ECON 4160: Econometrics-Modelling and Systems Estimation
Lecture 10: Exogeneity

Ragnar Nymoen

Department of Economics University of Oslo

16 October 2018
The reference to this lecture is:

► Chapter 8 in the textbook: *Dynamic Econometrics for Empirical Macroeconomic Modelling*.
Exogeneity paradox

- We have seen in this course that the variable X_t in the ADL model equation

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1} + \epsilon_t, t = 1, 2, ..., T, \quad (1)$$

can be either exogenous or endogenous in the econometric sense of the term:

- Exogenous (or at least pre-determined): uncorrelated with ϵ_t (but maybe not with ϵ_{t-1})
- Endogenous: Correlated with ϵ_t.

- Hence we have the paradox that the same variable can be both endogenous and exogenous in one and the same model equation.

- A solution of the paradox: Define exogeneity relative to which parameters of interest we are focusing on in our econometric investigation.
Weak exogeneity I

- With reference to the ADL in (1): X_t is Weakly Exogenous, WE, if consistent and efficient estimation of the parameter of interest β_0 does not make use of information contained in the marginal process that generates X_t.
 - If Y_t and X_t are generated by a Gaussian VAR, and (1) is the conditional model of Y_t that we have derived from the VAR, then X_t is WE for β_0,
 - OLS of β_0 is FIML in this case.
 - No information is lost by not taking the marginal model of X_t into account in the estimation.

- For X_t to be WE there cannot be any direct or indirect (cross-equation restrictions) links between the parameters of interest (θ_1 in the notation of Chapter 8), and the parameters of the marginal model (θ_2).
Weak exogeneity II

- If consistent and efficient estimation of β_0 in (1), is not possible without taking the marginal model into account, X_t is not WE for β_0.

- Hence if β_0 is a parameter in a SEM model equation, X_t is not WE.
Other parameters of interest and WE of X

▶ Assume that the parameters of interests are the characteristic roots that determine whether \(Y_t \) is stationary or not.
 ▶ If \(X_t \) is WE for those parameters, they can be estimated from (1) without taking the rest of the system into account.
 ▶ Can they?

▶ Assume that the parameters of interest are the dynamic multipliers of \(Y_t \) with respect to a change in \(X_t \). Is \(X_t \) WE?

▶ Assume that the parameters of interest are the impulse responses of \(Y_t \) with respect to a change in \(\epsilon_t \). Is \(X_t \) WE?
Weak exogeneity and the possibility of estimation

- Weak exogeneity is a fundamental property, almost a premise for estimating empirical models.
- A WE variable needs not be a regressor variable.
- It can be an instrumental variable.
- One way of thinking about an exactly identifying variable \((Z_t)\) is that it is weakly exogenous for the parameters of interest in the model equation.
Granger causality

- Granger’s concept of causality builds on the idea that cause comes before effect
- Easiest to define with reference to a 2-variable VAR(1):
 - If $\phi_{12} \neq 0$ and $\phi_{21} = 0$, there is one-way causation from X_t to Y_t
 - X is Granger causing Y.
Strong exogeneity

- If X_t is weakly exogenous in the ADL in (1) and X_t is not Granger caused by Y_t, then X_t is **strongly exogenous**, SE.
- Generally, WE plus Granger non-causality generates SE.
- While WE is about exogeneity with respect to estimation, SE is needed to do valid forecasting of Y_{T+h} based on a given future path for X_{T+h}.
- Another terminology for Granger non-causality is “no feedback”, *ie* from lagged Ys on X.
- In general, economic systems are characterized by joint feed-back, so Granger non-causality is a strong assumption.
Invariance

- The concept of parameter *invariance* addresses how a parameter of interest, *eg* β_0 in the ADL (1), “reacts” to a structural break elsewhere in the system.
- In the general notation of Chapter 8, we say that θ_1 is invariant with respect to a break in a parameter of the marginal part of the system θ_2, if θ_1 stays unchanged when θ_2 breaks.
- In the simplest case, we have

$$\beta_0 = \frac{\sigma_{XY}}{\sigma_X^2},$$

so if there is a break in σ_X^2, β_0 will also break unless there is a proportional change in σ_{XY}.
- There is nothing that guarantees that kind of invariance. But nothing hindering it either. So we should test (see below)
Super exogeneity, SuE

- WE plus invariance generates Super Exogeneity (SuE)
- As just noted, invariance is a possible property of conditional models.
- If SuE is a model trait, it validates the use of the conditional models to analyze the effects of policy changes.
- Then “refutes” the Lucas critique
Summary

1. Can we estimate our parameters of interest efficiently without specifying the process that generated X_t? If the answer is “yes”, X_t is weakly exogenous.

2. Can we forecast Y efficiently by conditioning on a forecast for X that does not involve the forecasted Y values? If the answer is “yes”, and the answer to 1. is also “yes”, X_t is strongly exogenous.

3. Can we do valid policy analysis based on the conditional model? If the answer is “yes”, and the answer to 1. is also “yes”, X_t is super exogenous.
Remarks

▶ As noted above, weak exogeneity applies to instrumental variables as well as to regressors.

▶ Invariance is also general: Model equations in a SEM can have coefficients that are invariant (or not) to structural breaks elsewhere in the multivariate system of equations (or in the generating processes of the instrumental variables).

▶ However, in the following we continue to focus on conditional models.

▶ It should also be made clear that invariance is a relative property: Useful empirical econometric models can be invariant to certain regime changes and structural breaks, but not all (thinkable) breaks.

▶ Econometrics models are products of civilization and, as such, will break down sooner or later.
Testing Weak Exogeneity

To obtain a test, we can focus on the difference between two estimators of the coefficient vector β in:

$$y = X\beta + \varepsilon,$$

where one is the OLS estimator $\hat{\beta}_{OLS}$, and another is consistent both with exogeneity and without it, ie the IV estimator, $\hat{\beta}_{IV}$. The test situation can be written as:

$$H_0 : \text{plim}(\hat{\beta}_{IV} - \hat{\beta}_{OLS}) = 0 \text{ against } H_1 : \text{plim}(\hat{\beta}_{IV} - \hat{\beta}_{OLS}) \neq 0.$$

But where should any significant difference between $\hat{\beta}_{OLS}$ and $\hat{\beta}_{IV}$, come from?
The answer must be: From the rest of the system, from the marginal models of the variables in X in (2).

This means that we can perform the test without actually doing IV estimation, which of course is a convenient simplification.

We can therefore test H_0 by estimating the marginal models for X by OLS, calculate residuals from the set of marginal models and then test if those residuals are significant when added to the original model (estimated by OLS) as regressors.

This test often called the Durbin-Wu-Hausman (DWH) test.
Testing Granger non-causality and SE

- This is done by testing the relevant zero-restrictions on the coefficient matrices of the VAR.
- Think of testing Strong Exogeneity of DLPAW in the obligatory!
Testing invariance and SuE

- Again, the testing procedure is quite intuitive:
- If there is evidence of breaks in the marginal models of the regressors in a conditional model:
- Represent these breaks by indicator variables (break-dummies)
- Test whether the break-dummies are significant when added to the conditional model.
- If significant, the H_0 of invariance is rejected.
How do we “find” breaks to test for?

Know your presence and your past:

If a law, or a market (de)regulation etc, happened in the sample period, in a way that affected X_t it is almost always worth testing the invariance of the model with respect to such known breaks.

Can also identify breaks in an objective way using a method called Impulse Indicator Saturation, IIS, see Lecture 15.

Recursive estimation and plots are also very revealing about lack of invariance.