[
- \int_0^T \langle \partial_t u, \text{sgn}_\eta(A(u) - A(k)) \varphi \rangle \, dt
+ \int_{Q_T} \left[g(u,t) - g(k,t) - \partial_x A(u) \right]
\times \partial_x \left(\text{sgn}_\eta(A(u) - A(k)) \varphi \right) \, dt \, dx = 0,
\]
which implies
\[
\int_{Q_T} \mathcal{A}_\eta(u) \, \partial_t \varphi \, dt \, dx + \int_{Q_T} \left(g(u,t) - g(k,t) - \partial_x A(u) \right)
\times \partial_x \left(\text{sgn}_\eta(A(u) - A(k)) \varphi \right) \, dt \, dx = 0.
\]
(4.7)
Since $A(r) > A(k)$ if and only if $r > k$, $\text{sgn}_\eta(A(r) - A(k)) \to 1$ as $\eta \downarrow 0$ for any $r > k$. Similarly, $\text{sgn}_\eta(A(r) - A(k)) \to -1$ as $\eta \downarrow 0$ for any $r < k$.

\[
\text{dx} \end{align}
\]
Consequently, \(\mathcal{A}_\psi(u) \to |u - k| \) a.e. in \(Q_T \) as \(\eta \downarrow 0 \). Moreover, we have \(|\mathcal{A}_\psi(u)| \leq |u| \), so by Lebesgue’s dominated convergence theorem
\[
\lim_{\eta \downarrow 0} \iint_{Q_T} \mathcal{A}_\psi(u) \partial_t \varphi \, dt \, dx = \iint_{Q_T} |u - k| \partial_t \varphi \, dt \, dx.
\]

We have
\[
\lim_{\eta \downarrow 0} \iint_{Q_T} [g(u, t) - g(k, t) - \partial_t A(u)] \partial_t (\text{sgn}_\eta(A(u) - A(k))) \varphi \, dt \, dx
\]
\[
= \lim_{\eta \downarrow 0} \iint_{Q_T} [g(u, t) - g(k, t) - \partial_t A(u)]
\times \partial_t (\text{sgn}_\eta(A(u) - A(k))) \varphi \, dt \, dx
\]
\[
+ \lim_{\eta \downarrow 0} \iint_{Q_T} [g(u, t) - g(k, t) - \partial_t A(u)]
\times \text{sgn}_\eta(A(u) - A(k)) \partial_t \varphi \, dt \, dx
\]
\[
= \lim_{\eta \downarrow 0} \iint_{Q_T} [g(u, t) - g(k, t)] \text{sgn}_\eta(A(u) - A(k)) \partial_t A(u) \varphi \, dt \, dx
\]
\[
- \lim_{\eta \downarrow 0} \iint_{Q_T} (\partial_t A(u))^2 \text{sgn}_\eta(A(u) - A(k)) \varphi \, dt \, dx
\]
\[
+ \lim_{\eta \downarrow 0} \iint_{Q_T} [g(u, t) - g(k, t) - \partial_t A(u)]
\times \text{sgn}_\eta(A(u) - A(k)) \partial_t \varphi \, dt \, dx
\]
\[
= I_1 - \lim_{\eta \downarrow 0} \iint_{Q_T} (\partial_t A(u))^2 \text{sgn}_\eta(A(u) - A(k)) \varphi \, dt \, dx + I_2.
\]

One can easily check that
\[
I_1 = \lim_{\eta \downarrow 0} \iint_{Q_T} [g(u, t) - g(k, t)] \text{sgn}_\eta(A(u) - A(k)) \partial_t A(u) \, dt \, dx = 0.
\]

Using that \(\text{sgn}(u - k) = \text{sgn}(A(u) - A(k)) \) a.e. in \(Q_T \),
\[
I_2 = \lim_{\eta \downarrow 0} \iint_{Q_T} [g(u, t) - g(k, t) - \partial_t A(u)]
\times \text{sgn}_\eta(A(u) - A(k)) \partial_t \varphi \, dt \, dx
\]
\[
= \iint_{Q_T} \text{sgn}(u - k) [g(u, t) - g(k, t) - \partial_t A(u)] \partial_t \varphi \, dt \, dx.
\]

Consequently, letting \(\eta \downarrow 0 \) in (4.7), we obtain the desired equality (4.6).
THEOREM 4. If u and φ are two entropy solutions of Problem A or B, then we have for any $\varphi \in C^\infty_0(Q_T)$, $\varphi \geq 0$,

$$\iint_{Q_T} \{ |u - v| \partial_t \varphi + \text{sgn}(u - v)$$

$$\times \left[g(u, t) - g(v, t) - (\partial_x A(u) - \partial_x A(v)) \right] \partial_x \varphi \} dt dx \geq 0. \quad (4.8)$$

Proof. Let $\varphi \in C^\infty_0(Q_T \times Q_T)$, supp $\varphi \subset Q_T \times Q_T$, $\varphi = \varphi(x, t, y, s) \geq 0$, $u = u(x, t)$, and $v = v(y, s)$. Observe that

$$\partial_x A(u) = 0$$

a.e. in $\mathcal{E}_u := \{(x, t) \in Q_T: u(x, t) \leq u_c \text{ or } u(x, t) \geq u_{\max}\}$,

$$\partial_x A(v) = 0$$

a.e. in $\mathcal{E}_v := \{(y, s) \in Q_T: v(y, s) \leq u_c \text{ or } v(y, s) \geq u_{\max}\}$.

$$\text{sgn}(u - v) = \text{sgn}(A(u) - A(v))$$

a.e. in $[Q_T \times (Q_T \setminus \mathcal{E}_u)] \cup [(Q_T \setminus \mathcal{E}_v) \times Q_T]$.

From the definitions of entropy solutions and Lemma 15, we easily derive

$$\iint_{Q_T \times Q_T} \{ |u - v| \partial_t \varphi + \text{sgn}(u - v)$$

$$\times \left[g(u, t) - g(v, t) - \partial_x A(u) \right] \partial_x \varphi \} dt dx ds dy$$

$$\geq \lim_{\eta \downarrow 0} \iint_{Q_T \setminus \mathcal{E}_u \times Q_T} \left(\partial_x A(u) \right)^2 \text{sgn}'_\eta(A(u) - A(v)) \varphi dt dx ds dy$$

$$\geq \lim_{\eta \downarrow 0} \iint_{(Q_T \setminus \mathcal{E}_v) \times (Q_T \setminus \mathcal{E}_u)} \left(\partial_x A(u) \right)^2 \text{sgn}'_\eta(A(u) - A(v)) \varphi dt dx ds dy$$

$$\geq \lim_{\eta \downarrow 0} \iint_{Q_T \times Q_T} \{ |v - u| \partial_t \varphi + \text{sgn}(v - u)$$

$$\times \left[g(v, s) - g(u, s) - \partial_x A(v) \right] \partial_x \varphi \} dt dx ds dy$$

$$\geq \lim_{\eta \downarrow 0} \iint_{(Q_T \setminus \mathcal{E}_v) \times (Q_T \setminus \mathcal{E}_u)} \left(\partial_x A(v) \right)^2 \times \text{sgn}'_\eta(A(v) - A(u)) \varphi dt dx ds dy.$$
Observe that for a.e. \((x, t) \in Q_T\),

\[
\int_{Q_T} \partial_t A(u) \partial_j (\text{sgn}_\eta(A(u) - A(v)) \varphi) \, ds \, dy = 0,
\]

or if one prefers,

\[
- \int_{Q_T} \text{sgn}_\eta(A(u) - A(v)) \, \partial_j A(u) \, \partial_j \varphi \, ds \, dy
= \int_{Q_T} \partial_j \text{sgn}_\eta(A(u) - A(v)) \, \partial_j A(u) \varphi \, ds \, dy. \quad (4.13)
\]

Similarly, for a.e. \((y, s) \in Q_T\),

\[
- \int_{Q_T} \text{sgn}_\eta(A(v) - A(u)) \, \partial_j A(u) \, \partial_j \varphi \, dt \, dx
= \int_{Q_T} \partial_j \text{sgn}_\eta(A(v) - A(u)) \, \partial_j A(u) \varphi \, dt \, dx. \quad (4.14)
\]

Now using (4.13), we find that

\[
- \int_{Q_T \times Q_T} \text{sgn}(u - v) \, \partial_j A(u) \, \partial_j \varphi \, dt \, dx \, ds \, dy
= - \int_{Q_T \times (Q_T \setminus Q_u)} \text{sgn}(A(u) - A(v)) \, \partial_j A(u) \, \partial_j \varphi \, dt \, dx \, ds \, dy
= \lim_{\eta \downarrow 0} \int_{Q_T \times (Q_T \setminus Q_u)} \text{sgn}(A(u) - A(v))
\times \partial_j A(u) \, \partial_j \varphi \, dt \, dx \, ds \, dy
= \lim_{\eta \downarrow 0} \int_{Q_T \times (Q_T \setminus Q_u)} \partial_j A(v) \, \partial_j A(u)
\times \text{sgn}'_\eta(A(u) - A(v)) \, \varphi \, dt \, dx \, ds \, dy
= \lim_{\eta \downarrow 0} \int_{(Q_T \setminus \sigma_u) \times (Q_T \setminus \sigma_u)} \partial_j A(v) \, \partial_j A(u)
\times \text{sgn}'_\eta(A(u) - A(v)) \, \varphi \, dt \, dx \, ds \, dy. \quad (4.15)
\]
Similarly, using (4.14), we find that
\[- \iiint_{Q_T} \text{sgn}(v - u) \partial_x A(v) \partial_x \varphi \, dt \, ds \, dy \]
\[= - \lim_{\eta \to 0} \iiint_{(Q_T \setminus \sigma_T) \times (Q_T \setminus \sigma_T)} \partial_x A(u) \partial_x A(v) \times \text{sgn}_{\eta}(A(v) - A(u)) \varphi \, dt \, ds \, dy. \] (4.16)

Adding (4.9) and (4.15) yields
\[\iiint_{Q_T \times Q_T} |u - v| \partial_x \varphi + \text{sgn}(u - v) \left[(g(u, t) - g(v, t)) \partial_x \varphi \right. \]
\[\left. - \partial_x A(u) (\partial_x \varphi + \partial_y \varphi) \right] \, dt \, ds \, dy \]
\[= \lim_{\eta \to 0} \iiint_{(Q_T \setminus \sigma_T) \times (Q_T \setminus \sigma_T)} \left[(\partial_x A(u))^2 - \partial_x A(u) \partial_x A(v) \right. \]
\[\left. \times \text{sgn}_{\eta}(A(u) - A(v)) \varphi \, dt \, ds \, dy. \] (4.17)

Adding (4.11) and (4.16) yields
\[\iiint_{Q_T \times Q_T} |v - u| \partial_x \varphi + \text{sgn}(v - u) \left[(g(v, s) - g(u, s)) \partial_y \varphi \right. \]
\[\left. - \partial_y A(v) (\partial_y \varphi + \partial_x \varphi) \right] \, dt \, ds \, dy \]
\[= \lim_{\eta \to 0} \iiint_{(Q_T \setminus \sigma_T) \times (Q_T \setminus \sigma_T)} \left[(\partial_y A(v))^2 - \partial_y A(v) \partial_y A(v) \right. \]
\[\left. \times \text{sgn}_{\eta}(A(v) - A(u)) \varphi \, dt \, ds \, dy. \] (4.18)

Using that \(\text{sgn}(-r) = -\text{sgn}(r)\) and \(\text{sgn}_{\eta}(-r) = \text{sgn}_{\eta}(r)\) a.e. in \(\mathbb{R}\), adding (4.17) and (4.18) gives
\[\iiint_{Q_T \times Q_T} \left| u - v \right| \left[(\partial_x \varphi + \partial_y \varphi) + \text{sgn}(u - v) \right. \]
\[\times \left[g(u, t) - g(v, s) - (\partial_x A(u) - \partial_x A(v)) \right. \] \[\left. + \text{sgn}(u - v) \left[(g(u, s) - g(v, t)) \partial_y \varphi \right. \right. \]
\[\left. + (g(v, s) - g(v, t)) \partial_x \varphi \right] \, dt \, ds \, dy \]
\[= \lim_{\eta \to 0} \iiint_{(Q_T \setminus \sigma_T) \times (Q_T \setminus \sigma_T)} \left(\partial_x A(v) - \partial_y A(v) \right)^2 \]
\[\times \text{sgn}_{\eta}(A(u) - A(v)) \varphi \, dt \, ds \, dy \geq 0. \] (4.19)
Let $\varphi \in C^0(\Omega_T)$ be nonnegative and let $\{\delta_h\}_{h > 0}$ be a standard regularizing sequence in \mathbb{R}. We then introduce the test function

$$\varphi_h(x, t, y, s) = \varphi \left(\frac{x + y, t + s}{2}, \frac{x - y}{2}, \frac{t - s}{2} \right).$$

Observe that

$$\partial_t \varphi_h + \partial_x \varphi_h = \partial_t \varphi \left(\frac{x + y, t + s}{2}, \frac{x - y}{2}, \frac{t - s}{2} \right) \delta_h \left(\frac{t - s}{2} \right),$$

$$\partial_x \varphi_h + \partial_y \varphi_h = \partial_x \varphi \left(\frac{x + y, t + s}{2}, \frac{x - y}{2}, \frac{t - s}{2} \right) \delta_h \left(\frac{t - s}{2} \right).$$

Using φ_h as test function in (4.19), we get

$$ \int \int \int_{\Omega_T^2 \times Q_T} \left| u - v \right| \partial_t \varphi \left(\frac{x + y, t + s}{2}, \frac{x - y}{2}, \frac{t - s}{2} \right)$$

$$+ \text{sgn}(u - v) \left[g(u, t) - g(v, s) - (\partial_t A(u) - \partial_t A(v)) \right]$$

$$\times \partial_x \varphi \left(\frac{x + y, t + s}{2}, \frac{x - y}{2}, \frac{t - s}{2} \right) \delta_h \left(\frac{t - s}{2} \right)$$

$$+ \text{sgn}(u - v) \left[(g(u, s) - g(u, t)) \partial_y \varphi_h \right.$$

$$\left. + (g(v, s) - g(v, t)) \partial_x \varphi_h \right] dt \, dx \, ds \, dy \geq 0. \quad (4.20)$$

It is now classical (see Kružkov [13]) to take the limit $h \downarrow 0$ in (4.20) to obtain (4.8).

Remark 4. One should note that (4.8) is valid under significantly less regularity than $u \in BV(Q_T)$.

4.2. Uniqueness of Entropy Solutions of Problem A

Corollary 1. Let u, v be two entropy solutions of Problem A with initial data u_0, v_0, respectively. Then

$$ \| u(\cdot, t) - v(\cdot, t) \|_{L^1(\Omega)} \leq \| u_0 - v_0 \|_{L^1(\Omega)} . \quad (4.21) $$

In particular, Problem A has at most one entropy solution.
For the proof of Corollary 1, we need the following lemma.

Lemma 16. Let u be an entropy solution of Problem A. Then the condition (2.9) is satisfied if and only if the integral inequality (2.14) holds for all nonnegative $\varphi \in C_0^\infty(\Omega)$ and $k \in \mathbb{R}$; if $a(s) = 0$ is valid for all $s \in \mathcal{A}(\varphi(t), \gamma;u) = [\min\{\varphi(t), \gamma_1u\}, \max\{\varphi(t), \gamma_1u\}]$; and if the following entropy boundary inequality is satisfied:

$$
[\text{sgn}(\gamma_1u(t) - k) - \text{sgn}(\varphi(t) - k)]
\times [g(\gamma_1u, t) - g(k, t) - \gamma_1 \partial_x A(u)] \geq 0. \quad (4.22)
$$

Proof of Lemma 16. Set $\varphi(x, t) = \tilde{\varphi}(x) \nu_h(x) \Phi(t)$ in inequality (2.9), where $\tilde{\varphi} \geq 0$, $\varphi \in C_0^\infty(\Omega)$, $\Phi \geq 0$, $\Phi \in C_0^\infty(\tilde{\Omega})$, and ν_h is defined in (2.1), and let $h \downarrow 0$. See [7] for the details. \[\square \]

Proof of Corollary 1. In the inequality (4.8) we choose $\varphi(x, t) = ((1 - \mu_b(x) - \nu_h(x)) \Phi(t)$ with $\Phi \in C_0^\infty(\tilde{\Omega})$, $\Phi \geq 0$, and μ_b and ν_h from (2.1). Taking the limit $h \downarrow 0$, we obtain from Lemma 1, using the boundary condition at $x = 0$ and the nonpositivity of q,

$$
\int \int_{Q_T} |u - v| \Phi'(t) \, dt
$$

$$
= \int_0^T \left[\text{sgn}(\gamma_1u - \gamma_1v)
\times [g(\gamma_1u, t) - g(\gamma_1v, t) - (\gamma_1 \partial_x A(u) - \gamma_1 \partial_x A(v))]
- \text{sgn}(\gamma_0u - \gamma_0v) q(t)(\gamma_0u - \gamma_0v) \right] \Phi(t) \, dt

\geq \int_0^T \left[\text{sgn}(\gamma_1u - \gamma_1v)
\times [g(\gamma_1u, t) - g(\gamma_1v, t) - (\gamma_1 \partial_x A(u) - \gamma_1 \partial_x A(v))] \right] \Phi(t) \, dt. \quad (4.23)
$$

Note that

$$
\text{sgn}(\gamma_1u - \gamma_1v) [g(\gamma_1u, t) - g(\gamma_1v, t) - (\gamma_1 \partial_x A(u) - \gamma_1 \partial_x A(v))]
= \text{sgn}(\gamma_1u - \gamma_1v) [g(\gamma_1u, t) - g(k, t) - \gamma_1 \partial_x A(u)]
+ \text{sgn}(\gamma_1v - \gamma_1u) [g(\gamma_1v, t) - g(k, t) - \gamma_1 \partial_x A(v)]. \quad (4.24)
$$
Choosing in a standard fashion

\[k(t) = \begin{cases}
\gamma_1 u & \text{if } \gamma_1 u \in \mathcal{F}(\varphi_1(t), \gamma_1 v), \\
\varphi_1(t) & \text{if } \varphi_1(t) \in \mathcal{F}(\gamma_1 u, \gamma_1 v), \\
\gamma_1 v & \text{if } \gamma_1 v \in \mathcal{F}(\varphi_1(t), \gamma_1 u).
\end{cases} \]

in the entropy boundary inequality (4.22) and its analogue for \(v \), we see that both summands on the right-hand part of (4.24) are nonnegative. Consequently,

\[
\int_{Q_T} |u - v| \Phi'(\tau) \, d\tau \, dx \geq 0. \tag{4.25}
\]

Now let \(\Phi(\tau) = \varrho_h(\tau) - \varrho_h(\tau - t) \), where \(\varrho_h \) is given in (2.1). Corollary 1 follows by taking \(h \downarrow 0 \).

4.3. Uniqueness of Entropy Solutions of Problem B

We note that by the boundary condition (B3), the right-hand part of (4.23) is zero, so that inequality (4.25) follows immediately. Summarizing, we may conclude:

Corollary 2. Let \(u, v \) be two entropy solutions of Problem A with initial data \(u_0, v_0 \), respectively. Then (4.21) holds. In particular, Problem B has at most one entropy solution.

Remark 5. We point out that for both initial-boundary value problems A and B, the stability proof depends essentially on the nonpositivity of \(q \). In other words, stability relies on reducing the total flux \(g(u, t) - \partial_x A(u) \) to its convective part \(q(t)u \) at the "outflow" boundary of \(\overline{Q_T} \) only.

5. APPLICATION TO GRAVITATIONAL SEDIMENTATION–CONSOLIDATION PROCESSES

5.1. Statement of the Problem

The study of degenerate convection–diffusion equations of type (1.1) is in part motivated by a model of sedimentation–consolidation processes of flocculated suspensions in an idealized sedimentation vessel, here considered to be of height 1 [m]. In that application, \(u = u(x, t) \) denotes the local volumetric solid concentration, \(q(t) \leq 0 \) is the average flow velocity of the mixture which can be controlled externally, \(f(u) \) is a given nonlinear...
function relating the local solid–fluid relative velocity to the local solids concentration, and

$$a(u) = -f(u) \sigma'(u) / (\Delta \rho g u), \quad (5.1)$$

where $\Delta \rho > 0$ denotes the solid–fluid mass density difference, g is the acceleration of gravity, and $\sigma'(u) \geq 0$ is the derivative of the solid effective stress function. The material behavior of the suspension is described by the functions $f(u)$ and $\sigma(u)$. Condition (A2) corresponds to a given initial concentration distribution, condition (A3) corresponds to prescribing a concentration value at $x = 1$ due to dilution of the feed suspension which enters the container continuously, and condition (A4) is then equivalent to reducing the solid volume flux density at the bottom of the vessel to its convective part $q(t)u(0, t)$. This sedimentation–consolidation model is described in detail in [3, 8, 9].

The property which is of interest here is that most researchers (see, e.g., [15]) assume that σ_e is constant for u not exceeding a critical value u_c, at which the solid flocs are assumed to touch each other, and that σ_e is strictly increasing for $u > u_c$. Consequently, $a(u) = 0$ for $u \leq u_c$ and $a(u) > 0$ for $u > u_c$ wherever $f(u) < 0$. Most notably, many constitutive equations for σ_e imply a jump of σ_e' at $u = u_c$, which makes $a(u)$ discontinuous.

5.2. Numerical Examples

We calculate entropy solutions of Problem A in this application by using the finite-difference operator splitting scheme described in [5].

We employ a flux density function of the well-known Richardson and Zaki type with parameters which were determined for a suspension of copper ore tailings (see [9]):

$$f(u) = -6.05 \times 10^{-4} u (1 - u)^{12.59} \text{ [m/s]}. $$

The function $a(u)$ is given by (5.1) with $\Delta \rho = 1500 \text{ [kg/m}^3\text{]}, \ \sigma'(u) = 0$ for $u \leq u_c = 0.23$, and

$$\sigma'(u) = \frac{d}{du} \left(100 (u / u_c)^8 - 1\right) \text{ [Pa]} \quad \text{for } u > u_c,$$

see e.g. [15]. Figure 1 shows the resulting model functions $f(u)$ and $a(u)$.

In the first example (see Fig. 2a), we consider the settling of an initially homogeneous suspension of concentration $u_0 = 0.15$ in a closed column,
i.e., \(\varphi_1 = 0, q = 0 \). Observe that the discontinuity between \(u = 0 \) and \(u = u_0 \) is a shock. In the second example, we set \(q = -1.5 \times 10^{-5} \text{ m/s} \) and start with a steady state: the function \(u_0(x) \) is obtained by setting \(u_0(0) = 0.34 \), by integrating the time-independent version of Eq. (1.1) using this boundary condition until \(u = u_c \) is reached at a certain level \(x_c \) and setting \(u_0(x) = \Phi_1(u_0(0)) \) above, where \(\Phi_1 \) is obtained from solving \(q \Phi_1 + f(\Phi_1) = q u_0(0) \), yielding \(\Phi_1(0.34) = 0.00922 \) and \(\Phi_1(0.37) = 0.01014 \). Setting

\[
\varphi(t) = \begin{cases}
\Phi_1(0.34) & \text{for } 0 < t \leq 5 \text{ [h]}, \\
0.02 & \text{for } 5 \text{ [h]} < t \leq 12 \text{ [h]}, \\
0 & \text{for } t > 12 \text{ [h]},
\end{cases}
\]

we obtain the numerical solution depicted in Fig. 2b. This is a successive simulation of the operation at steady state, with rise of the sediment level, convergence to the next steady state, and emptying of the sedimentation vessel.

Note that \(u_0 \in \mathcal{R} \) in both examples. This is obvious for \(u_0 = \text{const.} \), while in the second case

\[
\partial_x A(u_0(x)) = q(u_0(x) - u_0(0)) + f(u_0(x)) \quad \text{for } 0 \leq x \leq x_c,
\]

where \(u_0(0) \) was chosen such that the right-hand part of (5.2) is nonpositive, therefore \(u_0(x) \leq 0 \) for \(0 \leq x \leq x_c \). We have \(u_0 \in \mathcal{R} \), since we can conclude from the jump condition [7] that

\[
\text{TV}_A(\partial_x A(u_0)) = \int_0^{x_c} |\partial^2_x A(u_0(x))| \, dx + \lim_{x \uparrow x_c} \partial_x A(u_0(x)) \leq (\|f'\|_{\infty} - q)(u_0(0) - u_c) + |f(u_c) - f(\Phi_1(u_0(0)))| < \infty.
\]
FIG. 2. Numerical solutions of Problem A applied to the sedimentation–consolidation model: (a) batch settling and (b) continuous sedimentation–consolidation.
ACKNOWLEDGMENTS

We acknowledge support by the Sonderforschungsbereich 404 at the University of Stuttgart and by the Applied Mathematics in Industrial Flow Problems (AMIF) Programme of the European Science Foundation (ESF).

REFERENCES