Introduction

• Statistical models is getting increasingly popular in spoken dialogue systems

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit account of uncertainties, increased robustness to errors</td>
<td>Good domain data is scarce and expensive to acquire!</td>
</tr>
<tr>
<td>Better domain- and user-adaptivity, more natural and flexible conversational behaviours</td>
<td>Scalability to complex domains (state space grows exponentially with the problem size)</td>
</tr>
</tbody>
</table>
Introduction

- **Scalability** remains a challenge for many domains
 - Examples: Human-robot interaction, tutoring systems, cognitive assistants & companions
 - Must model a rich, dynamic context (users, tasks, situated environment)
 - State more complex than a list of slots to fill (rich relational structure)
Outline

- Generalities
- Probabilistic rules
- Parameter learning
- Conclusions
General architecture

- *Information-state* based approach to dialogue management (and dialogue systems):
 - The *dialogue state* represents all the information available to the agent (and relevant for decision-making)
 - Various processes are attached to this state and read/write to it

![Diagram of dialogue state and processes](Image)

General architecture

- How do we represent the dialogue state?
- Requirements:
 - Must be able to factor the state into distinct *variables*
 - The content of some variables might be *uncertain*
 - Possible *probabilistic dependencies* between variables

Dialogue state encoded as a **Bayesian Network** (i.e. a directed graphical model)
Dialogue state: example

Research problem

- Dialogue management is responsible for a wide range of processing operations:
 - interpretation of the user dialogue acts
 - selection of the next system action to perform
 - prediction of the next steps in the interaction

- Complex modelling problem (many interacting variables)
- Pervasive uncertainty (ASR errors, ambiguity, unpredictable user behaviour)
- Data for parameter estimation is scarce and domain-specific
Research goal

• We would like to construct probabilistic models of dialogue that:
 • can operate on rich state representations
 • can incorporate prior domain knowledge
 • can be estimated from limited amounts of data
• This is basically the central question I’m trying to address for my PhD

Research goal

• Many approaches in A.I. and machine learning have tried to tackle related problems
• Solutions typically involve the use of more expressive representations (hierarchical or relational abstractions)
 • Can yield more compact models that generalise better

I’m developing such a formalism for dialogue management: probabilistic rules
Key idea

- Observation: dialogue models exhibit a fair amount of *internal structure*:
 - Probability and utility distributions can often be *factored*
 - Even if the full distribution has many dependencies, the probability (or utility) of a *specific outcome* often depends on a much smaller subset
 - Finally, the values of the dependent variables can often be grouped into *partitions*

Example of partitioning

- Consider a dialogue where the user asks a robot yes/no questions about his location
- The state contains the following variables:
 - Last user dialogue act, e.g. \(a_u = \text{AreYouIn(corridor)} \)
 - The robot location, e.g. \(\text{location} = \text{kitchen} \)
- You want to learn the utility of \(a_m = \text{SayYes} \)
- The combination of the two variables can take many values, but they can be partitioned in two sets:
 - \(a_u = \text{AreYouIn(x)} \land \text{location} = x \quad \text{positive utility} \)
 - \(a_u = \text{AreYouIn(x)} \land \text{location} \neq x \quad \text{negative utility} \)
Probabilistic rules

• **Probabilistic rules** attempt to capture such kind of structure

• *High-level templates* for a classical graphical model (in our case, a Bayesian Network)

• Advantages:
 • (Exponentially) fewer parameters to estimate
 • Easier to incorporate prior domain knowledge
Probabilistic rules

• The rules take the form of structured if...then...else cases

• Mapping from conditions to (probabilistic) effects:

\[\text{if (condition}_1\text{ holds) then} \]
\[P(\text{effect}_1) = \theta_1, \ P(\text{effect}_2) = \theta_2, \ldots \]

\[\text{else if (condition}_2\text{ holds) then} \]
\[P(\text{effect}_3) = \theta_3, \ldots \]

...

Probabilistic rules

• Conditions are (arbitrarily complex) logical formulae on state variables

• Effects are value assignments on state variables

• Effect probabilities are parameters that can be estimated from data

Example:

\[\text{if (a}_m = \text{AskRepeat) then} \]
\[P(a'_u = a_u) = 0.9 \]
\[P(a'_u \neq a_u) = 0.1 \]
Utility rules

- The formalism can also describe utility models
- In this case, the rule maps each condition to an assignment of utility values for particular actions:

\[
\begin{align*}
\text{if (condition}_1\text{ holds)} & \text{ then} & Q(\text{actions}_1) = \theta_1, Q(\text{actions}_2) = \theta_2, \\
\text{else if (condition}_2\text{ holds)} & \text{ then} & Q(\text{actions}_3) = \theta_3, \\
& & \ldots \\
\text{else} & & Q(\text{actions}_n) = \theta_n, \\
\end{align*}
\]

Rule instantiation

- How are the rules applied to the dialogue state?
- The rules are instantiated in the Bayesian Network, expanding it with new nodes and dependencies

\[r_a: \quad \text{if (X = ...} \lor Y \neq ...) \text{ then} \quad P(V = ... \land W = ...) = 0.6\]

(The ... dots in \(r_1\) should be replaced by concrete values)
Rule instantiation

Example r₁:

if \((a_m = \text{Greet} \land \text{UserFocus} = \text{Attentive}) \) then
\[P(a_u' = \text{Greet}) = 0.9 \]
else if \((a_m = \text{Greet} \land \text{UserFocus} = \text{Distracted}) \) then
\[P(a_u' = \text{Greet}) = 0.4 \]

Greet \([P=1.0]\)
Attentive \([P=0.7]\)
Distracted \([P=0.3]\)

Rule instantiation

• The instantiation procedure is similar for utility rules, although one must employ utility and decision nodes:

\[\text{if } (X = ... \lor Y \neq ...) \text{ then } Q(A_1 = ... \land A_2 = ...) = 3 \]
Rule instantiation

Example r\(_2\):
\[\text{if} \ (a_u = \text{AreYouIn}(x) \land \text{location} = x) \]
\[\{ Q(a_m = \text{SayYes}) = 3.0 \} \]
\[\text{else if} \ (a_u = \text{AreYouIn}(x) \land \text{location} \neq x) \]
\[\{ Q(a_m = \text{SayNo}) = 3.0 \} \]

Example r\(_3\):
\[\text{if} \ (a_u \neq \text{None}) \]
\[\{ Q(a_m = \text{AskRepeat}) = 0.5 \} \]
Parameter learning

- The rule parameters (probabilities or utilities) must be estimated from empirical data
- We adopted a Bayesian approach, where the parameters are themselves defined as variables
- The parameter distributions will then be modified given the evidence from the training data
Evaluation

- Policy learning task in a human-robot interaction scenario, based on Wizard-of-Oz training data
- Objective: estimate the utilities of possible system actions
- Baselines: «rolled-out» versions of the model
 - «plain» probabilistic models with identical input and output variables, but without the condition and effect nodes as intermediary structures

Experimental setup

- Interaction scenario: users instructed to teach the robot a sequence of basic movements (e.g. a small dance)
- Dialogue system comprising ASR and TTS modules, shallow components for understanding and generation, and libraries for robot control
- The Wizard had access to the dialogue state and took decisions based on it (among a set of 14 alternatives)
- 20 interactions with 7 users, for a total of 1020 turns

Each sample \(d \) in the data set is a pair \((b_d, t_d)\):
- \(b_d \) is a recorded dialogue state
- \(t_d \) is the «gold standard» system action selected by the Wizard at the state \(b_d \)
Empirical results

- Data set split into training (75%) and testing (25%)
- Accuracy measure: percentage of actions corresponding to the ones selected by the Wizard
 - But Wizard sometimes inconsistent / unpredictable
- The rule-structured model outperformed the two baselines in accuracy and convergence speed

<table>
<thead>
<tr>
<th>Type of model</th>
<th>Accuracy (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain model</td>
<td>67.35</td>
</tr>
<tr>
<td>Linear model</td>
<td>61.85</td>
</tr>
<tr>
<td>Rule-structured model</td>
<td>82.82</td>
</tr>
</tbody>
</table>

Learning curve (linear scale)

![Learning curve graph](image)
Outline

- Introduction
- Probabilistic rules
- Parameter learning
- Conclusions
Conclusions

- **Probabilistic rules** used to capture the underlying structure of dialogue models
- Allow developers to exploit powerful generalisations and domain knowledge
- ... without sacrificing the probabilistic nature of the model

Current & future work

- *Model-based reinforcement learning*: instead of relying on annotated data, learn the parameters from (real or simulated) interactions
- Apply the probability and utility rules to perform online planning
- Perform *joint optimisations* of several dialogue models, all encoded with probabilistic rules
- Development of a software toolkit (openDial) and evaluation in a human-robot interaction domain
Questions, comments?

- Still a work in progress - comments, suggestions are most welcome!