My Erdös number is 4

One path

  1. Louis Caccetta, Paul Erdös, Edward T. Ordman and Norman J. Pullman: The difference between the clique numbers of a graph, Ars Combin. 19 (1985), A, 97-106.
  2. A. V. Geramita and N. J. Pullman, Radon's function and Hadamard arrays, Report of the Algebra Group, pp. 100-107. Queen's Papers in Pure and Appl. Math., No. 36, Queen's Univ., Kingston, Ont., 1973.
  3. A. V. Geramita and C. A. Weibel, Ideals with trivial conormal bundle, Canad. J. Math. 32 (1980), no. 1, 210-218.
  4. J. Rognes and C. A. Weibel: Étale descent for two-primary algebraic K-theory of totally imaginary number fields, K-Theory 16 (1999), no. 2, 101-104.

Another path

  1. Paul Erdös, Stephen T. Hedetniemi, Renu C. Laskar and Geert C. E. Prins: On the equality of the partial Grundy and upper ochromatic numbers of graphs, Discrete Math. 272 (2003), no. 1, 53-64.
  2. Lawrence Brenton, Daniel Drucker and Geert C. E. Prins: Graph theoretic techniques in algebraic geometry. I. The extended Dynkin diagram $\bar E_8$ and minimal singular compactifications of $C^2$, pp. 47-63, Ann. of Math. Stud., 100, Princeton Univ. Press, Princeton, N.J., 1981.
  3. Lawrence Brenton and Robert R. Bruner: On recursive solutions of a unit fraction equation, J. Austral. Math. Soc. Ser. A 57 (1994), no. 3, 341-356.
  4. Robert R. Bruner, and J. Rognes: Differentials in the homological homotopy fixed point spectral sequence, Algebr. Geom. Topol. 5 (2005), 653-690.
John Rognes, September 12th 2013