Characteristics of detectors

Electrical detectors used, if possible

- Sensitivity
- Detector response
- Energy resolution
- Response function
- Response time
- Detector efficiency
- Dead time
Sensitivity

Capability of detecting a given type of radiation

Depends on:
- Cross section for ionization
- Detector mass and volume
- Level of noise
- Absorber
- Collimation and surroundings
Detector response

(energy <-> detector signal)

\[E \propto Q = \int_{0}^{\text{some } \mu s} I(t) \, dt \]

\[E \propto \max(I(t)) \]
Energy resolution
(Poisson case)

Usual Gaussian shape
FWHM = 2.35 σ

Let \(w \) = energy of one ionization:

\[
E = Jw
\]

\[
R_{\text{std.dev.}} = \frac{\Delta E_{\text{std.dev.}}}{E} = \frac{\sigma_J}{J} = \frac{\sqrt{J}}{J} = \sqrt{\frac{w}{E}}
\]

\[
R_{\text{FWHM}} = \frac{\Delta E_{\text{FWHM}}}{E} = 2.35 \frac{\sigma_J}{J} = 2.35 \sqrt{\frac{w}{E}}
\]
Energy resolution
(non-Poisson case)

If full energy is deposited in the detector, the Poisson statistics is incorrect. Since (almost) all energy is detected, constraints are imposed on the number of ionizations J. We modify the expressions using the Fano factor F, typically $F = 0.1 - 0.2$.

$$\sigma^2 = FJ$$

$$R_{FWHM} = \frac{\Delta E_{FWHM}}{E} = 2.35 \frac{\sigma_J}{J} = 2.35 \sqrt{\frac{F_W}{E}}$$

In addition to the contribution from the detector itself, several other effects may contribute:

$$(\Delta E_{tot})^2 = (\Delta E_{det})^2 + (\Delta E_{electr})^2 + (\Delta E_{beam})^2 + \ldots$$
Response function

Unfolded u

Raw r

N_γ

N_e

E_γ

E_e

incoming

measured
Response time

The time the detector takes to form the signal after arrival of the radiation

- **dead time**
- **sharp timing**
- **pile-up at high rate**
Detector efficiency(I)

\[\Omega_{\text{tot}}(E) = \frac{\text{Events registered}}{\text{Events emitted by source}} \]

\[\Omega_{\text{tot}}(E) = \Omega_{\text{geom}} \cdot \varepsilon_{\text{instr}}(E) \]
Detector efficiency (II)

$\varepsilon_{\text{instr}}(E)$ may also depend on geometry:

\[
\varepsilon_{\text{instr}}(E, x) = \varepsilon_{\text{instr}}(E) \left[1 - \exp\left(\frac{-x}{\lambda}\right) \right]
\]

More complex set-ups require simulations (Geant4)
Dead time

The time to process a signal, often associated with the duration of a signal in the detector.

However, the detector, the signal processing and the acquisition CPU all have different dead times and with different implications for the experiment.

• Electron (hole) collection time in detector: $1 \text{ns} - 1 \text{us}$
• Signal processing (pre- and main-amp.): $1 \text{us} - 5 \text{us}$
• ADCs and eventbuilder (CPU): $1 \text{us} - 100 \text{us}$

Typically $10,000 \text{ c/s per detector} \Rightarrow 100 \text{ us}$
Paralyzed (extendable) model for dead time (I)

Single event dead time = τ
By high count rate the detector may be paralyzed for more than τ due to overlapping dead times. We loose 4 events out of 8 => 50% dead time.
Paralyzed (extendable) model for dead time (II)

True count rate (1/s) : \(m \)

Observed counts in time \(T \) : \(k \)

Single dead time (s) : \(\tau \)

Probability of one event is : \(P(t) = \frac{1}{m} \exp(-mt) \)

\[
k = mT \cdot P(t > \tau) = mT \cdot \frac{1}{m} \int_{\tau}^{\infty} \exp(-mt) dt = mT \exp(-m\tau)
\]
Non-paralyzed (non-extendable) model for dead time (I)

Single event dead time = τ

By high count rate the detector restarts after τ and is ready for a new event. We lose 3 events out of 8 => 38% dead time.
Non-paralyzed (non-extendable) model for dead time (II)

True count rate (1/s): \(m \)

Observed counts in time \(T \): \(k \)

Single dead time (s): \(\tau \)

The total dead time in a period \(T \) is: \(k\tau \)

The true number of counts is: \(mT = k + mk\tau \)
Dead time measurements

Dead time is usually measured in %: \(R_{\text{dead}} = \frac{k}{mT} \)

Try not to run with more than 10% dead time.

Measurement:
- Count the true number of counts (red) with a fast preamp., giving \(k \) within, say, 1 min.
- Count in the same period the number of events (green) registered \(mT \).