ON THE RANK OF A SYMMETRIC FORM

KRISTIAN RANESTAD AND FRANK-OLAF SCHREYER

Abstract. We give a lower bound for the degree of a finite apolar subscheme of a symmetric form \(F \), in terms of the degrees of the generators of the annihilator ideal \(F^\perp \). In the special case, when \(F \) is a monomial \(x_0^{d_0} \cdot x_2^{d_2} \cdots x_n^{d_n} \) with \(d_0 \leq d_1 \leq \ldots \leq d_{n-1} \leq d_n \), we deduce that the minimal length of an apolar subscheme of \(F \) is \((d_0 + 1) \cdot \ldots \cdot (d_n - 1 + 1) \), and if \(d_0 = \ldots = d_n \), then this minimal length coincides with the rank of \(F \).

Let \(F \in T = K[x_0, \ldots, x_n] \) be a homogeneous form and let \(S = K[y_0, \ldots, y_n] \) be the ring of commuting differential operators acting on \(T \). The action is called apolarity, and defines \(S \) as a natural coordinate ring on the projective space \(\mathbb{P}(T_1) \) of 1-dimensional subspaces of \(T_1 \). The annihilator of \(F \) is an ideal \(F^\perp \subset S \). A finite subscheme \(\Gamma \subset \mathbb{P}(T_1) \) is apolar to \(F \) if the homogeneous ideal \(I_{\Gamma} \subset S \) is contained in \(F^\perp \).

We define the cactus rank \(\text{cr}(F) \) as

\[
\text{cr}(F) = \min\{\deg \Gamma | \Gamma \subset \mathbb{P}(T_1), \dim \Gamma = 0, I_{\Gamma} \subset F^\perp\},
\]

the smoothable rank \(\text{sr}(F) \) as

\[
\text{sr}(F) = \min\{\deg \Gamma | \Gamma \subset \mathbb{P}(T_1) \text{ smoothable}, \dim \Gamma = 0, I_{\Gamma} \subset F^\perp\}
\]

and the rank \(r(F) \) as

\[
r(F) = \min\{\deg \Gamma | \Gamma \subset \mathbb{P}(T_1) \text{ smooth}, \dim \Gamma = 0, I_{\Gamma} \subset F^\perp\}.
\]

Clearly \(\text{cr}(F) \leq \text{sr}(F) \leq r(F) \). We shall give lower bounds for these ranks in terms of the generators of the ideal \(F^\perp \). The related notion of border rank, \(\text{br}(F) \), is defined as the minimal \(k \) such that \([F] \) lies in the Zariski closure of the set of forms of rank \(k \) in \(\mathbb{P}(T_{\text{deg}F}) \). In general \(\text{br}(F) \leq \text{sr}(F) \), and strict inequality occurs, so our lower bounds for \(\text{sr}(F) \) do not apply unconditionally to \(\text{br}(F) \). Notice also that cactus rank coincides with the notion of scheme length as defined by Iarrobino [Iarrobino 1995, Definition 4D]. Applications of these notions of rank to powersum decompositions of symmetric forms and to equations of secant varieties, see [Ranestad, Schreyer 2000], [Landsberg, Teitler 2010] and [Buczynska, Buczyński 2011], the latter inspired our use of the name cactus rank.

We define the degree of \(F^\perp \) to be the length of the quotient algebra \(S_F = S/F^\perp \).

Proposition 1. If the ideal of \(F^\perp \) is generated in degree \(d \) and \(\Gamma \subset \mathbb{P}(T_1) \) is a finite apolar subscheme to \(F \), then

\[
\deg \Gamma \geq \frac{1}{d} \deg F^\perp.
\]
Proof. Taking cones, we may assume that F^\perp and I_Y define subschemes X and Y of pure dimension r and $r + 1$ in \mathbb{P}^N. Furthermore $\deg Y = \deg \Gamma$ and $\deg X = \deg F^\perp$. The apolarity condition says that $I_X \supset I_Y$, i.e. that $X \subset Y$ as schemes. Now, take an element g in I_X that does not contain any component of Y. Then the hypersurface $G = \{g = 0\}$ has proper intersection with Y and contains X. Therefore, by Bezout,
\[\deg G \cdot \deg Y \geq \deg X. \]
The proposition follows by taking g of degree d. \hfill \Box

Corollary 1. If the ideal of F^\perp is generated in degree d, then the cactus rank
\[\text{cr}(F) \geq \frac{1}{d} \deg F^\perp. \]

Corollary 2. If F is a monomial, $F = x_0^{d_0} \cdot x_1^{d_1} \cdot \ldots \cdot x_n^{d_n}$ with $d_0 \leq d_1 \leq \ldots \leq d_n$, then the cactus rank and the smoothable rank coincide and equals
\[\text{cr}(F) = \text{sr}(F) = (d_0 + 1) \cdot (d_1 + 1) \cdot \ldots \cdot (d_n - 1 + 1). \]
If furthermore $d_n = d_0 = d$, i.e. $F = (x_0 \cdot x_1 \cdot \ldots \cdot x_n)^d$, then $r(F) = cr(F) = sr(F) = (d+1)^n$.

Proof. When $F = x_0^{d_0} \cdot x_1^{d_1} \cdot \ldots \cdot x_n^{d_n}$, then F^\perp is the complete intersection generated by the forms
\[y_0^{d_0+1}, y_1^{d_1+1}, \ldots, y_n^{d_n+1}. \]
So it is generated in degree $d_n + 1$, while F^\perp has degree
\[(d_0 + 1) \cdot (d_1 + 1) \cdot \ldots \cdot (d_n + 1). \]
The formula for the cactus rank follows, since the first n generators define a finite apolar subscheme of degree $(d_0 + 1) \cdot \ldots \cdot (d_n - 1 + 1)$. Now, any complete intersection is smoothable, so the smoothable rank equals the cactus rank for F. If $d_0 = d_n = d$, then the forms of degree $d + 1$ in F^\perp has no basepoints so, by Bertini, n general forms in F^\perp of degree $(d + 1)$ define a smooth finite subscheme of degree $(d + 1)^n$ in $\mathbb{P}(T_1)$.
\hfill \Box

References

Matematisk institutt, Universitetet i Oslo, PO Box 1053, Blindern, NO-0316 Oslo, Norway
E-mail address: ranestad@math.uio.no
URL: http://folk.uio.no/ranestad/

Mathematik und Informatik, Universität des Saarlandes, Campus E2 4, D-66123 Saarbrücken, Germany
E-mail address: schreyer@math.uni-sb.de
URL: http://www.math.uni-sb.de/ag/schreyer/