Bayesian and Adaptive Optimal Policy under Model Uncertainty

Lars E.O. Svensson and Noah Williams*
www.princeton.edu/svensson/ www.princeton.edu/~noahw/
Princeton University
June 2006

Abstract

We study the problem of a policymaker who seeks to set policy optimally in an economy where the true economic structure is unobserved, and policymakers optimally learn from their observations of the economy. This is a classic problem of learning and control, variants of which have been studied in the past, but little with forward-looking variables which are a key component of modern policy-relevant models. As in most Bayesian learning problems, the optimal policy typically includes an experimentation component reflecting the endogeneity of information. We develop algorithms to solve numerically for the Bayesian optimal policy (BOP). However the BOP is only feasible in relatively small models, and thus we also consider a simpler specification we term adaptive optimal policy (AOP) which allows policymakers to update their beliefs but shortcuts the experimentation motive. In our setting, the AOP is significantly easier to compute, and in many cases provides a good approximation to the BOP. We provide a simple example to illustrate the role of learning and experimentation in an MJLQ framework. We also include an application of our methods to a relatively simple version of a benchmark New-Keynesian monetary model which is estimated from U.S data [to be done].

JEL Classification: E42, E52, E58
Keywords: Optimal monetary policy, learning, recursive saddlepoint method

*We thank Alexei Onatski, Tamas Papp, and members of the Princeton Macro Lunch Workshop for helpful comments and discussions. Expressed views and any remaining errors are our own responsibility.
1 Introduction

We study the problem of a policymaker (more concretely, a central bank), who seeks to set policy optimally in an economy where the true economic structure is unobserved and the policymaker optimally learn from their observations of the economy. This is a classic problem of learning and control with model uncertainty, variants of which have been studied in the past, but very little has been done with forward-looking variables, which are a key component of modern policy-relevant models. Our model of the economy takes the form of a so-called Markov jump-linear-quadratic (MJLQ) system, extended to include forward-looking variables. In this setup, model uncertainty takes the form of different “modes” or regimes that follow a Markov process. This setup can be adapted to handle many different forms of model uncertainty, but yet provides a relatively simple structure for analysis.

In previous work, discussed in more detail below, we studied optimal policy design in models of this class when policymakers could observe the current mode. In this paper we focus in detail on the arguably more relevant situation, particularly for the model uncertainty applications which interest us, in which the modes are not directly observable. Thus decision makers must filter their observations to make inferences about the current mode. As in most Bayesian learning problems, the optimal policy thus typically includes an experimentation component reflecting the endogeneity of information. This class of problems has a long history in economics, and it is well-known that solutions are difficult to obtain. We develop algorithms to solve numerically for the optimal policy.\footnote{In addition to the classic literature (on such problems as a monopolist learning its demand curve), Wieland \cite{14,15} and Beck and Wieland \cite{1} have recently examined Bayesian optimal policy and optimal experimentation in a context similar to ours but without forward-looking variables.}

Due to the curse of dimensionality, the Bayesian optimal policy (BOP) is only feasible in relatively small models. Confronted with these difficulties, we also consider adaptive optimal policy (AOP). In this case, the policymaker in each period does update the probability distribution of the current mode in a Bayesian way, but the optimal policy is computed each period under the assumption that the policymaker will not learn in the future from observations. In our MJLQ setting, the AOP is significantly easier to compute, and in many cases provides a good approximation to the BOP. Moreover, the AOP analysis is of some interest in its own right, as it is closely related to specifications of adaptive learning which have been widely studied in macroeconomics (see \cite{6} for an overview). Further, the AOP specification rules out the experimentation which some may view as objectionable in a policy context.\footnote{In addition, AOP is useful for technical reasons as it gives us a good starting point for our more intensive...}
In later drafts of this paper, we intend to apply our methods to a relatively simple version of a benchmark New-Keynesian monetary model which is estimated from US data. We will then show how probability distributions of forecasts of relevant variables can be constructed for the optimal policy and for other, restricted policies, such as Taylor rules. In this preliminary version, we provide a simple example to illustrate the role of learning and experimentation in an MJLQ framework and compare the policy functions and value functions under NL, AOP, and BOP. Of particular interest is how uncertainty affects policy, and how learning interacts with the optimal policy decisions. We also diagnose the aspects of the model which influence the size of experimentation motive, and thus drive the differences between the Bayesian and adaptive optimal policies.

MJLQ models have also been widely studied in the control-theory literature for the special case when the model modes are observable and there are no forward-looking variables (see Costa, Fragoso, and Marques [4] (henceforth CFM) and the references therein). More recently, Zampolli [16] has used such an MJLQ model to examine monetary policy under shifts between regimes with and without an asset-market bubble. Blake and Zampolli [2] provide an extension of the MJLQ model with observable modes to include forward-looking variables and present an algorithm for the solution of an equilibrium resulting from optimization under discretion. Svensson and Williams [13] provide a more general extension of the MJLQ framework with forward-looking variables and present algorithms for the solution of an equilibrium resulting from optimization under commitment in a timeless perspective as well as arbitrary time-varying or time-invariant policy rules, using the recursive saddlepoint method of Marcet and Marimon [9]. They also provide two concrete examples: an estimated backward-looking model (a three-mode variant of Rudebusch and Svensson [11]) and an estimated forward-looking model (a three-mode variant of Lindé [8]). Svensson and Williams [13] also extend the MJLQ framework to the more realistic case of unobservable modes, although without introducing learning and inference about the probability distribution of modes, which is our focus here.

The paper is organized as follows: Section 2 lays out the basic model an MJLQ system with forward-looking variables. Sections 3, 4, and 5 derive the optimal policy under no learning (NL), the adaptive optimal policy (AOP), and the Bayesian optimal policy (BOP). Section 6 provides a simple example and compares the value functions and policy functions for these three alternatives.

3 do Val and Başar [5] provide an application of an adaptive-control MJLQ problem in economics. In a different setting, Cogley, Colacito, and Sargent [3] have recently studied how well adaptive policies approximate the optimal policies.
and clarifies the benefits and costs of optimal experimentation.

2 The model

We consider a Markov Jump-Linear-Quadratic (MJLQ) model of an economy with forward-looking variables. The economy has a private sector and a policymaker. We let X_t denote an n_X-vector of predetermined variables in period t, x_t an n_x-vector of forward-looking variables, and i_t an n_i-vector of (policymaker) instruments (control variables).\(^4\) We let model uncertainty be represented by n_j possible (mode) modes and let $j_t \in N_j \equiv \{1, 2, ..., n_j\}$ denote the mode in period t. The model of the economy can then be written

$$
X_{t+1} = A_{11j_{t+1}}X_t + A_{12j_{t+1}}x_t + B_{1j_{t+1}}i_t + C_{1j_{t+1}}\varepsilon_{t+1},
$$

(2.1)

$$
E_t H_{j_{t+1}} x_{t+1} = A_{21j_t}X_t + A_{22j_t}x_t + B_{2j_t}i_t + C_{2j_t}\varepsilon_t,
$$

(2.2)

where ε_t is a multivariate normally distributed random i.i.d. n_ε-vector of shocks with mean zero and contemporaneous covariance matrix I_{n_ε}. The matrices A_{11j}, A_{12j}, ..., C_{2j} have the appropriate dimensions and depend on the mode j. Note that the matrices on the right side of (2.1) depend on the mode j_{t+1} in period $t + 1$, whereas the matrices on the right side of (2.2) depend on the mode j_t in period t. Equation (2.1) then determines the predetermined variables in period $t + 1$ as a function of the mode and shocks in period $t + 1$ and the predetermined variables, forward-looking variables, and instruments in period t. Equation (2.2) determines the forward-looking variables in period t as a function of the mode and shocks in period t, the expectations in period t of next period’s mode and forward-looking variables, and the predetermined variables and instruments in period t. The matrix A_{22j} is invertible for each $j \in N_j$.

The mode j_t follows a Markov process with the transition matrix $P \equiv [P_{jk}]$.\(^5\) Without loss of generality, we assume that j_t and ε_t are independently distributed.\(^6\) We also assume that $C_{1j}\varepsilon_t$ and $C_{2k}\varepsilon_t$ are independent for all $j, k \in N_j$. These shocks, along with the modes, are the driving forces in the model and they are not directly observed. For technical reasons, it is convenient but not necessary that they are independent. We let $p_t = (p_{1t}, ..., p_{n_jt})'$ denote the true probability distribution of j_t in period t. We let $p_{jt|t}$ denote the policymaker’s and private sector’s estimate of

\(^4\) The first component of X_t may be unity, in order to allow for mode-dependent intercepts in the model.

\(^5\) Obvious special cases are $P = I_{n_j}$, when the modes are completely persistent, and $P_j = \bar{p}'$ ($j \in N_j$), when the modes are serially i.i.d. with probability distribution \bar{p}.

\(^6\) Because mode-dependent intercepts are included in the model, there are still additive mode-dependent shocks.
the probability distribution in the beginning of period \(t \). The prediction equation is

\[
p_{t+1|t} = P' p_{t|t}. \tag{2.3}
\]

We let the operator \(E_t[\cdot] \) in the expression \(E_t H_{j_{t+1}, x_{t+1}} \) on the left side of (2.2) denote expectations in period \(t \) conditional on policymaker and private-sector information in the beginning of period \(t \), including \(X_t, i_t, \) and \(p_{t|t} \), but excluding \(j_t \) and \(\varepsilon_t \). Thus, the maintained assumption is symmetric information between the policymaker and the (aggregate) private sector. Since forward-looking variables will be allowed to depend on \(j_t \), parts of the private sector, but not the aggregate private sector, may be able to observe \(j_t \) and parts of \(\varepsilon_t \). The precise informational assumptions and the determination of \(p_{t|t} \) will be specified below.

We let the policymaker’s intertemporal loss function in period \(t \) be

\[
E_t \sum_{\tau=0}^{\infty} \delta^\tau L(X_{t+\tau}, x_{t+\tau}, i_{t+\tau}, j_{t+\tau}) \tag{2.4}
\]

where \(\delta \) is a discount factor satisfying \(0 < \delta < 1 \), and the period loss, \(L(X_t, x_t, i_t, j_t) \), satisfies

\[
L(X_t, x_t, i_t, j_t) \equiv \left[\begin{array}{c} X_t \\ x_t \\ i_t \\ j_t \end{array} \right]' W_j \left[\begin{array}{c} X_t \\ x_t \\ i_t \end{array} \right], \tag{2.5}
\]

where the matrix \(W_j \ (j \in N_j) \) is positive semidefinite. We assume that the policymaker optimizes under commitment in a timeless perspective. As explained below, we will then add the term

\[
\Xi_{t-1} \delta E_t H_{j_t, x_t} \tag{2.6}
\]

to the intertemporal loss function in period \(t \), where, as we shall see below, the \(n_x \)-vector \(\Xi_{t-1} \) is the mean of the Lagrange multipliers for equation (2.2) from the optimization problem in period \(t - 1 \).

For the special case of no forward-looking variables (\(n_x = 0 \)), the model consists of (2.1) only, without the term \(A_{12j_{t+1}, x_t} \); the period loss function depends on \(X_t, i_t, \) and \(j_t \) only; and there is no role for the Lagrange multipliers \(\Xi_{t-1} \) or the term (2.6).

We will distinguish three cases: (1) Optimal policy when there is no learning (NL), (2) Adaptive optimal policy (AOP), and (3) Bayesian optimal policy (BOP). By NL, we refer to a situation when the policymaker (and aggregate private sector) has a probability distribution \(p_{t|t} \) over the modes in period \(t \) and updates the probability distribution in future periods using the transition matrix only, so the updating equation is

\[
p_{t+1|t+1} = P' p_{t|t}. \tag{2.7}
\]

\[\text{[The microfoundations of these assumption may need further clarification.]}\]
That is, the policymaker and the private sector do not use observations of the variables in the economy to update the probability distribution. The policymaker then determines optimal policy in period t conditional on $p_{t|t}$ and (2.7). This is a variant of a case examined in Svensson and Williams [13].

By AOP, we refer to a situation when the policymaker in period t determines optimal policy as in the NL case, but then uses observations of the realization of the variables in the economy to update its probability distribution according to Bayes Theorem. In this case, the instruments will generally have an effect on the updating of future probability distributions and through this channel separately affect the intertemporal loss. However, the policymaker does not exploit that channel in determining optimal policy. That is, the policymaker does not do any optimal experimentation.

By BOP, we refer to a situation when the policymaker acknowledges that the current instruments will affect future inference and updating of the probability distribution and calculates optimal policy taking this separate channel into account. Therefore, BOP includes optimal experimentation, where for instance the policymaker may pursue policy that increases losses in the short run but improves the inference of the true probability distribution and therefore allows losses in the longer run.

3 Optimal policy with no learning

We first consider the NL case. Svensson and Williams [13] derive the equilibrium under commitment in a timeless perspective for the case when X_t, x_t, and i_t are observable in period t, j_t is unobservable, and the updating equation for $p_{t|t}$ is given by (2.7). Observations of X_t, x_t, and i_t are then not used to update $p_{t|t}$.

It is worth noting what type of belief specification underlies the assumption that the policymaker does not learn from his beliefs. In general this requires the policymaker to have subjective beliefs which are inconsistent or differ from the true data-generating process. A first possibility is that the policymaker (incorrectly) views the modes j_t as being drawn independently each period t from the exogenously given distribution $p_{t|t}$ given by (2.7) in period t. In particular, if $p_{t|t} = \bar{p}$, he or she views the exogenous distribution as being the unconditional distribution \bar{p} associated with the transition matrix P. For this possibility, there is no (perceived) gain from learning. Hence not updating beliefs is optimal for this subjective probability distribution. This is implicitly the case considered in the September 2005 version of Svensson and Williams [13]. A second possibility, suggested to us by Alexei Onatski, is that the policymaker in period t forgets past observations of the
economy, such as X_{t-1}, X_{t-2}, \ldots, when making decisions in period t. Without past observations, the policymaker cannot use current observations to update the beliefs. This possibility has the advantage that the policymaker need not view the modes as being independently drawn, exploiting the fact that the true modes may be serially correlated. However, forgetting past observations implies that the beliefs do not satisfy the law of iterated expectations. Here we will study this second possibility, but the fact that the law of iterated expectations does not hold requires the slightly more complicated derivations below.

As a further difference, Svensson and Williams [13] assumed $C_{2j_t} \equiv 0$. In the full information case, this is an innocuous assumption, since if $C_{2j_t} \neq 0$ the vector of predetermined variables and the block of equations for the predetermined variables, (2.1), can be augmented with the vector $X_{\varepsilon t}$ and the equations $X_{\varepsilon t+1} = C_{2j_{t+1}} \varepsilon_{t+1}$, respectively. Here we allow $C_{2j_t} \neq 0$ and keep track of the term $C_{2j_t} \varepsilon_t$, since this term will serve as the shock in the equations for the forward-looking variables, without which inference in some cases becomes trivial.\footnote{Alternatively, we could allow $C_{2j_t} \equiv 0$ and add the corresponding predetermined variables, but then we have to assume that those predetermined variables are not observable. It turns out that the filtering problem becomes much more difficult when some predetermined variables as well as modes are unobservable.}

It will be practical to replace equation (2.2) by the two equivalent equations,

$$E_t H_{j_{t+1}} x_{t+1} = z_t, \quad (3.1)$$
$$0 = A_{21j_t} X_t + A_{22j_t} x_t - z_t + B_{2j_t} i_t + C_{2j_t} \varepsilon_t, \quad (3.2)$$

where we introduce the n_x-vector of additional forward-looking variables, z_t. Introducing this vector is a practical way of keeping track of the expectations term on the left side of (2.2).

Furthermore, it will be practical to use (3.2) and solve x_t as a function of X_t, z_t, i_t, j_t, and ε_t

$$x_t = \tilde{x}(X_t, z_t, i_t, j_t, \varepsilon_t) \equiv A_{22j_t}^{-1} (z_t - A_{21j_t} X_t - B_{2j_t} i_t - C_{2j_t} \varepsilon_t). \quad (3.3)$$

We note that, for given j_t, this function is linear in X_t, z_t, i_t, and ε_t.

For the application of the recursive saddlepoint method (see Marcet and Marimon [9], Svensson and Williams [13], and Svensson [12] for details of the recursive saddlepoint method), the dual period loss function can be written

$$E_t \tilde{L}(\tilde{X}_t, z_t, i_t, j_t, \varepsilon_t) \equiv \sum_j p_{j|t} \int \tilde{L}(\tilde{X}_t, z_t, i_t, j_t, \varepsilon_t) \varphi(\varepsilon_t) d\varepsilon_t,$$

where $\tilde{X}_t \equiv (X'_t, \Xi_t')'$ is the $(n_X + n_x)$-vector of extended predetermined variables (that is, including the n_x-vector Ξ_t), γ_t is an n_x-vector of Lagrange multipliers, and $\varphi(\cdot)$ denotes a generic
probability density function (for \(\varepsilon_t \), the standard normal density function), and where

\[
\hat{L}(\hat{X}_t, z_t, i_t, \gamma_t, j_t, \varepsilon_t) \equiv L[X_t, \tilde{x}(X_t, z_t, i_t, j_t, \varepsilon_t), i_t, j_t] - \gamma'_t z_t + \Xi'_t \frac{1}{\delta} H_{ ji} \tilde{x}(X_t, z_t, i_t, j_t, \varepsilon_t). \tag{3.4}
\]

Then, the somewhat unusual Bellman equation for the dual optimization problem can be written

\[
\bar{V}(s_t) = E_t \bar{V}(s_t, j_t) \equiv \sum_j p_{jt|t} \bar{V}(s_t, j_t) = \max_{\gamma_t} \min_{(z_t, i_t)} E_t \{ \hat{L}(\hat{X}_t, z_t, i_t, \gamma_t, j_t, \varepsilon_t) + \delta \bar{V}[g(s_t, z_t, i_t, \gamma_t, j_t, \varepsilon_t, \varepsilon_{t+1}, \varepsilon_t)] \}
\]

\[
\equiv \max_{\gamma_t} \min_{(z_t, i_t)} \sum_j p_{jt|t} \int \left[\hat{L}(\hat{X}_t, z_t, i_t, \gamma_t, j, \varepsilon_t) + \delta \sum_k p_{jk} \bar{V}[g(s_t, z_t, i_t, \gamma_t, j, \varepsilon_t, k, \varepsilon_{t+1}), k] \right] \varphi(\varepsilon_t) \varphi(\varepsilon_{t+1}) d\varepsilon_t d\varepsilon_{t+1}.
\tag{3.5}
\]

where \(s_t \equiv (\hat{X}_t, p'_{jt|t})' \) denotes the perceived state of the economy ("perceived" in the sense that it includes the perceived probability distribution, \(p_{jt|t} \), but not the true mode) and \((s_t, j_t)\) denotes the true state of the economy ("true" in the sense that it includes the true mode of the economy). As we discuss in more detail below, it is necessary to include the mode \(j_t \) in the state vector because the beliefs do not satisfy the law of iterated expectations. In the BOP case beliefs do satisfy this property, so the state vector is simply \(s_t \). Also note that in the Bellman equation we require that all the choice variables respect the information constraints and thus depend on the perceived state \(s_t \) but not the mode \(j_t \) directly.

The optimization is subject to the transition equation for \(X_{t+1} \),

\[
X_{t+1} = A_{11j_{t+1}} X_t + A_{12j_{t+1}} \tilde{x}(X_t, z_t, i_t, j_t, \varepsilon_t) + B_{1j_{t+1}} i_t + C_{1j_{t+1}} \varepsilon_{t+1}, \tag{3.6}
\]

where we have substituted \(\tilde{x}(X_t, z_t, i_t, j_t, \varepsilon_t) \) for \(x_t \); the new dual transition equation for \(\Xi_t \),

\[
\Xi_t = \gamma_t, \tag{3.7}
\]

and the transition equation for \(p_{t+1|t+1} \), (2.7). This can be combined into the transition equation for \(s_{t+1} \),

\[
s_{t+1} \equiv \begin{bmatrix} X_{t+1} \\ \Xi_t \\ p_{t+1|t+1} \end{bmatrix} = g(s_t, z_t, i_t, \gamma_t, j_t, \varepsilon_t, \varepsilon_{t+1}, \varepsilon_t) \equiv \begin{bmatrix} A_{11j_{t+1}} X_t + A_{12j_{t+1}} \tilde{x}(X_t, z_t, i_t, j_t, \varepsilon_t) + B_{1j_{t+1}} i_t + C_{1j_{t+1}} \varepsilon_{t+1} \\ \gamma_t \\ P' p_{t|t} \end{bmatrix}. \tag{3.8}
\]
It is straightforward to see that the solution of the dual optimization problem is linear in \(\tilde{X}_t \) for given \(s_t \),

\[
\hat{i}_t = \begin{bmatrix} z_t \\ \hat{i}_t \\ \gamma_t \end{bmatrix} = \hat{i}(s_t) = \begin{bmatrix} z(s_t) \\ \hat{i}(s_t) \\ \gamma(s_t) \end{bmatrix} = F(p_{t|t}) \tilde{X}_t = \begin{bmatrix} F_z(p_{t|t}) \\ F_i(p_{t|t}) \\ F_\gamma(p_{t|t}) \end{bmatrix} \tilde{X}_t, \tag{3.9}
\]

\[x_t = x(s_t, j_t, \varepsilon_t) = \hat{x}(X_t, z(s_t), i(s_t), j_t, \varepsilon_t) \equiv F_x \tilde{X}(p_{t|t}, j_t) \tilde{X}_t + F_{x\varepsilon}(p_{t|t}, j_t) \varepsilon_t. \tag{3.10} \]

This solution is also the solution to the primal optimization problem. We note that \(x_t \) is linear in \(\varepsilon_t \) for given \(p_{t|t} \) and \(j_t \). The equilibrium transition equation is then given by

\[s_{t+1} = g(s_t, j_t, \varepsilon_t, j_{t+1}, \varepsilon_{t+1}) \equiv g(s_t, z(s_t), i(s_t), \gamma(s_t), j_t, \varepsilon_t, j_{t+1}, \varepsilon_{t+1}). \]

As can be easily verified, the (unconditional) dual value function \(\tilde{V}(s_t) \) is quadratic in \(\tilde{X}_t \) for given \(p_{t|t} \), taking the form

\[\tilde{V}(s_t) \equiv \tilde{X}_t^t \tilde{V}_{\tilde{X}}(p_{t|t}) \tilde{X}_t + w(p_{t|t}). \]

The conditional dual value function \(\hat{V}(s_t, j_t) \) gives the dual intertemporal loss conditional on the true state of the economy, \((s_t, j_t)\). It follows that this function satisfies

\[\hat{V}(s_t, j_t) \equiv \int \left[\tilde{L}(\tilde{X}_t, \gamma(s_t), \varepsilon_t) + \frac{1}{\delta} \sum_k P_{jk} \hat{V}[g(s_t, j, \varepsilon_t, j_{t+1}, k)] \right] \varphi(\varepsilon_t) \varphi(\varepsilon_{t+1}) d\varepsilon_t d\varepsilon_{t+1} \quad (j \in N_j). \]

The function \(\hat{V}(s_t, j_t) \) is also quadratic in \(\tilde{X}_t \) for given \(p_{t|t} \) and \(j_t \),

\[\hat{V}(s_t, j_t) \equiv \tilde{X}_t^t \hat{V}_{\tilde{X}}(p_{t|t}, j_t) \tilde{X}_t + w(p_{t|t}, j_t). \]

It follows that we have

\[\hat{V}_{\tilde{X}}(p_{t|t}) \equiv \sum_j p_{jt|t} \hat{V}_{\tilde{X}}(p_{t|t}, j), \quad w(p_{t|t}) \equiv \sum_j p_{jt|t} \hat{w}(p_{t|t}, j). \]

The value function for the primal problem, with the period loss function \(E_t L(X_t, x_t, \hat{i}_t, j_t) \) rather than \(E_t \tilde{L}(\tilde{X}_t, z_t, \hat{i}_t, \gamma_t, \varepsilon_t) \), satisfies

\[
V(s_t) \equiv \tilde{V}(s_t) - \tilde{\Xi}_t^{-1} \frac{1}{\delta} \sum_j p_{jt|t} H_j \int x(s_t, j, \varepsilon_t) \varphi(\varepsilon_t) d\varepsilon_t = \tilde{V}(s_t) - \tilde{\Xi}_t^{-1} \frac{1}{\delta} \sum_j p_{jt|t} H_j x(s_t, j, 0) \tag{3.11}
\]

(where the second equality follows since \(x(s_t, j_t, \varepsilon_t) \) is linear in \(\varepsilon_t \) for given \(s_t \) and \(j_t \)). It is quadratic in \(\tilde{X}_t \) for given \(p_{t|t} \),

\[V(s_t) \equiv \tilde{X}_t^t \tilde{V}_{\tilde{X}}(p_{t|t}) \tilde{X}_t + w(p_{t|t}) \]
the scalar \(w(p_{jt}) \) in the primal value function is obviously identical to that in the dual value function. This is the value function conditional on \(\tilde{X}_t \) and \(p_{jt|t} \) after \(X_t \) has been observed but before \(x_t \) has been observed, taking into account that \(j_t \) and \(\varepsilon_t \) are not observed. Hence, the second term on the right side of (3.11) contains the expectation of \(H_{jt,x_t} \) conditional on that information.\(^9\)

For future reference, we note that the value function for the primal problem also satisfies

\[
V(s_t) = \sum_j p_{jt|t} \tilde{V}(s_t, j),
\]

where the conditional value function, \(\tilde{V}(s_t, j) \), satisfies

\[
\tilde{V}(s_t, j) = \int \left\{ L[X_t, x(s_t, j, \varepsilon_t), i(s_t, j)] + \delta \sum_k P_{jk} \tilde{V}[g(s_t, j, \varepsilon_t, k, \varepsilon_{t+1}), k] \right\} \varphi(\varepsilon_t) \varphi(\varepsilon_{t+1}) d\varepsilon_t d\varepsilon_{t+1} \quad (j \in N_j). \quad (3.12)
\]

3.1 The case without forward-looking variables

For the case without forward-looking variables, the recursive saddlepoint method is not needed. The transition equation for \(X_{t+1} \) is

\[
X_{t+1} = A_{jt+1} X_t + B_{jt+1} i_t + C_{jt+1} \varepsilon_{t+1},
\]

and the period loss function is

\[
E_t L(X_t, i_t, j_t) \equiv \sum_j p_{jt|t} L(X_t, i_t, j), \quad (3.14)
\]

where

\[
L(X_t, i_t, j_t) \equiv \begin{bmatrix} X_t \\ i_t \end{bmatrix} \cdot W_{jt} \begin{bmatrix} X_t \\ i_t \end{bmatrix}.
\]

The transition equation is

\[
s_{t+1} \equiv \begin{bmatrix} X_{t+1} \\ p_{jt+1|t+1} \end{bmatrix} = g(s_t, i_t, j_{t+1}, \varepsilon_{t+1}) \equiv \begin{bmatrix} A_{jt+1} X_t + B_{jt+1} i_t + C_{jt+1} \varepsilon_{t+1} \\ P_{jt+1|t} \end{bmatrix}. \quad (3.16)
\]

The Bellman equation for the derivation of the optimal policy is

\[
V(s_t) = E_t \tilde{V}(s_t, j_t) \equiv \sum_j p_{jt|t} \tilde{V}(s_t, j)
\]

\[
= \min_{i_t} E_t \{ L(X_t, i_t, j_t) + \delta \tilde{V}[g(s_t, i_t, j_{t+1}, \varepsilon_{t+1}), j_{t+1}] \}
\]

\[
\equiv \min_{i_t} \sum_j p_{jt|t} \left[L(X_t, i_t, j) + \delta \sum_k P_{jk} \int \tilde{V}[g(s_t, i, k, \varepsilon_{t+1}), k] \varphi(\varepsilon_{t+1}) d\varepsilon_{t+1} \right]. \quad (3.17)
\]

\(^9\) To be precise, the observation of \(X_t \), which depends on \(C_{1j_t} \varepsilon_t \), allows some inference of \(\varepsilon_t, \varepsilon_{t|t} \). \(x_t \) will depend on \(j_t \) and on \(\varepsilon_t \), but on \(\varepsilon_t \) only through \(C_{2j_t} \varepsilon_t \). By assumption \(C_{1j_t} \) and \(C_{2j_t} \) are independent. Hence, any observation of \(X_t \) and \(C_{1j_t} \varepsilon_t \) does not convey any information about \(C_{2j_t} \varepsilon_t \), so \(E_t C_{2j_t} \varepsilon_t = 0 \).
This results in the optimal policy function,

\[i_t = i(s_t) \equiv F_t(p_{t|t})X_t, \]

(3.18)

which is linear in \(X_t \) for given \(p_{t|t} \). The equilibrium transition equation is then

\[s_{t+1} = \bar{g}(s_t, j_{t+1}, \varepsilon_{t+1}) \equiv g(s_t, i(s_t), j_{t+1}, \varepsilon_{t+1}). \]

(3.19)

The value function, \(V(s_t) \), is quadratic in \(X_t \) for given \(p_{t|t} \),

\[V(s_t) = X_t'V_{XX}(p_{t|t})X_t + w(p_{t|t}). \]

The conditional value function, \(\hat{V}(s_t, i_t) \), satisfies

\[\hat{V}(s_t, j_t) \equiv L[X_t, i(s_t), j_t] + \delta \sum_k P_{jk} \int \hat{V}[\bar{g}(s_t, k, \varepsilon_{t+1}), k] \varphi(\varepsilon_{t+1}) d\varepsilon_{t+1} \quad (j \in N_j). \]

4 Adaptive optimal policy

Consider now the case of AOP. We assume that \(C_{2j_t} \neq 0 \) and that both \(\varepsilon_t \) and \(j_t \) are unobservable. The estimate \(p_{t|t} \) is the result of Bayesian updating, using all information available, but the optimal policy in period \(t \) is computed under the perceived updating equation (2.7). That is, the fact that the policy choice will affect future \(p_{t+\tau|t+\tau} \) and that future expected loss will change when \(p_{t+\tau|t+\tau} \) changes is disregarded. Under the assumption that the expectations on the left side of (2.2) are conditional on (2.7), the variables \(z_t, i_t, \gamma_t, \) and \(x_t \) in period \(t \) are still determined by (3.9) and (3.10).

In order to determine the updating equation for \(p_{t|t} \), we specify an explicit sequence of information revelation as follows, in no less than nine steps:

First, the policymaker and the private sector enters period \(t \) with the prior \(p_{t|t-1} \). They know \(X_{t-1}, x_{t-1} = x(s_{t-1}, j_{t-1}, \varepsilon_{t-1}), z_{t-1} = z(s_{t-1}), i_{t-1} = i(s_{t-1}), \) and \(\Xi_{t-1} = \gamma(s_{t-1}) \) from the previous period.

Second, in the beginning of period \(t \), the mode \(j_t \) and the vector of shocks \(\varepsilon_t \) are realized. Then the vector of predetermined variables \(X_t \) is realized according to (2.1).

Third, the policymaker and the private sector observe \(X_t \). They then know \(\tilde{X}_t \equiv (X_t', \Xi_{t-1}')' \). They do not observe \(j_t \) or \(\varepsilon_t \)

Fourth, the policymaker and the private sector update the prior \(p_{t|t-1} \) to the posterior \(p_{t|t} \) according to Bayes Theorem and the updating equation

\[p_{j|t} = \frac{\varphi(X_t|j_t = j, X_{t-1}, x_{t-1}, i_{t-1}, p_{t|t-1})}{\varphi(X_t|X_{t-1}, x_{t-1}, i_{t-1}, p_{t|t-1})} p_{j|t-1} \quad (j \in N_j), \]

(4.1)
where $\varphi(\cdot)$ denotes a generic density function. Then the policymaker and the private sector know $s_t \equiv (\tilde{X}_t', p_{t|t})'$.

Fifth, the policymaker solves the dual optimization problem, determines $i_t = i(s_t)$, and implements/announces the instrument setting i_t.

Sixth, the private-sector (and policymaker) expectations,

$$ z_t = E_t H_{j,t+1} x_{t+1} \equiv E[H_{j,t+1} x_{t+1} | s_t], $$

are formed. In equilibrium, these expectations will be determined by (3.9). In order to understand their determination better, we look at this in some detail.

These expectations are by assumption formed before x_t is observed. The private sector and the policymaker know that x_t will in equilibrium be determined next period according to (3.10). Hence, they can form expectations of the soon-to-be determined x_t conditional on $j_t = j$,

$$ x_{j,t|t} = x(s_t, j, 0). \quad (4.2) $$

The private sector and the policymaker can also infer Ξ_t from

$$ \Xi_t = \gamma(s_t). \quad (4.3) $$

This allows the private sector and the policymaker to form the expectations

$$ z_t = z(s_t) = E_t[H_{j,t+1} x_{t+1} | s_t] = \sum_{j,k} P_{j,k} p_{j|t} H_k x_{k,t+1|j,t}, \quad (4.4) $$

where

$$ x_{k,t+1|j,t} = \mathbb{E} \left[\begin{bmatrix} A_{11k} X_t + A_{12k} x(s_t, j, \varepsilon_t) + B_{1k} i(s_t) \\ \Xi_t \\ P' p_{j|t} \end{bmatrix} , k, \varepsilon_{t+1} \right] \varphi(\varepsilon_t) \varphi(\varepsilon_{t+1}) d\varepsilon_t d\varepsilon_{t+1} $$

$$ = x \left[\begin{bmatrix} A_{11k} X_t + A_{12k} x(s_t, j, 0) + B_{1k} i(s_t) \\ \Xi_t \\ P' p_{j|t} \end{bmatrix} , k, 0 \right], $$

where we have exploited the linearity of $x_t = x(s_t, j_t, \varepsilon_t)$ and $x_{t+1} = x(s_{t+1}, j_{t+1}, \varepsilon_{t+1})$ in ε_t and ε_{t+1}. Note that $z_t = z(s_t) = E_t H_{j,t+1} x_{t+1}$ is formed conditional on the belief that the probability

10 The policymaker and private sector also estimate the shocks $\varepsilon_{j|t}$ as $\varepsilon_{j|t} = \sum_j p_{j|t} \varepsilon_{j|t}$, where $\varepsilon_{j|t} \equiv X_t - A_{11j} X_{j-1} - A_{12j} x_{j-1} - B_{1j} i_{j-1}$, $j \in N_j$. However, because of the assumed (convenient) independence of $C_{1j} \varepsilon_t$ and $C_{2j} \varepsilon_t$, $j \in N_j$, we do not need to keep track of $\varepsilon_{j|t}$.

11 Note that 0 instead of $\varepsilon_{j|t}$ enters above. This is because the inference $\varepsilon_{j|t}$ above is inference about $C_{1j} \varepsilon_t$, whereas x_t depends on ε_t through $C_{2j} \varepsilon_t$. Since we assume that $C_{1j} \varepsilon_t$ and $C_{2j} \varepsilon_t$ are independent, there is no inference of $C_{2j} \varepsilon_t$ from observing X_t. Hence, $E_t C_{2j} \varepsilon_t \equiv 0$. Because of the linearity of x_t in ε_t, the integration of x_t over ε_t results in $x(s_t, j_t, 0_t)$.

11
distribution in period $t + 1$ will be given by $p_{t+1|t+1} = P'p_{t|t}$, not by the true updating equation that we are about to specify.

Seventh, after the expectations $z_t = z(s_t) = E_tH_{j+t}x_{t+1}$ have been formed, x_t is determined as a function of X_t, z_t, i_t, j_t, and ε_t by (3.3).

Eighth, the policymaker and the private sector then use the observed x_t to update $p_{t|t}$ to the new posterior $p_{t+1|t}^+$ according to Bayes Theorem, via the updating equation

$$p_{jt|t}^+ = \frac{\varphi(x_t|j_t = j, X_t, z_t, i_t, p_{t|t})}{\varphi(x_t|X_t, z_t, i_t, p_{t|t})}p_{jt|t} \quad (j \in N_j). \quad (4.5)$$

Ninth, the policymaker and the private sector then leave period t and enter period $t + 1$ with the prior $p_{t+1|t}$ given by the prediction equation

$$p_{t+1|t} = P'p_{t|t}. \quad (4.6)$$

In the beginning of period $t + 1$, the mode j_{t+1} and the vector of shocks ε_{t+1} are realized, and X_{t+1} is determined by (2.1) and observed by the policymaker and private sector. The sequence of the nine steps above then repeats itself.

Since $C_{1j}\varepsilon_t$ is a random n_X-vector that, for given j, is normally distributed with mean zero and covariance matrix $C_{1j}C'_{1j}$ (assume for simplicity that the rank of $C_{1j}C'_{1j}$ is n_X; if not, for instance when the predetermined variables include lagged endogenous variables, choose the appropriate nonsingular submatrix and the appropriate subvector of X_t), we know that

$$\varphi(X_t|j_t = j, X_{t-1}, x_{t-1}, i_{t-1}, p_{t|t-1}) \equiv \psi(X_t - A_{11j}X_{t-1} - A_{12j}x_{t-1} - B_{1j}i_{t-1}; C_{1j}C'_{1j}), \quad (4.7)$$

where

$$\psi(\varepsilon; \Sigma_{\varepsilon\varepsilon}) \equiv \frac{1}{\sqrt{(2\pi)^n|\Sigma_{\varepsilon\varepsilon}|}} \exp\left(-\frac{1}{2}\varepsilon'\Sigma_{\varepsilon\varepsilon}^{-1}\varepsilon\right)$$

denotes the density function of a random n_{ε}-vector ε with a multivariate normal distribution with mean zero and covariance matrix $\Sigma_{\varepsilon\varepsilon}$. Furthermore,

$$\varphi(X_t|X_{t-1}, x_{t-1}, i_{t-1}, p_{t|t-1}) \equiv \sum_j p_{jt|t-1}\psi(X_t - A_{11j}X_{t-1} + A_{12j}x_{t-1} + B_{1j}i_{t-1}; C_{1j}C'_{1j}). \quad (4.8)$$

Thus, we know the details of the updating equation (4.1).

Since $C_{2k}\varepsilon_t$ is a random n_x-vector that is normally distributed with mean zero and covariance matrix $C_{2k}C'_{2k}$ (assume that the rank of $C_{2k}C'_{2k}$ is n_x, or select the appropriate nonsingular submatrix and appropriate subvector), we know that

$$\varphi(x_t|j_t = k, X_t, z_t, i_t, p_{t|t}) \equiv \psi[z_t - A_{21k}X_t - A_{22k}x_t - B_{2k}i_t; C_{2k}C'_{2k}], \quad (4.9)$$
\[\varphi(x_t|X_t, z_t, i_t, p_{t|t}) = \sum_k p_{k|t} \psi[z_t - A_{21k}X_t - A_{22k}x_t - B_{2k}i_t; C_{2k}C_{2k}'] \]

(4.10)

Thus, we know the details of the updating equation (4.5).

In particular, it follows that we can write the updating equation (4.5) as

\[p_{t+1}^+ = Q^+(s_t, z_t, i_t, j_t, \varepsilon_t) \]

(4.11)

\[\equiv [Q_1^+(s_t, z_t, i_t, j_t, \varepsilon_t), ..., Q_{n_j}^+(s_t, z_t, i_t, j_t, \varepsilon_t)]' \],

where

\[Q_k^+(s_t, z_t, i_t, j_t, \varepsilon_t) = \frac{\psi[Z_k(X_t, z_t, i_t, j_t, \varepsilon_t); C_{2k}C_{2k}']}{\sum_k p_{k|t} \psi[Z_k(X_t, z_t, i_t, j_t, \varepsilon_t); C_{2k}C_{2k}'] p_{k|t}} \]

(4.12)

and

\[Z_k(X_t, z_t, i_t, j_t, \varepsilon_t) \equiv z_t - A_{21k}X_t - A_{22k}x_t(X_t, z_t, i_t, j_t, \varepsilon_t) - B_{2k}i_t, \]

where we use (3.3) to express \(x_t \) as a function of \(X_t, z_t, i_t, j_t, \) and \(\varepsilon_t \), and used this to eliminate \(x_t \) from the first argument of \(\psi(\cdot, \cdot) \) in (4.9) and (4.10).

The transition equation for \(p_{t+1|t+1} \) can then finally be written

\[p_{t+1|t+1} = Q(s_t, z_t, i_t, j_t, \varepsilon_t, j_{t+1}, \varepsilon_{t+1}), \]

(4.13)

where \(Q(s_t, z_t, i_t, j_t, \varepsilon_t, j_{t+1}, \varepsilon_{t+1}) \) is defined by the combination of (4.1) for period \(t + 1 \) with (3.6), (4.6), and (4.11).

The equilibrium transition equation is then given by

\[s_{t+1} \equiv \begin{bmatrix} X_{t+1} \\ \Xi_t \\ p_{t+1|t+1} \end{bmatrix} = \bar{g}(s_t, j_t, \varepsilon_t, j_{t+1}, \varepsilon_{t+1}) \]

\[\equiv \begin{bmatrix} A_{11j_{t+1}}X_t + A_{12j_{t+1}}x(s_t, j_t, \varepsilon_t) + B_{1j_{t+1}}i(s_t) + C_{1j_{t+1}}\varepsilon_{t+1} \\ \gamma(s_t) \\ Q(s_t, z(s_t), j(t), \varepsilon_t, j_{t+1}, \varepsilon_{t+1}) \end{bmatrix}, \]

(4.14)

where the third row is given by the true updating equation (4.13) together with the policy function (3.9). Thus we note that in this AOP case there is a distinction between the “perceived” transition equation, which includes the perceived updating equation, (2.7), and the “true” transition equation, which includes the true updating equation (4.13).

Note that \(V(s_t) \) in (3.11), which is subject to the perceived transition equation, (3.8), does not give the true (unconditional) value function for the AOP case. This is instead given by

\[\bar{V}(s_t) \equiv \sum_j p_{jt|t} \bar{V}(s_t, j), \]
where the true conditional value function, $\bar{V}(s_t, j_t)$, satisfies

$$
\bar{V}(s_t, j) = \left\{ L[X_t, x(s_t, j, \varepsilon_t), i(s_t), j] + \delta \sum_k P_{jk} \bar{V}[\bar{g}(s_t, j, \varepsilon_t, k, \varepsilon_{t+1}), k] \right\} \varphi(\varepsilon_t) \varphi(\varepsilon_{t+1}) d\varepsilon_t d\varepsilon_{t+1} \quad (j \in N_j). \tag{4.15}
$$

That is, the true value function $\bar{V}(s_t)$ takes into account the true updating equation for $p_{t|t}$, (4.13), whereas the optimal policy, (3.9), and the perceived value function, $V(s_t)$ in (3.11), are conditional on the perceived updating equation (2.7) and thereby the perceived transition equation (3.8). Note also that $\bar{V}(s_t)$ is the value function after X_t has been observed but before x_t is observed, so it is conditional on $p_{t|t}$ rather than $p_{t+1|t}^+$. Since the full transition equation (4.14) is no longer linear due to the belief updating (4.13), the true value function $\bar{V}(s_t)$ is no longer quadratic in X_t for given $p_{t|t}$. Thus more complex numerical methods are required to evaluate losses in the AOP case, although policy is still determined simply as in the NL case.

Note that12

$$
E_t Q(s_t, z(s_t), i(s_t), j_t, \varepsilon_t, j_{t+1}, \varepsilon_{t+1}) = p_{t+1|t} = P' p_{t|t}. \tag{4.16}
$$

The difference between the true updating equation for $p_{t+1|t+1}$, (4.13), and the perceived updating equation (2.7) is that, in the true updating equation, $p_{t+1|t+1}$ under AOP becomes a random variable from the point of view of period t, with the mean equal to $p_{t+1|t+1}$. This is because $p_{t+1|t+1}$ depends on the realization of j_{t+1} and ε_{t+1}. We can hence write the true transition equation for $p_{t+1|t+1}$ as

$$
p_{t+1|t+1} = P' p_{t|t} + v_{t+1}
$$

where $v_{t+1} = Q(s_t, z(s_t), i(s_t), j_t, \varepsilon_t, j_{t+1}, \varepsilon_{t+1}) - P' p_{t|t}$, and thus $E_t v_{t+1} = 0$. The first term on the right side is the prediction, $p_{t+1|t} = E_t p_{t+1|t+1} = P' p_{t|t}$ and the second term is the innovation in $p_{t+1|t+1}$ that results from the Bayesian updating and depends on the realization of j_{t+1} and ε_{t+1}.

If the conditional value function $\bar{V}(s_{t+1}, j_{t+1})$ under NL is concave in $p_{t+1|t+1}$ for given X_{t+1} and j_{t+1}, then by Jensen’s inequality the true expected future loss under AOP will be lower than the true expected future loss under NL. Furthermore, under BOP, it may be possible to adjust policy so as to increase the variance of $p_{t+1|t+1}$, that is, achieve a mean-preserving spread which might further reduce the expected future loss. This amounts to optimal experimentation.

\textbf{4.1 The case without forward-looking variables}

For the case without forward-looking variables, again the recursive saddlepoint method is not needed. With the transition equation for the predetermined variables (3.13) and the period loss

12 Of course, (4.13) is in expectation consistent with the prediction equation, (2.3). Equation (4.16) follows since, for $k \in N_j$, $\sum_{j,h} P_{jk} P_{hl} \int Q_k(s_t, z_t, i_t, j_t, \varepsilon_t, h_t, \varepsilon_{t+1}) \varphi(\varepsilon_t) \varphi(\varepsilon_{t+1}) d\varepsilon_t d\varepsilon_{t+1} = p_{k,t+1|t} = \sum_j P_{jk} P_{k}. \tag{4.16}$
function (3.14), the optimal policy in the AOP case is determined as in the NL case by the solution to (3.17), subject to the perceived transition equation (3.16) and given by the same policy function, (3.18).

The optimal policy under AOP is calculated under the perceived updating equation, (2.7). The true updating equation for $p_{t+1|t+1}$ is

$$p_{t+1|t+1} = Q(s_t, i_t, j_{t+1}, \varepsilon_{t+1}), \quad (4.17)$$

where

$$Q(s_t, i_t, j_{t+1}, \varepsilon_{t+1}) = [Q_1(s_t, i_t, j_{t+1}, \varepsilon_{t+1}), \ldots, Q_{n_j}(s_t, i_t, j_{t+1}, \varepsilon_{t+1})]'$$

and

$$Q_k(s_t, i_t, j_{t+1}, \varepsilon_{t+1}) \equiv \psi[(A_{j_{t+1}} - A_k)X_t + (B_{j_{t+1}} - B_k)i_t + C_{j_{t+1}}\varepsilon_{t+1}; C_kC_k'] \sum_j p_{jk}p_{jt|t}.\]$$

The equilibrium transition equation is

$$s_{t+1} = \bar{g}(s_t, j_{t+1}, \varepsilon_{t+1}) \equiv \begin{bmatrix} A_{j_{t+1}}X_t + B_{j_{t+1}}i(s_t) + C_{j_{t+1}}\varepsilon_{t+1} \end{bmatrix} Q(s_t, i(s_t), j_{t+1}, \varepsilon_{t+1}).$$

The true (unconditional) value function, $\bar{V}(s_t)$, taking into account that $p_{t+1|t+1}$ will be updated according to (4.17) and ex post depend on j_{t+1} and ε_{t+1}, is given by

$$\bar{V}(s_t) \equiv \sum_j p_{jt|t} \bar{V}(s_t, j),$$

where the true conditional value function $\bar{V}(s_t, j)$ satisfies

$$\bar{V}(s_t, j) = L[X_t, i(s_t), j] + \delta \sum_k p_{jk} \int \bar{V}[\bar{g}(s_t, k, \varepsilon_{t+1}), k] \varphi(\varepsilon_{t+1}) d\varepsilon_{t+1}.$$

Again, if the conditional value function $\bar{V}(s_{t+1}, j_{t+1})$ under NL is concave in $p_{t+1|t+1}$, the value function $\bar{V}(s_t)$ under AOP will be lower than under NL.\(^{13}\)

4.2 A special case when forward-looking variables do not reveal any further information

A special case that is simpler to deal with is when

$$A_{21j} = A_{21}, \quad A_{22j} = A_{22}, \quad B_{2j} = B_2, \quad C_{2j} = 0 \quad (j \in N_j). \quad (4.18)$$

\(^{13}\) It remains to clarify the concavity properties of the conditional and unconditional value functions. Kiefer [7] examines the properties of a value function, including concavity, under Bayesian learning for a special case.
That is, the matrices A_{21}, A_{22}, and B_2 are independent of j, and the matrix $C_2 = 0$, so
\[x_t = \hat{x}(X_t, z_t, i_t) \equiv A_{22}^{-1}(z_t - A_{21}X_t - B_2i_t). \]
In that case, the observation of x_t does not reveal any further information about j_t. This implies that the updating equation (4.5) collapses to
\[p^+_t = p_t, \]
so the prediction equation (4.6) is simply
\[p_{t+1} = P'p_t. \]

In particular, we then have
\[x_t = x(s_t) \equiv \hat{x}[X_t, z(s_t), i(s_t)], \]
\[p_{t+1} = Q(s_t, z_t, i_t, j_{t+1}, \varepsilon_{t+1}), \]
\[s_{t+1} = g(s_t, z_t, i_t, \gamma_t, j_{t+1}, \varepsilon_{t+1}), \]
\[\bar{g}(s_t, j_{t+1}, \varepsilon_{t+1}) \equiv g(s_t, z(s_t), i(s_t), \gamma(s_t), j_{t+1}, \varepsilon_{t+1}). \]
That is, there is in this case no separate dependence of s_{t+1} and x_t on j_t and ε_t beyond s_t. This special case also makes the case of Bayesian optimal policy simpler.

5 Bayesian optimal policy

Finally, we consider the BOP case, when optimal policy is determined while taking the updating equation (4.13) into account. That is, we now allow the policymaker to choose i_t taking into account that this will affect $p_{t+1|t+1}$, which in turn will affect future expected losses. That is, optimal experimentation is allowed. For the BOP case, there is hence no distinction between the “perceived” and “true” transition equation.

The transition equation for the BOP case is then
\[
\begin{bmatrix}
X_{t+1} \\
\Xi_t \\
p_{t+1|t+1}
\end{bmatrix} = \begin{bmatrix}
A_{11j_{t+1}}X_t + A_{12j_{t+1}}\hat{x}(s_t, z_t, i_t, j_t, \varepsilon_t) + B_{1j_{t+1}}i_t + C_{1j_{t+1}}\varepsilon_{t+1} \\
\gamma_{t+1} \\
Q(s_t, z_t, i_t, j_t, \varepsilon_t, j_{t+1}, \varepsilon_{t+1})
\end{bmatrix}.
\] (5.1)
Then the dual optimization problem can be written as (3.5) subject to the above transition equation (5.1).

However, in the Bayesian case, matters simplify somewhat, as we do not need to compute the conditional value function $\hat{V}(s_t, j_t)$: We note that the second term on the right side of (3.5) can be written as

$$E_t\hat{V}(s_{t+1}, j_{t+1}) \equiv E \left[\hat{V}(s_{t+1}, j_{t+1}) \mid s_t \right].$$

Since, in the Bayesian case, the beliefs do satisfy the law of iterated expectations, this is then the same as

$$E \left[\hat{V}(s_{t+1}, j_{t+1}) \mid s_t \right] = E \left[\hat{V} \left(\begin{bmatrix} X_{t+1}(j_{t+1}, \varepsilon_{t+1}) \\ \Xi_t \\ p_{t+1|t+1}(X_{t+1}(j_{t+1}, \varepsilon_{t+1})) \end{bmatrix}, j_{t+1} \right) \mid s_t \right]$$

$$= E \left\{ E \left[\hat{V} \left(\begin{bmatrix} X_{t+1}(j_{t+1}, \varepsilon_{t+1}) \\ \Xi_t \\ p_{t+1|t+1}(X_{t+1}(j_{t+1}, \varepsilon_{t+1})) \end{bmatrix}, j_{t+1} \right) \mid X_{t+1}, p_{t+1|t+1}(X_{t+1}) \right] \mid s_t \right\}$$

$$= E \left[\hat{V}(s_{t+1}) \mid s_t \right],$$

where we use the definition of $\hat{V}(s_t)$, that X_{t+1} is a function of j_{t+1} and ε_{t+1}, and that $p_{t+1|t+1}$ is a function of X_{t+1}. Appendix B provides a more detailed proof.

Thus, the Bellman equation for the Bayesian optimal policy is

$$\hat{V}(s_t) = \max_{\gamma_t} \min_{(z_t, i_t)} E_t \{ \tilde{L}(\tilde{X}_t, z_t, i_t, \gamma_t, j_t, \varepsilon_t) + \delta \hat{V}[g(s_t, z_t, i_t, \gamma_t, j_t, j_{t+1}, \varepsilon_{t+1})] \}$$

$$\equiv \max_{\gamma_t} \min_{(z_t, i_t)} \sum_j \sum_{\varepsilon_t} p_{j|t} \int \left[\tilde{L}(\tilde{X}_t, z_t, i_t, \gamma_t, j_t, \varepsilon_t) + \delta \sum_k p_{j|k} \hat{V}[g(s_t, z_t, i_t, \gamma_t, j_t, j_{t+1}, \varepsilon_{t+1})] \right] \varphi(\varepsilon_t) \varphi(\varepsilon_{t+1}) d\varepsilon_t d\varepsilon_{t+1},$$

(5.2)

where the transition equation is given by (5.1).

The solution to the optimization problem can be written

$$\tilde{i}_t = \begin{bmatrix} z_t \\ i_t \\ \gamma_t \end{bmatrix} = \tilde{i}(s_t) = \begin{bmatrix} z(s_t) \\ i(s_t) \\ \gamma(s_t) \end{bmatrix} = F(\tilde{X}_t, p_{t|t}) \equiv \begin{bmatrix} F_z(\tilde{X}_t, p_{t|t}) \\ F_i(\tilde{X}_t, p_{t|t}) \\ F_\gamma(\tilde{X}_t, p_{t|t}) \end{bmatrix},$$

(5.3)

$$x_t = x(s_t, j_t, \varepsilon_t) \equiv \tilde{x}(X_t, z(s_t), i(s_t), j_t, \varepsilon_t) \equiv F_x(\tilde{X}_t, p_{t|t}, j_t, \varepsilon_t).$$

(5.4)

Because of the nonlinearity of (4.13) and (5.1), the solution is no longer linear in \tilde{X}_t for given $p_{t|t}$. The dual value function, $\hat{V}(s_t)$, is no longer quadratic in \tilde{X}_t for given $p_{t|t}$. The value function of
the primal problem, \(V(s_t) \), is given by, equivalently, (3.11), (4.15) (with the equilibrium transition equation (4.14) with the solution (5.3)), or
\[
V(s_t) = \sum_j p_{jt|t} \int \left\{ L[X_t, x(s_t, j, \varepsilon_t), i(s_t, j)] + \delta \sum_k P_{jk} V[\bar{g}(s_t, j, \varepsilon_t, k, \varepsilon_{t+1})] \right\} \varphi(\varepsilon_t) \varphi(\varepsilon_{t+1}) d\varepsilon_t d\varepsilon_{t+1}. \tag{5.5}
\]

It it is also no longer quadratic in \(\tilde{X}_t \) for given \(p_{jt|t} \). Thus more detailed numerical methods are necessary in this case to find the optimal policy and the value function.

5.1 The case without forward-looking variables

In the case without forward-looking variables, the transition equation for \(s_{t+1|t+1} \) is
\[
s_{t+1} = g(s_t, i_t, j_{t+1}, \varepsilon_{t+1}) \equiv \begin{bmatrix} A_{jt+1} X_t + B_{jt+1} i_t + C_{jt+1} \varepsilon_{t+1} \\ Q(s_t, i_t, j_{t+1}, \varepsilon_{t+1}) \end{bmatrix},
\]
and the optimal policy is determined by the Bellman equation
\[
V(s_t) = \min_{i_t} E_t \{ L(X_t, i(s_t), j_t) + \delta V[\bar{g}(s_t, i_t, j_{t+1}, \varepsilon_{t+1})] \}
= \min_{i_t} \sum_j p_{jt|t} \left\{ L(X_t, i_t, j_t) + \delta \sum_k P_{jk} \int V[\bar{g}(s_t, i_t, k, \varepsilon_{t+1})] \varphi(\varepsilon_{t+1}) d\varepsilon_{t+1} \right\}.
\]
This results in the optimal policy function
\[
i_t = i(s_t) \equiv F_i(s_t).
\]
Because of the nonlinearity of \(Q(s_t, i_t, j_{t+1}, \varepsilon_{t+1}) \), the optimal policy function is no longer linear in \(X_t \) for given \(p_{jt|t} \), and the value function is no longer quadratic in \(X_t \) for given \(p_{jt|t} \). The equilibrium transition equation is
\[
s_{t+1} = \bar{g}(s_t, j_{t+1}, \varepsilon_{t+1}) \equiv g(s_t, i(s_t), j_{t+1}, \varepsilon_{t+1}).
\]

5.2 The special case when forward-looking variables do not reveal any further information

As above, the special case (4.18) makes it unnecessary to deal with the details of the updating equation (4.11) and the separate dependence of \(s_{t+1} \) on \(j_t \) and \(\varepsilon_t \). The transition equation is simply
\[
\begin{bmatrix}
X_{t+1} \\
\Xi_t \\
P_{t+1|t+1}
\end{bmatrix} = g(s_t, z_t, i_t, j_t, j_{t+1}, \varepsilon_{t+1})
= \begin{bmatrix} A_{11j_{t+1}} X_t + A_{12j_{t+1}} \tilde{x}(s_t, z_t, i_t) + B_{1j_{t+1}} i_t + C_{1j_{t+1}} \varepsilon_{t+1} \\ A_{21j_{t+1}} X_t + A_{22j_{t+1}} \tilde{x}(s_t, z_t, i_t) + B_{2j_{t+1}} i_t + C_{2j_{t+1}} \varepsilon_{t+1} \\ Q(s_t, z_t, i_t, j_{t+1}, \varepsilon_{t+1}) \end{bmatrix}.
\]

18
5.3 Bayesian optimal policy with endogenous mode transition

In the baseline formulation of the model, the mode transition matrix is given, so the model uncertainty represented by the Markov chain of the modes is independent of the state of the economy and the policy choice. Assume now that the mode transition probabilities are instead endogenous and do depend on $X_t, x_t,$ and i_t. That is, the transition matrix depends on $X_t, x_t,$ and $i_t,$

$$P = P(X_t, x_t, i_t) \equiv [P_{jk}(X_t, x_t, i_t)].$$

Let

$$\tilde{P}(X_t, z_t, i_t, j_t, \varepsilon_t) \equiv P[X_t, \tilde{x}(X_t, z_t, i_t, j_t, \varepsilon_t), i_t],$$

where we have used (3.3).

Then equation (4.6) is replaced by

$$p_{t+1|t} = \tilde{P}(X_t, z_t, i_t, j_t, \varepsilon_t) p_{t|t}^+, \quad (5.6)$$

and (5.6) is used instead of (4.6) in the definition of $Q(s_t, z_t, i_t, j_t, \varepsilon_t, j_{t+1}, \varepsilon_{t+1})$. Furthermore, everywhere, P_{jk} is replaced by $\tilde{P}_{jk}(X_t, z_t, i_t, j_t, \varepsilon_t)$. The rest of the problems remains the same. Thus, formally, the extension to endogenous mode transitions is easy.

6 A simple example

A simple example helps to illuminate the benefits of learning and experimentation. We consider the simplest possible example, where $n_X = 1, n_x = 0, n_i = 1, n_\varepsilon = 1,$ and $N_j = \{1, 2\},$

$$X_{t+1} = A_{jt+1}X_t + B_{jt+1}i_t + C_{jt+1}\varepsilon_{t+1},$$

where ε_t is normally distributed with zero mean and unit variance. We specify that $A_1 = A_2 = 1$ and $C_1 = C_2 = 1,$ so

$$X_{t+1} = X_t + B_{jt+1}i_t + \varepsilon_{t+1}.$$

Furthermore, $B_1 = -1.5$ and $B_2 = -0.5$. That is, the instrument i_t has a larger effect on X_{t+1} in mode 1 than in mode 2. We assume that the modes are quite persistent,

$$P \equiv \begin{bmatrix} P_{11} & 1 - P_{11} \\ 1 - P_{22} & P_{22} \end{bmatrix} = \begin{bmatrix} 0.98 & 0.02 \\ 0.02 & 0.98 \end{bmatrix}.$$
It follows that the stationary distribution of the modes satisfies $\tilde{\rho} \equiv (\tilde{p}_1, \tilde{p}_2) = (0.5, 0.5)'$. We note that the predicted probability of mode 1 in period $t + 1$, $p_{1,t+1|t}$, is similar to the perceived probability of mode 1 in period t, since the modes are so persistent,

$$p_{1,t+1|t} = p_{1|t}P_{11} + (1 - p_{1|t})(1 - P_{22}) = 0.02 + 0.96p_{1|t}. \quad (6.1)$$

We finally assume that the period loss function satisfies

$$L_t = \frac{1}{2}X_t^2.$$

For this simple example, the state $s_t \equiv (X'_t, p'_{1|t})'$ can be represented by $(X_t, p_{1|t})$, where we write $p_{1|t}$ for $p_{1,t|t}$, the perceived probability of mode 1 in period t.

Figure 6.1, panel a, shows the resulting value function $V(X_t, p_{1t})$ for the optimal policy under no learning (NL), as a function of p_{1t} for three different values of X_t. Panel b shows the value function for the Bayesian optimal policy (BOP) as a function of p_{1t}, for the same three different values of X_t. Panel c plots the difference between the loss under BOP and NL. We see that the loss under BOP is significantly lower than under NL, albeit so for high values of p_{1t}. Panel d shows the difference between the loss under BOP and the adaptive optimal policy (AOP). We see that the loss under BOP is lower than under AOP, but only modestly so.

Taken together, these results show that there is indeed benefit from learning in this example, although the benefits from experimentation are quite modest here. By moving from the NL case to AOP, and thus updating beliefs, policymakers are able to capture most of the benefit of the fully Bayesian optimal policy. The additional incremental improvement from AOP to BOP arising from the experimentation motive, is much less significant. Thus the AOP, which we recall is relatively simple to compute and to implement recursively in real time, provides a good approximation to the fully optimal policy. Of course, these conclusions are dependent on the particular parameters chosen for this simple example, but we have found similar qualitative results in a number of other examples that we have analyzed.

Figure 6.2 shows the corresponding optimal policy functions. Panel a shows the optimal policy under NL as a function of X_t for three different values of p_{1t}. For given p_{1t}, the optimal policy function under NL is linear in X_t. Panel b shows the optimal policy function under BOP. On this scale, the nonlinearity in X_t for given p_{1t} is not apparent. Panel c shows the difference between the optimal policy under BOP and NL. Here we see that the Bayesian optimal policy is indeed

\[14\] The example is solved with collocation methods via modifications of some of the programs of the CompEcon Toolbox described by Miranda and Fackler [10]
nonlinear in X_t for given p_{1t}. Panel d plots the difference in the policies for all p_{1t} and all X_t in the interval $[-5, 5]$. We see that the difference is largest for small p_{1t}, where the Bayesian optimal policy responds more aggressively — i_t is larger for positive values of X_t and smaller for negative values — than the adaptive policy. We discuss below how more aggressive policies can sharpen inference, and thus lessen future expected losses.

In order to better understand the nature of the different solutions and the role of learning, we consider figures 6.3 and 6.4 which depict how beliefs respond to different policies. First, figure 6.3 shows the components of the Bayesian updating rule. Panel a shows the conditional density function of the innovation in X_{t+1}, $Z_{t+1} \equiv X_{t+1} - E_t X_{t+1}$, conditional on the mode $j_{t+1} \equiv k$ where $k = 1$ or 2 in period $t+1$, for given X_t and i_t. Here X_t is set equal to 1, and i_t is set equal to 0.8; this value for i_t is approximately the optimal policy under NL for $X_t = 1$ and $p_{1,t+1|t} = p_{1|t} = \bar{p}_1 = 0.5$. Panel b shows the unconditional (that is, non conditional on k) density function of the innovation in X_{t+1}, for $X_t = 1$, $i_t = 0.8$, and $p_{1,t+1|t} = 0.5$. Panel c plots the resulting updated $p_{1,t+1|t+1}$ as a function of the innovation in X_{t+1}. By Bayes Theorem, it is given by the ratio of the density of
the innovation conditional on $k = 1$ to the unconditional density of the innovation multiplied by the period-t prediction of mode 1 in period $t + 1$, $p_{1,t+1|t} = 0.5$,

$$p_{1,t+1|t+1} = \frac{\psi(X_{t+1} - E_t X_{t+1} | X_t, i_t)}{\psi(X_{t+1} - E_t X_{t+1} | p_{1,t+1|t}, X_t, i_t)} p_{1,t+1|t}. \tag{6.2}$$

We see that $p_{1,t+1|t+1}$ is decreasing in $X_{t+1} - E_t X_{t+1}$. The larger the innovation in X_{t+1}, the less likely the mode 1, since, for a given positive i_t, mode 1 is associated with a larger negative effect of i_t on X_{t+1} and hence, everything else equal, a lower X_t. This is apparent in panel a, where the probability density of the innovation conditional on mode 1 is to the left of the density of the innovation conditional on mode 2.

Suppose now that the policymaker increases the value of the policy instrument, say from 0.8 to 1.4. Then, a larger value of the policy instrument multiplies the mode-dependent coefficient $B_{j,t+1}$. As a result, the conditional probability densities in panel a move further apart, and the unconditional density in panel b becomes more spread out. As a result, the updated $p_{1,t+1|t+1}$ becomes more sensitive to the innovation. This is shown in panel d, where $p_{1,t+1|t+1}$ as a function of the innovation is plotted for both $i_t = 0.8$ and $i_t = 1.4$. Thus, with a larger absolute value of the
instrument, for a given realization of the innovation, the updated $p_{t+1|t+1}$ is closer to the extremes of 0 or 1. The policymaker becomes less uncertain about the mode in period $t+1$. In this sense, we can say that a larger instrument setting improves the updating and learning of the distribution of the modes. Thus, if the policymaker perceives that learning is beneficial, he or she would in this example be inclined to experiment by pursuing more aggressive policy, in the sense of increasing the magnitude of the instrument for a given X_t.

We will return shortly to the issue of when learning and experimentation is beneficial. But first, we note that, given the conditional and unconditional distribution of the innovation in X_{t+1} illustrated in figure 6.3, panels a and b, and the relation between the updated probability $p_{t+1|t+1}$ and the realization of the innovation in X_{t+1} illustrated in panel c, we can infer the conditional and unconditional probability densities of $p_{t+1|t+1}$. These are shown in figure 6.4, panels a and b, respectively, for $i_t = 0.8$. Furthermore, panels c and d show the conditional and unconditional

15 If $\psi_p(p)$ and $\psi_Z(Z)$ denote the probability densities of scalars p and Z, and p is an invertible and continuously differentiable function of Z, $p = Q(Z)$, the densities are related by

$\psi_p(p) = \psi_Z(Q^{-1}(p))dQ^{-1}(p)/dp$.

23
Figure 6.4: Probability density of $p_{t+1|t+1}$

- a. $\phi(p_{1,t+1|t+1} \mid k, X_t, i=0.8)$
- b. $\phi(p_{1,t+1|t+1} \mid p_{1,t+1|t} = 0.5, X_t, i=0.8)$
- c. $\phi(p_{1,t+1|t+1} \mid k, X_t, i=1.4)$
- d. $\phi(p_{1,t+1|t+1} \mid p_{1,t+1|t} = 0.5, X_t, i=1.4)$

probability densities of $p_{1,t+1|t+1}$ when i_t is increased to 1.4. Comparing panels c and a, we see that a higher absolute value of the instrument moves the conditional densities of beliefs further apart. Thus with a more aggressive policy, beliefs are much more sharply concentrated around the truth. Comparing panels d and b, we see that the unconditional density is further spread out, and in this case becomes bimodal. Thus, the mass of the unconditional distribution is closer to the extremes, 0 and 1, indicating that the uncertainty about the mode in period $t+1$ falls.

When is learning beneficial? In order to understand this, we again look at figure 6.1, panel a, which shows the value function under NL, as a function of $p_{1t} = p_{1t|t}$ for three different values of X_t. Consider a policymaker in period t, with the perceived probability of mode 1 in period t equal to 0.5, so $p_{1t} = p_{1t|t} = 0.5$. Since 0.5 is the stationary probability for this Markov chain, this also means that the period-t predicted probability of mode 1 in period $t+1$, given by (6.1), is also 0.5. Under NL, the policymaker’s predicted and updated probabilities are the same, $p_{1,t+1|t+1} = p_{1,t+1|t}$. Thus in this case the conditional and unconditional probability distributions of $p_{1,t+1|t+1}$ in figure 6.4, panels a and b, are the same and are simply given by a spike with unit probability mass for
Under adaptive optimal policy (AOP), the policymaker applies the same policy function as under NL, but now he or she uses Bayes Theorem to update the perceived probability of mode 1, $p_{1,t+1|t+1}$, after observing the innovation in X_{t+1} at the beginning of period $t+1$. That is, from the vantage point of period t, the updated probability $p_{1,t+1|t+1}$ in period $t+1$ is a random variable with the probability density shown in figure 6.4, panel b. As discussed above, the mean of this probability density is the predicted probability, $p_{1,t+1|t} = 0.5$. Comparing the perceived probability distribution of $p_{1,t+1|t+1}$ under AOP with what prevails under NL, we see a dramatic mean-preserving spread, from a spike with unit mass at 0.5 to the spread-out probability density shown in panel b.

As discussed above, such a mean-preserving spread reduce the intertemporal loss if the value function under NL is strictly concave as function of $p_{1,t+1|t+1}$. In this case Jensen’s inequality implies that the expected future loss falls when the future beliefs become more dispersed.\(^\text{16}\) In figure 6.1, panel a, we see that the value function under NL indeed is concave, more so for higher values of X_{t+1} and lower values of $p_{1,t+1|t+1}$, but also in the vicinity of $p_{1,t+1|t+1} = 0.5$. Thus, we understand why the loss is lower under AOP, where the policymaker follows the same policy function, $i_{t+1} = F(X_{t+1}, p_{1,t+1|t+1})$, as under NL but updates the probability of mode 1 according to (6.2).

Under AOP, the policymaker does not consider adjusting the policy in order to change the shape of the density of $p_{1,t+1|t+1}$ and thereby improve the updating of $p_{1,t+1}$. Our previous discussion of figure 6.4 has revealed that increasing the absolute value of the instrument in this example will lead to a larger mean-preserving spread. In the case of increasing the instrument from 0.8 to 1.4, this

\(^{16}\) Kiefer [7] examines the properties of a value function under Baesian learning.
increases the spread from that of the density in panel b to the that of the density in panel d. The value function under AOP is shown in figure 6.5. Compared with the value function under NL in panel a of figure 6.1, it is more concave for low values of p_{1t} and somewhat flatter for higher values.

Now in the BOP case, the policymaker considers the influence of his policy on inference. Thus he or she has the option of increasing the magnitude of the policy instrument somewhat, in order to increase the mean-preserving spread of the density of $p_{1,t+1|t+1}$, the benefit of which depends on the concavity of the AOP value function. The cost of this is an increase in the expected period loss in period $t+1$ from its minimum. The result of the optimal tradeoff is shown in panels c and d of figure 6.2 above. In this particular example, the policymaker chooses not to deviate much from the policy under NL and AOP. That is, he or she does not experiment much, except for small values of $p_{1,t+1|t} \approx p_{1t|t}$ where incidentally the concavity of the value function under AOP is the largest.\footnote{The approximation is justified by (6.1). Because the modes are so persistent, the predicted probability is close to the current perceived probability.} Furthermore, from figure 6.1, panels c and d, we see that the fall in the intertemporal loss from AOP to BOP is quite modest, and most of the fall in the loss arises in moving from NL to AOP.

Thus, in this example, the main benefit from learning arises without any experimentation. Although the amount of experimentation, measured as the policy difference between BOP and AOP, is substantial for low values of $p_{1t|t}$, the benefit in terms of additional loss is quite small.

Furthermore, in the above example there is no cost whatsoever of a large instrument or a large change in the instrument. If such a cost is added, the magnitude and the benefits of experimentation (moving from AOP to BOP) shrink, whereas there is still substantial benefits from learning (moving from NL to AOP).

7 Conclusions

So far we have only examined the backward-looking case in any detail. The above and similar examples that we have considered indicate that the benefits of learning (moving from NL to AOP) may be substantial whereas the benefits from experimentation (moving from AOP to BOP) are modest or even insignificant. If this preliminary finding stands up to scrutiny, experimentation in economic policy in general and monetary policy in particular may not be very beneficial, in which case there is little need to face the difficult ethical and other issues involved in conscious experimentation in economic policy. Furthermore, the AOP is much easier to compute and implement than the BOP. To have this truly be a robust implication, more simulations and cases need to be
examined. In particular, it will be important to see how these results are affected in models with forward-looking variables and other more realistic settings. We are in the progress of carrying out such analysis.
Appendix

A Details on the Algorithm for the No-Learning Case

Here we provide more detail on the setup of the model in the no-learning case and adapt the algorithm in Svensson and Williams [13] (DFT) to our revised speciﬁcation. Most of this should probably go in a revision of DFT in the future.

A.1 Setup

Our ﬁrst task is to write the extended MJLQ system for the saddlepoint problem. We suppose that we start with an initial period loss function which has the form

\[
L_t = \begin{bmatrix}
X_t & x_t & i_t
\end{bmatrix} \begin{bmatrix}
Q_{11j} & Q_{12j} & N_{1j} \\
Q'_{12j} & Q_{22j} & N_{2j} \\
N'_{1j} & N'_{2j} & R_j
\end{bmatrix} \begin{bmatrix}
X_t & x_t & i_t
\end{bmatrix}.
\]

Then the dual loss is

\[
\tilde{L}_t = L_t - \gamma_t z_t + \Xi_{t-1} \frac{1}{\delta} H_j x_t.
\]

We now substitute in for \(x_t\) using

\[
x_t = \tilde{x}(X_t, z_t, i_t, j_t, \varepsilon_t)
\equiv A^{-1}_{22,j}z_t - A^{-1}_{22,j} A_{21,j} X_t - A^{-1}_{22,j} B_{2,j} i_t - A^{-1}_{22,j} C_{2,j} \varepsilon_t
\equiv A_{x_X,j} X_t + A_{xz,j} z_t + A_{xi,j} i_t + A_{xv,j} v_t,
\]

where in the last line we introduce new notation for the shock. Since we assume \(C_{1j}\varepsilon_t\) is independent of \(C_{2j}\varepsilon_t\), we ﬁnd it useful to denote the shock \(\varepsilon_t\) in the forward looking equation by \(v_t\). After this substitution we want to express the laws of motion and dual loss in terms of the expanded state \(\tilde{X}_t = [X'_t, \Xi'_{t-1}]'\) and the expanded controls \(\tilde{i}_t = [z'_t, i'_t, \gamma'_t]'\). Suppressing time and mode subscripts for the time being (all are \(t\) and \(j\), respectively (except \(t - 1\) on \(\Xi_{t-1}\))), we see that the dual loss can be written explicitly as

\[
\tilde{L}_t = X' (Q_{11} + A'_{22} Q_{22} A_{x_X} + 2A'_{22} Q_{12}) X + 2X' (N_{1} + Q_{12} A_{x_i} + A'_{x_X} Q_{22} A_{x_i} + A'_{x_X} N_{2}) i
+ 2z' (A'_{zx} Q_{12} + A'_{zx} Q_{22} A_{x_X}) X + \Xi'_{t-1} \frac{1}{\delta} H A_{x_X} X + \Xi'_{t} \frac{1}{\delta} H A_{z} z + \Xi'_{t-1} \frac{1}{\delta} H A_{x_i} i
- \gamma' z + z' (A'_{zx} Q_{22} A_{x_z}) z + i' (R + A'_{x_i} Q_{22} A_{x_i} + 2A'_{x_i} N_{2}) i
+ 2z' (A'_{zx} N_{2} + A'_{zx} Q_{22} A_{x_i}) i
+ v' (A'_{xv} Q_{22} A_{x_v}) v + \text{cross terms in } v,
\]

28
where we don’t write out the cross terms since they have zero conditional expectations. Thus we can write the dual loss (ignoring the cross terms in v)

$$
\tilde{L}_t = \begin{bmatrix} \tilde{X}_t' \tilde{X}_t \end{bmatrix} \begin{bmatrix} \tilde{Q}_j & \tilde{N}_j \\
\tilde{N}_j' & \tilde{R}_j
\end{bmatrix} \begin{bmatrix} \tilde{X}_t' \\
\tilde{X}_t
\end{bmatrix} + v'_t \Lambda_j v_t,
$$

where (again suppressing the j index)

$$
\tilde{Q} = \begin{bmatrix} \tilde{Q}_{11} & \tilde{Q}_{12} \\
\tilde{Q}_{12}' & 0
\end{bmatrix},
$$

$$
\tilde{Q}_{11} = Q_{11} + A'_{xX}Q_{22}A_{xX} + 2A'_{xX}Q_{12},
$$

$$
\tilde{Q}_{12} = \frac{1}{2\theta}A'_{xX}H',
$$

$$
\tilde{N} = \begin{bmatrix} \tilde{N}_{11} & \tilde{N}_{12} & 0 \\
\tilde{N}_{21} & \tilde{N}_{22} & 0
\end{bmatrix},
$$

$$
\tilde{N}_{11} = Q_{12}A_{xx} + A'_{xX}Q_{22}A_{xx},
$$

$$
\tilde{N}_{12} = N_1 + Q_{12}A_{xi} + A'_{xX}Q_{22}A_{xi} + A'_{xX}N_2,
$$

$$
\tilde{N}_{21} = \frac{1}{2\theta}HA_{xx},
$$

$$
\tilde{N}_{22} = \frac{1}{2\theta}HA_{xi},
$$

$$
\tilde{R} = \begin{bmatrix} \tilde{R}_{11} & \tilde{R}_{12} & \tilde{R}_{13} \\
\tilde{R}_{12}' & \tilde{R}_{22} & 0 \\
\tilde{R}_{13}' & 0 & 0
\end{bmatrix},
$$

$$
\tilde{R}_{11} = A'_{xz}Q_{22}A_{xz},
$$

$$
\tilde{R}_{12} = A'_{xz}N_2 + A'_{xx}Q_{22}A_{xi},
$$

$$
\tilde{R}_{13} = -I/2,
$$

$$
\tilde{R}_{22} = R + A'_{xi}Q_{22}A_{xi} + 2A'_{xi}N_2,
$$

$$
\Lambda = A'_{xv}Q_{22}A_{xv}.
$$

Similarly, the law of motion for \tilde{X}_t can then be written

$$
\tilde{X}_{t+1} = \tilde{A}_{j,t+1} + \tilde{B}_{j,t+1} + \tilde{C}_{j,t+1},
$$

where

$$
\tilde{\varepsilon}_{t+1} = \begin{bmatrix} \varepsilon_{t+1} \\
\nu_t
\end{bmatrix},
$$

$$
\tilde{A}_{j} = \begin{bmatrix} A_{11k} + A_{12k}A_{xX} & 0 \\
0 & 0
\end{bmatrix},
$$

$$
\tilde{B}_{jk} = \begin{bmatrix} A_{12k}A_{xz} & B_{1k} + A_{12k}A_{xij} \\
0 & 0
\end{bmatrix},
$$

$$
\tilde{C}_{jk} = \begin{bmatrix} C_{1k} & A_{12k}A_{xv} \\
0 & 0
\end{bmatrix}.$$

29
Furthermore, for the case where $C_{2j} \equiv 0$ and the forward variables do not reveal the mode j, we have that A_{xX}, A_{xz}, A_{xi} are independent of the mode and $A_{xv} \equiv 0$, so the dependence on j in $\hat{A}_{jk}, \hat{B}_{jk},$ and \hat{C}_{jk} disappears.

A.2 Unobservable modes and forward-looking variables

Then we continue as in Appendix I of DFT. What follows is a correction and revision of Appendix I.2.

The value function for the dual problem, $\tilde{V}(X_t, p_{jt})$, will be quadratic in \tilde{X}_t for given p_t and can be written

$$\tilde{V}(\tilde{X}_t, p_t) = \tilde{X}_t'V(p_t)\tilde{X}_t + w(p_t),$$

where

$$V(p_t) \equiv \sum_j p_{jt} \tilde{V}(p_t)_j, \quad w(p_t) \equiv \sum_j p_{jt} \hat{w}(p_t)_j.$$

Here, $\tilde{V}(p_t)$ and $\tilde{V}(p_t)_j$ are symmetric $(n_X + n_x) \times (n_X + n_x)$ matrices and $w(p_t)$ and $\hat{w}(p_t)_j$ are scalars that are functions of p_t. (Thus, we simplify the notation and we let $\tilde{V}(p_t)$ and $\tilde{V}(p_t)_j$ $(j \in N_j)$ denote the matrices $\tilde{V}_{X\hat{X}X}(p_t)$ and $\tilde{V}_{XX}(p_t, j_t)$ in section 3.) They will satisfy the Bellman equation

$$\tilde{X}_t'V(p_t)\tilde{X}_t + w(p_t) = \max_{\tilde{z}_t, \tilde{v}_t} \sum_j p_{jt} \left\{ \tilde{X}_t'\hat{Q}_j\tilde{X}_t + 2\tilde{X}_t'\tilde{N}_j\tilde{v}_t + \tilde{v}_t'\tilde{R}_j\tilde{v}_t + \text{tr}(\Lambda_j) + \delta \sum_k P_{jk} [\tilde{X}_{t+1,jk}^t'\hat{V}(P' p_t)_k \tilde{X}_{t+1,jk} + \hat{w}(P' p_t)_k] \right\},$$

where

$$\tilde{X}_{t+1,jk} \equiv \tilde{A}_{jk}\tilde{X}_t + \tilde{B}_{jk}\tilde{v}_t + \tilde{C}_{jk}\tilde{v}_{t+1}.$$

The first-order condition with respect to \tilde{v}_t is thus

$$\sum_j p_{jt} \left[\tilde{X}_t'N_j + \tilde{v}_t'\tilde{R}_j + \delta \sum_k P_{jk} [\tilde{X}_t'\tilde{A}_{jk} + \tilde{v}_t'\tilde{B}_{jk}] \hat{V}(P' p_t)_k \tilde{B}_{jk} \right] = 0.$$

We can rewrite the first-order conditions as

$$\sum_j p_{jt} \left[\tilde{N}_j\tilde{X}_t + \tilde{R}_j\tilde{v}_t + \delta \sum_k P_{jk} \tilde{B}_{jk}' \hat{V}(P' p_t)_k (\tilde{A}_{jk}\tilde{X}_t + \tilde{B}_{jk}\tilde{v}_t) \right] = 0.$$

It is then apparent that the first-order conditions can be written compactly as

$$J(p_t)\tilde{v}_t + K(p_t)\tilde{X}_t = 0,$$

where

$$J(p_t) \equiv \sum_j p_{jt} \left[\tilde{R}_j + \delta \sum_k P_{jk} \tilde{B}_{jk}' \hat{V}(P' p_t)_k \tilde{B}_{jk} \right]$$
\[K(p_t) \equiv \sum_j p_{jt} \left[N_j' + \delta \sum_k P_{jk} \tilde{B}_{jk} \tilde{V}(P'p_t)_k \tilde{A}_{jk} \right] \]

This leads to the optimal policy function,

\[\hat{i}_t = \tilde{F}(p_t) \tilde{X}_t, \]

where

\[\tilde{F}(p_t) \equiv -J(p_t)^{-1}K(p_t). \]

Furthermore, the value-function matrix \(\tilde{V}(p_t) \) for the dual saddlepoint problem satisfies

\[\tilde{X}_t^l \tilde{V}(p_t) \tilde{X}_t \equiv \sum_j p_{jt} \left\{ \tilde{X}_t^l Q_j \tilde{X}_t + 2 \tilde{X}_t^l \tilde{N}_j \tilde{F}(p_t) \tilde{X}_t + \tilde{X}_t^l \tilde{F}(p_t)' \tilde{R}_j \tilde{F}(p_t) \tilde{X}_t + \delta \sum_k P_{jk} \tilde{X}_t^l [Q_{jk}' + \tilde{F}(p_t)' \tilde{B}_{jk}'] \tilde{V}(P'p_t)_k [\tilde{A}_{jk} + \tilde{B}_{jk} \tilde{F}(p_t)] \tilde{X}_t \right\}. \]

This implies the following Riccati equations for the matrix functions \(\tilde{V}(p_t)_j \):

\[\tilde{V}(p_t)_j = \tilde{Q}_j + \tilde{N}_j \tilde{F}(p_t) + \tilde{F}(p_t)' \tilde{N}_j' + \tilde{F}(p_t)' \tilde{R}_j \tilde{F}(p_t) + \delta \sum_k P_{jk} [Q_{jk}' + \tilde{F}(p_t)' \tilde{B}_{jk}'] \tilde{V}(P'p_t)_k [\tilde{A}_{jk} + \tilde{B}_{jk} \tilde{F}(p_t)]. \]

The scalar functions \(\dot{w}(p_t)_j \) will satisfy the equations

\[\dot{w}(p_t)_j = \text{tr}(\Lambda_j) + \delta \sum_k P_{jk} [\text{tr}(\tilde{V}(P'p_t)_k \tilde{C}_{jk} \tilde{C}_{jk}') + \dot{w}(P'p_t)_k]. \tag{A.3} \]

The value function for the primal problem is

\[\tilde{X}_t^l \tilde{V}(p_t) \tilde{X}_t + w(p_t) \equiv \tilde{X}_t^l \tilde{V}(p_t) \tilde{X}_t + w(p_t) - \Xi_{l-1} \frac{1}{\delta} \sum_j p_{jt} H_j F_{x\tilde{X}}(p_t)_j \tilde{X}_t, \]

where we use that by (A.1) the equilibrium solution for \(x_t \) can be written

\[x_t = F_{x\tilde{X}}(p_t)_j \tilde{X}_t + F_{xv}(p_t)_j v_t. \]

We may also find the conditional value function

\[\tilde{X}_t^l \tilde{V}(p_t)_j \tilde{X}_t + w(p_t)_j \equiv \tilde{X}_t^l \tilde{V}(p_t)_j \tilde{X}_t + w(p_t)_j - \Xi_{l-1} \frac{1}{\delta} H_j F_{x\tilde{X}}(p_t)_j \tilde{X}_t \quad (j \in N_j). \]

A.3 An algorithm for the model with forward-looking variables

What follows is a correction and revision of Appendix I.3 of DFT.

Consider an algorithm for determining \(\tilde{F}(p_t), \tilde{V}(p_t), w(p_t), \tilde{V}(p_t)_j \) and \(\dot{w}(p_t)_j \) for a given distribution of the modes in period \(t, p_t \). In order to get a starting point for the iteration, we assume that
the modes become observable \(T + 1 \) periods ahead, that is, in period \(t + T + 1 \). Hence, from that period on, the relevant solution is given by the matrices \(\tilde{F}_j \) and \(\tilde{V}_j \) and scalars \(w_j \) for \(j \in N_j \), where \(\tilde{F}_j \) is the optimal policy function, \(\tilde{V}_j \) is the value-function matrix, and \(w_j \) is the scalar in the value function for the dual saddlepoint problem with observable modes determined by the algorithm in the appendix of DFT.

We consider these matrices \(\tilde{V}_j \) and scalars \(w_j \) and the horizon \(T \) as known, and we will consider an iteration for \(\tau = T, T - 1, \ldots, 0 \) that determines \(\tilde{F}(p_t), \tilde{V}(p_t) \), and \(w(p_t) \) as a function of \(T \). The horizon \(T \) will then be increased until \(\tilde{F}(p_t), \tilde{V}(p_t) \), and \(w(p_t) \) have converged.

Let \(p_{t+\tau,t} \) for \(\tau = 0, \ldots, T \) and given \(p_t \) be determined by the prediction equation,

\[
p_{t+\tau,t} = (P')^\tau p_t,
\]

and let \(\tilde{V}_k^{T+1} = \tilde{V}_k \) and \(\tilde{w}_k^{T+1} = w_k \) \((k \in N_j) \). Then, for \(\tau = T, T - 1, \ldots, 0 \), let the mode-dependent matrices \(\tilde{V}_j^\tau \) and the mode-independent matrices \(\tilde{V}^\tau \) and \(F^\tau \) be determined recursively by

\[
J^\tau = \sum_j p_{j,t+\tau,t} \left[\tilde{R}_j + \delta \sum_k P_{jk} \tilde{B}_{jk}' \tilde{V}_k^{\tau+1} \tilde{B}_{jk} \right],
\]

\[
K^\tau = \sum_j p_{j,t+\tau,t} \left[\tilde{N}_j' + \delta \sum_k P_{jk} \tilde{B}_{jk}' \tilde{V}_k^{\tau+1} \tilde{A}_{jk} \right],
\]

\[
\tilde{F}^\tau = -(J^\tau)^{-1}K^\tau,
\]

\[
\tilde{V}_j^\tau = \tilde{Q}_j + \tilde{N}_j \tilde{F}^\tau + \tilde{F}^{\tau'} \tilde{N}_j' + \tilde{F}^{\tau'} \tilde{R}_j \tilde{F}^\tau + \delta \sum_k P_{jk} \tilde{A}_{jk}' \tilde{K}_k^{\tau+1} \tilde{A}_{jk} + \tilde{B}_{jk} \tilde{F}^\tau),
\]

\[
\tilde{w}_j^\tau = \text{tr}(\Lambda_j) + \delta \sum_k P_{jk} [\text{tr}(\tilde{V}_k^{\tau+1} \tilde{C}_{jk} + \tilde{w}_k^{\tau+1})],
\]

\[
\tilde{V}^\tau = \sum_j p_{j,t+\tau,t} \tilde{V}_j^\tau,
\]

\[
w_j^\tau = \sum_j p_{j,t+\tau,t} \tilde{w}_j^\tau.
\]

This procedure will give \(\tilde{F}^0, \tilde{V}^0 \) and \(w^0 \) as functions of \(T \). We let \(T \) increase until \(\tilde{F}^0 \) and \(\tilde{V}^0 \) have converged. Then, \(\tilde{F}(p_t) = \tilde{F}^0, \tilde{V}(p_t) = \tilde{V}^0 \), and \(w(p_t) = w^0 \). The value-function matrix \(V(p_t) \) (denoted \(V_{\tilde{X}, \tilde{X}}(p_t) \) in section 3) for the primal problem will be given by

\[
V(p_t) \equiv \tilde{V}(p_t) - \left[\begin{array}{cc} 0 & \frac{1}{2} \Gamma(p_t) \end{array} \right],
\]

where

\[
\Gamma(p_t) \equiv \frac{1}{\delta} \sum_j p_{jt} H_j \tilde{F}_{\tilde{X}, \tilde{X}}(p_t) j.
\]

32
Then we consider decomposition is where the identity speciﬁes
\[V(p_t)_j = \hat{V}(p_t)_j - \begin{bmatrix} 0 & \frac{1}{2}\Gamma(p_t)_j' \\ \frac{1}{2}\Gamma(p_t)_j & 0 \end{bmatrix} (j \in N), \]
where \(\hat{V}(p_t)_j = \hat{V}_j^0 \) and
\[\Gamma(p_t)_j = \frac{1}{\delta} \delta H_j F_{x\hat{X}}(p_t)_j. \]

B Verifying the law of iterated expectations in the case of Bayesian optimal policy

It will be slightly simpler to use the general probability measure notation, \(\Pr(\cdot \mid \cdot) \), although we will translate this to the specific cases at the end. We also write \(p_t \) for \(p_{t|t} \), for simplicity. Finally, for simplicity we only consider the case without forward-looking variables (so we need only deal with \(X_t \) rather than \(\hat{X}_t \)). The generalization to forward-looking variables is straightforward.

Thus, we want to verify
\[E_t \hat{V}(s_{t+1}, j_{t+1}) = E_t V(s_{t+1}), \]
where \(V(s_t) \equiv E_t \hat{V}(s_t, j_t) \).

First, in the BOP case, we note that we can write \(p_{t+1} = \hat{Q}(X_{t+1}; X_t, p_t, i_t) \), and so we can define
\[\hat{V}(X_{t+1}, j_{t+1}; X_t, p_t, i_t) \equiv \hat{V}(X_{t+1}, \hat{Q}(X_{t+1}; X_t, p_t, i_t), j_{t+1}). \]

Then we consider
\[E_t \hat{V}(X_{t+1}, p_{t+1}, j_{t+1}) \equiv \int \hat{V}(X_{t+1}, j_{t+1}; X_t, p_t, i_t) d \Pr(X_{t+1}, j_{t+1} \mid \mathcal{X}_t), \quad (B.1) \]
where the identity specifies the notation for the joint probability measure of \((X_{t+1}, j_{t+1}) \), \(\Pr(X_{t+1}, j_{t+1} \mid \mathcal{X}_t) \), conditional on the information set in period \(t \), \(\mathcal{X}_t \equiv \sigma(\{X_s, X_{t-1}, \ldots\}) \) (that is, the sigma-algebra generated by current and past realizations of \(X_s, s \leq t \)). We note that \(p_t = E(j_t \mid \mathcal{X}_t) \) is \(\mathcal{X}_t \)-measurable, that is, \(p_t \) is a function of \(\mathcal{X}_t \). Furthermore, \(i_t \) is \(\mathcal{X}_t \)-measurable. Hence, \(E_t [\cdot] \equiv E[\cdot \mid \mathcal{X}_t, p_t, i_t] \equiv E[\cdot \mid \mathcal{X}_t] \). Also, we note that we can write
\[E_{t+1} \hat{V}(X_{t+1}, p_{t+1}, j_{t+1}) \equiv \int \hat{V}(X_{t+1}, j_{t+1}; X_t, p_t, i_t) d \Pr(j_{t+1} \mid \mathcal{X}_{t+1}) \equiv V(X_{t+1}, p_{t+1}). \]

We will use two equivalent decompositions of the joint measure. First, perhaps the most natural decomposition is
\[\Pr(X_{t+1}, j_{t+1} = k \mid \mathcal{X}_t) = \Pr(X_{t+1} \mid j_{t+1} = k, \mathcal{X}_t) \Pr(j_{t+1} = k \mid \mathcal{X}_t) \]
\[
= \sum_j \Pr(X_{t+1} \mid j_{t+1} = k, \mathcal{X}_t) \Pr(j_{t+1} = k \mid j_t = j) \Pr(j_t = j \mid \mathcal{X}_t)
\]
\[
= \sum_j \Pr(X_{t+1} \mid j_{t+1} = k, \mathcal{X}_t) P_{jk} p_{jt}.
\]

Alternatively, we can decompose the joint measure as
\[
\Pr(X_{t+1}, j_{t+1} = \ell \mid \mathcal{X}_t) = \Pr(j_{t+1} = \ell \mid X_{t+1}, \mathcal{X}_t) \Pr(X_{t+1} \mid \mathcal{X}_t)
\]
\[
= \Pr(j_{t+1} = \ell \mid \mathcal{X}_{t+1}) \sum_j \Pr(X_{t+1} \mid j_t = j, \mathcal{X}_t) \Pr(j_t = j \mid \mathcal{X}_t)
\]
\[
= \Pr(j_{t+1} = \ell \mid \mathcal{X}_{t+1}) \sum_{j,k} \Pr(X_{t+1} \mid j_t = j, j_{t+1} = k, \mathcal{X}_t) \Pr(j_{t+1} = k \mid j_t = j) \Pr(j_t = j \mid \mathcal{X}_t).
\]
\[
= p_{t+1} \sum_{j,k} \Pr(A_k X_t + B_k i_t + C_k \varepsilon_{t+1} \mid j_t = j, j_{t+1} = k, \mathcal{X}_t) P_{jk} p_{jt}
\]
\[
= p_{t+1} \sum_{j,k} \varphi(\varepsilon_{t+1}) P_{jk} p_{jt}.
\]

Thus, using the first decomposition, (B.2), with (B.1) we have an expression as in section 5.1,
\[
E_t \hat{V}(X_{t+1}, p_{t+1}, j_{t+1})
\]
\[
= \int \sum_{j,k} \hat{V}(A_k X_t + B_k i_t + C_k \varepsilon_{t+1}, k; X_t, p_t, i_t) P_{jk} p_{jt} \varphi(\varepsilon_{t+1}) d\varepsilon_{t+1}
\]
\[
= \int \sum_{j,k} \hat{V}[A_k X_t + B_k i_t + C_k \varepsilon_{t+1}, Q(A_k X_t + B_k i_t + C_k \varepsilon_{t+1}; X_t, p_t), k] P_{jk} p_{jt} \varphi(\varepsilon_{t+1}) d\varepsilon_{t+1}
\]

On the other hand, using the second decomposition, (B.3), we can write (B.1) as
\[
E_t \hat{V}(X_{t+1}, p_{t+1}, j_{t+1})
\]
\[
= \int \sum_{j,k} \hat{V}(X_{t+1}, \ell; X_t, p_t, i_t) p_{t+1} P_{jk} p_{jt} \varphi(\varepsilon_{t+1}) d\varepsilon_{t+1}
\]
\[
= \int \sum_{j,k} V(X_{t+1}, \hat{Q}(X_{t+1}; X_t, p_t)) P_{jk} p_{jt} \varphi(\varepsilon_{t+1}) d\varepsilon_{t+1}
\]
\[
= \int \sum_{j,k} V[A_k X_t + B_k i_t + C_k \varepsilon_{t+1}, Q(A_k X_t + B_k i_t + C_k \varepsilon_{t+1}; X_t, p_t)] P_{jk} p_{jt} \varphi(\varepsilon_{t+1}) d\varepsilon_{t+1}
\]
\[
= E_t V(X_{t+1}, p_{t+1})
\]

Note that, by averaging with respect to \(p_t \), we thus eliminate \(j_t \) as a state variable and do not need to compute the conditional value function \(\hat{V}(X_t, p_t, j_t) \).
References

