Syntax and parsing – an overview

Lilja Øvrelid
INF5830
Fall 2013

Overview

- INF5830 so far
 - general methodology
 - statistical methods
 - words, frequencies
- The rest of the course
 - theoretical background and practical experience with two NLP tasks
 - “deeper processing”: syntactic and semantic analysis
 - data-driven dependency parsing
 - semantic role labeling (SRL)
 - experimental methodology
 - supervised machine learning; classification
 - evaluation
 - academic writing
Part I: Data-driven dependency parsing

- Syntax and parsing (today)
- Dependency grammar (10/10)
- Dependency parsing (17/10)
- Experimental methodology (22/10)
- Project A (written report due Oct. 30th):
 - training and evaluation of parsers for several languages
 - MaltParser: freely available software for data-driven dependency parsing

Part II: Semantic Role Labeling (SRL)

- Semantic roles, theoretical (24/10)
- Semantic role labeling, practical/computational (31/10)
- Project B (written report due Nov. 20th)
 - CoNLL 2008: syntactic and semantic parsing of English
 - solve part of this task: semantic argument classification
 - feature engineering (using syntactic analysis)
 - supervised machine learning
 - evaluation
Lectures and groups

❖ Curriculum: largely research literature
 › “Classics” from linguistics, e.g. Zwicky, Fillmore
 › Computational linguistics research literature, e.g. Nivre, Gildea & Jurafsky
❖ Lectures: introduction to topics, synthesis of curriculum
❖ Group teaching:
 › focused reading groups (please prepare!!)
 › practical sessions related to obligatory assignments

Today’s lecture

❖ (Repetition of) basic principles of syntax:
 › form vs function
 › constituents and phrases
 › context-free grammars
❖ Brief overview of syntactic parsing
 › traditional, grammar-driven parsing
 › statistical/data-driven parsing
Syntax

- Syntax: rules for constructing grammatical sentences and determining their meaning
- “Who does what to whom?”
- Wealth of theories: some differences, a lot in common
 - Government and Binding (GB)
 - Minimalist Program (MP)
 - Head-driven phrase structure grammar (HPSG)
 - Lexical Functional Grammar (LFG)
 - Categorial Grammar
 - Dependency Grammar
 - ...

Why bother?

- Theoretical syntacticians concerned with **grammaticality**
 - *The President nominated a new Supreme Court justice*
 - *President the new Supreme justice Court nominated*
- Relevant for some NLP applications:
 - text generation
 - grammar checking
- But mostly want systems that are robust and can handle realistic (noisy) language
Why bother?

- Parsing provides “scaffolding” for semantic analysis
- Direct, down-stream usage of syntactic information
 - opinion mining
 - information extraction
 - syntax-informed statistical machine translation
 - sentence compression
 - etc.

Syntax and parsing – an overview

Generative grammar

- Noam Chomsky: *Syntactic Structures* (1957)
- inspired by natural sciences: language as a set of sentences
 - set: a collection of objects, e.g.: \(\{a, b, c\} \), \(a \in \{a, b, c\} \), \(d \notin \{a, b, c\} \)
- a grammar should generate the set of all grammatical sentences in a language:
 - *Alle nordmenn liker ikke fotball*
 - *Liker ikke alle nordmenn fotball*
 - *Nordmenn alle ikke liker fotball*
 - *Liker nordmenn fotball ikke alle*
Grammar

► Should contain:
 ▶ the form of syntactic units
 ▶ the role (function) this unit plays in relation to other unit
► One form may have several functions
 ▶ She bought a nice house.
 ▶ The house is nice.
► Form and function for larger units than words
 ▶ A nice house is an important asset.
 ▶ We visited a nice house.

Constituents

► The words in a sentence are organized into groupings
► function as a whole
► relate to other words as a unit
 ▶ The dog ate my homework
 ▶ The dog ate my homework
► linguistic tests of constituency
Constituents

▶ Linguistic tests:
 ▶ “stand alone”:
 ▶ What did the dog eat?
 ▶ My homework
 ▶ *ate my
 ▶ “replaced by pronoun”
 ▶ Where is your homework?
 ▶ The dog ate it
 ▶ The dog ate my homework and the cat did too
 ▶ “moves as a unit”:
 ▶ It was my homework that the dog ate.
 ▶ My homework was eaten by the dog.

Heads

Important syntactic concept (we will get back to this!)
 ▶ Within most constituents, one element is distinguished: the head
 ▶ Determines internal structure
 ▶ Determines external distribution (possible functions)
Form and function

- **Syntactic form** - constituents are described using parts of speech and phrases
 - phrases - larger constituents above word level
 - phrases named after the **head** - central, obligatory member
 - e.g. NP, VP, PP

- **Syntactic function** - constituents are described by their role in the sentence as a whole
 - Subject
 - (Direct and Indirect) Object
 - Adverbial

Phrases: syntactic categories

- Constituent: head + (argument(s)/adjunct(s))
- Substitutable
 - *The dog ate the birthday cake*
 - *The dog ate the delicious birthday cake*
 - *The dog ate the delicious birthday cake that was meant for Bea*
Arguments vs. adjuncts

- Subconstituents which are not heads: arguments or adjuncts
 - arguments: selected by the head and complete the meaning
 - adjuncts: not selected by the head and refine the meaning
- Different PoS may take argument(s):
 - John *invited* Mary to the event
 - John’s *invitation* of Mary to the event caused quite a stir
 - Mary found the book *under* the couch
- Adjuncts are not obligatory and may often iterate
 - John ran on Sunday / with Mary / in the park

Noun phrase (NP)

- Head is a noun
- Typically functions as subject or object
- Examples:
 - determiner + noun: *the dog, en hund*
 - proper name: *Barack Obama, Japan*
 - pronoun: *he, they, han, henne*
- Agreement – e.g. number, gender, definiteness
- Head determines agreement
Prepositional phrase (PP)

- Head is a preposition
- Followed by an NP (prepositional argument)
- Examples:
 - prep + NP in the garden, over the rooftops

Verb phrase (VP)

- Head is a verb (finite/non-finite)
- All elements of the sentence except the subject
- Examples:
 - verb sleeps, danced
 - verb + NP: ate the cake
 - verb + NP + NP: gave him the cake
 - verb + NP + PP put all the papers in the drawer
Phrase structure grammars

- Capture constituent status and ordering
- Formal model: context-free grammar
 1. \(S \rightarrow NP \ VP \)
 2. \(NP \rightarrow D \ N \)
 3. \(VP \rightarrow V \ NP \)
- Syntactic structure as phrase structure trees

Context-free grammars (CFGs)

- Formally, a CFG is a 4-tuple \(< N, \Sigma, R, S > \), where
 - \(N \) is a set of non-terminal symbols (syntactic categories)
 - \(\Sigma \) is a set of terminal symbols (words)
 - \(R \) is a set of rules \(A \rightarrow \alpha \), where
 - \(A \) is a non-terminal
 - \(\alpha \) is a string of symbols taken from the set \((\Sigma \cup N)^* \)
 - \(S \) is a designated start symbol
Subcategorization

- An important aspect captured by grammars
- Arguments of verbs may be classified at several levels:
 - grammatical relations (functions): subject, object, indirect object, etc.
 - semantic roles: agent, patient, recipient, etc.
- Subcategorization frame: classification of verbs according to the types of arguments they take (form and function)
 - Intransitive verb. NP[subject]. John ran.
 - Transitive verb. NP[subject], NP[object]. John saw Mary.
 - Ditransitive verb. NP[subject], NP[direct object], NP[indirect object]. John gave Mary a book.

Syntactic functions

- Describe the arguments of verbs
- English (SVO-language):
 - the subject precedes the main verb
 - the object follows it
- Typological variation
 - fixed word order (grammatical functions are identified by word order)
 - free word order languages (Latin, Russian)
 - case
 - agreement
 - what about Norwegian?
Syntax

Syntactic functions

- Subjects are special (cross-linguistically)
- Typical subject properties (here English):
 - Agreement on present tense verbs
 - Nominative case
 - To the left of the verb
 - Raising/control

Functional analysis

- **Predicate**: finite verb form (+++ infinitive, participles)

 My old pal bought a car in Bergen yesterday
 My old pal |bought| a car in Bergen yesterday
 pred
Functional analysis

- **Predicate**: finite verb form (++ infinitive, participles)

My old pal has bought a car in Bergen
My old pal |has bought| a car in Bergen
 pred

My pal likes to drive
My pal |likes to drive|
 pred
Functional analysis

- **Subject:** who or what pred?

 My old pal | bought | a car in Bergen yesterday

 | My old pal | bought | a car in Bergen yesterday
 subj pred

- **Direct object:** who or what did subj pred?

 | My old pal | bought | a car in Bergen
 subj pred

 | My old pal | bought | a car | in Bergen
 subj pred d.obj
Functional analysis

- **Indirect object**: who or what did subj pred d.obj?

<table>
<thead>
<tr>
<th>Mary</th>
<th>gave</th>
<th>them</th>
<th>a gift</th>
</tr>
</thead>
<tbody>
<tr>
<td>subj</td>
<td>pred</td>
<td>d.obj</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mary</th>
<th>gave</th>
<th>them</th>
<th>a gift</th>
</tr>
</thead>
<tbody>
<tr>
<td>subj</td>
<td>pred</td>
<td>i.obj</td>
<td>d.obj</td>
</tr>
</tbody>
</table>

- **Adverbial (locative)**: where did subj pred (d.obj)?

<table>
<thead>
<tr>
<th>My old pal</th>
<th>bought</th>
<th>a car</th>
<th>in Bergen</th>
</tr>
</thead>
<tbody>
<tr>
<td>subj</td>
<td>pred</td>
<td>d.obj</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>My old pal</th>
<th>bought</th>
<th>a car</th>
<th>in Bergen</th>
</tr>
</thead>
<tbody>
<tr>
<td>subj</td>
<td>pred</td>
<td>d.obj</td>
<td>loc</td>
</tr>
</tbody>
</table>
Functional analysis

- **Adverbial (temporal):** when, for how long or how often did subj pred (d.obj) (ral)?

```plaintext
| My old pal | bought | a car | in Bergen | yesterday |
| subj        | pred   | d.obj | loc       |           |
| My old pal | bought | a car | in Bergen | yesterday |
| subj        | pred   | d.obj | loc       | tmp       |
```

Defining syntactic functions

- **Thematic (semantic) criteria**
 - tendency for subjects to be agents and objects to be patients
 - but not perfect correspondence
 - Mary was loved by all
 - The wind broke the window

- **Structural criteria**
 - Subj: sister of VP, daughter of S
 - Obj: sister of V, daughter of VP

- **Morphological criteria:**
 - English: subject agrees with finite verb
 - many languages identify syntactic functions via case (nominative, accusative, dative, etc.)
Syntactic parsing

- automatically determining the syntactic structure for a given sentence
- search through all possible trees for a sentence
- bottom-up vs top-down approaches

Top-down

- builds structure from root of tree (S) to leaves
- operates with a list of constituents to be built and rewrites them by matching their category to a LHS of the grammar rules
- several ways of rewriting: search problem
- depth-first vs breadth-first search
 - [S]
 - [NP VP]
 - [DT NN VP] [NP PP VP]
 - [a NN VP] [NP PP VP] [DT N VP]
 - etc.
Bottom-up

- starts with the words and tries to build the trees from them and up
- if a sequence in the goal list matches the RHS of a rule we may substitute
- if RHS if several rules match: search problem
- standard presentation is as shift-reduce parsing
 - [the] [the woman reports]
 - [DT] [woman reports]
 - [DT woman] [reports]
 - [DT NN] [reports]
 - [NP] [reports]
 - [NP reports] []
 - etc.

Ambiguities

- more than one possible structure for a sentence
- natural languages are hugely ambiguous
- a very common problem

<table>
<thead>
<tr>
<th>PoS-ambiguities</th>
<th>Attachment ambiguities</th>
</tr>
</thead>
<tbody>
<tr>
<td>VB</td>
<td>in effort</td>
</tr>
<tr>
<td>VBZ</td>
<td>to control</td>
</tr>
<tr>
<td>VBP</td>
<td>inflation</td>
</tr>
<tr>
<td>VBZ</td>
<td></td>
</tr>
<tr>
<td>NNP</td>
<td></td>
</tr>
<tr>
<td>NNS</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td></td>
</tr>
<tr>
<td>NNS</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td></td>
</tr>
</tbody>
</table>

Fed raises interest rates 0.5 %
Back in the days (90s)

- Parsers assigned linguistically detailed syntactic structures (based on linguistic theories)
- Grammar-driven parsing: possible trees defined by the grammar
- Problems with coverage
 - only around 70% of all sentences were assigned an analysis
- Most sentences were assigned very many analyses by a grammar
 - no way of choosing between them

Enter data-driven (statistical) parsing

- Today data-driven/statistical parsing is available for a range of languages and syntactic frameworks
- Data-driven approaches: possible trees defined by the treebank (may also involve a grammar)
- Produce one analysis (hopefully the most likely one) for any sentence
- And get most of them correct
- Still an active field of research, improvements are still possible!
Statistics in parsing

- classical NLP parsing:
 - symbolic grammar and lexicon
 - proof systems to prove parses from words
- ambiguity problem is very large
 - minimal grammar on previous sentence: 36 parses
 - large broad-coverage grammar: millions of parses
- use probabilities to pick the most likely parse

Treebanks

- need data to estimate probabilities
- collection of sentences manually annotated with the correct parse ⇒ a treebank
- Penn Treebank: treebanks from Brown, Switchboard, ATIS og Wall Street Journal corpora
- Treebanks for other languages
 - Prague Dependency Treebank (czech)
 - Negra/Tuba-DZ (German)
 - Penn (Chinese)
 - Norwegian: under development
Syntactic parsing

Treebanks
Eksempel fra Penn Treebank (WSJ)

((S
 (PP-LOC (IN In)
 (NP
 (NP (NNP Thursday) (POS 's))
 (NN edition))
 (, ,)
 (NP-SBJ (PRP it))
 (VP (VBD was)
 (VP (ADVP-MNR (RB incorrectly))
 (VBN indicated)
 (S
 (NP-SBJ (DT the) (NN union))
 (VP (VBD had)
 (VP (VBN paid)
 (NP (DT a) (NN fee))
 (PP-DTV (TO to)
 (NP
 (NML (JJ former) (NNP House) (NNP Speaker))
 (NNP Jim) (NNP Wright))))))))

Syntax and parsing – an overview 43(45)

Probabilistic Context-free grammars (PCFGs)

- Formally, a PCFG is a 5-tuple $\langle N, \Sigma, R, S, P \rangle$, where
 - N is a set of non-terminal symbols (syntactic categories)
 - Σ is a set of terminal symbols (words)
 - R is a set of rules $A \rightarrow \alpha$, where
 - A is a non-terminal
 - α is a string of symbols taken from the set $(\Sigma \cup N)^*$
 - S is a designated start symbol
 - $P(R)$ gives the probability of each rule
Next week: Dependency Grammar

- An alternative to phrase structure representations
- Syntactic functions are central
- Claimed to be closer to semantic analysis

Small birds sing loud songs

```
Small   birds   sing   loud   songs
  nmod    sbj     nmod
  ▼       ▼       ▼
  nmod    nmod
  ▼       ▼
  obj
```