ALGEBRAIC DEGREE OF POLYNOMIAL OPTIMIZATION

JIAWANG NIE AND KRISTIAN RANESTAD

Abstract. Consider the polynomial optimization problem whose objective and constraints are all described by multivariate polynomials. Under some genericity assumptions, we prove that the optimality conditions always hold on optimizers, and the coordinates of optimizers are algebraic functions of the coefficients of the input polynomials. We also give a general formula for the algebraic degree of the optimal coordinates. The derivation of the algebraic degree is equivalent to counting the number of all complex critical points. As special cases, we obtain the algebraic degrees of quadratically constrained quadratic programming (QCQP), second order cone programming (SOCP) and p-th order cone programming (POCP), in analogy to the algebraic degree of semidefinite programming [9].

1. Introduction

Consider the optimization problem

$$\begin{cases} \min_{x \in \mathbb{R}^n} & f_0(x) \\ \text{s.t.} & f_i(x) = 0, \ i = 1, \ldots, m_e \\ & f_i(x) \geq 0, \ i = m_e + 1, \ldots, m \end{cases}$$

(1.1)

where the f_i are multivariate polynomial functions in $\mathbb{R}[x]$ (the ring of polynomials in $x = (x_1, \ldots, x_n)$ with real coefficients). The recent interest on solving polynomial optimization problems [7, 8, 11, 12] by using semidefinite relaxations or other algebraic methods motivates this study of the algebraic properties of the polynomial optimization problem (1.1). A fundamental question regarding (1.1) is how the optimal solutions depend on the input polynomials f_i. When the optimality condition holds and the critical equations of (1.1) have finitely many complex solutions, the optimal solutions are algebraic functions of the coefficients of the polynomials f_i, in particular, the coordinates of optimal solutions are roots of some univariate polynomials whose coefficients are functions of the input data. An interesting and important problem in optimization theory is to find the degrees of these algebraic functions as functions of the degrees of the f_i, which amounts to computing the number of complex solutions to the critical equations of (1.1). We begin our discussion with some special cases.

The simplest case of (1.1) is linear programming (LP), when all the polynomials f_i have degree one. In this case, the problem (1.1) has the form (after removing the linear equality constraints)

$$\begin{cases} \min_{x \in \mathbb{R}^n} & c^T x \\ \text{s.t.} & Ax \geq b \end{cases}$$

(1.2)

where c, A, b are matrices or vectors of appropriate dimensions. The feasible set of (1.2) is now a polyhedron described by some linear inequalities. As is well-known, if the polyhedron has a vertex and (1.2) has an optimal solution, then an optimizer x^* of (1.2) occurs at a vertex. So x^*
can be determined by the linear system consisting of the active constraints. When the objective
$c^T x$ is changing, the optimal solution might move from one vertex to another vertex. So the
optimal solution is a piecewise linear fractional function of the input data (c, A, b). When the
c, A, b are all rational, an optimal solution must also be rational, and hence its algebraic degree
is one.

A more general convex optimization which is a proper generalization of linear programming
is semidefinite programming (SDP). It has the standard form

$$
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad c^T x \\
\text{s.t.} & \quad A_0 + \sum_{i=1}^n x_i A_i \succeq 0
\end{align*}
$$

(1.3)

where c is a constant vector and the A_i are constant symmetric matrices. The inequality $X \succeq 0$
means the matrix X is positive semidefinite. Recently, Nie et al. [9] studied the algebraic
properties of semidefinite programming. When c and A_i are generic, the optimal solution x^* of
(1.3) is shown in [9] to be a piecewise algebraic function of c and A_i. Of course, the constraint of
(1.3) can be replaced by the nonnegativity of all the principle minors of the constraint matrix,
and hence (1.3) becomes a special case of (1.1). However, the problem (1.3) has very special
nice properties, e.g., it is a convex program and the constraint matrix is linear with respect to
x. Interestingly, if c and A_i are generic, the degree of each piece of this algebraic function only
depends on the rank of the constraint matrix at the optimal solution. A formula for this degree
is given in [13, Theorem 1.1].

Another optimization problem frequently used in statistics and biology is the Maximum Like-
lihood Estimation (MLE) problem. It has the standard form

$$
\max_{x \in \Theta} \quad p_1(x)^{u_1} p_2(x)^{u_2} \cdots p_m(x)^{u_m}
$$

(1.4)

where Θ is an open subset of \mathbb{R}^n, the p_i are polynomials such that $\sum_i p_i = 1$, and the u_i
are given positive integers. The optimizer x^* is an algebraic function of (u_1, \ldots, u_n). This problem
has recently been studied and a formula for the degree of this algebraic function has been found
(cf. [1, 6]).

In this paper we consider the general optimization problem (1.1) when the polynomials
f_0, f_1, \ldots, f_m define a complete intersection, i.e., their common set of zeros has codimension
m + 1 (see the appendix for the definition of complete intersection). We show that an optimal
solution is an algebraic function of the input data. We call the degree of this algebraic function
the algebraic degree of the polynomial optimization problem (1.1). Equivalently, the algebraic
degree equals the number of complex solutions to the critical equations of (1.1) when this number
is finite. Under some genericity assumptions, we give in this paper a formula for the algebraic
degree of (1.1).

Throughout this paper, the words “generic” and “genericity” are frequently used. We shall
use them as conditions on the input data for some property to hold, and they shall mean for all
but a set of Lebesgue measure zero in the space of data.

The algebraic degree of polynomial optimization (1.1) addresses the computational complexity
at a fundamental level. To solve (1.1) exactly essentially reduces to solving some univariate
polynomial equations whose degrees are the algebraic degree of (1.1). As we will see, the
algebraic degree grows rapidly with the degrees of the f_i.

The paper is organized as follows: In Section 2 we derive a general formula for the algebraic
degree, and in Section 3 we give the formulae of the algebraic degrees for special cases like
quadratically constrained quadratic programming, second order cone programming, and p-th
order cone programming. The paper is concluded with an appendix which introduces some basic concepts and facts in algebraic geometry that is necessary for this paper.

2. A GENERAL FORMULA FOR THE ALGEBRAIC DEGREE

In this section we will derive a formula for the algebraic degree of the polynomial optimization problem (1.1) when the polynomials define a complete intersection. Suppose the polynomial \(f_i \) has degree \(d_i \). Let \(x^* \) be a local or global optimal solution of (1.1). At first, we assume that the polynomials are general and all the inequality constraints are active, i.e., \(m_e = m \). When \(m = n \), by Corollary A.2, the feasible set of (1.1) is finite and hence the algebraic degree is equal to the product of the degrees of the polynomials, \(d_1 d_2 \cdots d_m \). So, from now on, assume \(m < n \). If the variety

\[
V = \{ x \in \mathbb{C}^n : f_1(x) = \cdots = f_m(x) = 0 \}
\]

is smooth at \(x^* \), i.e., the gradient vectors

\[
\nabla f_1(x^*), \nabla f_2(x^*), \ldots, \nabla f_m(x^*)
\]

are linearly independent, then the Karush-Kuhn-Tucker (KKT) condition holds at \(x^* \) (Chapter 12 in [10]). In fact,

\[
\begin{aligned}
\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) &= 0 \\
f_1(x^*) = \cdots = f_m(x^*) &= 0
\end{aligned}
\]

(2.1)

where \(\lambda_1^*, \ldots, \lambda_m^* \) are Lagrange multipliers for the constraints \(f_1(x) = 0, \ldots, f_m(x) = 0 \). Thus the optimal solution \(x^* \) and the Lagrange multipliers \(\lambda^* = (\lambda_1^*, \ldots, \lambda_m^*) \) are determined by the polynomial system (2.1). The set of complex solutions to (2.1) forms the locus of complex critical points of (1.1). If the system (2.1) is zero-dimensional, then, by elimination theory (cf. [2, Chapter 3]), the coordinates of \(x^* \) are algebraic functions of the coefficients of the polynomials \(f_i \). Each coordinate \(x_i^* \) can be determined by some univariate polynomial equation like

\[
(x_i^*)^{\delta_i} + a_1(x_i^*)^{\delta_i-1} + \cdots + a_{\delta_i-1} x_i^* + a_{\delta_i} = 0
\]

where \(a_j \) are rational functions of the coefficients of the \(f_i \). Interestingly, when \(f_1, f_2, \ldots, f_m \) are generic, the KKT condition always holds at any optimal solution, and the degrees \(\delta_i \) are equal to each other. This common degree counts the number of complex solutions to (2.1), i.e., the cardinality of the complex critical locus of (1.1) or, by definition, the algebraic degree of the polynomial optimization (1.1). We will derive a general formula for this degree.

We turn to complex projective spaces, where the above question may be answered as a problem in intersection theory. For this we translate the optimization problem to a relevant intersection problem. Let \(\mathbb{P}^n \) be the \(n \)-dimensional complex projective space. A point \(\hat{x} \in \mathbb{P}^n \) has homogeneous coordinates \([x_0, x_1, \ldots, x_n]\) unique up to multiplication by a common nonzero scalar. A variety in \(\mathbb{P}^n \) is a set of points \(\hat{x} \) that satisfy a collection of homogeneous polynomial equations in \([x_0, x_1, \ldots, x_n]\). Let \(f_i \), defined by \(\hat{f}_i(\hat{x}) = x_0^{d_i} f_i(x_1/x_0, \ldots, x_n/x_0) \), be the homogenization of \(f_i \). Define \(\mathcal{U} \) to be the projective variety

\[
\mathcal{U} = \{ \hat{x} \in \mathbb{P}^n : \hat{f}_1(\hat{x}) = \hat{f}_2(\hat{x}) = \cdots = \hat{f}_m(\hat{x}) = 0 \}
\]

in \(\mathbb{P}^n \). See the appendix for more about projective spaces and projective varieties. Next, let

\[
\nabla \hat{f}_i = \begin{bmatrix} \frac{\partial}{\partial x_0} \hat{f}_i & \frac{\partial}{\partial x_1} \hat{f}_i & \cdots & \frac{\partial}{\partial x_n} \hat{f}_i \end{bmatrix}^T
\]
be the gradient vector with respect to the homogeneous coordinates. Notice that
\(\left(\frac{\partial}{\partial x_j} \tilde{f}_i(\tilde{x}) = x_0^{d_i-1} \frac{\partial}{\partial x_j} f_i(x_1/x_0, \ldots, x_n/x_0) \right) \), so the homogenization of \(\nabla f_i \) coincides with the last \(n \) coordinates \(\nabla \tilde{f}_i \) in \(\nabla \tilde{f}_i \).

In this homogeneous setting, the optimality condition for problem (1.1) with \(m = m_e \) is

\[
(2.2) \quad \{(x, \mu) \in \mathbb{C}^n \times \mathbb{C} : \quad \tilde{f}_0(\tilde{x}) - \mu x_0^{d_0} = \tilde{f}_1(\tilde{x}) = \cdots = \tilde{f}_m(\tilde{x}) = 0 \quad \text{rank} \left[\nabla (\tilde{f}_0(\tilde{x}) + \mu x_0^{d_0}), \nabla (\tilde{f}_1(\tilde{x})), \ldots, \nabla (\tilde{f}_m(\tilde{x})) \right] \leq m \}
\]

where \(\mu \in \mathbb{R} \) is the critical value. Let \(\tilde{x}^* \in \{x_0 \neq 0\} \) be a critical point, i.e., a solution to (2.2). We may eliminate \(\mu \) by asking that the matrix

\[
\begin{bmatrix}
\tilde{f}_0(\tilde{x}^*) & \tilde{f}_1(\tilde{x}^*) & \cdots & \tilde{f}_m(\tilde{x}^*) \\
x_0^{d_0} & 0 & \cdots & 0
\end{bmatrix}
\]

have rank at most one and that the matrix

\[
\begin{bmatrix}
\frac{\partial}{\partial x_0} \tilde{f}_0(\tilde{x}^*) & \frac{\partial}{\partial x_0} \tilde{f}_1(\tilde{x}^*) & \cdots & \frac{\partial}{\partial x_0} \tilde{f}_m(\tilde{x}^*) \\
(0 - 1)x_0^{d_0} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial}{\partial x_n} \tilde{f}_0(\tilde{x}^*) & \frac{\partial}{\partial x_n} \tilde{f}_1(\tilde{x}^*) & \cdots & \frac{\partial}{\partial x_n} \tilde{f}_m(\tilde{x}^*)
\end{bmatrix}
\]

have rank at most \(m + 1 \). Since \(x_0 \neq 0 \), the first condition implies that

\(\tilde{x}^* \in \mathcal{U} = \{\tilde{f}_1(\tilde{x}) = \cdots = \tilde{f}_m(\tilde{x}) = 0\} \).

Similarly, the rank of the second matrix equals \(m + 1 \) only if the submatrix

\[
M = \begin{bmatrix}
\frac{\partial}{\partial x_1} \tilde{f}_0(\tilde{x}) & \frac{\partial}{\partial x_1} \tilde{f}_1(\tilde{x}) & \cdots & \frac{\partial}{\partial x_1} \tilde{f}_m(\tilde{x}) \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial}{\partial x_n} \tilde{f}_0(\tilde{x}) & \frac{\partial}{\partial x_n} \tilde{f}_1(\tilde{x}) & \cdots & \frac{\partial}{\partial x_n} \tilde{f}_m(\tilde{x})
\end{bmatrix}
\]

has rank \(m \). Therefore we define \(\mathcal{W} \) to be the projective variety in \(\mathbb{P}^n \)

\[
\mathcal{W} = \{\tilde{x} \in \mathbb{P}^n : \text{all the } (m + 1) \times (m + 1) \text{ minors of } M \text{ vanish} \},
\]

i.e., the locus of points where the rank of \([\nabla \tilde{f}_0(\tilde{x}), \ldots, \nabla \tilde{f}_m(\tilde{x})] \) is less than or equal to \(m \).

Proposition 2.1. Consider the polynomial optimization problem (1.1), and assume that \(m = m_e \), i.e., that all constraints are active. If the polynomials \(f_1, \ldots, f_m \) are generic, then we have:

(i) The affine variety \(V = \{x \in \mathbb{C}^n : f_1(x) = \cdots = f_m(x) = 0\} \) is smooth;

(ii) The KKT condition holds at any optimal solution \(x^* \);

(iii) If \(f_0 \) is also generic, the affine variety

\[
K = \left\{ x \in V : \exists \lambda_1, \ldots, \lambda_m \text{ such that } \nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) = 0 \right\}
\]

defined by the KKT system (2.1) is finite.

Proof. (i) When the polynomials \(f_1, \ldots, f_m \) are generic, then their homogenizations \(\tilde{f}_1, \ldots, \tilde{f}_m \) are generic, so by Corollary A.2, they define a smooth complete intersection variety \(\mathcal{U} \) of codimension \(m \). In particular the affine subvariety \(V = \mathcal{U} \cap \{x_0 \neq 0\} \) is smooth. Therefore the
Jacobian matrix
\[
\begin{bmatrix}
\frac{\partial}{\partial x_0} \tilde{f}_1(\tilde{x}) & \frac{\partial}{\partial x_n} \tilde{f}_2(\tilde{x}) & \ldots & \frac{\partial}{\partial x_n} \tilde{f}_m(\tilde{x}) \\
\frac{\partial}{\partial x_1} \tilde{f}_1(\tilde{x}) & \frac{\partial}{\partial x_1} \tilde{f}_2(\tilde{x}) & \ldots & \frac{\partial}{\partial x_1} \tilde{f}_m(\tilde{x}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial}{\partial x_n} \tilde{f}_1(\tilde{x}) & \frac{\partial}{\partial x_n} \tilde{f}_2(\tilde{x}) & \ldots & \frac{\partial}{\partial x_n} \tilde{f}_m(\tilde{x})
\end{bmatrix}
\]
has full rank at \(\tilde{x} \). Furthermore, the tangent space of \(V \) at \(\tilde{x} \) is, of course, not contained in the hyperplane \(x_0 = 0 \) at infinity, so the column \([1 \ 0 \ \ldots \ 0]^T\) is not in the column space of the matrix at \(\tilde{x} \). Thus already the submatrix
\[
\begin{bmatrix}
\frac{\partial}{\partial x_1} \tilde{f}_1(\tilde{x}) & \frac{\partial}{\partial x_1} \tilde{f}_2(\tilde{x}) & \ldots & \frac{\partial}{\partial x_1} \tilde{f}_m(\tilde{x}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial}{\partial x_n} \tilde{f}_1(\tilde{x}) & \frac{\partial}{\partial x_n} \tilde{f}_2(\tilde{x}) & \ldots & \frac{\partial}{\partial x_n} \tilde{f}_m(\tilde{x})
\end{bmatrix}
\]
has full rank, i.e., the gradients
\[
\nabla \tilde{f}_1(\tilde{x}), \ldots, \nabla \tilde{f}_m(\tilde{x})
\]
are linearly independent at \(\tilde{x} \in V \).

(ii) An optimizer \(x^* \) must belong to \(V \), and by (i), the gradients
\[
\nabla f_1(x^*), \nabla f_2(x^*), \ldots, \nabla f_m(x^*)
\]
are linearly independent. Hence the KKT condition holds at \(x^* \) (cf. [10, Chapter 12]).

(iii) We claim that the intersection of the complete intersection \(U \) and the variety \(W \) where the Jacobian matrix \(M \) has rank at most \(m \) is finite. Since our critical points \(V \cap W \) form a subset of \(U \cap W \), (iii) would follow. The codimension of \(U \) is \(m \), and this complete intersection variety is smooth, so the matrix \(M \) has, by (i), rank at least \(m \) at each point of \(U \). The variety \(U \cap \{ f_0(\tilde{x}) = 0 \} \) is, by Bertini’s Theorem A.1, also smooth. So as above, the matrix \(M \) has full rank at the points in the affine part \(V \cap \{ f_0(x) = 0 \} \). On the other hand, \(M \) is the Jacobian matrix of the variety \(U \cap \{ \tilde{f}_0(\tilde{x}) = 0 \} \). This variety is again smooth and has codimension \(m + 1 \) in the hyperplane \(\{ x_0 = 0 \} \), so \(M \) must have full rank \(m + 1 \) on \(U \cap \{ \tilde{f}_0(\tilde{x}) = 0 \} \). Therefore the variety \(W \), where \(M \) has rank at most \(m \), cannot intersect \(U \cap \{ \tilde{f}_0(\tilde{x}) = 0 \} \). But Bézout’s Theorem A.3 says that if the sum of the codimensions of two varieties in \(\mathbb{P}^m \) does not exceed \(n \), then they must intersect. In particular, any curve in \(U \) intersects the hypersurface \(\{ \tilde{f}_0(\tilde{x}) = 0 \} \).

By Proposition 2.1, for generic polynomials \(f_1, \ldots, f_m \), the optimal solutions of (1.1) can be characterized by the KKT system (2.1), and for generic objective function \(f_0 \) the KKT variety \(K \) is finite. Geometrically, the algebraic degree of the optimization problem (1.1), under the genericity assumption, is equal to the number of distinct complex solutions of KKT, i.e., the cardinality of the variety \(K \). We showed above that \(K \) coincides with \(V \cap W \). The variety \(U \cap W \) above clearly contains \(K \). On the other hand, \(U \cap W \) is finite and does not intersect the hyperplane \(\{ x_0 = 0 \} \) when the polynomials \(f_i \) are generic. Since \(U \setminus V = U \cap \{ x_0 = 0 \} \) and
When $m = m_e$, i.e., all contraints are active. If the polynomials f_0, f_1, \ldots, f_m are generic, then the algebraic degree of (1.1) is equal to
deg(\mathcal{U} \cap \mathcal{W}) = d_1d_2 \cdots d_m S_{n-m}(d_0 - 1, d_1 - 1, \ldots, d_m - 1).

Furthermore, if the polynomials f_0, f_1, \ldots, f_m are not generic, but the system (2.1) is still zero-dimensional, then the above formula is an upper bound for the algebraic degree of (1.1).

\textbf{Proof.} When f_1, f_2, \ldots, f_m are generic, \mathcal{U} is a smooth complete intersection of codimension m. Its degree $\deg(\mathcal{U}) = d_1d_2 \cdots d_m$ by Corollary A.4. When f_0 is also generic, \mathcal{W} has codimension $n-m$ and intersects \mathcal{U} in a finite set of points according to Proposition 2.1. If the intersection $\mathcal{U} \cap \mathcal{W}$ is transversal (i.e., smooth) and hence consists of a collection of simple points, then the degree $\deg(\mathcal{U} \cap \mathcal{W})$ counts the number of intersection points of $\mathcal{U} \cap \mathcal{W}$, and hence the cardinality of the KKT variety K, which is also the number of complex solutions to the KKT system (2.1) for problem (1.1).

To show that this intersection is transversal, we consider the subvariety X in $\mathbb{P}^n \times \mathbb{P}^m$ defined by the m equations $\tilde{f}_1(\tilde{x}) = \tilde{f}_2(\tilde{x}) = \cdots = \tilde{f}_m(\tilde{x}) = 0$ and the n equations $M \cdot (\lambda_0, \ldots, \lambda_m)^T = 0$, where the λ_i are homogeneous coordinate functions in the second factor. The image under the projection of the variety X defined by these $m + n$ polynomials into the first factor coincides with the finite set $\mathcal{U} \cap \mathcal{W}$. Since M has rank at least m at every point of \mathcal{U}, there is a unique $\tilde{\lambda} = (\lambda_0, \ldots, \lambda_m) \in \mathbb{P}^m$ for each point $\tilde{x} \in \mathcal{U} \cap \mathcal{W}$ such that $(\tilde{x}, \tilde{\lambda})$ lies in X. Therefore the variety X is a complete intersection in $\mathbb{P}^n \times \mathbb{P}^m$. When the coefficients of f_0 vary, it is easy to check that this complete intersection does not have any fixed point. This is because when the coefficients of f_0 vary, the common zeros of the n equations $M \cdot (\lambda_0, \ldots, \lambda_m)^T = 0$ vary without fixed points. So Bertini’s Theorem A.1 applies to conclude that for generic f_0 this complete intersection is transversal, which implies that the intersection $\mathcal{U} \cap \mathcal{W}$ in \mathbb{P}^n is also transversal.

Since the intersection $\mathcal{U} \cap \mathcal{W}$ is finite, i.e., it has codimension in \mathbb{P}^n equal to the sum of the codimensions of \mathcal{U} and \mathcal{W}, Bézout’s Theorem A.3 applies to compute the degree
\[\deg(\mathcal{U} \cap \mathcal{W}) = \deg(\mathcal{U}) \cdot \deg(\mathcal{W}).\]

To complete the computation, we therefore need to find $\deg(\mathcal{W})$. Since the codimension of \mathcal{W} equals the codimension of the variety defined by the $(m+1) \times (m+1)$ minors of a general $n \times (m+1)$ matrix with polynomial entries, the formula in Proposition A.6 applies to compute this degree: The degree of \mathcal{W} equals the degree of the determinantal variety of $n \times (m+1)$ matrices of rank at most m in the space of matrices whose entries in the i-th column are generic forms of degree $d_i - 1$, i.e., $S_{n-m}(d_0 - 1, d_1 - 1, \ldots, d_n - 1)$. Therefore the degree formula for the critical locus $\mathcal{U} \cap \mathcal{W}$ and hence the algebraic degree of (1.1) is proved.

Assume that the polynomials f_i are not generic, while the system (2.1) is still zero-dimensional. Then a perturbation argument can be applied. Let x^* be one fixed optimal solution of optimization problem (1.1). Apply a generic perturbation $\Delta_x f_i$ to each f_i so that $(f_i + \Delta_x f_i)(x)$ is a generic polynomial and the coefficients of $\Delta_x f_i$ tends to zero as $\epsilon \to 0$. Then one optimal solution
$x^*(\epsilon)$ of the perturbed optimization problem (1.1) tends to x^*. By genericity of $(f_i + \Delta i f_i)(x)$, we know
\[a_0(\epsilon)(x^i_\epsilon)^\delta + a_1(\epsilon)(x^i_\epsilon)^{\delta-1} + \cdots + a_{\delta-1}(\epsilon)x^i_\epsilon(\epsilon) + a_\delta(\epsilon) = 0. \]
Here $\delta = d_1 d_2 \cdots d_m S_{n-m}(d_0 - 1, d_1 - 1, \ldots, d_m - 1)$ and $a_j(\epsilon)$ are rational functions of the coefficients of f_i and $\Delta i f_i$. Without loss of generality, we may normalize $a_j(\epsilon)$ such that
\[\max_{0 \leq j \leq \delta} |a_j(\epsilon)| = 1. \]
When $\epsilon \to 0$, by continuity, x^i_ϵ is a root of some univariate polynomial whose degree is at most δ and coefficients are rational functions of the coefficients of polynomials f_0, f_1, \ldots, f_m.

Remark 2.3. The genericity assumption in Theorem 2.2 is used to conclude that the critical locus $U \cap V$ is a smooth zero-dimensional variety, i.e., a set of points, by appealing to Bertini’s Theorem A.1, while Bézout’s Theorem A.3 counts its degree, i.e., the number of points. So both theorems are needed to get the sharp degree bound. A sufficient condition for Bertini’s Theorem to apply can be expressed in terms of the sets U_i of polynomials in which the polynomials f_0, f_1, \ldots, f_m can be freely chosen. First, assume that the generic polynomial in each U_i is reduced, and that U_i intersects every Zariski open set of a complex affine space V_i. Second, assume that the set of common zeros of all the polynomials in U_i is empty. Then Bertini’s Theorem applies. In fact, the polynomials f_i for which the conclusion of Bertini’s Theorem fails are contained in a complex subvariety of V_i.

If some of the polynomials f_i are reducible, then we may replace f_i by the factor of least degree that contains the optimizer. The original problem (1.1), is then modified to one with a smaller algebraic degree. This is relevant in the above context, if the generic polynomial in U_i is reducible.

Example 2.4. Consider the following special case of problem (1.1)
\[
\begin{align*}
 f_0(x) &= 21x_2^3 - 92x_1x_2^3 - 70x_2^2x_3 - 95x_1^4 - 47x_1x_2^4 + 51x_2^2x_3^4 + 47x_3^2 + 5x_1x_2^3 + 5x_1x_2^3 + 33x_3^3, \\
 f_1(x) &= 88x_1 + 64x_1x_2 - 22x_1x_3 - 37x_2^2 + 68x_1x_2^3 - 84x_3^4 + 80x_2^3x_3 + 23x_2^2x_3^2 - 20x_2x_3^2 - 7x_3, \\
 f_2(x) &= 31 - 45x_1 + 24x_1x_2 - 75x_2^3 + 16x_3^4 - 44x_1x_3 - 70x_1x_2^2 - 23x_1x_2x_3 - 67x_2^2x_3 - 97x_2x_3^2.
\end{align*}
\]
Here $m = m_e = 2$. By Theorem 2.2, the algebraic degree of the optimal solution is bounded by
\[
4 \cdot 3 \cdot S_1(4, 3, 2) = 12 \cdot (4 + 3 + 2) = 108.
\]
A symbolic computation over the finite field $\mathbb{Z}/17\mathbb{Z}$, using *Singular* [5], shows the optimal coordinate x_1 is a root of a univariate polynomial of degree 108. In this case the degree bound 108 is sharp. We were not able to find the exact coefficients of this univariate polynomial in the rational field \mathbb{Q}, since *Singular* could not complete the computation over \mathbb{Q}.

Now we consider the more general case when $m > m_e$, i.e., there are inequality constraints. Then a similar degree formula as in Theorem 2.2 can be obtained, as soon as the active set is identified.

Corollary 2.5. Consider the polynomial optimization problem (1.1). Let x^* be an optimizer and let $j_1, \ldots, j_k \subset \{m_e + 1, \ldots, m\}$ be the indices of the active set of inequality constraints. If every active f_i is generic, then the algebraic degree of x^* is
\[
d_1 \cdot d_2 \cdots d_m \cdot d_j_1 \cdots d_j_k \cdot S_{n-m_e-k}(d_0 - 1, d_1 - 1, \ldots, d_m - 1, d_j_1 - 1, \ldots, d_j_k - 1).
\]
If at least one of polynomials f_i is not generic and the system (2.1) is zero-dimensional, then the above formula is an upper bound for the algebraic degree.
Proof. Note that \(x^* \) is also an optimal solution of the polynomial optimization problem

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f_0(x) \\
\text{s.t.} & \quad f_i(x) = 0, \; i = 1, \ldots, m_e \\
& \quad f_i(x) = 0, \; i = j_1, \ldots, j_k
\end{align*}
\]

Hence the conclusion follows from Theorem 2.2. \(\square \)

3. SOME SPECIAL CASES

In this section we derive the algebraic degrees of some special polynomial optimization problems. The simplest special case is that all the polynomials \(f_i \) in (1.1) have degree one, i.e., (1.1) becomes a linear programming problem of the form (1.2). If the objective \(c \) is generic, precisely \(n \) constraints will be active. So the algebraic degree is \(S_{0}(0,0,\ldots,0) = 1 \). This is consistent with what we observed in the introduction. Now let us look at other special cases.

3.1. Unconstrained optimization

We consider the special case that the problem (1.1) has no constraints. It becomes an unconstrained optimization. The gradient of the objective vanishes at any optimal solution. By Theorem 2.2, the algebraic degree is bounded by \(S_{n}(d_0-1) = (d_0-1)^n \), which is exactly Bézout’s number for the gradient polynomial system \(\nabla f_0(x) = 0 \).

Since \(f_0 \) can be chosen freely among all polynomials of degree \(d_0 \), Remark 2.3 applies to show that the degree bound above is sharp.

Example 3.1. Consider the minimization of \(f_0(x) \) given by

\[
f_0 = x_1^4 + x_2^4 + x_3^4 + x_4^4 + x_2^3 + x_3^3 + x_4^3 - 13x_1^2 - 30x_1x_2 - 9x_1x_3 + 5x_1x_4 + 11x_2^2 - 3x_2x_3 - 20x_2x_4 - 13x_2x_3 - 9x_3^2 + x_1 - 2x_2 + 12x_3 - 13x_4.
\]

For the above polynomial, the algebraic degree of the optimal solution is \(3^4 = 81 \). A symbolic computation over the rational field \(\mathbb{Q} \), using Singular [5], shows that the optimal coordinate \(x_1 \) of \(x^* \) is a root of a univariate polynomial of degree 81:

\[
9671406556917033397649408x_1^{81} + 195845982777569926302400512x_1^{80} + \cdots
\]

\[
+ 38068577951137724978419521685033466020527544236947408128x_1
\]

\[
- 2957438647420262596596093352763852215662185651072180992.
\]

The degree bound 81 is sharp for this problem.

3.2. Quadratically constrained quadratic programming

Consider the special case that all the polynomials \(f_0, f_1, \ldots, f_m \) are quadratic. Then (1.1) becomes a quadratically constrained quadratic programming (QCQP) problem which has the standard form

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad x^T A_0 x + b_0^T x + c_0 \\
\text{s.t.} & \quad x^T A_i x + b_i^T x + c_i \geq 0, \; i = 1, \ldots, \ell.
\end{align*}
\]
Here \(A_i, b_i, c_i \) are matrices or vectors of appropriate dimensions. The objective and all the constraints are all quadratic polynomials. At an optimal solution, suppose \(m \leq \ell \) constraints are active. By Corollary 2.5, the algebraic degree is bounded by

\[
2^m \cdot S_{n-m}(1, 1, \ldots, 1) = 2^m \cdot \sum_{i_0+i_1+i_2+\cdots+i_m=n-m} 1 = 2^m \cdot \binom{n}{m}.
\]

The polynomials \(f_0, f_1, \ldots, f_m \) can be chosen freely in the space of quadratic polynomials, so Remark 2.3 applies to show that the degree bound above is sharp.

Example 3.2. Consider the polynomials

\[
f_0 = -20 - 27x_1^2 + 89x_1x_2 + 80x_1x_3 - 45x_1x_4 + 19x_1x_5 + 42x_1 - 13x_2^2 + 31x_2x_3 - 79x_2x_4 \\
+ 74x_2x_5 - 9x_2 + 56x_3^2 - 77x_3x_4 - 2x_3x_5 + 35x_3 + 40x_4^2 - 13x_4x_5 + 60x_4 + 58x_5^2 - 84x_5,
\]

\[
f_1 = 33 + 55x_1^2 - 41x_1x_2 + 33x_1x_3 - 61x_1x_4 + 96x_1x_5 + 12x_1 + 74x_2^2 - 90x_2x_3 - 57x_2x_4 \\
- 52x_2x_5 + 51x_2 + 15x_3^2 + 81x_3x_4 + 87x_3x_5 + 75x_3 - 10x_4^2 + 58x_4x_5 + 33x_4 + 83x_5^2 - 23x_5,
\]

\[
f_2 = 8 - 9x_1^2 + 56x_1x_2 - 24x_1x_3 + 81x_1x_4 + 85x_1x_5 - 99x_1 - 77x_2^2 - 75x_2x_3 + 2x_3 + 38x_4x_5 \\
+ 23x_2 - 97x_3^2 - 14x_3x_4 - 73x_3x_5 + 65x_4 + 3x_4^2 - 14x_4x_5 + 16x_4 + 9x_5^2 - 10x_5,
\]

\[
f_3 = 9 + 90x_1^2 - 94x_1x_2 - 22x_1x_3 - 24x_1x_4 + 78x_1 + 32x_2^2 - 48x_2x_3 - 6x_2x_4 + 80x_2x_5 - 18x_2 - 63x_3^2 \\
+ 66x_3x_4 - 13x_3x_5 + 88x_3 - 45x_4^2 - 92x_4x_5 - 69x_4 - 43x_5^2 + 32x_5.
\]

For the above polynomials, the QCQP problem is nonconvex. We consider those local optimal solutions for which all the three inequalities are active. By Corollary 2.5, the algebraic degree of this problem is bounded by \(2^m \binom{n}{m} = 80 \). A symbolic computation over the finite field \(\mathbb{Z}/17\mathbb{Z} \), using Singular [5], shows that the optimal coordinate \(x_1 \) is a root of a univariate polynomial of degree 80. The algebraic degree of this problem is 80 and the bound given by the formula (3.1) is sharp. For this example, we were also not able to find the exact coefficients of this univariate polynomial in the rational field \(\mathbb{Q} \), since Singular could not complete the computation over \(\mathbb{Q} \).

3.3. Second order cone programming

The second order cone programming (SOCP) problem has the standard form

\[
\min_{x \in \mathbb{R}^n} c^T x \\
\text{s.t.} \quad a_i^T x + b_i - \|C_i x + d_i\|_2 \geq 0, \quad i = 1, \ldots, \ell
\]

where \(c, a_i, b_i, C_i, d_i \) are matrices or vectors of appropriate dimensions. Let \(x^* \) be an optimizer. Since SOCP is a convex program, the \(x^* \) must also be a global solution. By removing the square root in the constraint, SOCP becomes the polynomial optimization problem

\[
\min_{x \in \mathbb{R}^n} c^T x \\
\text{s.t.} \quad (a_i^T x + b_i)^2 - (C_i x + d_i)^T (C_i x + d_i) \geq 0, \quad i = 1, \ldots, \ell.
\]

Without loss of generality, assume that the constraints with indices 1, 2, \ldots, \(m \) are active at \(x^* \). The objective is linear but the constraints are all quadratic. As we can see, the Hessian of the constraints have the special form \(a_i a_i^T - C_i^T C_i \). Let \(r_i \) be the number of rows of \(C_i \). When \(r_i = 1 \), the constraint \(a_i^T x + b_i - \|C_i x + d_i\|_2 \geq 0 \) is equivalent to two linear constraints

\[-(a_i^T x + b_i) \leq C_i x + d_i \leq a_i^T x + b_i.
\]
Thus, when every \(r_i = 1 \), the problem reduces to a linear programming problem and hence has algebraic degree one, because in this situation the polynomial \((a_i^T x + b_i)^2 - (C_i x + d_i)^2\) is reducible. When \(r_i \geq 2 \) and \(a_i, b_i, C_i, d_i \) are generic, the polynomial \((a_i^T x + b_i)^2 - (C_i x + d_i)^T (C_i x + d_i)\) is quadratic of rank \(r_i + 1 \) and hence irreducible. Without loss of generality, assume \(1 = r_1 = r_2 = \cdots = r_k < r_{k+1} \leq \cdots \leq r_m \). Then the problem (3.2) is reduced to

\[
\min_{x \in \mathbb{R}^n} \ c^T x \\
\text{s.t.} \quad a_i^T x + b_i + \sigma_i(C_i x + d_i) \geq 0, \ i = 1, \ldots, k \\
\quad \quad \quad (a_i^T x + b_i)^2 - (C_i x + d_i)^T (C_i x + d_i) \geq 0, \ i = k + 1, \ldots, m
\]

where the scalar \(\sigma_i \) is chosen such that \(a_i^T x^* + b_i + \sigma_i(C_i x^* + d_i) = 0 \). By Corollary 2.5, the algebraic degree of SOCP in this modified form is bounded by

\[
(3.3) \quad 2^{m-k} \cdot S_{n-m}(0, \ldots, 0, 1, \ldots, 1) = 2^{m-k} \cdot \sum_{i=k+1+i_{k+2}+\cdots+i_m=n-m} 1 = 2^{m-k} \cdot \binom{n-k-1}{m-k-1}.
\]

When \(k = m \), we have already seen that the algebraic degree is one.

For the sharpness of degree bound (3.3), we apply Bertini’s Theorem A.1 following Remark 2.3. For every \(i = k + 1, \ldots, m \), define the set \(U_i \) of polynomials as

\[
U_i = \left\{ (a_i^T x + b_i)^2 - \sum_{1 \leq j \leq r_i} \alpha_j^2 (C_i x + d_i)_j^2 : \alpha_1, \ldots, \alpha_r \in \mathbb{R} \right\}.
\]

Next, define complex affine spaces \(V_i \) as follows:

\[
V_i = \left\{ (a_i^T x + b_i)^2 - \sum_{1 \leq j \leq r_i} \beta_j (C_i x + d_i)_j^2 : \beta_1, \ldots, \beta_{r_i} \in \mathbb{C} \right\}, \ i = k + 1, \ldots, m.
\]

Then every set \(U_i \) intersects any Zariski open subset of the affine space \(V_i \). On the other hand the set of common zeros of the linear polynomials

\[
a_i^T x + b_i + \sigma_i(C_i x + d_i), \ i = 1, \ldots, k
\]

and all the polynomials in the union \(\bigcup_{i=k+1}^m V_i \) is contained in the set

\[
(3.4) \quad Z = \bigcap_{i=1}^k \left\{ x \in \mathbb{R}^n : a_i^T x + b_i + \sigma_i(C_i x + d_i) = 0 \right\} \bigcap_{i=k+1}^m \left\{ x \in \mathbb{R}^n : a_i^T x + b_i = 0, C_i x + d_i = 0 \right\}.
\]

Therefore, for generic choices \(a_i, b_i, C_i, d_i, \) if \(r_{k+1} + \cdots + r_m + m > n \), the set \(Z \) is empty. Hence Remark 2.3 applies to show that, for generic choices of \(c, a_i, b_i, C_i, d_i \) with \(r_{k+1} + \cdots + r_m + m > n \), the algebraic degree bound \(2^{m-k} \cdot \binom{n-k-1}{m-k-1} \) is sharp.
Example 3.3. Consider the SOCP defined by the polynomials

\[f_0 = -x_1 + 6x_2 + 13x_3 + 11x_4 + 8x_5, \]
\[f_1 = (11x_1 - 18x_2 - 4x_3 + 2x_4 - 12x_5 + 7)^2 - (-4x_1 - 10x_2 + 20x_3 - 4x_4 - 9x_5 + 3)^2 \]
\[- (5x_1 - 11x_2 + 8x_3 - 18x_4 + 11x_5 + 15)^2 - (21x_1 + 18x_2 - 12x_3 - 10x_4 - 8x_5 + 4)^2, \]
\[f_2 = (-5x_1 - 5x_2 - 7x_3 - 6x_4 + 4x_5 + 11)^2 - (x_1 - 2x_2 + 10x_3 - 21x_4 - 11)^2 \]
\[- (12x_1 + 3x_2 + 16x_3 + 4x_4 + x_5 + 9)^2 - (14x_1 + 20x_2 - 13x_3 - 7x_4 + 4x_5 + 2)^2, \]
\[f_3 = (x_1 - 8x_2 + 11x_3 - x_5 + 22)^2 - (2x_1 - x_2 + 3x_3 - x_4 - 25x_5 - 8)^2 \]
\[- (2x_1 - 17x_3 + 14x_4 + 4x_5 - 7)^2 - (x_1 + 12x_2 + 14x_3 - 6x_4 - 4x_5 - 10)^2. \]

There are no linear constraints. For this SOCP, all the three inequalities are active at the optimizer. All the matrices \(C_i \) have three rows. By formula (3.3), the algebraic degree of this problem is bounded by \(2^{\frac{3!}{2!}} = 48 \). A symbolic computation over the finite field \(\mathbb{Z}/17\mathbb{Z} \), using Singular [5], shows that the optimal coordinate \(x_1 \) is a root of a univariate polynomial of degree 48. The algebraic degree of this problem is 48, so the upper bound is sharp in this case. The exact integer coefficients of this polynomial are huge, e.g., the coefficient of \(x_1^{48} \) returned by Singular is

\[
\begin{align*}
2099375102740465860059815913466313028033389427217933637192605381170459911 \\
366491113955945081518362866289941284863755539037514999015805213743887244 \\
0860033184104251450822763572684706126659045130269952333919731578145180 \\
8453244977371025649171736541293437332448469583876491076945269512645877 \\
1066157339668577522530590226530568083266479375648347403229514209064223 \\
548713844913807937173030267663957218228003769411467584821502831737932897 \\
4452926895048780181141913600.
\end{align*}
\]

3.4. \(p \)-th order cone programming

The \(p \)-th order cone programming (POCP) problem has the standard form

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad c^T x \\
\text{s.t.} & \quad a_i^T x + b_i - \|C_i x + d_i\|_p \geq 0, \quad i = 1, \ldots, \ell
\end{align*}
\]

where \(c, a_i, b_i, C_i, d_i \) are matrices or vectors of appropriate dimensions. This is also a convex optimization problem. Let \(x^* \) be an optimizer, and assume the constraints with indices 1, \ldots, \(m \) are active at \(x^* \). Suppose \(C_i \) has \(r_i \) rows. When some \(r_i = 1 \), the constraint \(a_i^T x + b_i - \|C_i x + d_i\|_p \geq 0 \) is equivalent to two linear constraints

\[
-(a_i^T x + b_i) \leq C_i x + d_i \leq a_i^T x + b_i.
\]

Like the SOCP case, assume \(1 = r_1 = \cdots = r_k < r_{k+1} \leq \cdots \leq r_m \). Then the problem (3.5) is equivalent to

\[
\min_{x \in \mathbb{R}^n} \quad c^T x \\
\text{s.t.} & \quad a_i^T x + b_i + \sigma_i(C_i x + d_i) \geq 0, \quad i = 1, \ldots, k
\]

\[
(a_i^T x + b_i)^p - \sum_{j=1}^{r_i} (C_i x + d_i)^p_j \geq 0, \quad i = k + 1, \ldots, m
\]
where the scalar σ_i is chosen such that $a_i^T x^* + b_i + \sigma_i(C_i x^* + d_i) = 0$. Then we have

$$S_{n-m}(0, \ldots, 0, p-1, \ldots, p-1) = \sum_{m-k \text{ times}} (p-1)^{i_k+i_{k+1}+\cdots+i_m} = (p-1)^{n-m} \binom{n-k-1}{m-k-1}.$$

By Corollary 2.5, the algebraic degree of x^* is therefore bounded by

$$p^{m-k}(p-1)^{n-m} \binom{n-k-1}{m-k-1}. \tag{3.6}$$

When $k = m$, problem (3.5) is reducible to a linear programming problem and hence its algebraic degree is one.

Now we discuss the sharpness of degree bound (3.6). Similarly to the SOCP case, for every $i = k+1, \ldots, m$, define the set of polynomials U_i as

$$U_i = \left\{ (a_i^T x + b_i)^p - \sum_{1 \leq j \leq r_i} \alpha_j^p (C_i x + d_i)_j^p : \alpha_1, \ldots, \alpha_{r_i} \in \mathbb{R} \right\}.$$

Then define complex affine spaces V_i as follows:

$$V_i = \left\{ (a_i^T x + b_i)^p - \sum_{1 \leq j \leq r_i} \beta_j (C_i x + d_i)_j^p : \beta_1, \ldots, \beta_{r_i} \in \mathbb{C} \right\}, \ i = k+1, \ldots, m.$$

Then every set U_i intersects any Zariski open subset of the affine space V_i. On the other hand, the set of common zeros of the linear polynomials

$$a_i^T x + b_i + \sigma_i(C_i x + d_i), \ i = 1, \ldots, k$$

and all the polynomials in the union $\bigcup_{i=k+1}^m V_i$ is contained in the set Z defined by (3.4). Therefore, for generic choices of a_i, b_i, C_i, d_i with $r_{k+1} + \cdots + r_m + m > n$, the set Z is empty, and hence Remark 2.3 implies that the degree bound given by formula (3.6) is sharp.

Example 3.4. Consider the case $p = 4$ and the polynomials

$$f_0 = 9x_1 - 5x_2 + 3x_3 + 2x_4$$

$$f_1 = (1 - 6x_1 - 6x_2 + 4x_3 - 9x_4)^4 - (7 - 6x_1 + 22x_2 - 3x_3 + 4x_4)^4$$

$$- (11 + x_1 - x_2 - 8x_3 + 3x_4)^4 - (13 + 7x_1 + 16x_2 - 7x_3 + 9x_4)^4$$

$$- (3 - 11x_1 + 14x_2 - 8x_3 + 5x_4)^4 - (8 + 9x_1 - 10x_2 + 2x_3 + 2x_4)^4.$$

For the above polynomials, the inequality constraint must be active since the objective is linear. By the formula (3.6), the algebraic degree of the optimal solution is bounded by $p^m(p-1)^{n-m} \binom{n-1}{m-1} = 108$. A symbolic computation over the finite field $\mathbb{Z}/17\mathbb{Z}$, using *Singular* [5], shows that the optimal coordinate x_1 is a root of a univariate polynomial of degree 108. So the algebraic degree of this problem is 108, and the bound given by the formula (3.6) is sharp. For this example, we were also not able to find the exact coefficients of this univariate polynomial in the rational field \mathbb{Q}, since *Singular* could not complete the computation over \mathbb{Q}.

3.5. Semidefinite programming

In the introduction, we observed that the SDP problem of the form (1.3) can also be represented as a polynomial optimization problem of the form (1.1). Concretely, let $g_T(x)$ be the
principle minor of the matrix in (1.3) with rows $I \subseteq \{1, 2, \ldots, N\}$ (N is the length of the matrix). Then the problem (1.3) is equivalent to

\begin{equation}
(3.7) \begin{cases}
\min_{x \in \mathbb{R}^n} & c^T x \\
\text{s.t.} & g_I(x) \geq 0, \quad \forall I \subseteq \{1, 2, \ldots, N\}.
\end{cases}
\end{equation}

If the active constraints are known in the above, then Corollary 2.5 can be applied to get an upper bound for the algebraic degree of problem (1.3). Unfortunately, the upper bound obtained by Corollary 2.5 is usually not sharp, and often larger than the degree formula given in [13, Theorem 1.1]. This is because the polynomials $g_I(x)$ do not define a complete intersection: The codimension of V_r is less than the number of minors, i.e., the number of generators of the ideal of V_r. To see this point, suppose r is the rank of the optimal matrix in (1.3). Then all $g_I(x)$ with $\text{card}(I) > r$ must vanish at the optimal solution x^\ast. Let V_r be the variety defined by the $g_I(x)$:

$$V_r = \{x \in \mathbb{R}^n : g_I(x) = 0, \quad \forall I : \text{card}(I) > r\}$$

The ideal $I(V_r)$ of V_r has $\binom{N}{r+1}$ generators. Since V_r contains the variety of matrices of rank at most r, which has codimension $\binom{N-r+1}{2}$, the codimension of V_r is smaller than the number of generators of its ideal for almost all values of N and r. So the variety V_r is almost never a complete intersection.

Acknowledgement. The authors are grateful to Gábor Pataki, Richard Rimanyi and Bernd Sturmfels for motivating this paper, and wish to thank two referees for fruitful suggestions.

Appendix A. Some elements of algebraic geometry

This section presents some basic definitions and theorems in algebraic geometry. Most of them can be found in Harris’ book [4].

Let $\mathbb{C}[x_1, \ldots, x_n]$ be the ring of polynomials in x_1, \ldots, x_n. An additive subgroup I of $\mathbb{C}[x_1, \ldots, x_n]$ is called an ideal if for every $f \in I$, the product $f \cdot g \in I$ for any $g \in \mathbb{C}[x_1, \ldots, x_n]$. Given an ideal I of $\mathbb{C}[x_1, \ldots, x_n]$, the polynomials f_1, \ldots, f_k are called generators of I if for every $f \in I$ there exist $g_1, \ldots, g_k \in \mathbb{C}[x_1, \ldots, x_n]$ such that $f = f_1g_1 + \cdots + f_kg_k$. We also say that the ideal I is generated by f_1, \ldots, f_k and denote $I = (f_1, \ldots, f_k)$.

Let \mathbb{C}^n be the n-dimensional complex affine space. A point $x \in \mathbb{C}^n$ is a complex vector (x_1, \ldots, x_n). A set V in \mathbb{C}^n is called an affine algebraic variety if there are polynomials g_1, \ldots, g_r such that

$$V = \{(x_1, \ldots, x_n) \in \mathbb{C}^n : g_1(x_1, \ldots, x_n) = \cdots = g_r(x_1, \ldots, x_n) = 0\}.$$

In the Zariski topology on \mathbb{C}^n the closed sets are precisely the affine algebraic varieties. A variety is irreducible if it is not the union of two proper closed subvarieties. Any variety is a finite union of distinct irreducible varieties. Given an affine variety V, the ideal of V is defined to be the set of polynomials

$$I(V) = \{f \in \mathbb{C}[x_1, \ldots, x_n] : f(x_1, \ldots, x_n) = 0, \forall (x_1, \ldots, x_n) \in V\}.$$

Let \mathbb{P}^n be the n-dimensional complex projective space of lines through the origin in \mathbb{C}^{n+1}. A point $\bar{x} \in \mathbb{P}^n$ has homogeneous coordinates $[x_0, x_1, \ldots, x_n]$, unique up to multiplication by a common nonzero scalar. A set U in \mathbb{P}^n is called a projective algebraic variety if there are homogeneous polynomials $h_1(x_0, x_1, \ldots, x_n), \ldots, h_t(x_0, x_1, \ldots, x_n)$ such that

$$U = \{(x_0, x_1, \ldots, x_n) \in \mathbb{P}^n : h_1(x_0, x_1, \ldots, x_n) = \cdots = h_t(x_0, x_1, \ldots, x_n) = 0\}.$$
In the Zariski topology on \mathbb{P}^n, the closed sets are precisely the projective algebraic varieties. As a special case, if $h \in \mathbb{C}[x_0, \ldots, x_n]$ is a homogeneous polynomial, then the set

$$\mathcal{H} = \{ \tilde{x} \in \mathbb{P}^n : h(\tilde{x}) = 0 \} \subset \mathbb{P}^n$$

is a projective variety called a hypersurface. If furthermore h has degree one, \mathcal{H} is called a hyperplane.

A subset I of $\mathbb{C}[x_0, \ldots, x_n]$ is called a homogeneous ideal if I is an ideal of $\mathbb{C}[x_0, \ldots, x_n]$ and generated by homogeneous polynomials in the ring $\mathbb{C}[x_0, \ldots, x_n]$. Given a projective variety \mathcal{U}, the ideal

$$I(\mathcal{U}) = \{ f \in \mathbb{C}[x_0, x_1, \ldots, x_n] : f(\tilde{x}) = 0, \forall \tilde{x} = (x_0, x_1, \ldots, x_n) \in \mathcal{U} \}$$

is homogeneous. It is called the ideal of \mathcal{U}. A Zariski open subset \mathcal{Q} of a projective variety \mathcal{U} is called a quasi-projective variety, or equivalently, a quasi-projective variety is a locally closed subset of \mathbb{P}^n in the Zariski topology.

The dimension of an affine (resp. projective) variety V is the length k of the longest chain of irreducible affine (resp. projective) subvarieties, $V = V_0 \supset V_1 \supset \cdots \supset V_k$. For a projective variety the dimension may be equivalently defined as the largest integer k such that any set of k hyperplanes have a common intersection point on V. A variety has pure dimension if all its irreducible components have the same dimension. Let \mathcal{U} be a projective variety in \mathbb{P}^n of pure dimension k. We say that \mathcal{U} is a complete intersection if its homogeneous ideal is generated by $n - k$ homogeneous polynomials, that is, there exists homogeneous polynomials $f_1, \ldots, f_{n-k} \in \mathbb{C}[x_0, x_1, \ldots, x_n]$ such that $I(\mathcal{U}) = (f_1, \ldots, f_{n-k})$.

Let \mathcal{U} be an irreducible projective variety in \mathbb{P}^n of dimension k and $I(\mathcal{U}) = (f_1, \ldots, f_r)$. The singular locus $\mathcal{U}_{\text{sing}}$ is defined to be the projective algebraic variety

$$\mathcal{U}_{\text{sing}} = \{ \tilde{x} \in \mathcal{U} : J(f_1, \ldots, f_r) \text{ has rank less than } n-k \text{ at } \tilde{x} \},$$

where $J(f_1, \ldots, f_r)$ denotes the Jacobian matrix of f_1, \ldots, f_r.

The following is a fundamental theorem that we formulate in a version particularly applicable to our situation. We consider subvarieties in products of projective spaces. They are defined, as above, by ideals of polynomials that are homogeneous in two sets of variables, one set for each factor.

Theorem A.1 (Bertini’s Theorem). If $\mathcal{X} \subset \mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$ is a quasi-projective k-dimensional complex variety, and \mathbb{P}^m a projective space parameterizing hypersurfaces in $\mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$. Let $\mathcal{Z} = \cap_{\mathcal{H} \in \mathbb{P}^m} \mathcal{H}$ be the common points of these hypersurfaces. Let $\mathcal{Y} = \mathcal{X} \cap \mathcal{X}$ for a general member $\mathcal{H} \in \mathbb{P}^m$. Then \mathcal{Y} is a variety of dimension $k-1$ and

$$\mathcal{Y}_{\text{sing}} \subset (\mathcal{X}_{\text{sing}} \cap \mathcal{Y}) \cup \mathcal{Z}.$$

Proof. Let $f_\mathcal{H}$ be a polynomial that defines \mathcal{H}. The polynomials $\{ f_\mathcal{H} : \mathcal{H} \in \mathbb{P}^m \}$ generate a vector space V of dimension $m+1$ of polynomials. Let f_0, \ldots, f_m be a basis for this vector space. Then

$$x \mapsto [f_0(x), \ldots, f_m(x)]$$

defines a regular map

$$\mathcal{X} \setminus \mathcal{Z} \to \mathbb{P}^m.$$

The conclusion now follows from [4, Theorems 17.16 and 17.24].

An immediate corollary is:
Corollary A.2. Let \(f_1, \ldots, f_k \in \mathbb{C}[x_0, \ldots, x_{n_1}, y_0, \ldots, y_{n_2}] \) be generic polynomials and \(k \leq n \). Then the projective variety \(V(f_1, \ldots, f_k) \) defined by
\[
\{(\tilde{x}, \tilde{y}) = (x_0, x_1, \ldots, x_{n_1}, [y_0, \ldots, y_{n_2}]) \in \mathbb{P}^{n_1} \times \mathbb{P}^{n_2} : f_1(\tilde{x}, \tilde{y}) = \cdots = f_k(\tilde{x}, \tilde{y}) = 0\}
\]
is a smooth complete intersection of dimension \((n_1 + n_2 - k)\).

The degree of an equidimensional projective variety \(X \) of dimension \(k \) in \(\mathbb{P}^n \) is the number of points in the intersection of \(X \) with \(n - k \) general hyperplanes. Therefore if \(X \) and \(Y \) are subvarieties of \(\mathbb{P}^n \) of the same dimension without common components, then
\[
\deg(X \cup Y) = \deg(X) + \deg(Y).
\]
The following is another fundamental theorem, which we also formulate in a version particularly applicable to our situation.

Theorem A.3 (Bézout’s Theorem). If \(X, Y \subset \mathbb{P}^n \) are projective complex varieties of pure dimensions \(k \) and \(\ell \) with \(k + \ell \geq n \), then \(X \cap Y \neq \emptyset \) and each irreducible component of the intersection has dimension at least \(k + \ell - n \).

If \(X \) and \(Y \) intersect transversely, i.e., that each irreducible component of \(X \cap Y \) has dimension \(k + \ell - n \) and has a nonempty smooth open subset outside the singular loci of \(X \) and \(Y \), then
\[
\deg(X \cap Y) = \deg(X) \cdot \deg(Y).
\]
In particular, if \(k + \ell = n \) and \(X \cap Y \) is transverse, then it consists of \(\deg(X) \cdot \deg(Y) \) points.

Proof. The first part is a special case of [4, Theorem 17.24], except for the statement that the intersection \(X \cap Y \neq \emptyset \), while the second part is [4, Theorem 18.3]. To show that the intersection \(X \cap Y \neq \emptyset \) we pass to the affine cones \(C X \) and \(C Y \) in \(\mathbb{C}^{n+1} \) of the projective varieties in \(X \) and \(Y \) respectively. They, of course, both contain 0, so their intersection in \(\mathbb{C}^{n+1} \) is non-empty. The cones \(C X \) and \(C Y \) have dimensions \(k+1 \) and \(\ell+1 \), respectively. Therefore, by [4, Theorem 17.24], their intersection must have components of dimension at least \((k+1) + (\ell+1) - n + 1 \geq 1\). The intersection \(C X \cap C Y \) is clearly an affine cone over the intersection \(X \cap Y \), so since it has dimension at least one, the intersection \(X \cap Y \) is not empty.

Corollary A.4. A complete intersection of hypersurfaces has degree equal to the product of the degrees of the hypersurfaces.

Bertini’s Theorem and Bézout’s Theorem may be generalized to projective algebraic varieties whose ideal is given by all minors of a given size of a matrix whose entries are homogeneous polynomials. The generalization of Bertini’s Theorem that we need is given by the following:

Proposition A.5. Let \(a_1 \leq \cdots \leq a_f \) be a finite sequence of positive integers, and let \(M \) be an \(e \times f \)-matrix whose entries \(m_{i,j} \) are homogeneous polynomials in \(\mathbb{C}[x_0, \ldots, x_n] \) of degree \(a_i \). Consider the projective variety \(X_r = \{ \tilde{x} \in \mathbb{P}^n : M \text{ has rank at most } r \text{ at } \tilde{x} \} \). Every irreducible component of \(X_r \) has dimension \(\geq (n - (f - r)(e - r)) \). In particular, if \(n - (f - r)(e - r) \geq 0 \), then \(X_r \neq \emptyset \). Furthermore, if the entries in \(M \) are generic, then every irreducible component of \(X_r \) has dimension \(n - (m - r)(k - r) \), and \(X_{r-1} \) is the singular locus of \(X_r \).

Proof. The bound on the codimension follows from [4, Proposition 17.25]. For the smoothness we consider first the case when the entries are independent variables \(y_0, \ldots, y_{e-1} \). A local parameterization of \(X_r \) then shows that \(X_r \) has codimension \((e - r)(f - r) \), is smooth outside \(X_{r-1} \) and singular along \(X_{r-1} \) (cf. [4, Example 20.5]). Substituting the variables with polynomials in \(x_0, \ldots, x_n \), we may apply Bertini’s Theorem A.1 to conclude. \(\square \)
To find the degree of X_r, we apply Bezout’s Theorem in a slight variation of an argument in [4, Example 19.10] to get the special case $r = \min\{e - 1, f - 1\}$ that we need. For general r the formula is given by the Thom-Porteous Formula, whose proof is more involved (cf. [3, Example 14.4.11]).

Proposition A.6. Let $a_1 \leq \cdots \leq a_f$ be a finite sequence of positive integers, and let M be an $e \times f$-matrix whose entries $m_{i,j}$ are general homogeneous polynomials in $\mathbb{C}[x_0, \ldots, x_n]$ of degree a_j. Consider the projective variety $X_{e-1} = \{ \tilde{x} \in \mathbb{P}^n : M \text{ has rank less than } e \text{ at } \tilde{x} \}$.

1. Assume that $e \leq f$ and let E_1, \ldots, E_f be the elementary symmetric polynomials in the a_i, i.e.,

$$\begin{align*}
(1 + a_1 t) \cdots (1 + a_f t) &= 1 + E_1 t + \cdots + E_f t^f.
\end{align*}$$

If $n - f + e - 1 \geq 0$, then

$$\deg X_{e-1} = E_{f-e+1}.$$

2. Assume that $e > f$ and let S_1, \ldots, S_k, \ldots be the complete symmetric polynomials in the a_i, i.e.,

$$\begin{align*}
\frac{1}{(1 - a_1 t)(1 - a_2 t) \cdots (1 - a_f t)} &= (1 + a_1 t + a_1^2 t^2 + \cdots) \cdots (1 + a_f t + a_f^2 t^2 + \cdots) = 1 + S_1 t + \cdots + S_k t^k + \cdots.
\end{align*}$$

If $n - e + f - 1 \geq 0$, then

$$\deg X_{f-1} = S_{e-f+1}.$$

Proof. The first part we prove by specializing the matrix to one where the entries of each column in M are proportional, while any $e - f + 1$ polynomials from distinct columns define a complete intersection. Clearly then X_{e-1} is simply the union of these complete intersections; M has rank less than e precisely when at least $f - e + 1$ of the columns vanish. The degree of each of these complete intersections is the product of degrees of the corresponding polynomials, and their union have a degree equal to the sum E_{f-e+1}.

We prove the second formula by induction. Assume that $n > 1$ and that the formulas hold when $e < n$, the case $e = 1$ being trivial. Assume that $e = n > f$, and let M_i be the submatrix of M consisting of the first $e - i$ rows, and N_j the submatrix of M consisting of the rows $e - f, e - f + 1, \ldots, e - j$. Let X_i be the variety of points where M_i has rank less than f, while Y_j is the variety of points where N_j has rank less than $f - j$. By induction $\deg X_i = S_{e-i-f+1}$, while $\deg Y_j = E_{j+1}$ by the previous argument. Notice that $X \subset X_1 \cap Y_0$ and that

$$X \cap Y_{f-1} \subset \cdots \subset X_i \cap Y_{i-1} \subset \cdots \subset X_1 \cap Y_0.$$

Furthermore

$$X = (X_1 \cap Y_0 \setminus (X_2 \cap Y_1 \setminus (X_3 \cap Y_2 \setminus \cdots \setminus (X_f \cap Y_{f-1}))).$$

So by induction

$$\deg X = S_{e-f} E_1 - S_{e-f-1} E_2 + \cdots + (-1)^{f-1} S_{e-2f+1} E_f.$$

Computing the coefficient of t^{e-f+1} in the identity

$$1 = (1 + a_1 t) \cdots (1 + a_f t) = (1 + E_1 t + \cdots + E_f t^f)(1 - S_1 t + \cdots + (-1)^k S_k t^k + \cdots),$$

we get

$$S_{e-f} E_1 - S_{e-f-1} E_2 + \cdots + (-1)^{f-1} S_{e-2f+1} E_f = S_{e-f+1}.$$

So the second part of the proposition also holds. \qed
References

Department of Mathematics, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
E-mail address: njw@math.ucsd.edu

Department of Mathematics, University of Oslo, PB 1053 Blindern, 0316 Oslo, Norway
E-mail address: ranestad@math.uio.no