Non-abelian Brill-Noether Loci
and the Lagrangian Grassmannian $\text{LG}(3,6)$

Kristian Ranestad

This paper is an elaboration of the notes for my talk at the Fano conference and reports on joint work with Atanas Iliev. Full details can be found in [2]. It is a pleasure to thank Alberto Conte, Marina Marchisio and Alberto Collino for a wonderful conference.

1. Inspiration.

In 1987 Mukai showed his famous linear section theorem:

Theorem. (Mukai [5],[6]) A general canonical curve C of genus $6 \leq g \leq 9$ (resp. a general canonical curve of genus 10 on a $K3$–surface) is a complete intersection in a homogeneous space.

<table>
<thead>
<tr>
<th>genus</th>
<th>C is a linear section of $M^\text{dim}^M_g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$C = \mathbb{P}^5 \cap Q \cap \text{G}(2,5)$</td>
</tr>
<tr>
<td>7</td>
<td>$C = \mathbb{P}^6 \cap \text{OG}(5,10)$</td>
</tr>
<tr>
<td>8</td>
<td>$C = \mathbb{P}^7 \cap \text{G}(2,6)$</td>
</tr>
<tr>
<td>9</td>
<td>$C = \mathbb{P}^8 \cap \text{LG}(3,6)$</td>
</tr>
<tr>
<td>10</td>
<td>$C = \mathbb{P}^9 \cap \text{GG}_2$</td>
</tr>
</tbody>
</table>

The following conditions are sufficient for the genericity in the assumption. When $g = 6$ that C has no g^1_3 or g^2_3, when $g = 7$ that C has no g^1_4, when $g = 8$ that C has no g^2_4 and when $g = 9$ that C has no g^3_4.

I am switching here from my notation in the talk to Mukai’s notation, so $\text{OG}(5,10)$ is the 10-dimensional orthogonal Grassmannian of isotropic 5–spaces belonging to one of the two families of such in a 8-dimensional nonsingular quadric, embedded with Spinor coordinates. $\text{G}(2,6)$ is of course the ordinary Grassmannian of rank 2 subspaces of C^6 embedded with Plucker coordinates. The variety $\text{LG}(3,6)$ is the Lagrangian or symplectic Grassmannian of Lagrangian 3–spaces for a nondegenerate 2–form on C^6, embedded by the Plucker coordinates of $\text{G}(3,6)$. The variety $\text{GG}_2 \subset \text{G}(5,7)$ is the variety of isotropic 5–spaces for a nondegenerate skew-symmetric 4-linear form on a 7-dimensional vector space. It has its name from the fact that it is homogeneous for an algebraic group of type G_2. Good references for the first three of these varieties is [3]. In Mukai’s terminology these varieties are called key varieties. With the letter M, I suggest that in this context Mukai varieties have become a common name.

Similar to the linear section theorem for curves there are linear section theorems for $K3$ surfaces and Fano 3–folds:

Theorem. (Mukai [5]) A $K3$ surface S with $\text{Pic}(S) = \langle C \rangle$, where C has genus $6 \leq g \leq 10$ is a complete intersection in a Mukai variety M_g.

A smooth Fano threefold X of index 1 and $\text{Pic}(X) = \langle -K \rangle$, where $-K^3 = 2g - 2$ and $6 \leq g \leq 10$ is a complete intersection in a Mukai variety M_g.

1
2. Questions and main result.

Our main result is a relation between two Mukai varieties. It gives an answer in case $g = 9$ to the following questions:

Given a linear section $X \subseteq M_g$ with one node, and let X_0 be the projection of X from its node.

Q1: Is X_0 a linear section of M_{g-1}?

Q2: What is the maximal dimension of the sections X for which the answer is yes?

Answer to Q1: Yes, when X is a canonical curve by Mukai’s theorem since X_0 is a general enough canonical curve.

Answer to Q2: A first guess is $\dim M_g = 1$, when X is a nodal hyperplane section. But notice that X_0 would contain a smooth quadric as exceptional divisor, so the maximal dimension of smooth quadrics in M_g gives an upper bound. In the cases $7 \leq g \leq 9$ the upper bound in terms of smooth quadrics is:

<table>
<thead>
<tr>
<th>genus</th>
<th>maximal dimension of smooth quadric in S_{g-1}</th>
<th>upper bound for Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>quadric 4 – fold</td>
<td>codimension 5</td>
</tr>
<tr>
<td>8</td>
<td>quadric 6 – fold</td>
<td>tangent hyperplane</td>
</tr>
<tr>
<td>9</td>
<td>quadric 4 – fold</td>
<td>tangent hyperplane</td>
</tr>
</tbody>
</table>

The result I want to discuss concerns the case $g = 9$:

Main theorem ([2]). If X is a nodal hyperplane section of $\text{LG}(3, 6)$, then the projection X_u from the node u is a linear section of $\text{G}(2, 6)$.

3. Application to Brill–Noether loci

The main theorem has applications to moduli of stable rank 2 vector bundles on linear sections of $\text{LG}(3, 6)$, much in the spirit of Mukai’s work (cf. [7], [8]).

Let Y be a smooth linear section of $\text{LG}(3, 6)$, and let X be a nodal hyperplane section that contains Y, i.e.,

$$ Y \subseteq X \subseteq \text{LG}(3, 6) $$

then the projection from the node of X restricts to an embedding

$$ i_X : Y \to G = \text{G}(2, 6). $$

Let U_G be the dual of the universal rank 2 subbundle on G. Then

$$ E_X = i_X^* U_G $$

is a rank 2 vector bundle on Y with $\det E_X = H$, the hyperplane divisor. The zero scheme Z_X of a general section of E_X is a smooth subvariety of codimension 2, degree 6. By adjunction the canonical divisor on Z is

$$ (K_Y + H) z_X. $$
When Y is a curve, Z_X is empty and the important property of E_X is

$$h^0(Y, E_X) = 6.$$

In fact, the vector bundle E_X is stable, so the map

$$X \mapsto [E_X]$$

maps the space of nodal hyperplane sections containing Y into the moduli space

$$M_Y(2, H, [Z_X])$$

of stable rank 2 vector bundles on Y, with

$$c_1(E_X) = H \quad c_2(E_X) = [Z_X].$$

The nodal hyperplane sections are parameterized by the dual variety of $\text{LG}(3, 6)$. This dual variety is a quartic hypersurface F^* singular in codimension 3, with a singular locus of degree 21.

Corollary 1. Let Y be a general linear curve section of $\text{LG}(3, 6)$, and let

$$F(Y) = \{ X \mid Y \subset X \subset \text{LG}(3, 6) \quad X \text{ is a nodal hyperplane section} \}.$$

Then $F(Y)$ is an irreducible connected component of $M_Y(2, K, 6)$, the moduli of stable rank 2 vector bundles E on Y with $\det E = K_Y$ and $h^0(Y, E) \geq 6$.

Furthermore, there is a compactification $\overline{F(Y)}$ of $F(Y)$, where $\overline{F(Y)}$ is a 21-nodal quartic 3-fold. The nodes form $\overline{F(Y)} - F(Y)$ and correspond to semistable bundles, more precisely to vector bundles E on Y that decomposes into the sum of two line bundles L and L' of degree 8 and $h^0(Y, L) = h^0(Y, L') = 3$.

Remark The general stable rank 2 vector bundle E on Y with $\det E = K_Y$ has $h^0(Y, E) = 0$, so $M_Y(2, K, 6)$, is called a **Non-abelian Brill Noether locus** inside the moduli space $M_Y(2, K)$, of stable rank 2 vector bundle E on Y with $\det E = K_Y$. Ordinary Brill Noether loci are defined similarly for line bundles.

Let $S = S_{2g-2}$ be a $K3$ surface with Picard group generated by a line bundle $\mathcal{O}_S(h)$ of odd genus g, and consider the moduli space $M_6(2, h, s)$, of stable rank 2 vector bundles E on S with $c_1(E) = h$ and $\chi(S, E) = \frac{1}{2}h^2 + 4 - c_2(E) = s + 2$. Mukai proves (cf. [4] and [7, section 10]) that any component of $M_6(2, h, s)$, is a nonsingular symplectic variety of dimension $2(g - 2s)$. In particular if $s = n = (g - 1)/2$, then $M_6(2, h, s)$, is a $K3$ surface. For a more recent proof of irreducibility see [1].

Corollary 2. For the general linear surface section

$$Y \subset \text{LG}(3, 6)$$

the moduli space

$$M_Y(2, H, 4)$$

is isomorphic to the quartic surface

$$F(Y) = \{ X \mid Y \subset X \subset \text{LG}(3, 6), \quad X \text{ is a nodal hyperplane section} \}.$$

Notice that the Mukai vector of E is $(r, h, s) = (2, H, 4)$, in particular $(r, s) = 2$, so in this case there is no universal vector bundle.
Corollary 3. For the general linear (Fano) 3-fold section \(Y \subset \Sigma \) the quartic curve
\[
F(Y) = \{X | \ Y \subset X \subset \mathbf{LG}(3, 6), \ X \text{ is a nodal hyperplane section}\}
\]
is an irreducible component of \(M_Y(2; -K, [Z_X]) \), where \([Z_X]\) is the class of a sextic elliptic curve on \(X \).

Corollary 4. For the general linear (Fano) 4-fold section \(Y \subset \mathbf{LG}(3, 6) \)
\[
F(Y) = \{X | \ Y \subset X \subset \mathbf{LG}(3, 6), \ X \text{ is a nodal hyperplane section}\}
\]
is 4 points in \(M_Y(2; H, [Z_X]) \), where \([Z_X]\) is the class of a sextic Del Pezzo surface on \(X \).

Corollary 5. The general complete intersection \(Y = H_1 \cap H_2 \cap Q \cap \mathbf{LG}(3, 6) \) is a Calabi Yau 3-fold and
\[
F(Y) = \{X | \ Y \subset X \subset \mathbf{LG}(3, 6), \ X \text{ is a nodal hyperplane section}\}
\]
is 4 points in \(M_Y(2; H, [Z_X]) \), where \([Z_X]\) is the class of a canonical curve of genus 7 on \(X \).

4. Strategy for the proof of the main theorem

Let \(X \) be a nodal hyperplane section of \(\mathbf{LG}(3, 6) \), and let \(\tilde{X} \to X \) be the blowup of \(X \) at the node \(u \) with exceptional divisor \(Q \), then we want to construct a rank 2 vector bundle \(E_X \) on \(\tilde{X} \) with
\[
h^0(\tilde{X}, E_X) = 6 \quad \text{and} \quad \det(E_X) = \mathcal{O}_X(H - Q)
\]
To construct the rank 2 vector bundle, let us first look at a simpler example.

Example: Let
\[
u \in Z = \mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1 \subset \mathbf{P}^7
\]
Then the projection \(Z_u \) of \(Z \) from \(u \) is a linear section of the Grassmannian \(\mathbf{G}(2, 5) \)

Let \(\tilde{X} \to X \) be the blowup centered at \(u \) with exceptional divisor \(E \). Consider
\[
F_X = L_1 \oplus L_2 \oplus L_3
\]
where \(L_i \) is the pullback of \(\mathcal{O}_{\mathbf{P}^1}(1) \) from the \(i \)-th factor.

Let
\[
s_u \in H^0(X, F_X) \quad \text{s.t.} \quad V(s_u) = u,
\]
and the corresponding section
\[
s' \in H^0(X, F_{\tilde{X}}(-E)) \quad \text{s.t.} \quad V(s') = 0.
\]
The exterior multiplication with \(s' \) defines a surjective map
\[
\wedge s' : \wedge^2 F_{\tilde{X}}(-E) \to \wedge^3 F_{\tilde{X}}(-2E)
\]
that fits into an exact sequence
\[
0 \to F_u \to \wedge^2 F_{\tilde{X}}(-E) \to \wedge^3 F_{\tilde{X}}(-2E) \to 0,
\]
where \(F_u \) is a rank 2 vector bundle on \(\tilde{X} \).
It is now easy to check that

\[h^0(\tilde{X}, F_u) = 5 \quad \text{and} \quad \det(F_u) = \mathcal{O}_{\tilde{X}}(H - E), \]

and that the global sections of \(\wedge^2 F_u \) defines embedding

\[Z_u \to G(2, 5). \]

Back to \(LG(3, 6) \):

Let \(V = \mathbb{C}^6 \) be a 6-dimensional complex vector space, and let \(\alpha \in \wedge^2 V^* \) be a non-degenerate 2-form. Then

\[L_\alpha : V \to V^* \quad v \mapsto \alpha(v, -) \]

is a correlation which induces isomorphisms

\[L_\alpha : \wedge^3 V \to \wedge^3 V^*, \]

and

\[L_\alpha : V(14) \to V(14)^*, \]

where

\[V(14) := \{ w \in \wedge^3 V | \alpha(w) = 0 \} \subset \wedge^3 V \]

and

\[V(14)^* := L_\alpha(V(14)) = \{ \omega \in \wedge^3 V^* | \omega \wedge \alpha = 0 \} \subset \wedge^3 V^*. \]

The Lagrangian Grassmannian \(LG = LG(3, 6) \) is

\[\dim LG(3, 6) = 6 \quad \text{and} \quad LG(3, 6) = \mathbb{P}(V(14)) \cap G(3, V) \subset \mathbb{P}(\wedge^3 V). \]

We set \(LG^* = L_\alpha(LG) \subset \mathbb{P}(V(14)^*) \).

Consider a Lagrangian subspace \(U \subset V \) and its orthogonal subspace \(U^\perp \subset V^* \). In the universal sequence on \(G \)

\[0 \to U \to V \otimes \mathcal{O}_G \to Q \to 0, \]

the restriction of the quotient bundle to \(LG(3, 6) \) is naturally isomorphic to \(U^* \), induced by \(L_\alpha : U \to U^\perp \).

So the universal exact sequence on \(LG \) is

\[0 \to U \to V \otimes \mathcal{O}_{LG} \to U^* \to 0. \]

In particular the tangent bundle \(TLG \) becomes the subbundle of

\[\text{Hom}(U, U^*) = U^* \otimes U^* \]

consisting of symmetric tensors, i.e.

\[TLG = \text{Sym}^2 U^*. \]

Let \(U \) be a Lagrangian subspace, let \(u = [U] \in LG \), and let \(u^* = L_\alpha(u) \). Then \(L_\alpha \) defines a natural isomorphism

\[TLG_u \to TLG^*_u. \]
To a point in the tangentspace of LG^* at u^* we may therefore associate a quadratic form:

$$\omega \in T_{LG^*}u^* \mapsto q_\omega \in \text{Sym}^2 U^*.$$

The hyperplane H_ω in $P(V(14))$ defined by ω is tangent at u, so the hyperplane section of $H_\omega \cap LG$ is singular at u. The hyperplane section is nodal if and only if q_ω has maximal rank (3).

Fix $\omega \in \text{Sym}^2 U^*$, let X be the corresponding nodal hyperplane section

$$X = H_\omega \cap LG$$

with node at u, and let

$$\hat{X} \to X$$

be the blowup of X at the node u with exceptional divisor Q. We want to construct a rank 2 vector bundle E_X on \hat{X} with

$$h^0(\hat{X}, E_X) = 6 \quad \text{and} \quad \det(E_X) = \mathcal{O}_X(H - Q).$$

We restrict and pull back $\land^2 U^*$ to \hat{X}, and consider the map defined by exterior multiplication by a form $x \in U^\perp \subset V^*$:

$$m_x : \land^2 U^*(-Q) \to \land^3 U^*(-2Q) \cong \mathcal{O}_{\hat{X}}(H - 2Q),$$

where $U^\perp = L_\alpha(U) \subset V^*$ is the Lagrangian subspace represented by u^*. The kernel

$$E'_x := \ker m_x$$

is our first candidate for a rank 2 vector bundle on \hat{X}.

E'_x is a rank 2 vector bundle if the map m_x is surjective. In fact the multiplication by x is surjective wherever x is nonzero, i.e. outside a locus of codimension 3. Thus we have an exact sequence

$$0 \to E'_x \to \land^2 U^*(-Q) \to \mathcal{O}_{\hat{X}}(H - 2Q) \to N_x \to 0,$$

where the cokernel sheaf N_x has support in codimension 3. The kernel sheaf E'_x is therefore torsion free and of rank 2 outside this locus.

The double dual

$$E_X = E'_x^{**}$$

is a rank 2 vector bundle on \hat{X}. By the defining exact sequence it has determinant $\mathcal{O}_{\hat{X}}(H - Q)$, but the problem is to get $h^0(\hat{X}, E_X) = 6$.

$$H^0(\hat{X}, E_X) = H^0(\hat{X}, E'_x)$$

so the theorem follows from

Lemma. $h^0(\hat{X}, E'_x) = 6$ if and only if $q_\omega(L_\alpha^{-1}(x)) = 0$.

We consider the map on global section defined by the multiplication by x:

$$m_x : \land^2 U^*(-Q) \to \mathcal{O}_{\hat{X}}(H - 2Q).$$

Decompose

$$V = U \oplus U_1, \quad V^* = U^\perp \oplus U_1^\perp$$
with U_1 also Lagrangian. Consider the corresponding decompositions of $\wedge^2 V^*$ and $\wedge^3 V^*$, then

$$V^*(14) \cap \wedge^2 U^\perp \otimes U_1^\perp + \wedge^3 U^\perp \cong \text{Sym}^2 U^* \oplus \wedge^3 U^\perp.$$

Since Q is the exceptional divisor over the point $u = [U]$, we get a natural surjection

$$\text{Sym}^2 U^* \oplus \wedge^3 U^\perp \to H^0(\mathcal{O}_X(H - 2Q)).$$

The kernel is generated by $\omega \in \text{Sym}^2 U^*$, so $h^0(X, \mathcal{O}_X(H - 2Q)) = 6$.

Similarly there is a surjection

$$U^\perp \otimes U_1^\perp + \wedge^3 U^\perp \to H^0(\wedge^2 U^*(-Q)),$$

with 12-dimensional domain, whose kernel is generated by α so

$$h^0(\wedge^2 U^*(-Q)) = 11.$$

The subspace

$$U_\alpha = \{ \eta = \alpha \wedge y + \beta \wedge x | \eta \wedge \alpha = 0 \} \subset V^*(14) \cap \wedge^2 U^\perp \otimes U_1^\perp + \wedge^3 U^\perp$$

has dimension 6. The image of the map m_α on global sections is nothing but the projection of U_α from the form ω. This all fits in the following commutative diagram of vector spaces:

\[
\begin{array}{c}
\begin{array}{c}
\langle \alpha \rangle \\
\downarrow \\
\langle \omega \rangle \\
\downarrow \\
U^\perp \otimes U_1^\perp + \wedge^3 U^\perp \\
\downarrow \\
0 \\
\end{array}
\end{array}
\begin{array}{c}
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
H^0(E_\alpha) \\
H^0(\wedge^2 U^*(-Q)) \\
H^0(\mathcal{O}_X(H - 2Q)) \\
0 \\
\end{array}
\end{array}
\]

Therefore m_α is not surjective on global sections if and only if ω is an element of U_α.

It is now a straightforward computation in local coordinates to show that:

$$\omega \in U_\alpha \text{ if and only if } q_\omega(L_\alpha^{-1}(x)) = 0.$$

Q.E.D.

Remark The vector bundle E_X is independent of which $x \in U^\perp$ we choose, as long as $q_\omega(L_\alpha^{-1}(x)) = 0$. Furthermore the fact that X was a nodal hyperplane section played a role in the proof only to produce enough global sections for E_X.

Problem: Prove an analogue of the main theorem in the cases $g = 7, 8$.

References

