Knut Jørgen Måløy
 
Professor  at Complex Group
Department of Physics, University of Oslo
P.O. Box 1048, Blindern 0316 Oslo, Norway 
 
Phone:  +47 22 85 65 24  
Mobile: +47 41 32 39 79
Fax:      +47 22 85 64 22
E-mails: maloy@fys.uio.no
 
Publications   
CV
Updated    Oct. 25, 2005
 

http://www.phys.ntnu.no/complex/bilder/volclogo.jpg

 

Welcome to my site!   I’m  a  professor in physics   at the  AMKS Group,   Department of Physics, University of Oslo.

 

 

Teaching

 

I’m at  the  moment  teaching   the  courses

 

FYS3410 “Condensed  Matter Physics”

 

FYS4420 “Experimental methods in condensed  matter  physics”

 

 

 

Students  and  post docs  currently  under  my  supervision: 

 

Post docs:    Grunde Løvoll

 

Phd Students: Ken Tore Tallakstad and  Mihailo Jankov

 

Master Students:  Rene Castberg

 

 

Active  collaborators:  Eirik Grude  Flekkøy UiO Oslo,  Alex  Hansen  NTNU Trondheim,  Jon Otto  Fossum  and  Yves  Meheust  NTNU  Trondheim,  Kenneth Knudsen and  Geir  Helgesen   IFE Kjeller,  Jean Schmittbuhl  and  Renaud  Toussaint   University of  Strasbourgh,  and Xiao-Lun Wu  and Walter Goldburg University of Pittsburgh, Osvanny Ramos Rosales ENS Lyon, Ernesto  Altshuler University of  Havana.


 

 

Research activity

An example  of  simulations of  two phase  flow  in fracture joint. Increasing  buoyancy  from  a)  to d). Gas  (black) is  injected  into glycerin.

 

My research activity is  within the  field  of  Complex systems. Complex systems are characterized as having properties that are not explained at the level of their single components.  Complex systems  often consists   of  fractal and   ramified structures  and processes.  Our  activity emphasize    on   the interaction between  experiments,  simulation and theory.

 

Some   of  the  main topics  of   my research  are   shown below.   

 

Flow in porous media
 

 

Porous  media  physics  is  one of  the  main  research topic  in  our  group.  The  physics of  flow in porous  and  fractured  media  is of  large importance  for the oil industry,  hydrology,  soil  mechanics,  environmental  engineering and even the human  body. 

The  figures   shows examples  of   two phase  flow experiments  in porous  media  in  a  rectangular  geometry. Air  is injected  into glycerin at  increased injection rate from a to c. The grey level shows  the simulated pressure field superimposed on the images.

 

Granular  materials

A granular  material is something  between  a  solid and  a   liquid. A  granular  material  may  float  like  liquid but  might  also  have  some  resistance  toward  applied   shear and  friction like a  solid.   A large   amount   of the  materials  around us  consists  of   granular  materials and  the understanding of  these  materials  is  of  huge practical  importance.    We  are performing   experiments  and  simulations  to  investigate the  force  network,  the gas  grain interaction   (see below)  and    avalanche dynamics in  granular  materials.

An example of  a  granular  flow  experiments  where    air  is injected into a   packing  of  granular  materials   with  100 microns  glass  particles.

 
 
Fracture and hydro-fracture
 
 
 
 

Nothing  last  forever.  Materials  breaks down  and  often due  to  fracturing.  Fracturing  is  therefore  of   central importance to understand  breakdown  and stability  of  materials and constructions.  We have  studied  both  the structure  and  dynamics of fractures  with  the  focus on  fluctuations  and  scaling.

The  image shows  a fracture   front propagating  between two sintered Plexi-glass plates.  Click on image to see fracture  front propagation.

Nano  Particles  and  nano-silicates

Drilling muds are used during the drilling process in the recovery of  oil. The main solid ingredient in water based drilling muds, are clays. These muds serve the purpose of flushing out loose particles during drilling, and they also cement the bore hole wall, preventing collapse. Thus research into the interaction between clay suspensions (drilling muds), and almost dry clays constituting the formation (bore hole walls), is important.

We  study   intercalation and  diffusion of  water  into  nano-silicates (clay).   The dynamics  and  structure  of  the  diffusion  and the intercalation  process  is  studied   by  synchrotron  radiation   experiments.  We have  further  built  up  an optical tweezer  which   will be used  to  measure  the  forces   and  manipulate  nano-particles  in addition to micro-rhology studies of   gel  and  clay suspensions.

 
 
 
 
Experimental toolbox:  
Optical tweezer and  light scattering laboratory. 
 
 
 
 
 
 
 
 
 

In addition to  a  large  number  of table  top  experiments  we  have:

2 ultra fast  cameras

1 infrared camera

Dynamic  and  static  light  scattering  equipments.

Optical tweezer setup

We are  further active users of  different  synchrotron beam lines.