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The worst part is over; now get back on that horse and ride. — THE SHINS

These are notes for the Conference on p-adic Geometry and Homotopy Theory, 2–9 August 2009, in Loen,
organized by J. Rognes and (to a lesser extent) me. The standard caveats apply here: (1) These notes are very informal,
and most proofs are sketched or omitted completely; even when I’m giving details, I’m skipping details. (2) Some
of the ideas and results here appear to be new, but many of the foundational results should be ascribed to others.
(More on this below.) (3) All errors are mine, and I’m duly ashamed. Really, I am.
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Historical note. — A comment from Andrew Blumberg led me to realize that, in my eagerness to share the ideas,
I’d been altogether remiss in giving credit where credit is due in preparing these talks. In an effort to rectify this
oversight, let me try to summarize, in a few paragraphs, some of the origins of the various important aspects of this
work.

The idea that algebraic geometry might be developed by gluing more general kinds of “rings” goes back to Alexan-
der Grothendieck, Monique Hakim, and Pierre Deligne, who developed and used relative algebraic geometry. (It’s
interesting to note that Hakim’s perspective on relative algebraic geometry plays an important role in some proofs
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in Luc Illusie’s work on the cotangent complex.) This idea was later developed in a homotopical context by Bertrand
Toën and Gabriele Vezzosi, inspired by a conversation with Markus Spitzweck, and providing foundations for ideas
of Deligne, Alexander Beilinson, Vladimir Drinfeld, Mikhail Kapranov, Ionut Ciocan-Fontaine, and others.

In the context of E∞ ring spectra, many of the basic algebro-geometric intuitions were employed by Friedhelm
Waldhausen, Mike Hopkins, Haynes Miller, Doug Ravenel, Peter May, Maria Basterra, Mike Mandell, and a host
of other topologists. In particular, the cotangent complex that plays such a major role in these notes is the one de-
veloped in the E∞ context by Maria Basterra and Mike Mandell. These notions were developed and given thorough
∞-categorical foundations more recently in the work of Jacob Lurie.

Classical Tannaka duality was proposed by Grothendieck, explored by Neantro Saavedra–Rivano, corrected by
Deligne and James Milne, and generalized by Torsten Wedhorn. Higher categorical variants were proposed by Toën,
and have been the subject of work by Lurie, Spike Francis, Davids Ben-Zvi and Nadler, and Toën’s Ph.D student
James Wallbridge.

Equivariant homotopy has been developed by John Greenlees, Gaunce Lewis, Peter May, Mark Steinberger, and
others, using foundations quite different from the ones suggested here. A conversation with Blumberg has suggested
that through his work, a comparison between the foundations proposed here and theirs should be possible.

The first application to K -theory discussed in these notes addresses a conjecture of Gunnar Carlsson. My princi-
pal motivation for developing equivariant derived algebraic geometry was to address his conjectures, inspired by a
series of conversations with Paul-Arne Østvær and Grace Lyo. The filtration that I use on the K -theory spectrum
was developed by Mark Walker, based upon a construction of Dan Grayson, and shown by Andrei Suslin to give
rise to the motivic cohomology of Vladimir Voedvodsky, Suslin, and Eric Friedlander.

The second application to K -theory seems rather more mysterious, and I’m unable to place it in a historical
context.

1. Recollections on derived algebraic geometry

I recall some of the basic ideas of derived algebraic geometry.

1.1. — (1.1.1) Denote by Sp the∞-category of spectra. This is a symmetric monoidal∞-category with respect to
the smash product. Denote by Sp≥0 the full subcategory of connective spectra.

(1.1.2) Denote by E∞(Sp) the category of E∞-algebras in this symmetric monoidal category, which will here be
called E∞ rings. Denote by E∞(Sp)≥0 the full subcategory of connective E∞ rings.

(1.1.3) Denote byAff≥0 := E∞(Sp)op
≥0. The objects ofAff≥0 will be called (derived) affines; for any connective E∞

ring A, denote by SpecA the corresponding object ofAff≥0.
(1.1.4) Denote byAff0 the category of classical affines, i.e., the opposite category to the category of commutative

rings. The Eilenberg-Mac Lane functor defines a functor

H : Aff0 //Aff≥0 .

(1.1.5) For any affine X = SpecA, denote by Perf (X ) the ∞-category of compact objects in the ∞-category
Mod(X ) of A-modules.

(1.1.6) For any affine X and any topology or hypertopology τ onAff≥0,/X , we denote by S τ(Aff≥0,/X ) the corre-
sponding∞-topos. The objects of S τ(Aff≥0,/X ) are presheaves of spaces

F : Aff op
≥0,/X

//Kan

that satisfy descent (or hyperdescent) with respect to τ. Pulling back τ along the Eilenberg-Mac Lane functor
H defines a topology τ0 onAff0; there is an induced adjunction

H! : S τ0(Aff0)
//S τ(Aff≥0)oo : H ?,

the left adjoint of which is fully faithful, and which is, significantly, not a morphism of∞-topoi.
(1.1.7) Suppose X an affine, and suppose τ any topology or hypertopology onAff≥0,/X . Attached to any sheaf F

of∞-categories onAff≥0,/X for τ is a cartesian fibration

Γτ(F ) //S τ(Aff≥0,/X ) ,
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given by the∞-categorical analogue of the Grothendieck construction. The fibers of this cartesian fibration
over an affine X (more precisely, over the sheafification of the presheaf represented by X ) is canonically
equivalent to the∞-category F X .

Flatness and the flat hypertopology. — A first important notion of derived algebraic geometry is the analogue
of the notion of flat families.

Theorem 1.2. — The following are equivalent for a morphism f : Y = SpecB // SpecA=X of affines.
(3.2.1) As an A-module, B can be written as a filtered colimit of finitely generated free A-modules.
(3.2.2) For any discrete A-module M , the B-module f ?M :=M ⊗A B is discrete.
(3.2.3) The functor

f ? :Mod(X ) //Mod(Y )

is left t-exact, so that it carriesMod(X )≤0 intoMod(Y )≤0.
(3.2.4) The following pair of conditions is satisfied.

(3.2.4.1) The induced homomorphism Specπ0B // Specπ0A is a flat morphism of ordinary schemes.
(3.2.4.2) For every integer j ∈ Z, the homomorphism

π j A⊗π0Aπ0B //π j B

of π0B-modules is an isomorphism.
In this case, the morphism f will be called flat.

Theorem 1.3. — The following are equivalent for a flat morphism f : Y = SpecB // SpecA=X of affines.
(3.3.1) The functor

f ? :Mod(X ) //Mod(Y )

is conservative, so that for any nonzero A-module M , the B-module f ?M :=M ⊗A B is nonzero.
(3.3.2) The induced morphism Specπ0B // Specπ0A is faithfully flat.

In this case, the morphism f will be called faithfully flat.

1.4. — A simplicial object V• ofAff≥0,/U is a flat hypercovering of an affine U if for any integer n ≥ 0, the morphism

(skn−1 V•)n // U

is faithfully flat.
Along with Čech nerves of covering families

{Ui
//
∐

j∈I Uj }i∈I ,

the flat hypercoverings generate the flat hypertopology [ on the ∞-category Aff≥0,/X for an affine X . The corre-
sponding flat∞-topos S [(Aff≥0,/X ) is hypercomplete. A presheaf

F : Aff op
≥0,/X

//Kan

is a flat hypersheaf over X if it lies in S [(Aff≥0,/X ), i.e., if the following two conditions are satisfied.

(3.4.1) For any object U ∈Aff≥0,/X and any flat hypercovering V• of U , the induced morphism

F U // lim F V•

is an equivalence.
(3.4.2) For any object U =

∐

i∈I Ui ∈Aff≥0,/X , the induced morphism

F U //∏
i∈I F Ui

is an equivalence.
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Theorem 1.5. — Suppose X an affine. The flat hypertopologyAff≥0,/X is subcanonical. Moreover, the assignments

Mod : U � //Mod(U ) and Perf : U � //Perf (U )

are flat hypersheaves of ∞-categories. In particular, the associated presheaves ιMod and ιPerf of spaces are flat hyper-
sheaves.

The cotangent complex and the étale topology. — One of the easiest pieces of classical algebraic geometry to
transfer to the derived setting is Illusie’s cotangent complex.

1.6. — Suppose f : Y = SpecB // SpecA=X a morphism of affines. For any B -module M , one has an associated
square zero extension B ⊕M of B . Write YM := Spec(B ⊕M ); there is an obvious morphism Y //YM . Now define
the space of derivations on Y over X with coefficient in M as the fiber DerX (Y ; M ) of the morphism of spaces

MorX (YM ,Y ) // MorX (Y,Y )

over the identity map. The result is a functor

DerX (Y ;−) :Mod(T ) //S .

Theorem 1.7. — For any morphism f : Y = SpecB // SpecA=X of affines, the functor DerX (Y ;−) is corepre-
sentable; that is, there exists a B-module LY |X and an equivalence

DerX (Y ; M )'Mor(LY |X , M ),

functorial in M . The representing object LY |X is called the cotangent complex for f , and the morphism

d : YLY |X
//Y

corresponding to the identity of LY |X is called the universal derivation for f .

1.8. — If R and S are (discrete) Q-algebras, and if R // S is a morphism thereof, then it can be shown that the
cotangent complex LS |R of Illusie coincides with LSpec H S |Spec H R. If, however, R and S are not Q-algebras, this fails
dramatically.

1.9. — Suppose f : Y = SpecB // SpecA=X a morphism of affines, locally of finite presentation (so that B is a
compact object in the category of E∞ rings under A).
(1.9.1) One says that f is smooth if LY |X is compact inMod(X ).
(1.9.2) One says that f is étale if LY |X ' 0.

Theorem 1.10. — The following are equivalent for a morphism f : Y = SpecB // SpecA=X of affines.
(1.10.1) The morphism f is étale.
(1.10.2) The induced morphism on topological Hochschild homology spectra

THH(A) //THH(B)

is an equivalence.
(1.10.3) The following pair of conditions is satisfied.

(1.10.3.1) The induced homomorphism Specπ0B // Specπ0A is an étale morphism of ordinary schemes.
(1.10.3.2) For every integer j ∈ Z, the homomorphism

π j A⊗π0Aπ0B //π j B

of π0B-modules is an isomorphism.

1.11. — Suppose X an affine. A family
{Vi

// U }i∈I

is an étale covering if each morphism Vi
// U is étale, and for some finite subset I ′ ⊂ I , the morphism
∐

i∈I ′ Vi
// U

is faithfully flat.
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These families generate the étale topology ét on the ∞-category Aff≥0,/X . The corresponding étale ∞-topos
S ét(Aff≥0,/X ) is not hypercomplete.

Affine∞-gerbes. — A flat hypersheaf will be said to be a affine∞-gerbe if it is locally (for the flat hypertopology)
equivalent to a flat affine loopspace.

1.12. — For any affine X , a flat hypersheaf G over X is an affine∞-gerbe over X if it satisfies the following pair of
conditions.

(1.12.1) The hypersheaf G is locally nonempty for the flat hypertopology; that is, there exists a faithfully flat mor-
phism Y //X of affines such that G(Y ) is nonempty.

(1.12.2) For any morphism U //X of affines and any pair of points x, y ∈G(U ), the path space

Ωx,y G :=U ×x,G,y U

is representable and faithfully flat over X .

The∞-category of affine∞-gerbes over X will be denoted Gerbe/X .

Theorem 1.13. — Suppose X = Spec H R for a discrete ring R, and suppose G an affine∞-gerbe over X . Then for any
discrete R-algebra S, any point x ∈ G(Spec H S), and any positive integer j > 0, the sheaf π j (H

?G, x) obtained by
sheafifying the presheaf

T � //π j (G(H T ), x)

on the large fpqc site of affine S-schemes is a proalgebraic group, which is unipotent if j > 1.

1.14. — The classifying∞-topos of an affine∞-gerbe G is the∞-category

B [(G) :=CartS [(Aff≥0,/X )
(Γ[(G),Fun(∆1,S [(Aff≥0,/X )))

of cartesian morphisms Γ[(G) // Fun(∆1,S [(Aff≥0,/X )) of cartesian fibrations over the flat∞-toposS [(Aff≥0,/X ).
The objects of the classifying∞-topos of G can be regarded as spaces with an action of G. There is, accordingly, a
morphism of∞-topoi

τG : B [(G) //S [(Aff≥0,/X ) ,

where the pullback τ?G F of a flat hypersheaf F can be regarded as endowing F with the trivial G-action. This functor
also has a further left adjoint

τG,! : B [(G) //S [(Aff≥0,/X ) ,

which can be interpreted in the following manner: for any object K ∈ B [(G), the flat hypersheaf τG,!K is the quotient
∞-stack [K/G].

1.15. — The stable∞-category of perfect complexes on an affine∞-gerbe G over an affine X is the∞-category

Perf (G) :=CartS [(Aff≥0,/X )
(Γ[(G),Γ[(Perf ))

of cartesian morphisms Γ[(G) //Γ[(Perf ) of cartesian fibrations over the flat∞-topos S [(Aff≥0,/X ).

2. Mackey and Green functors for affine∞-gerbes

Mackey and Green functors are now a standard tool in the representation theory of finite groups. Here I sketch
how the theory may be adapted to the context of affine∞-gerbes. Suppose here X an affine, and suppose G an affine
∞-gerbe over X .
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The Burnside∞-categories. — Classically, Mackey functors are additive functors indexed on a Burnside category,
obtained by taking a group completion of a semi-additive category of spans. The ∞-categorical set-up is slightly
more complicated than the classical description of the Burnside category; here I give a construction that is slightly
circuitous, but it has the benefit of making it clear that the relevant categories exist and have the properties demanded
of them. Unfortunately, the Burnside categories that I give here are quite large; smaller ones can be constructed, but
this is beyond the scope of these notes.

2.1. — An object K of the classifying∞-topos B [(G) will be said to be finite if it satisfies the following properties.

(2.1.1) The sheaf of sets π0τG,!K obtained by sheafifying the assignment

U � //π0((τG,!K)(U ))

is locally finite.
(2.1.2) The local isotropy of K is open. (This is most easily expressed using the language of bands of affine∞-gerbes,

but going into detail here might take us too far afield; one should have in mind the example of a proalgebraic
group acting on a sheaf of spaces in such a way that all the local isotropy subgroups are open subgroups.)

Denote by B [(G)fin the full subcategory of B [(G) spanned by the finite objects. The objects of B [(G)fin will be called
finite G-spaces.

Observe that this category is different from the category of compact objects of the∞-topos B [(G).

2.2. — Define the semiexcisive Burnside∞-categoryB+G in the following manner.

(2.2.1) The objects are finite G-spaces.
(2.2.2) A morphism K // M of finite G-spaces is a diagram

K Loo // M

in B [(G).
(2.2.3) Given two such diagrams

K Loo // M and M Noo // P,

their composition is defined (up to a contractible choice) as the top of the pullback

L×M N

��������

��?????

L

��������

��?????? N

��������

��??????

K M P.

2.3. — Observe that the product −×− in B [(G)fin defines a symmetric monoidal structure onB+G ; note that the
product of is not the cartesian product inB+G .

Note also that there are two faithful, symmetric monoidal functors

` : B [(G)fin,op //B+G and r : B [(G)fin //B+G

that are each the identity on objects. Let’s investigate the composites in BG of morphisms induced by ` with
morphisms induced by r .

(2.3.1) The composite of (the image under ` of) a morphism L //K of finite G-spaces with (the image under r
of) a morphism L // M of finite G-spaces is the morphism

K Loo // M .



EQUIVARIANT DERIVED ALGEBRAIC GEOMETRY AND K -THEORY 7

(2.3.2) On the other hand, the composite of (the image under r of) a morphism L // M of finite G-spaces with
(the image under ` of) a morphism N // M of finite G-spaces is given by the top of the pullback square

L×M N

��������

��?????

L

��?????? N .

��������

M

2.4. — Call a functor F : B+G // D admissible if it satisfies the following properties.

(2.4.1) The functor F sends the zero object ofB+G to an initial object.
(2.4.2) The functor `?F : B [(G)fin,op // D sends pushout squares of finite G-spaces to pushout squares in D .
(2.4.3) The functor r ?F : B [(G)fin // D sends pushout squares of finite G-spaces to pushout squares in D .

Write Adm(B+G , D) for the full subcategory of Fun(B+G , D) spanned by the admissible functors.

2.5. — There exists a pointed ∞-category B→G along with a functor j : B+G //B→G satisfying the following
conditions.
(2.5.1) The∞-categoryB→G has all finite colimits.
(2.5.2) For any∞-category D with all finite colimits, the functor j induces an equivalence of∞-categories

Funrex(B→G , D) // Adm(B+G , D)

between the∞-categories of right exact functors B→G // D and the admissible functors B+G // D .

The∞-categoryB→G will be called the excisive Burnside∞-category. Since the product in B [(G)fin preserves finite
colimits in each variable, the symmetric monoidal structure onB+G descends toB→G .

2.6. — Now define the stable Burnside∞-categoryBG as the colimit of the diagram

B→G
Σ //B→G

Σ // . . .

in the category of ∞-categories with right exact functors. This ∞-category has the property that Ind(BG) is the
stabilization of Ind(B→G ). It follows from a G-equivariant Blakers–Massey homotopy excision theorem that, in fact,
BG is stable. Moreover, if D is any stable∞-category, the natural functorΣ∞ : B→G //BG induces an equivalence

Funex(BG , D)' Funrex(B
→
G , D).

The symmetric monoidal structure onB→G descends to a symmetric monoidal structure −�− onBG .

Mackey functors. — Mackey functors are certain functors indexed on the semi-excisive Burnside category; this
idea can rephrased in a number of ways.

2.7. — In order to describe the notion of a Mackey functor, it is helpful to introduce some terminology. Suppose
C an ∞-category containing all finite colimits, and suppose D an ∞-category containing all finite limits. Then a
functor C // D is said to be excisive if it sends an initial object of C to a terminal object of D , and if it sends a
pushout square in C to a pullback square in D . The full subcategory of Fun(C , D) spanned by the excisive functors
will be denoted Exc(C , D). Similarly, a functor C op // D will be said to be contra-excisive if it sends initial object
of C to a terminal object of D , and if it sends a pushout square in C to a pullback square in D . The full subcategory
of Fun(C op, D) spanned by the excisive functors will be denoted Excop(C

op, D).
To illustrate, consider briefly the situation in which C = S fin, the category of finite spaces, and D = Spfin, the

∞-category of finite spectra. Then an excisive functor F : S fin //Spfin amounts to a homology theory given by
the formula

F∗(Y ⊂X ) :=π∗Ω
∞F (X /Y ).
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A contra-excisive functor G : S fin,op //Spfin amounts to a cohomology theory given by the formula

G∗(Y ⊂X ) :=π∗Ω
∞G(X /Y ).

There are a number of remarks to be made about excisive functors.
(2.7.1) If C is stable, then a functor F : C // D is excisive if and only if it is left exact. If D is stable, then F is

excisive if and only if it is right exact. A contra-excisive functor is always just a left exact functor C op // D .
(2.7.2) If D is a stable∞-category, an excisive functor F : C // D gives rise to an excisive functor eF : C?

// D
by setting

eF (X ) := F (X )/F (?).

This defines an equivalence of∞-categories

Exc(C , D)' Exc(C?, D).

(2.7.3) Under Spanier–Whitehead duality, a contra-excisive functor C op //Spfin corresponds to an excisive func-
tor

C Gop
//Spfin,op

∼
//Spfin .

This defines an equivalence of∞-categories

Excop(C
op,Spfin)' Exc(C ,Spfin)

Provided that one is willing to work with pro-spectra, the finiteness restriction can be dropped:

Excop(C
op,Sp)' Exc(C , proSp).

(2.7.4) Stability of the target is actually unnecessary when considering excisive functors. The functorΩ∞ : Sp //S
induces equivalences

Exc(C ,Spfin)' Exc(C ,S fin) and Excop(C
op,Spfin)' Excop(C

op,S fin).

2.8. — A Mackey functor for G is an admissible functor B+G //Sp . The∞-category of Mackey functors for G
will be denotedMackG . This∞-category can be described in a large number of ways:

MackG := Adm(B+G ,Sp)
' Funrex(B

→
G ,Sp)' Funex(BG ,Sp)

' Exc(B→G ,Sp)' Exc(B→G ,S )
' Exc(BG ,Sp)' Exc(BG ,S )
' FunL(Ind(BG),Sp)' FunL(Ind(B→G ),Sp).

By construction, MackG is a presentable, stable ∞-category. The full subcategory MackG,≥0 generated under
extensions and colimits by the essential image of the functor

Σ∞ : Funrex(B→G ,S ) // Funrex(B→G ,Sp)'MackG

defines an accessible t -structure onMackG ; this t -structure is both left and right complete. The heartMack♥G of this
t -structure is an abelian category of “classical” Mackey functors for the 1-truncation of G; there are corresponding
functors πn :MackG

//Mack♥G .

2.9. — Given a Mackey functor A for G, one can define associated functors

A? := `?M : B [(G)fin,op //Sp and A? := r ?A : B [(G)fin //Sp ,

the first of which is contra-excisive, the second of which is excisive. This defines two “forgetful” functors

(−)? :MackG
// Excop(B

[(G)fin,op,Sp) and (−)? :MackG
// Exc(B [(G)fin,Sp) .
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Thus a Mackey functor for G splices together a homology theory for finite G-spaces together with a cohomology
theory for finite G-spaces using a base-change formula; indeed, we see immediately that for any Mackey functor A
for G and any pullback square

L×M N
f

�������� g

��?????

L

g ��?????? N .

f��������

M

of B [(G)fin, one must have a canonical homotopy

f ? g? ' g? f ? : A(L) //A(N ) .

The tensor product of Mackey functors. — The tensor product of Mackey functors is a special case of the Day
convolution product, and it precisely codifies the interaction of the pullback and pushforward morphisms with the
multiplicative structure that one sees in algebraic K -theory.

2.10. — Given two Mackey functors

A : BG
//Sp and B : BG

//Sp

for G, let us describe their tensor product. One can form their external tensor product A�B :

BG ⊗BG
(M ,N ) //Sp⊗Sp −∧− //Sp .

Now one can form the spectrally-enriched left Kan extension of this composite along the symmetric monoidal
structure

−�− : BG ⊗BG
//BG .

This yields a Mackey functor A⊗B :

BG ⊗BG

−�−
��

(A,B) // Sp⊗Sp

−∧−
��

BG A⊗B
// Sp .

Here is a formula for the value of A⊗B on any object K of B [(G)fin using the spectrally-enriched coend:

(A⊗B)(K) :=
∫ L,M∈BG

BG(L�M ,K)∧A(L)∧B(M ).

Morally, given K , one forms the “colimit” over all morphisms L�M //K in BG of the smash product A(L)∧
B(N ). The only reason that one must put “colimit” in scare quotes is that this colimit must be taken in a fashion
that gives due and proper regard to the fact that the morphisms L�M //K inBG form a spectrum.

2.11. — Now the∞-categoryMackG is symmetric monoidal with respect to this tensor product. In fact, the∞-
categoryMackG is closed monoidal with respect to this tensor product; that is, there is an internal Hom functor
that is right adjoint to −⊗A.

Green functors. — A Green functor is ordinarily defined as a monoid in the symmetric monoidal category of
Mackey functors. But our Mackey functors are homotopical in nature; so instead we should ask for a homotopy
coherent monoid.

2.12. — A Green functor for G is an A∞ algebra in the symmetric monoidal categoryMackG of Mackey functors
over S. A commutative Green functor for G is an E∞ algebra inMackG . More generally, for any operadP , one may
define aP -Green functor for G simply as aP -algebra inMackG .
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2.13. — Having a monoid structure on a Mackey functor A over S gives, for every finite G-space K , a morphism

(A⊗A)(K) :=
∫ L,M∈BG (BG(L�M ,K)∧A(L)∧A(M )) //A(K) .

In particular, if K = L×M , this reduces to giving a product

A(L)∧A(M ) //A(L�M ) ,

and conversely, one can verify that it in order to define a multiplication A⊗A //A, it is enough to define such
maps in a suitably coherent manner. More precisely, the data of a Green functor is the data of a compatible system
of 2-morphisms

B⊗I
G

⊙

S

��

(A,A,...,A) // Sp⊗I

∧

��
⇓

BG A
// Sp,

one for every totally ordered finite set I .
More expressively, the data of a Green functor for G is tantamount to the data of a Mackey functor A for G and

a homotopy-coherently associative pairing

A(L)∧A(M ) //A(L�M )

for every pair of finite G-spaces L and M , and a unit morphism

S0 //A(?) .

2.14. — If A is a Green functor over S, then it is in particular a Mackey functor for G. Thus there are two functors
attached to A, namely,

A? : B [(G)fin,op //Sp and A? : B [(G)fin //Sp ,

and the homotopy associative and unital pairing on A can be viewed as two morphisms of spectra

A?(L)∧A?(M ) //A?(L�M ) and A?(L)∧A?(M ) //A?(L�M ) ,

each of which is natural in L and M .
We internalize this external tensor product by pulling back along the diagonal functor; hence for any object

K ∈ B [(G)fin, the spectrum A(K) is an A∞ algebra. The pullback functors all preserve this structure, so

A? : B [(G)fin,op //Sp

can be viewed as a presheaf of A∞ ring spectra.
On the other hand, the pushforward maps all preserve the external product, but not necessarily its internaliza-

tion. It therefore follows that for any morphism f : L // M , the morphism

f? : A?(L) //A?(M )

is a morphism of A?(M )-modules.

3. Equivariant derived algebraic geometry

Suppose throughout X an affine, and suppose G an affine∞-gerbe over X .

3.1. — (3.1.1) Denote by E∞(MackG) the category of E∞-algebras inMackG , which will here be called G-equivariant
E∞ rings. Denote by E∞(MackG)≥0 the full subcategory of connective G-equivariant E∞ rings, i.e., those G-
equivariant E∞ rings that are in the positive part of the t -structure described above.

(3.1.2) Denote byAffG,≥0 := E∞(MackG)
op
≥0. The objects ofAffG,≥0 will be called equivariant (derived) affines; for

any connective G-equivariant E∞ ring A, denote by SpecA the corresponding object ofAffG,≥0.
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(3.1.3) Denote by AffG,0 the opposite category to the category of commutative rings in Mack♥G . (These would
be the basic objects of “classical” G-equivariant algebraic geometry, had such a thing ever existed.) The
Eilenberg-Mac Lane functor defines a functor

H : AffG,0
//AffG,≥0 .

(3.1.4) For any G-equivariant affine S = SpecA, denote by Perf (S) the∞-category of compact objects in the∞-
categoryMod(S) of A-modules.

(3.1.5) For any G-equivariant affine S and any topology or hypertopology τ onAffG,≥0,/S , we denote byS τ(AffG,≥0,/S )
the corresponding∞-topos. The objects of S τ(AffG,≥0,/S ) are presheaves of spaces

F : Aff op
G,≥0,/S

//Kan

that satisfy descent (or hyperdescent) with respect to τ. Pulling back τ along the Eilenberg-Mac Lane functor
H defines a topology τ0 onAffG,0; there is an induced adjunction

H! : S τ0(AffG,0)
//S τ(AffG,≥0)oo : H ?,

the left adjoint of which is fully faithful, and which is, again, not a morphism of∞-topoi.
(3.1.6) Suppose X a G-equivariant affine, and suppose τ any topology or hypertopology onAff≥0,/S . Attached to

any sheaf F of∞-categories onAffG,≥0,/S for τ is a cartesian fibration

Γτ(F ) //S τ(AffG,≥0,/S ) ,

given by the∞-categorical analogue of the Grothendieck construction. The fibers of this cartesian fibration
over an affine S (more precisely, over the sheafification of the presheaf represented by S) is canonically
equivalent to the∞-category F S.

Flatness and the flat hypertopology. — Much of the theory of flat families from derived algebraic geometry
translates directly to the G-equivariant context.

Theorem 3.2. — The following are equivalent for a morphism f : T = SpecB // SpecA= S of G-equivariant affines.
(3.2.1) As an A-module, B can be written as a filtered colimit of finitely generated free A-modules.
(3.2.2) For any discrete A-module M , the B-module f ?M :=M ⊗A B is discrete.
(3.2.3) The functor

f ? :Mod(S) //Mod(T )

is left t-exact, so that it carriesMod(S)≤0 intoMod(T )≤0.
(3.2.4) The following pair of conditions is satisfied.

(3.2.4.1) The induced homomorphism Specπ0B // Specπ0A is a flat morphism of ordinary G-equivariant
schemes.

(3.2.4.2) For every integer j ∈ Z, the homomorphism

π j A⊗π0Aπ0B //π j B

of π0B-modules is an isomorphism.
In this case, the morphism f will be called flat.

Theorem 3.3. — The following are equivalent for a flat morphism f : T = SpecB // SpecA= S of G-equivariant
affines.
(3.3.1) The functor

f ? :Mod(S) //Mod(T )

is conservative, so that for any nonzero A-module M , the B-module f ?M :=M ⊗A B is nonzero.
(3.3.2) The induced morphism Specπ0B // Specπ0A of ordinary G-equivariant affines is faithfully flat.

In this case, the morphism f will be called faithfully flat.
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3.4. — A simplicial object V• of AffG,≥0,/U is a flat hypercovering of an affine U if for any integer n ≥ 0, the
morphism

(skn−1 V•)n // U

is faithfully flat.
Along with Čech nerves of covering families

{Ui
//
∐

j∈I Uj }i∈I ,

the flat hypercoverings generate the flat hypertopology [ on the∞-categoryAffG,≥0,/S for a G-equivariant affine S.
The corresponding flat∞-topos S [(AffG,≥0,/S ) is hypercomplete. A presheaf

F : Aff op
G,≥0,/S

//Kan

is a flat hypersheaf over S if it lies in S [(AffG,≥0,/S ), i.e., if the following two conditions are satisfied.

(3.4.1) For any object U ∈AffG,≥0,/S and any flat hypercovering V• of U , the induced morphism

F U // lim F V•

is an equivalence.
(3.4.2) For any object U =

∐

i∈I Ui ∈AffG,≥0,/S , the induced morphism

F U //∏
i∈I F Ui

is an equivalence.

Theorem 3.5. — Suppose S a G-equivariant affine. The flat hypertopology AffG,≥0,/S is subcanonical. Moreover, the
assignments

Mod : U � //Mod(U ) and Perf : U � //Perf (U )

are flat hypersheaves of ∞-categories. In particular, the associated presheaves ιMod and ιPerf of spaces are flat hyper-
sheaves.

The cotangent complex and the étale topology. — One of the easiest pieces of classical algebraic geometry to
transfer to the derived setting is Illusie’s cotangent complex.

3.6. — Suppose f : T = SpecB // SpecA= S a morphism of G-equivariant affines. For any B -module M , one has
an associated square zero extension B⊕M of B . Write TM := Spec(B⊕M ); there is an obvious morphism T //TM .
Now define the space of derivations on T over S with coefficient in M as the fiber DerS (T ; M ) of the morphism of
spaces

MorS (TM ,T ) // MorS (T ,T )

over the identity map. The result is a functor

DerS (T ;−) :Mod(T ) //S .

Theorem 3.7. — For any morphism f : T = SpecB // SpecA= S of G-equivariant affines, the functor DerS (T ;−)
is corepresentable; that is, there exists a T -module LT |S and an equivalence

DerS (T ; M )'Mor(LT |S , M ),

functorial in M . The representing object LT |S is called the cotangent complex for f , and the morphism

d : TLT |S
//T

corresponding to the identity of LT |S is called the universal derivation for f .
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3.8. — Suppose f : T = SpecB // SpecA= S a morphism of G-equivariant affines. By applying the functor (−)?,
one obtains an induced morphism f : T ? = SpecB? // SpecA? = S? of diagrams of affines indexed on B [(G)fin.
One can therefore apply the cotangent complex “objectwise” to obtain LT ?|S? . Since every derivation of B over A
gives rise to a derivation of B? over A?, there is an induced morphism of T ?-modules

LT ?|S? //L?T |S .

Adjoint to this morphism is a morphism
FT LT ?|S? //LT |S .

where FT LT ?|S? denotes the free T -module generated by LT ?|S? . Denote by ET |S the fiber of this morphism; it corep-
resents the functor

M � // DerS?(T
?; M ?)/DerS (T ; M ) .

This is often the beginning of a flitration

FT LT |S = F 0LT |S ⊂ F 1LT |S ⊂ · · · ⊂ LT |S

whose graded pieces F j+1/ j LT |S involve only transfers “for a small collection of groups.” In very good cases, one can
actually analyze the corresponding spectral sequence.

3.9. — Suppose f : T = SpecB // SpecA= S a morphism of G-equivariant affines, locally of finite presentation
(so that B is a compact object in the category of G-equivariant E∞ rings under A).

(3.9.1) One says that f is smooth if LT |S is compact inMod(S).
(3.9.2) One says that f is étale if LT |S ' 0.

Theorem 3.10. — The following are equivalent for a morphism f : T = SpecB // SpecA= S of G-equivariant
affines.
(3.10.1) The morphism f is étale.
(3.10.2) The following pair of conditions is satisfied.

(3.10.2.1) The induced homomorphism Specπ0B // Specπ0A is an étale morphism of ordinary G-equivariant
schemes.

(3.10.2.2) For every integer j ∈ Z, the homomorphism

π j A⊗π0Aπ0B //π j B

of π0B-modules is an isomorphism.

3.11. — Suppose S a G-equivariant affine. A family

{Vi
// U }i∈I

is an étale covering if each morphism Vi
// U is étale, and for some finite subset I ′ ⊂ I , the morphism
∐

i∈I ′ Vi
// U

is faithfully flat.
These families generate the étale topology ét on the∞-categoryAff≥0,/S . The corresponding étale∞-toposS ét(AffG,≥0,/S )

is not hypercomplete.

4. Example: The K -theory of tannakian∞-categories

Tannakian∞-categories over an affine X are symmetric monoidal∞-categories that possess all the good proper-
ties of the symmetric monoidal∞-category of perfect complexes on an affine∞-gerbe over X . Suppose throughout
this subsection that X is an affine.
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Higher Tannaka duality. — There is a generalization of the classical Tannaka duality theorems of Saavedra-Rivano
and Deligne, due to Toën, Lurie, and others. These involve Tannakian∞-categories, which are well-behaved sym-
metric monoidal stable∞-categories.

4.1. — A tensor∞-category is a symmetric monoidal∞-category A satisfying the following properties.
(4.1.1) The underlying∞-category is stable.
(4.1.2) For any object M of A, the endofunctor M ⊗− of A is exact.
Denote by T ens the∞-category of tensor∞-categories with symmetric monoidal exact functors.

Theorem 4.2. — The functor
Mod : E∞(Sp) // T ens

A � //Mod(A)
is fully faithful, with left adjoint given by the functor

T ens // E∞(Sp)
A � // End(1A).

4.3. — A rigid tensor∞-category is a tensor∞-category A satisfying the following properties.
(4.3.1) As a symmetric monoidal∞-category, A is closed, so that for any object M of A, the functor M ⊗− admits a

right adjoint MorA.
(4.3.2) For any object M of A the natural morphism

M∨⊗M // MorA(M , M ) ,

where we write M∨ :=MorA(M ,1A), is an equivalence.
Denote byRig the∞-category of rigid tensor∞-categories with symmetric monoidal exact functors.

This can be relativized as well: a rigid X -tensor∞-category is a symmetric monoidal functor Perf (X ) //A of
rigid tensor∞-categories. The∞-category of these is denotedRig/X .

4.4. — A good supply of rigid tensor∞-categories is provided by the functor

Perf /X : S [(Aff≥0,/X ) //Rig/X

F � //Perf (F ).

In the other direction, for any rigid X -tensor∞-category A, denote by Fib/X (A) the presheaf of spaces given by

Fib/X (A) : Aff≥0,/X
//Kan

U � // MorRig/X
(A,Perf (U )).

This presheaf is a flat hypersheaf.

Theorem 4.5. — The resulting functor

Fib/X : Rig/X
//S [(Aff≥0,/X )

A � // Fib/X (A)

is left adjoint to the functorPerf /X .

4.6. — A rigid X -tensor∞-category A equipped with a t -structure is said to be tannakian over X or X -tannakian
if it satisfies the following properties.
(4.6.1) The natural morphism SpecEnd(1A) //X is an equivalence.
(4.6.2) There exists a faithfully flat affine Y over X along with a symmetric monoidal t -exact functor

ω : A //Perf (Y )

such that the induced functorω : IndA //Mod(Y ) is conservative and t -exact.
The∞-category of X -tannakian∞-categories with exact, symmetric monoidal, t -exact functors is denoted T an/X .
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4.7. — The adjunction (Fib/X ,Perf /X ) can be restricted to an adjunction between the∞-category of X -tannakian
categories and affine∞-gerbes over X . Indeed, if G is an affine∞-gerbe over X , then the rigid X -tensor∞-category
Perf (G) is tannakian over X . This defines a functor

Perf t
/X : Gerbe≥0,/X // T an/X

G � //Perf (G).

In the other direction, for any X -tannakian category A, there is a presheaf of spaces

Fibt
/X (A) : Aff≥0,/X

//Kan
U � // MorT an/X

(A,Perf (U )).

This is the affine∞-gerbe of fiber functors for A. This defines a functor

Fibt
/X : T an/X // Gerbe≥0,/X

A � // Fibt
/X (A),

left adjoint toPerf t
/X .

Theorem 4.8 (Higher Tannaka duality). — The adjunction (Fibt
/X ,Perf t

/X ) provides an equivalence of∞-categories.

K -theory of tannakian categories. — The algebraic K -theory of a tannakian category has a much richer structure
than merely that of a spectrum. In fact, it can be regarded as an E∞ Green functor for its affine ∞-gerbe of fiber
functors. This provides an important example of equivariant affines.

4.9. — Suppose A an X -tannakian category, and let G := Fib/X (A) be the corresponding affine ∞-gerbe of fiber
functors. Define a functor

K(A) : B+G //Sp
L � //KPerf (τG,!L),

assigning to any finite object L of the classifying∞-topos of G the K -theory spectrum K([L/G]) of the category
of perfect complexes on the quotient stack [L/G]. Observe that its value on the object ? ∈ B [(G)fin is simply the
algebraic K -theory spectrum of A.

The finiteness assumptions guarantee that for any morphism f : L // M of finite G-spaces, both pullback
morphisms f ? and pushforward morphisms f? are well-defined. It follows from a Zariski descent statement for
algebraic K -theory that the functor K(A) is in fact admissible; hence K(A) is a Mackey functor.

For any morphism f : L // M , the functor f ? is compatible with the tensor products, in the sense that for any
perfect complexes E and F on the stack [M/G], there is a canonical isomorphism

f ?(E ⊗ F )' f ?E ⊗ f ?F ,

so the induced morphism f ? on K -theory is a morphism of connective E∞ ring spectra.
One may externalize this in the following manner: for any two finite G-spaces L and M , one may define an

external tensor product:

� : Perf ([L/G])×Perf ([M/G]) //Perf ([(L×M )/G]) .

This gives rise to an external pairing

K([L/G])∧K([M/G]) //K([(L×M )/G]) .

Moreover, for any morphism f : L // M , one may regard K([L/G]) as a module over the E∞ ring spectrum
K([M/G]) via f ?. For any perfect complexes E on [L/G] and F on [M/G], the canonical morphism

f?E ⊗ F // f?(E ⊗ f ?F )
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is an equivalence; this is the usual projection formula. At the level of K -theory, this translates to the observation
that the diagram

K([L/G])∧K([L/G])
µ // K([L/G])

f?

##HHHHHHHHHHHHH

K([L/G])∧K([M/G])
( f?∧id)

//

(id∧ f ?)

;;vvvvvvvvvvvvv
K([M/G])∧K([M/G]) µ

// K([M/G])

commutes up to coherent homotopy. In other words, the morphism

f? : K([L/G]) //K([M/G])

is a morphism of connective K([M/G])-modules.
Using these observations, one concludes that K(A) is in fact an E∞ Green functor. One therefore defines a G-

equivariant affine
S(A) := SpecK(A)

over X . It’s important to note that S(A) is totally intrinsic to the tannakian∞-category over X ; it depends on no
additional structure. In fact, using an elaborated version of higher tannakian duality, one can construct S(A) entirely
in terms of various categories related to A; one need not even mention the affine∞-gerbe of fiber functors.

4.10. — Here is a relative version of the above construction. Suppose N a fixed G-space. Then one can define a
functor

K(A;N ) : B+G //Sp
L � //KPerf (τG,!(L×N )).

The arguments above can be used to show that this too is an E∞ Green functor. One therefore defines a G-
equivariant affine

S(A;N ) := SpecK(A;N )
over X . This construction is functorial in N ; it defines a functor

S(A;−) : B [(G) //AffG,≥0

N � //S(A;N ).

5. Application: K -theory of Galois representations

5.1. — Suppose k a field, and suppose k its algebraic closure. Write Gk for the absolute Galois group. Consider
the k-tannakian ∞-category Ak := Perf (BGk ). The construction of the previous section permits us to form the
Gk -equivariant affine S(Ak ).

Suppose also that X is a geometrically connected variety over k. Write X :=X ×Spec k Spec k. One may form the

Gk -equivariant affine S(Ak ;X ). One can also consider X itself with the trivial Gk action, yielding a Gk -equivariant
affine S(Ak ;X ). There is a canonical morphism

α : S(Ak ;X ) //S(Ak ;X ) .

We wish to study this morphism.

5.2. — In the Gk -equivariant setting, complete information about Green functors can be obtained by considering
the values on finite Gk -sets, in particular on finite orbits (Gk/H ). We have the following observations.
(5.2.1) The Green functor π∗K(Ak ;X ) assigns to any orbit (Gk/H ) the K -theory of the category RepX [H ] of

variations of representations of H over X . In particular,

π{1}∗ K(Ak ;X )∼=K∗(X ) and πGk
∗ K(Ak ;X )∼=K∗RepX [Gk].

(Strictly speaking, of course, the subgroup {1} ⊂ Gk isn’t actually an option here; rather, I want to suggest
that K(Ak ;X ) is an attempt at interpolation between K(X ) and K RepX [Gk].)
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(5.2.2) The Green functorπ∗K(Ak ;X ) assigns to any orbit (Gk/H ) the K -theory of X×Spec k Spec(k
H
). In particular,

π{1}∗ K(Ak ;X )∼=K∗(X ) and πGk
∗ K(Ak ;X )∼=K∗(X ).

Observe that α is very from being an equivalence.

5.3. — By abuse, write Z for the constant (classical) Green functor for Gk at the integers. Recall that the constant
Green functor has the following properties.

(5.3.1) For any subgroup H ⊂Gk of finite index, its value at (Gk/H ) is Z.
(5.3.2) For any subgroups H ⊂ H ′ ⊂ Gk of finite index, the corresponding pullback morphism Z //Z is the

identity.
(5.3.3) For any subgroups H ⊂ H ′ ⊂ Gk of finite index, the corresponding pushforward morphism Z //Z is

multiplication by the index of H in H ′.
Now the rank homomorphism gives rise to a commutative diagram of Gk -equivariant affines:

Spec HZ

yyrrrrrrrr

&&LLLLLLLL

S(Ak ;X ) α
// S(Ak ;X ).

Suppose now ` an odd prime with 1/` ∈ OX ; then the mod ` rank yields a triangle:

Spec H (Z/`)

wwpppppppp

''OOOOOOOOO

S(Ak ;X ) α
// S(Ak ;X ).

Thus Spec H (Z/`) can be regarded as an equivariant derived subscheme of both S(Ak ,X ) and S(Ak ,X ), and the
morphism α maps one subscheme isomorphically onto the other.

5.4. — Now denote by S(Ak ;X )〈n〉
`

and S(Ak ;X )〈n〉
`

the “2n−1-th infinitesimal neighborhood” of Spec H (Z/`) in

S(Ak ;X ) and S(Ak ;X ), defined in the following manner. Set

S(Ak ;X )〈0〉
`

:=H (Z/`) =: S(Ak ;X )〈0〉
`

,

and for any n > 0, let S(Ak ;X )〈n〉
`

and S(Ak ;X )〈n〉
`

be the Spec of the fibers of the universal derivations

K(Ak ;X )〈n−1〉
`

//LK(Ak ;X ) |K(Ak ;X )〈n−1〉
`

and K(Ak ;X )〈n−1〉
`

//LK(Ak ;X ) |K(Ak ;X )〈n−1〉
`

(which have automatic E∞ structures).
There is a morphism

α〈n〉
`

: S(Ak ;X )〈n〉
`

//S(Ak ;X )〈n〉
`

.

Note that this infinitesimal neighborhood is not obtained by taking forming the infinitesimal neighborhood object-
wise, even on π0.

Taking the colimit over n (in the category of flat hypersheaves), one obtains a commutative diagram

S(Ak ;X )∧
`

��

// S(Ak ;X )∧
`

��
S(Ak ;X ) α

// S(Ak ;X ).

A computation shows that the top morphism is a π0-isomorphism.
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5.5. — We are studying the `-adic completion of S(Ak ;X ) and S(Ak ;X ) relative to the rank. A warning about this:
in general, the value of the `-adic completion of a morphism of Green functors A // H (Z/`) on G is not simply
the `-adic completion of the value of A; one has

A∧
`
' lim
∆
[n � // H (Z/`)∧An ]

in the∞-category of Green functors for Gk . Since the smash product in Mackey functors for G is not the objectwise
smash product, this is an intricate object. There is a Mackey functor-valued spectral sequence for computing the
completion:

E2
p,q =πp ((π∗A)

∧
`
)q =⇒πp+q (A

∧
`
),

but in general this is difficult to use, because the completion of π∗A taken here is the completion of Hπ∗A.

5.6. — Let us assume from now on that k is perfect, and X is smooth. M. Walker, following ideas of Grayson,
introduced a filtration on the K -theory of X :

. . . //W 2(X ) //W 1(X ) //W 0(X ) =K(X ),

whose successive quotients W j/ j+1(X ) are (at least rationally) pure of weight j . This filtration is a descending se-
quence of (E∞) ideals in K(X ). Moreover, the filtration on K∗(X ) given by the spectral sequence

E p,q
2 =πp+qW q/q+1(X ) =⇒Kp+q (X )

coincides rationally with the γ -filtration on K∗(X ).
In particular, the first quotient W 0/1(X ) is HZ, and the second quotient W 1/2(X ) is a spectrum with homotopy

groups

π j W
1/2(X )∼=H 2− j

mot (X ;Z(1)).

In general, the spectra W j/ j+1(X ) are ( j + 1)-truncated, and it follows from work of Suslin that

π2 j−i (W
j/ j+1(X ))∼=H i

mot(X ,Z( j )).

For our purposes here, we shall regard this left hand homotopy group as the definition of motivic cohomology,
despite the fact that there is another “official” definition.

The quotients W 0/t (X ) carry an E∞ structure as well; in fact they can be shown to coincide with a certain
K -theory spectrum.

5.7. — The W -filtration can be made to be fully equivariant for Gk , in the sense that one has filtrations

. . . //W2(Ak ;X ) //W1(Ak ;X ) //W0(Ak ;X ) =K(Ak ;X )

and

. . . //W2(Ak ;X ) //W1(Ak ;X ) //W0(Ak ;X ) =K(Ak ;X ),

each of which is a descending sequence of E∞ ideals.
The quotient maps K(Ak ;X ) //W0/1(Ak ;X ) and K(Ak ;X ) //W0/1(Ak ;X ) can be identified with the rank

morphisms K(Ak ;X ) // HZ and K(Ak ;X ) // HZ .
This leads us to contemplate two kinds of Gk -equivariant motivic cohomology; these are Mackey functors

Hi
mot(Ak ,X ;Z( j )) :=π2 j−i W

j/ j+1(Ak ;X ) and Hi
mot(Ak ,X ;Z( j )) :=π2 j−i W

j/ j+1(Ak ;X ).

Let us define

T j (Ak ;X ) := SpecW0/ j (Ak ;X ) and T j (Ak ;X ) := SpecW0/ j (Ak ;X ).
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One may contemplate the commtuative diagram

T0(Ak ;X ) // T j (Ak ;X )

��

Spec H (Z/`) // Spec HZ

∼
88qqqqqqqq

∼ &&MMMMMMMM

T0(Ak ;X ) // T j (Ak ;X ),

and thus also the n-th infinitesimal formal neighborhoods of Spec H (Z/`) in each: T j (Ak ;X )〈n〉
`

and T j (Ak ;X )〈n〉
`

.

Lemma 5.8. — Consider the following cube:

T j (Ak ;X )〈n〉
`

��

//

((PPPP
T j (Ak ;X )〈n〉

`

��

((PPPP

S(Ak ;X )〈n〉
`

��

// S(Ak ;X )〈n〉
`

��

T j (Ak ;X ) //

((QQQQQ
T j (Ak ;X )

((QQQQQQ

S(Ak ;X ) // S(Ak ;X ).

The top and bottom squares are pullbacks.

Lemma 5.9. — For any integer j > 0, the connectivity of the cotangent complex

L(T j (Ak ;X )〈n〉
`
|T j (Ak ;X )〈n〉

`
)

increases without bound as n→∞.

Note. — The pullback diagrams permit one to compute this cotangent complex by pulling back the cotangent
complex

L(S(Ak ;X )〈n〉
`
|S(Ak ;X ))〈n〉

`

to T j (Ak ;X )〈n〉
`

. Then the key point is that the spectra W 0/ j are j -truncated; hence the relevant spectral sequences
are easier to manage.

Theorem 5.10. — The morphism on the completions

S(Ak ;X )∧
`

//S(Ak ;X )∧
` .

is an equivalence.

Theorem 5.11. — The value of K(Ak ;X ) on (Gk/Gk ) agrees with the `-adic completion of K(X ).

Note. — In effect, this follows from the fact that the action of Gk on K(Ak ;X ) is free in a suitable sense.

5.12. — This theorem can be regarded as “Quillen–Lichtenbaum Lite.” It confirms a related conjecture of Carlsson.
I expect that, in degrees above the `-adic cohomological dimension of X , the value of K(Ak ,X )∧

`
on (Gk/Gk )

agrees with the `-completion of the homotopy fixed point spectrum K(X )hGk . I have not been able to confirm this
with current methods; however, I hope that a version of the slice spectral sequence developed by Mike Hill, Mike
Hopkins, and Doug Ravenel may come in handy.

If one could verify this, the Quillen–Lichtenbaum conjecture would follow. This does not, however, seem to
provide a filtration of K(X ) coming from the Beilinson–Lichtenbaum spectral sequence; I am unable to say anything
intelligent about this.
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6. Application: Crystalline realizations of K -theory

6.1. — Suppose V a complete discrete valuation ring of mixed characteristic (0, p), with perfect residue field k and
fraction field K ; suppose π ∈V a uniformizer. Denote by V0 =W (k) the ring of Witt vectors, and denote by K0 its
fraction field.

Let us quickly recall Ogus’s convergent site. Suppose X a k-scheme of finite type. An affine enlargement of X
over V is a commutative diagram

(T /πT )red
//

��

X

��
T // SpfV ,

wherein T is an affine, flat formal V -scheme. Endowed with the Zariski topology, the category of affine enlarge-
ments of X over V is a site (X /V )conv.

We define two sheaves on (X /V )conv:

OX /V : T � //Γ(T ,OT ) and KX /V : T � //Γ(T ,OT )⊗V K .

The convergent∞-topos is functorial in (X /V ) in the usual manner for cocontinuous morphisms of large sites.

6.2. — The∞-category of (derived) crystals on X over V is the defined as

Cris(X /V ) := lim
T∈(X /V )op

conv

Mod(HOX /V (T )).

Put differently, a crystal E on X over V amounts to an assignment to any affine enlargement T a complex of
OT -modules ET , and to any morphism f : T ′ //T of affine enlargements a quasiisomorphism f ?ET

//ET ′ ,
to any composable sequence of morphisms T ′′ //T ′ //T a homotopy between the two quasiisomorphisms
f ? g ?ET

//ET ′′ , etc., etc. ...
The∞-category of (derived) isocrystals on X over V is the homotopy limit

Isoc(X /V ) := lim
T∈(X /V )op

conv

Mod(HKX /V (T )).

Put differently, an isocrystal on X over V amounts to an assignment to any affine enlargement T a complex of
OT⊗V K -modules ET , and to any morphism f : T ′ //T of affine enlargements a quasiisomorphism f ?ET

//ET ′ ,
to any composable sequence of morphisms T ′′ //T ′ //T a homotopy between the two quasiisomorphisms
f ? g ?ET

//ET ′′ , etc., etc. ...
A rational point x ∈X (k) defines a fiber functor

$x : Isoc(X /V )ω //Perf (SpecK) .

One verifies that Isoc(X /V )ω is a K -tannakian∞-category.
I emphasize that, despite the fact that the topology plays no role in these definitions, it follows from faithfully

flat descent and the degeneration of the Tor spectral sequence that any crystal or isocrystal is additionally a sheaf
for the fpqc topology on the category of affine enlargements of X over V .

6.3. — Suppose X a k-scheme of finite type. Denote by φ the absolute Frobenius endomorphism on X . Denote
by σ a lift of the p-th power morphism on k to K . The pair (φ,σ) induces an endofunctor φ? of Isoc(X /V ). The
∞-category of (derived) F -isocrystals is the homotopy equalizer

FIsoc(X /V ) := lim



 Isoc(X /V )
φ? //
id

// Isoc(X /V )



 .

Observe that FIsoc(X /V ) is a rigid Qp -tensor ∞-category (not a rigid K -tensor ∞-category). A rational point
x ∈X (k) defines a fiber functor

$x : FIsoc(X /V )ω //Perf (SpecK) .
One verifies thatFIsoc(X /V )ω is a Qp -tannakian∞-category.
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6.4. — Denote by Fk :=FIsoc(Spec k/V )ω. The objects here are thus perfect complexes over K equipped with a
σ -linear autoequivalence. Let us write GFIsoc for the Tannaka dual∞-gerbe over Qp .

On the other hand, if X is a smooth and proper variety over k, denote by XIsoc the Tannaka dual ∞-gerbe
for the K -tannakian∞-category Isoc(X /V )ω,ss ⊂ Isoc(X /V )ω comprised of semistable objects. We call XIsoc the
crystalline homotopy type of X over V .

The crystalline homotopy type XIsoc is naturally a GFIsoc-space; hence we may contemplate the K -theory Green
functor K(Fk ;XIsoc) for GFIsoc. Write

S(Fk ;XIsoc) := SpecK(Fk ;XIsoc)

for the corresponding Fk -equivariant affine.

6.5. — Suppose now that X is a proper, smooth model of X over V . One may regard X itself as a GFIsoc space
with a trivial action, and thus one has a K -theory Green functor K(Fk ;X ) for GFIsoc. Write

S(Fk ;X ) := SpecK(Fk ;X )
for the corresponding Fk -equivariant affine.

One has a diagram of Fk -equivariant affines

H (Z/p)

xxrrrrrrrr

&&NNNNNNNN

S(Fk ;X ) // S(Fk ;XIsoc)

in which the vertical morphisms are given by the mod p rank.

Theorem 6.6. — The morphism on the completions

S(Fk ;X )∧p //S(Fk ;XIsoc)
∧
p

is an equivalence.

Note. — The proof is as in the Galois-equivariant case: one shows that the cotangent complex of

S(Fk ;X )〈n〉p
//S(Fk ;XIsoc)

〈n〉
p

increases without bound as n →∞. For this, one need not use a filtration on the K -theory; instead, one is able to
exploit the simple structure of GFIsoc.

6.7. — This is a strange theorem. As far as I know, no one has predicted any result of this kind. However, it does
suggest something bizarre: there is a shadow of the K -theory of a smooth proper model of X that does not actually
depend on the model. Moreover, this suggests that some p-completion of motivic cohomology of a smooth proper
model of X might not even require the existence of any smooth proper models: it can be defined directly using
XIsoc.

Remarks of J.–M. Fontaine suggest that there should be no corresponding “filtered” statement.
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