Declarative Design of Spoken Dialogue Systems with Probabilistic Rules

Pierre Lison
Language Technology Group,
University of Oslo

September 20, 2012
SemDial
Introduction

- Spoken dialogue systems typically rely on pipeline architectures with «black-box» components developed separately

- Each component employs ad-hoc encoding formats for their inputs/outputs and internal parameters

- Formats rarely compatible with one another!
 - Difficult to derive a semantic interpretation as a whole
 - Difficult to perform joint optimisations
 - Domain- or task-specific knowledge often «hardwired»
Introduction

• We adopt an alternative approach:
 • Declarative specification of all domain- & task-specific knowledge via a common representation formalism
 • System architecture «stripped down» to a core set of algorithms for probabilistic inference

• Advantages:
 • Domain portability
 • More transparent semantics
 • More flexible workflow
General architecture

• **Blackboard architecture** revolving around a shared dialogue state

 • Dialogue models are attached to this dialogue state, and listen for relevant changes appearing on it

 • When triggered, they read/write to this state, creating and updating the state variables

• Dialogue state encoded as a **Bayesian Network**

 • Each network node represents a distinct state variable, possibly connected to other variables
General architecture

Dialogue Interpretation

Speech understanding

Speech recognition

Extra-linguistic environment

Dialogue state \(\vec{b} \)

User intention \(\vec{i}_u \)

Perceived context \(\vec{c} \)

Intended response \(\vec{a}_m^* \)

Utterance to synthesise \(\vec{u}_m^* \)

Recognition hypotheses \(\vec{u}_u \)

Dialogue act \(\vec{a}_u \)

Action selection

Generation

Speech synthesis

User

input speech signal (user utterance)

output speech signal (machine utterance)
Dialoge models

• The dialogue models are all expressed in terms of probabilistic rules

• Probabilistic rules are *high-level templates* for constructing probabilistic models

• Why use this representation formalism?
 - Take advantage of the *internal structure* of the problem while retaining the stochastic modelling
 - Abstraction mechanism (reduced set of parameters)
Probabilistic rules

• Probabilistic rules take the form of structured if...then...else cases

• Mapping from conditions to (probabilistic) effects:

\[
\begin{align*}
\text{if (condition}_1 \text{ holds) then} \\
P(\text{effect}_1) &= \theta_1, \quad P(\text{effect}_2) = \theta_2, \quad \ldots \\
\text{else if (condition}_2 \text{ holds) then} \\
P(\text{effect}_3) &= \theta_3, \quad \ldots \\
\ldots \\
\text{else} \\
P(\text{effect}_n) &= \theta_n, \quad \ldots
\end{align*}
\]
Probabilistic rules

- **Conditions** are (arbitrarily complex) logical formulae on state variables
- **Effects** are value assignments on state variables
- Effect probabilities are parameters that can be estimated from data

Example:

\[
\text{if } (a_m = \text{AskRepeat}) \text{ then} \\
P(a_u' = a_u) = 0.9 \\
P(a_u' \neq a_u) = 0.1
\]
Utility rules

- The formalism can also describe *utility models*
- In this case, the rule maps each condition to an assignment of *utility values* for particular actions:

\[
\begin{align*}
\text{if} \ (\text{condition}_1 \ \text{holds}) \ & \text{then} \\
Q(\text{actions}_1) &= \theta_1, \ Q(\text{actions}_2) = \theta_2, \ldots \\
\text{else if} \ (\text{condition}_2 \ \text{holds}) \ & \text{then} \\
Q(\text{actions}_3) &= \theta_3, \ldots \\
\ldots \\
\text{else} \\
Q(\text{actions}_n) &= \theta_n, \ldots
\end{align*}
\]
Rule instantiation

• How are the rules applied to the dialogue state?
• The rules are instantiated in the Bayesian Network, expanding it with new nodes and dependencies
Rule instantiation

- How are the rules applied to the dialogue state?
- The rules are *instantiated* in the Bayesian Network, expanding it with new nodes and dependencies

\[r_1: \]

\[
\text{if } (X = ... \lor Y \neq ...) \text{ then } \\
P(V = ... \land W = ...) = 0.6
\]

(The ... dots in \(r_1 \) should be replaced by concrete values)
Rule instantiation

- How are the rules applied to the dialogue state?
- The rules are *instantiated* in the Bayesian Network, expanding it with new nodes and dependencies

\[r_1: \]

\[
\text{if } (X = \ldots \lor Y \neq \ldots) \text{ then } \]
\[
P(V = \ldots \land W = \ldots) = 0.6
\]

(The ... dots in \(r_1 \) should be replaced by concrete values)
Rule instantiation

- How are the rules applied to the dialogue state?
- The rules are *instantiated* in the Bayesian Network, expanding it with new nodes and dependencies

\[\text{if} \ (X = \ldots \lor Y \neq \ldots) \ \text{then} \]
\[P(V = \ldots \land W = \ldots) = 0.6 \]

(The ... dots in \(r_1 \) should be replaced by concrete values)
Rule instantiation

- How are the rules applied to the dialogue state?
- The rules are *instantiated* in the Bayesian Network, expanding it with new nodes and dependencies.

r_1:

if $(X = ... \lor Y \neq ...) \text{ then } P(V = ... \land W = ...) = 0.6$

(The ... dots in r_1 should be replaced by concrete values)
The instantiation procedure is similar for utility rules, although one must employ utility and decision nodes:
Rule instantiation

- The instantiation procedure is similar for utility rules, although one must employ utility and decision nodes:

\[r_2: \]

\[
\text{if } (X = \ldots \lor Y \neq \ldots) \text{ then } \\
Q(A_1 = \ldots \land A_2 = \ldots) = 3
\]
Rule instantiation

• The instantiation procedure is similar for utility rules, although one must employ utility and decision nodes:

\[\text{if } (X = \ldots \lor Y \neq \ldots) \text{ then } Q(A_1 = \ldots \land A_2 = \ldots) = 3 \]
Rule instantiation

- The instantiation procedure is similar for utility rules, although one must employ utility and decision nodes:

\[
\text{if } (X = \ldots \lor Y \neq \ldots) \text{ then } Q(A_1 = \ldots \land A_2 = \ldots) = 3
\]
The instantiation procedure is similar for utility rules, although one must employ utility and decision nodes:

\[\text{if } (X = \ldots \lor Y \neq \ldots) \text{ then } \]
\[Q(A_1 = \ldots \land A_2 = \ldots) = 3 \]
Rule instantiation

• If the rule parameters (probabilities or utilities) are uncertain, we add other nodes expressing their distribution
Rule instantiation

• If the rule parameters (probabilities or utilities) are uncertain, we add other nodes expressing their distribution.
Rule instantiation

- If the rule parameters (probabilities or utilities) are uncertain, we add other nodes expressing their distribution.
Rule instantiation

- If the rule parameters (probabilities or utilities) are uncertain, we add other nodes expressing their distribution.
If the rule parameters (probabilities or utilities) are uncertain, we add other nodes expressing their distribution.
Processing workflow

• To ease the domain design, the rules are grouped into models

• Each model is associated with a trigger variable causing its activation

• When a model is activated:
 • A rule node is created for each rule, conditionally dependent on the variables used in the conditions
 • Nodes corresponding to the output variables of the rule are also created/updated, and connected to the rule node
Processing workflow (example)

etc.
Processing workflow

• Additional details

• No pipeline restriction: processing flow is possible

• Decision nodes require a decision to be made, by selecting the value with maximum utility

• Once the dialogue state is «stable» (no more model can be triggered), it is pruned to reduce it to a minimal size, retaining only the necessary nodes

• The rules update existing variables or create new ones
Experiments

- The described formalism was implemented and tested in a simple human-robot interaction scenario.
- The models for NLU, DM and NLG were encoded as probabilistic rules (total of 68 rules).
Experiments

• The utilities for the action selection rules were learned from Wizard-of-Oz data

• The other rules (NLU and NLG) were deterministic

• System also included a speech recogniser, TTS, and libraries for controlling the physical actions of the robot

Examples

• Dialogue act recognition rule:

\[r_1 : \text{if} (u_u \text{ matches } \text{“left arm down”}) \]
\[\lor (u_u \text{ matches } \text{“lower * left arm”}) \]
\[\lor (u_u \text{ matches } \text{“down * left arm”}) \text{ then} \]
\[\{ P(a_u' = \text{LeftArmDown}) = 1.0 \} \]

• Prediction of next user action:

\[r_2 : \text{if} (a_m = \text{AskRepeat}) \text{ then} \]
\[\{ P(a_u' = a_u) = 0.9 \} \]
Examples

• Action selection rules:

\[r_3 : \text{if } (i_u = \text{RequestMovement}(X)) \text{ then } \{Q(a'_m = \text{DoMovement}(X)) = 3.0\} \]

\[r_4 : \text{if } (\text{true}) \text{ then } \{Q(a'_m = \text{AskRepeat}) = 1.2\} \]

• Natural language generation rule:

\[r_5 : \text{if } (a_m = \text{Ack}) \text{ then } \{Q(u'_m = \text{“ok”}) = 1.0 \land \\
Q(u'_m = \text{“great”}) = 1.0 \land \\
Q(u'_m = \text{“thanks”}) = 1.0\} \]
Conclusions

• Dialogue system design based on the specification of probabilistic rules

• «Hybrid» approach combining domain knowledge and stochastic modelling

• Step towards a cleaner separation between system architecture and domain-and task-specific knowledge?
Future work

• Online estimation of the rule parameters (e.g. model-based Bayesian reinforcement learning)

• Joint optimisations of the parameters for NLU, DM and NLG models

• Incremental processing
Next interaction domain
Next interaction domain