Dialogue Management with Probabilistic Rules

Pierre Lison
Language Technology Group
University of Oslo

KTH, December 2015
Some background

• Started working on human-robot interaction and spoken dialogue systems at the DFKI (Saarbrücken)
• Moved to Oslo in 2011, where I continued my work on dialogue management (PhD defended in 2014)
• Since last year, I also have a postdoctoral project on dialogue modelling for statistical machine translation
• Going to focus on my *dialogue management* work for this talk
 • But if you are interested to know more on my machine translation project, we can talk about this later!
Outline for this talk

• The dialogue management task

• A hybrid logical/probabilistic approach
 • Probabilistic rules
 • Parameter estimation
 • Experiments

• Three open research questions
Outline for this talk

• The dialogue management task

• A hybrid logical/probabilistic approach
 • Probabilistic rules
 • Parameter estimation
 • Experiments

• Three open research questions
What is dialogue management?

• A component in (spoken) dialogue systems

• In charge of "managing" the interaction
 • Maintain a representation of the current state of the dialogue
 • Select the next system actions based on this state
 • Predict how the interaction is going to unfold

• Two intertwined challenges:
 • Dialogue is complex (many contextual factors to capture)
 • Dialogue is uncertain (ambiguities, unexpected events, etc.)
Existing DM techniques

<table>
<thead>
<tr>
<th>Logical approaches</th>
<th>Statistical approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine-grained control of conversation</td>
<td>Robust, data-driven models of dialogue</td>
</tr>
<tr>
<td>Limited account for uncertainties</td>
<td>Need large quantities of training data</td>
</tr>
</tbody>
</table>

A new **hybrid** modelling framework based on *probabilistic rules*
Outline for this talk

- What is dialogue management?

- A hybrid logical/probabilistic approach
 - Probabilistic rules
 - Parameter estimation
 - Experiments

- Three open research questions
The key idea

• We start with the usual ideas of probabilistic dialogue modelling:

 • Dialogue state encoded as a **Bayesian Network**

 • Each variable captures a *relevant aspect of the interaction* (dialogue history, user intentions, context, etc.)

 • The dialogue state is regularly updated with *new observations* (spoken inputs, new events), according to domain-specific probabilistic models

 • ...and used to determine the *next actions* to execute, according to domain-specific utility models
The key idea

But:

• instead of expressing the domain models using traditional formats (e.g. probability tables)...

• ... we adopt a high-level representation based on probabilistic rules.

• The probabilistic rules provide an abstraction layer on top of probabilistic (graphical) models

Less parameters to estimate (=easier to learn from small amounts of data)

Can express expert knowledge in human-readable form
Two types of rules

Probability rules

Conditional probability distributions between state variables

- If (condition\(_1\)) then
 - \(P(\text{effect}_1) = \theta_1\),
 - \(P(\text{effect}_2) = \theta_2\), ...
- Else if (condition\(_2\)) then
 - \(P(\text{effect}_3) = \theta_3\), ...

Utility rules

Utility functions for system actions given state variables

- If (condition\(_1\)) then
 - \(U(\text{action}_1) = \theta_1\),
 - \(U(\text{action}_2) = \theta_2\), ...
- Else if (condition\(_2\)) then
 - \(U(\text{action}_3) = \theta_3\), ...

What they encode:
Examples of probabilistic rules

∀ x,
if (last-user-act = x ∧ last-system-act = AskRepeat) then
P(next-user-act = x) = 0.9

“If the system asks the user to repeat his last dialogue act x, the user is predicted to comply and repeat x with probability 0.9”

∀ x,
if (last-user-act=Request(x) ∧ x ∈ perceived-objects) then
U(system-act=PickUp(x)) = +5

“If the user asks the system to pick up a given object x and x is perceived by the system, then the utility of picking up x is 5”
Rule instantiation

• At runtime, the rules are "executed" by instantiating them in the dialogue state:

 • The rules can be seen as "high-level templates" for the generation of a classical probabilistic model

 • Inference (for state update and action selection) is then performed on this grounded representation

• The use of logical abstractions allows us to capture complex relations between variables in a compact, human-readable form
∀ \(x, \)

\[
\text{if } (\text{last-user-act} = x \land \text{last-system-act} = \text{AskRepeat}) \text{ then } \\
P(\text{next-user-act} = x) = 0.9
\]
∀ x,
if (last-user-act=Request(x) ∧ x ∈ perceived-objects) then
U(system-act=PickUp(x)) = +5
Processing workflow

- **Information state architecture**, with the dialogue state expressed as a Bayesian Network
- External modules add new observations
- Probability rules employed to update the dialogue state (following the new observations)
- Utility rules employed to determine the system actions
Outline for this talk

• What is dialogue management?

• **A hybrid logical/probabilistic approach**

 • Probabilistic rules

 • **Parameter estimation**

 • Experiments

• Three open research questions
Parameter estimation

- Probabilistic rules may include parameters (unknown probabilities or utilities)

- **Bayesian learning** approach:
 - Start with initial prior over possible parameter values
 - Refine the distribution given the observed data \mathcal{D}

\[
P(\theta | \mathcal{D}) = \eta \ P(\mathcal{D} ; \theta) \ P(\theta)
\]

- Posterior distribution
- Normalisation factor
- Likelihood of the data
- Prior distribution
Parameter estimation

∀ x,

if (last-user-act = x ∧ last-system-act = AskRepeat) then

P(next-user-act = x) = θ

Probability density

Beta(6, 2)
Learning paradigms

• Different types of training data:

 • *Supervised learning*: Wizard-of-Oz interactions

 Goal: find the parameter values that best “imitate” the Wizard’s conversational behaviour

 • *Reinforcement learning*: real or simulated interactions

 Goal: find the parameter values that provide the best fit for the collected observations

[P. Lison. Model-based Bayesian Reinforcement Learning for Dialogue Management (Interspeech 2013)]
Outline for this talk

• What is dialogue management?

• A hybrid logical/probabilistic approach
 • Probabilistic rules
 • Parameter estimation

• Experiments

• Demonstration of the OpenDial toolkit
User evaluation

- **Task:** instruct the robot to move across the table, pick one cylinder and release it on the landmark

- **Comparison of three modelling approaches:**
 1. A handcrafted finite-state automaton
 2. A factored statistical model
 3. A model structured with probabilistic rules
Experimental procedure

- **Step 1:** collect Wizard-of-Oz interaction data
- **Step 2:** Estimate the internal parameters for the 3 models with the collected data
- **Step 3:** Conduct user trials for the 3 approaches
- **Step 4:** Compare them on dialogue quality metrics

Dialogue domain:
- 26 user actions
- 41 system actions
- State size: 35×10^6 (10 variables)

Parameter estimation:
- 10 recorded WoZ interactions
- 3 parameters in handcrafted automaton (thresholds)
- 433 parameters in factored statistical model
- 28 parameters in model encoded with probabilistic rules
Learning curve

Training: 9 Wizard-of-Oz interactions (770 system turns)
Testing: 1 Wizard-of-Oz interaction (71 system turns)
User trials

- 37 participants (16 M / 21 F)
- Average age: 30.6
- Average duration: 5:06 mins
- All captured on videos
User trials

• Each participant in the trial repeated the task **three** times

• One interaction for each modelling approach (in randomised order)

• Evaluation metrics:

 • **Objective metrics**: list of 9 measures extracted from the interaction logs

 • **Subjective metrics**: survey of 6 questions filled by the participants after each interaction
Empirical results

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Finite-state automaton</th>
<th>Factored statistical model</th>
<th>Rule-structured model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of repetition requests</td>
<td>18.68</td>
<td>12.24</td>
<td>0*</td>
</tr>
<tr>
<td>Average number of confirmation requests</td>
<td>9.16</td>
<td>10.32</td>
<td>5.78*</td>
</tr>
<tr>
<td>Average number of repeated instructions</td>
<td>3.73</td>
<td>7.97</td>
<td>2.78</td>
</tr>
<tr>
<td>Average number of user rejections</td>
<td>2.16</td>
<td>2.59</td>
<td>2.59</td>
</tr>
<tr>
<td>Average number of physical movements</td>
<td>26.68</td>
<td>29.89</td>
<td>27.08</td>
</tr>
<tr>
<td>Average number of turns between moves</td>
<td>3.63</td>
<td>3.1</td>
<td>2.54*</td>
</tr>
<tr>
<td>Average number of user turns</td>
<td>78.95</td>
<td>77.3</td>
<td>69.14</td>
</tr>
<tr>
<td>Average number of system turns</td>
<td>57.27</td>
<td>54.59</td>
<td>35.11*</td>
</tr>
<tr>
<td>Average duration (in minutes)</td>
<td>6:18</td>
<td>7:13</td>
<td>5:24*</td>
</tr>
</tbody>
</table>

Objective

<table>
<thead>
<tr>
<th>“Did you feel that…”</th>
<th>Finite-state automaton</th>
<th>Factored statistical model</th>
<th>Rule-structured model</th>
</tr>
</thead>
<tbody>
<tr>
<td>… the robot correctly understood what you said?"</td>
<td>3.32</td>
<td>2.92</td>
<td>3.68</td>
</tr>
<tr>
<td>… the robot reacted appropriately to your instructions?"</td>
<td>3.70</td>
<td>3.32</td>
<td>3.86</td>
</tr>
<tr>
<td>… the robot asked you to repeat/confirm your instructions?"</td>
<td>2.16</td>
<td>2.19</td>
<td>3.3*</td>
</tr>
<tr>
<td>… the robot sometimes ignored when you were speaking?"</td>
<td>3.24</td>
<td>2.76</td>
<td>3.43</td>
</tr>
<tr>
<td>… the robot thought you were talking when you were not?"</td>
<td>3.43</td>
<td>3.14</td>
<td>4.41*</td>
</tr>
<tr>
<td>… the interaction flowed in a pleasant and natural manner?"</td>
<td>2.97</td>
<td>2.46</td>
<td>3.32</td>
</tr>
</tbody>
</table>

Scale from 1 (worse) to 5 (best)
Outline for this talk

- The dialogue management task
- A hybrid logical/probabilistic approach
 - Probabilistic rules
 - Parameter estimation
 - Experiments
- Three open research questions
Open research questions (1)

• The probabilistic rules allow us to capture complex relations between state variables

• But the underlying state representation remains propositional (slot-value pairs)

• Many variables are better viewed as relational structures

 • Semantic content, user intentions, task structures, etc.

• Need to extend the probabilistic rules to be able to operate on such types of state variables

[D. Ramachandran and A. Ratnaparkhi. "Belief Tracking with Stacked Relational Trees" (SIGDIAL 2015)]
Open research questions (2)

• Optimising dialogue policies from social signals?
 • Users spontaneously produce a variety of **multimodal feedback signals** (emotional cues, grounding actions, etc.)
 • Can we optimise the model parameters against these signals ?

• Distinct from traditional reinforcement learning:
 • Detecting these multimodal signals and determining their "feedback value" is difficult and prone to errors
 • No one-to-one mapping between signals and system actions (**credit assignment problem**)
Open research questions (3)

• The information-state architecture of OpenDial works well for "high-level" reasoning tasks
 • Tracking the user intention(s), planning system actions
 • One central information hub: the dialogue state

• But it is less appropriate for lower-level tasks
 • Turn-taking, (high-throughput) perception processes, etc.

• How to reconcile the "high-level" and "lower-level" aspects of dialogue processing in a principled manner?
 • In other words: can we combine OpenDial and IrisTK?
Conclusion

• Development of a new modelling framework for dialogue management, based on probabilistic rules

 • Hybrid approach at the crossroads between logical and statistical methods

 • Rule parameters can be learned from data

• HRI experiments demonstrate the benefits of the approach

• Concrete implementation in the OpenDial software toolkit