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Abstract. Consider trade in continuous time between two players. The gains from trade are
divided according to a contract, and at each point in time, either player may unilaterally induce

a costly adjustment of the contract. Players’ payoffs from trade under the contract, as well

as from trade under an adjusted contract, are exogenous and stochastic. We consider players’
choice of whether and when to adjust the contract payment. We show that there exists a Nash

equilibrium in thresholds, where each player adjusts the contract whenever the contract payment
relative to the outcome of an adjustment passes the threshold. There is strategic substitutability

in the choice of thresholds, so that if one player becomes more active by choosing a threshold

closer to unity, the other player becomes more passive.

1. Introduction

In most economies, a large part of the transactions take place within long-term relationships.
Employment relationships, marriages, business partnerships are obvious examples. In general,
there is a surplus from the relationship that is shared between the parties. The sharing of the
surplus may depend on an explicit or implicit contract, or it may depend on some rules or habits.
In any case, there is usually some rigidity in the contract or sharing rule, in the sense that it may
be constant over a long time, until one player demands that it is changed.

An important question in this setting is under which circumstances a player will demand an
adjustment of the contract. Furthermore, if one player is active, being eager to improve his payoff,
how will this affect the behavior of the opponent? For concreteness, we consider a specific setting,
where one player undertakes an exogenous service for the other, and where the remuneration for
the service is given in a contract; an employment relationship is a good example. Trade takes
place in continuous time.

A demand for adjustment of the contract may be caused by a change in the payoffs from trade
that is to one player’s disadvantage, or because the outside alternatives change. In our setting,
these effects are captured by assuming that the contract payment is set in nominal terms, so that
the real value of the contract payment depends on the stochastic aggregate price level. Second, we
assume that outside alternatives may change according to an exogenous stochastic process, known
to both parties at the time when an adjustment is demanded.

Formally, we consider a two-player differential game. There is a contract, according to which
player B (the buyer) makes a fixed nominal payment V per unit of time to player A (the seller), as
a remuneration for some exogenous and unspecified service. The real value of the fixed payment,
R, depends on the aggregate price level Q, where R = V/Q. At each point in time, either player
may unilaterally induce an adjustment of the contract payment to a new real value Z, which we
shall refer to as the real adjustment outcome (implying a new nominal value V = ZQ). Adjusting
the contract payment carries an exogenous fee to both players. The aggregate price level Q and the
real adjustment outcome Z are exogenous stochastic processes. We consider players’ decision of
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when to adjust the payment given in the contract, allowing for an unlimited number of adjustments
over an infinite horizon.

One interpretation of our assumption that one player may unilaterally induce a renegotiation of
the contract, is that there is an explicit reopening clause in the existing contract. An alternative
interpretation is that a player may unilaterally disrupt trade, or credibly threaten to do so, and
thus enforce the opponent to enter a renegotiation process so that trade can be resumed. This
may be possible if it is not verifiable for the court which party violates the contract (MacLeod and
Malcomson [31] and Hart and Moore [24]), or if the courts will not enforce any penalty provisions
(Grout [21]).

The model we consider is simple: There are only two players, and their only choice variable is
at each point in time whether to demand an adjustment of the contract. The result of a possible
adjustment is exogenous and known in advance to both players. Yet the decision problem facing
the players is very complex. When deciding whether to require an adjustment of the contract,
a player must weigh the gain from a possible improvement in contract terms against the costs
of adjustment. However, the player must also take into consideration that an adjustment now,
making the contract terms more favorable to himself, will make the contract less favorable to the
opponent. This may cause the opponent to require an adjustment at an earlier point in time than
he otherwise would have done, involving both adjustment costs and less favorable contract terms
for the first player.

In principle, strategies may depend on anything that has happened in the history of the game,
and thus be immensely complicated. To keep the analysis tractable, we follow the tradition of the
differential games literature (see Isaacs [29] and Dockner, Jørgensen, Van Long, and Sorger [16])
of restricting attention to Markov strategies, i.e., strategies where actions are allowed to depend
on past history through the current value of the state variables only.

We show that if the stochastic processes are continuous, or, if they include jumps, the size of
the jumps is from a continuous decreasing distribution, then there exists a Nash equilibrium in
thresholds for the ratio of the real contract payment, R, to the real adjustment outcome, Z. In
equilibrium, player A will demand an adjustment whenever R/Z is below player A’s threshold,
irrespective of whether this is caused by high inflation eroding the real value of the contract
payment, or by an increase in the real adjustment outcome. Conversely, player B will require an
adjustment whenever R/Z is above player B’s threshold. An adjustment will ensure that R is set
equal to Z, implying that the ratio R/Z = 1. We then proceed by exploring how the thresholds
depend on the various features of the model, as well as analyzing the strategic interdependence
between the thresholds.

The motivation for our paper is twofold. First, we argue that the problem itself is of great inter-
est. Many economic transactions take place within bilateral relationships, and it seems important
to analyze players’ decisions of when to require an adjustment of the terms of the transactions.
Obvious economic examples are labor contracts, tenancy contracts or delivery contracts, but essen-
tially the same type of problem may be relevant for e.g., trade agreements between two countries,
business relationships between two partners, or even for marriages. In many of these settings we
observe rigidity in the terms of trade, yet occasionally one player may invoke an adjustment.

There is a fairly large literature on the corresponding problem in a unilateral setting, in par-
ticular where the focus is on the optimal choice of nominal prices (or wages) under a stochastic
evolution of money or aggregate prices (so-called state-dependent pricing, e.g., Sheshinski and
Weiss [34], Danziger [11], [13], [15], Caplin and Spulber [10], and Caplin and Leahy [9]). In con-
trast, the literature on bilateral adjustment is very small, with Andersen and Christensen [3, 4] as
notable exceptions.

Compared to the literature on unilateral adjustment, we simplify by taking the adjustment
outcome as exogenous, focusing solely on the timing decision. On the other hand, by consider-
ing a two-player game, we introduce a strategic dimension that makes the analysis much more
complex. Thus, when deciding whether to adjust the contract payment now, a player must take
into consideration that this may cause a subsequent adjustment by the opponent, at an earlier
stage than he otherwise would have done, inflicting additional costs on both players. In view of
this it is of interest to note that the optimal behavior in both types of models in most cases is
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characterized by threshold strategies, often termed (S, s) strategies, where the prevailing price is
changed if it is sufficiently far from the optimal new price, so that the gain from adjustment covers
the adjustment costs. However, we also find circumstances under which a player may use a mixed
strategy in equilibrium.

A second motivation for our analysis is that we believe it to be of considerable relevance for
related parts of economic literature. In the sticky-price macro literature, the standard approach is
the Calvo specification, where the timing of adjustment follows an exogenous stochastic process.
However, there is a number of recent advances with state-dependent pricing, including Dotsey,
King, and Wolman [17], Bakhshi, Kahn, and Rudolf [5] and Gertler and Leahy [20]. Yet leading
contributions studying wage setting, like Erceg, Henderson, and Levin [18], still use a Calvo formu-
lation where households or workers are assumed to be able to set wages unilaterally. Thus it seems
worthwhile to explore the alternative assumptions, that the timing of the contract renegotiation
is endogenous and state-dependent, and that both players may affect the time when adjustment
takes place.

Our paper also contributes to the literature on contract length, e.g., Danziger [14] on labour
contracts and Bandiera [6] on tenancy agreements. Most of this literature is concerned with the
duration of fixed-length (or time-dependent) contracts, empirically, or as seen from the point of
optimality (e.g. in relation to investment incentives). In contrast, we let the length of the contract
follow from optimal adjustment of the players.

Real world contracts of bilateral trade often specify an expiration date, seemingly making the
decision of when to require an adjustment less relevant. However, as noted above, contracts may
be renegotiated before any expiration date. Contracts may also be extended beyond the expiration
date. In most European countries, the parties to a permanent employment contract are legally
bound by the terms of the contract, unless the parties have agreed on a new contract, or one party
has terminated the relationship, see Malcomson [32] and Holden [26]. Thus, even if there is an
expiration date on the wage terms of the employment contract, the old wage prevails also after
the expiration date, unless the parties have agreed to a change. In the sample of Israeli labor
contracts studied by Danziger [12], 86 percent of all new contracts were signed after the expiration
of the previous contract, with average delay of 213 days. Thus, the decision of when to adjust the
contract is key.

The remainder of the paper is organized as follows. The basic model is described in Section
2. We assume that the stochastic processes follow the exponential of a Lévy processes. This is
more general than most previous contributions, and it includes geometric Brownian motion as well
as many other stochastic processes. We show that there exists no strategy that is better than a
threshold strategy, specifying an adjustment of the contract whenever the ratio of the real contract
payment to the real adjustment outcome passes a specific threshold. Section 3 derive formulaes
for the expected objective functions, in the case when both players use threshold strategies. In
Section 4, we prove the existence of a Nash equilibrium under the additional assumption that if
there are jumps in the stochastic processes, the size of the jump is from a continuous, decreasing
distribution. In Section 5, we show that if we also allow for jumps where the size of the distribution
has a mass point for a fixed size, then Nash equilibrium still exists, but in this case it may require
that agents randomize between two thresholds. In Section 6, we extend the basic model by allowing
for a stage prior to the basic model, where players may invest in reducing the adjustment cost, and
we consider the efficiency of this investment decision. Section 7 concludes. Approximate formulas
for the equilibrium are given in Appendix C. Proofs are provided in Appendix D.1

2. The model

Formally, we consider a two-player differential game. There is a contract, according to which
player B makes a fixed nominal payment V (ti) per unit of time to player A, as a remuneration
for some exogenous and unspecified service. The time when the payment is set, is denoted ti. At

1In a working paper we also consider the case where only one player is allowed to adjust the contract, cf. Holden

et al. [25].
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each point in time, either of the players may unilaterally adjust the nominal payment, inducing
an adjustment cost on both players.

The real value of the contract payment at time t, R(t, ω) is found by deflating the nominal
contract payment by the aggregate price level Q(t, ω) at time t, i.e., R(t, ω) = V (ti)/Q(t, ω).2

The parameter ω denotes that Q(t, ω) and thus also R(t, ω) are stochastic. Players’ flow payoffs
are constant elasticity functions of the real contract payment, so that RηA (i.e., R raised to the
power ηA) and RηB are the flow payoffs of player A and B, respectively, where ηA > 0 and ηB < 0
(implying that player A gains and player B loses from an increase in R).3 This implies that both
players have constant relative risk aversion, which is important to ensure an equilibrium with
constant thresholds. The degree of risk aversion does not affect the qualitative results, but it has
some impact on the numerical results, cf. simulations below.4

If a player demands an adjustment of the contract at time t, the real value of the new contract is
set equal to the real adjustment outcome Z(t, ω), which is also an exogenous stochastic process, see
section 2.1. The new nominal contract is thus V (t, ω) = Z(t, ω)Q(t, ω). Adjustment of the contract
involves a fee that is proportional to the real adjustment outcome; specifically, the adjustment fee
is τνZην , where τν (ν = A or B) is assumed to be strictly positive, deterministic and for simplicity
independent of which player initiates the adjustment.5

Note that we do not consider the possibility that players care explicitly about the actions and
intentions of the other player. Thus, we neglect that a player may care about an adjustment per
se, viewing it as unfair or unwarranted; it is only the real contract payment and the adjustment
costs that enter the payoff functions.

The overall objective function of the players is the discounted sum of flow payoffs, less the costs
associated with adjusting the contract

Uν(t1, . . . , ω) =
∫ ∞

0

Rην (s, ω) exp(−βs)ds− τν
∞∑
j=0

Zην (tj+1, ω) exp(−βtj+1)(1)

where the discount rate β is positive and tj denote the times of contract adjustment. To avoid
unimportant additional constants, we normalize by setting R(0, ω) = Z(0, ω) = 1, and t0 = 0. As
noted above, the players choose when to adjust the contract in order to maximize their objective
function. At each time t, the contemporaneous values Z(t, ω) and Q(t, ω) are known to the players,
but the future values Z(s, ω) and Q(s, ω) for s > t are unknown.

Most previous studies in the (S, s) literature assume that the stochastic processes are continuous,
e.g., according to a geometric Brownian motion. However, in real life situations, payoff functions
may often be discontinues when important new events occur, or when new information is revealed.
For instance, if player B signs a contract with a third party for delivery of the output produced

2If players agree on a contract in real terms, i.e. where V is continuously indexed to Q, this can be captured by

setting Q = 1 at all times, and the analysis below is unaffected.
3A simple example of these payoff functions can be derived in a worker-firm framework. Let R = V/Q be the

real wage, and workers’ flow payoff an increasing function of the real wage, RηA . The firm has a constant returns

to scale production function Y = L, where Y is output and L is employment. Furthermore, the product demand
facing the firm is Y = (P/Q)−E , where P is the product price and E > 1 the elasticity of demand. The flow payoff
of the firm is the real profit level, which is (PY − V L)/Q. The profit maximising price then satisfies the first order

condition P = (E/(E − 1))V . Substituting out for the first order condition in the profit function, we obtain the
flow payoff of the firm as a decreasing isolelastic function of the real wage π = CR1−E , where C = E−E(E−1)E+1

is a positive constant. Subject to an unimportant constant C, the flow payoff is then at the assumed form, where
ηB = 1− E < 0.

4Player A is risk averse or risk loving, depending on whether ηA is smaller than unity (payoff concave in R) or

greater than unity (payoff convex in R). The payoff of player B is convex in R, indicating a preference for risk.
Note however that as a profit function in general is convex in prices, player B may well be a risk averse owner of a

firm, with utility being a concave function of profits, of the form πσ , where 0 < σ < 1. With profits being defined

as in Footnote 3, the flow utility or payoff is then (R1−E)σ = RηB , where ηB = (1 − E)σ < 0. Note also that if
ηA = −ηB , and the stochastic processes are symmetric geometrically, in the sense that Z and Z−1 have the same

properties, and so do Q and Q−1, then the model is also symmetric.
5Our assumption of proportional adjustment fees, adjusted for the constant elasticity ην , yields tractable so-

lutions. It also seems plausible. For example, in a labor contract, adjustment costs may reflect time spent on

bargaining, and the real contract payment (i.e., the real wage) seems an appropriate measure of the costs of time.
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by player A, this might induce a jump in the real adjustment outcome Z. To allow for such
discontinuities, we assume that the real adjustment outcome and the aggregate price level are given
by the exponential of a Lévy process, i.e., that Z(s, ω) = exp(F (s, ω)) and Q(s, ω) = exp(G(s, ω))
where F,G are Lévy processes. Lévy processes include Brownian motion, jump processes that
follow a Poisson distribution and many other stochastic processes that are, e.g., asymmetric or
have heavier tails, see the formal definition in Appendix A.

To ensure that the objective functions are finite, it is necessary to bound Z and Q relative to
the discount rate β. This requires two additional assumptions, referred to as Definition A.2 in
Appendix A, which we assume hold throughout the paper.

By assuming that payoff functions exhibit constant elasticity in the real contract payment R,
and that the stochastic processes are given by the exponential of Lévy processes, we ensure that
the situation is the same after each adjustment, subject to a constant Z(t, ω). This property is
crucial for the analysis, as it implies that the same strategies are optimal after each adjustment.

The strategy of a player is defined as a description of the criteria that apply when the player
requires an adjustment of the contract. In principle, strategies may depend on anything that has
happened in the history of the game. However, we will follow the tradition in the differential games
literature and restrict our attention to Markov strategies, where the players’ choice of action only
depend on the state of the game. Thus, players may condition their play on the real contract
payment R, the real adjustment outcome Z, or any combination of these variables. We do not
allow players to condition their play on the opponent’s play, except for any effect via the state
variables R and Z. For example, we do not consider strategies where players punish a rapid
adjustment by the opponent by another adjustment, inflicting further adjustment costs on both
players.

Let sν denote the Markov strategy of player ν = A,B. The times of contract adjustment tj for
j = 1, 2, . . . , are determined by the strategies sν , the value of the real contract payment R(s, ω),
and the real adjustment outcome Z(s, ω). Then each player ν tries to maximize

(2) uν(sA, sB) = E{Uν(t1, . . . , ω)}.
The theorem below states that if one of the players uses a Markov strategy, there exists no

strategy for the other player that gives higher expected value of the objective function than having
a critical threshold for the ratio R/Z, i.e., adjusting the contract whenever R/Z is equal to or
passes a certain threshold value. Other variables like R or Z separately, calendar time or the time
duration since the previous adjustment, need not be used in the strategy.

Theorem 2.1. Assume that one player uses a Markov strategy. Then there exists no strategy
for the other player that gives higher expected payoff than the payoff that can be obtained with a
threshold strategy based on the ratio of the real contract payment R to the real adjustment outcome
Z.

Given Theorem 2.1, we will in the sequel restrict attention to threshold strategies.

2.1. The renegotiation process. As explained above, our assumption that each of the players
may unilaterally adjust the contract payment can be given two interpretations. Either there exists
a reopening clause in the contract, or a player may induce a renegotiation process by unilaterally
disrupting trade, or by threatening to do so. The outcome of a renegotiation process of an existing
contract is an interesting and complicated problem, cf. previous analysis in Haller and Holden
[22], Fernandez and Glazer [19], MacLeod and Malcomson [31] and Holden [28]. In general, the
bargaining outcome will depend on the size of the surplus that is to be shared, the players’
preferences, the outside alternatives, and the costs associated with a dispute in the bargaining.
Some or all of these variables may vary over time, and thus lead to changes in the bargaining
outcome. However, a proper analysis of this is far beyond the scope of the present study. Thus,
we restrict ourselves to a reduced form approach. Specifically, we assume that the renegotiation
process is costly to both players, as specified above. Furthermore, we assume that there is a unique
outcome Z to the renegotiation process.

Observe that our specification with an exogenous adjustment outcome Z does not affect our
analysis of optimal threshold strategies. At each point in time, Z is the outcome if one of the
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players requires an adjustment of the contract. Players cannot affect Z, except by choosing when
to adjust the contract. Thus, as seen from the point of view of the players when they make the
decision of whether to induce an adjustment, which is the problem that we study, the adjustment
outcome Z is exogenous. This might have been different if we had allowed for players being able
to commit to their future threshold level. Then, one would expect that the future thresholds
would affect the adjustment outcome, and it would have been necessary to incorporate the effect
of the choice of thresholds on the adjustment outcome in the analysis. However, by the Markov
assumption, players cannot commit to their future threshold values.

An important limitation of letting the adjustment outcome be exogenous is however that we
do not capture how a change in a parameter in the model would affect the adjustment outcome.
Thus, in our analysis in Theorem 4.1 below, and the subsequent numerical simulations, we do not
capture that a change in the parameters might be expected to affect the renegotiation process, and
thus the real adjustment outcome. Hence, these exercises should be interpreted as ceteris paribus-
analyses, where we explore the direct effect of the change in the parameters on the thresholds,
neglecting any possible effect on the real adjustment outcome.

3. The model when both players use thresholds strategies

In this section we derive formulas for the expected objective functions and their derivatives,
given that players use threshold strategies. These formulas can be computed numerically, and
possibly also analytically, for specific stochastic processes. To illustrate the model, Figure 1 shows
a realization of the real contract payment R when both players use threshold strategies.

Let rB and rA denote the critical thresholds, where rA < 1 < rB , as player A requires adjust-
ment if the real contract payment is low (R/Z ≤ rA), while player B requires adjustment if the
real contract payment is high (R/Z ≥ rB). Denoting the threshold strategies by rν , equation (2)
gets the form below. Define the expected discounted sum of flow payoffs6

(3) uν(rA, rB) = E{Uν(rA, rB)}
where Uν(rA, rB), with a slight abuse of notation, is defined from (1) when the players have critical
thresholds rA and rB . Let T (rA, rB , ω) be the time of the first adjustment given the thresholds rA
and rB , i.e., the first time after t = 0 that the contract payment relative to adjustment payment
is either equal or below rA or equal or above rB , viz.,

(4) T (rA, rB , ω) = inf{t > 0 | R(t, ω)/Z(t, ω) 6∈ (rA, rB)}.
Note that, as the situation is the same after each adjustment, subject to the constant Z(t, ω),
T (rA, rB , ω) is also the time of the next adjustment, as measured as the distance from the previous
adjustment.

In part (ii) in the following theorem, as well as in section 4 below, we will assume E{T (rA, rB)}
is differentiable. This is satisfied if, for instance, Z(t, ω) and Q(t, ω) are geometric Brownian
motions. In Appendix B we find the analytic expression for E{T (rA, rB)} in this case. It is also
satisfied if we include jumps in Z(t, ω) and Q(t, ω), where the jumps are according to a Poisson
process and the size of the jump has a continuous and decreasing distribution, for example being
exponentially distributed.

Given the thresholds, define the expected contribution to the objective function of player ν
from the start at t = 0 to the first contract adjustment,

fν(rA, rB) = E{
∫ T (rA,rB)

0

Rην (s) exp(−βs)ds}.

The expected flow payoff just after the first adjustment, discounted down to time t = 0, is defined
by

hν(rA, rB) = E{Zην (T (rA, rB)) exp(−βT (rA, rB))}.
Note that in the special case where the real adjustment outcome Z is a constant, hν is a pure
discount factor. Note also that the second inequality in Definition A.2 ensures that hν < 1.

6Here and in the following we will write E{Φ(a, b)} for the expectation value of a stochastic variable Φ(a, b, ω),
rather then more cumbersome E{Φ(a, b, ω)} or E{Φ(a, b, · )}.
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Figure 1. The figure shows one realization of the process R( · , ω) in the case with Z = 1
and Q is geometric (or exponential) Brownian motion Q = exp((αq−a2

q/2)t+aqBt) with
drift αq = .002 and volatility aq = .01. Here Bt denotes standard Brownian motion.
When the unit of time is interpreted as one month, this corresponds to 2.4% annual
inflation. The process is sampled at 5000 points.

Then we may formulate the following theorem.

Theorem 3.1. Assume that both players use threshold strategies, implying that the contract is
adjusted as soon as the contract payment relative to the adjustment outcome R/Z exits the interval
(rA, rB). Then the following properties hold:
(i) The expected values of the objective functions immediately after an adjustment satisfy

(5) uν(rA, rB) =
fν(rA, rB)− τνhν(rA, rB)

1− hν(rA, rB)
, ν = A,B

and are defined for 0 ≤ rA < 1 < rB ≤ ∞.
(ii) Assuming E{T (rA, rB)} is differentiable, then fν , hν uν are differentiable and the derivatives
satisfy

(6)
∂uν
∂rµ

=
∂fν
∂rµ

+ (uν − τν)∂hν∂rµ

1− hν
, ν = A,B, µ = A,B.

Equation (6) captures the opposing effects of increasing the thresholds: For example, increasing
rA reduces the expected time until the next adjustment. This will reduce the expected payoff
until the next adjustment, i.e., ∂fν

∂rA
< 0. Furthermore, reducing the expected time until the next

adjustment raises the discount factor ∂hν
∂rA

> 0, reflecting that the adjustment cost τν is incurred
earlier, but also that the value of the objective function after an adjustment uν is received earlier.
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4. Nash equilibrium

In this section we prove existence of a Nash equilibrium in thresholds, and we explore how the
equilibrium depends on some of the parameters of the model.

Define the optimal thresholds for player A, as a function of the threshold for player B, mA(rB),
and similarly for player B, mB(rA), as follows

mA(rB) = inf{rA ∈ [0, 1) | uA(rA, rB) = sup
rA

uA(rA, rB)},

mB(rA) = sup{rB ∈ (1,∞] | uB(rA, rB) = sup
rB

uB(rA, rB)}.

These definitions allow for the possibility that the optimal threshold is not unique, in which case
they pick the most lenient value, i.e., the threshold farthest from unity. However, in Theorem 4.1
below, we show that with the assumptions mentioned above then the optimal threshold is indeed
unique.

We may then state the following theorem regarding uniqueness of the optimal value and the
existence of an equilibrium point.

Theorem 4.1. Assume that if there are jumps in Z(t, ω) and Q(t, ω), then the density for the
size of the jump is a continuous and decreasing distribution. Then E{T (rA, rB)} is differentiable
and the following properties hold:
(i) The expected value of the objective function for player A, uA(rA, rB), is increasing in the
threshold rB of player B, i.e., ∂uA

∂rB
> 0. The expected value of the objective function for player B,

uB(rA, rB), is decreasing in the threshold rA of player A, i.e., ∂uB
∂rA

< 0.

(ii) Given the threshold for player B, rB, there exists a unique best response for player A, i.e., a
unique value 0 ≤ rA = mA(rB) < 1 that maximizes uA(rA, rB). Correspondingly, given rA, there
exists a unique value ∞ ≥ rB = mB(rA) > 1 that maximizes uB(rA, rB).
(iii) The functions mA(rB) and mB(rA) are both strictly increasing.
(iv) mA(rB) is strictly decreasing in τA and mB(rA) is strictly increasing in τB.
(v) There is at least one Nash equilibrium point (reA, r

e
B), where

reA = argmaxr<1{uA(r, reB)},
reB = argmaxr>1{uB(reA, r)}.

Theorem 4.1 states a number of key results. First, part (ii) shows that both players have unique
best response functions in the form of thresholds rν . The optimal threshold reflects two opposing
concerns. A threshold very close to unity is costly due to frequent renegotiatons, while a threshold
far from unity involves the risk of lengthy periods with a bad contract payment.

Second, and more importantly, part (v) shows that there exists a Nash equilibrium in thresholds.
Thus, in equilibrium, player A will demand an adjustment whenever R/Z is below player A’s
threshold rA, irrespective of whether this is caused by high inflation eroding the real value of the
contract payment, or by an increase in the real adjustment outcome. Conversely, player B will
require an adjustment whenever R/Z is above player B’s threshold rB . An adjustment will ensure
that R is set equal to Z, implying that the ratio R/Z = 1.7

Third, Theorem 4.1 (iv) reveals that higher adjustment costs make a player more reluctant
to require an adjustment, by pushing his threshold value further from unity, rA down for player
A, and rB up for player B. This is as expected: Players weigh the gains from improving the
contract against the costs of doing so, and higher costs make players more reluctant to require an
adjustment.

Fourth, part (i) shows that if one player becomes more active (that is, has a threshold closer
to unity), this reduces the expected value of the objective function for the opponent. Again, the
result is intuitive: When one player becomes more active, the opponent loses from both more

7We have not been able to prove uniqueness of the Nash equilibrium in the general case, nor have we been

able to construct cases with multiple Nash equilibria with the assumptions in Theorem 4.1. Thus, for each set of

stochastic processes, it is necessary to verify that there is only one equilibrium point.
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frequent costly adjustments and from the fact that the contract on average becomes less favorable
for the opponent.

Fifth, and again more important, Theorem 4.1(iii), identifies strategic substitutability in the
choice of thresholds. This follows from the optimal thresholds mA(rB) and mB(rA) being increas-
ing functions. If, in equilibrium, one player becomes more active by choosing a threshold closer to
unity, the other player becomes more passive by choosing a threshold further from unity. In other
words, if, say, the adjustment fee of player B is reduced, making him more active, this will induce
player A to become more passive.

At first glance, this result might be surprising. If the threshold of my opponent is close to unity,
so that he is very active, demanding an adjustment whenever the contract is slightly favorable
to me, surely I should also be more active, to prevent that the contract is almost always to my
disadvantage? Yet this argument is misleading. If my opponent becomes more active, this is clearly
a disadvantage to me. However, becoming more active would not help. The relevant issue is that
as my opponent becomes more active, the expected time until he will demand an adjustment is
reduced. This implies that if I were to induce a renegotiation, the expected duration of the novel
contract payment will be shorter than before, as the opponent is more active. This makes it less
attractive for me to require an adjustment, leading me to be more passive, with a threshold further
from unity.

The strategic substitutability effect is in contrast to Andersen and Christensen [4], who find
strategic complementarity in the choice of thresholds. Their finding of complementarity is due
to the fact that they consider only one contract adjustment, implying an incentive for players to
preempt the opponent. Thus, if one player is active, the opponent has an incentive to also be
active, to increase the likelihood of being the player who obtains the advantage of asking for an
adjustment at a suitable moment. Andersen and Christensen [3] consider the model with a finite,
but large number of contract renewals, but it is not stated whether the strategic complementarity
holds in that model.

The model may be generalized to the case where the adjustment costs τA and τB depend on
which player that requires contract adjustment. In equations (5) and (6), this would require
that τν is replaced by the expected value of the contract adjustment fee, which again would be a
function of rA and rB . Theorem 4.1 is also valid in the generalized model, but in equation (24)
in the proof and the calculations leading to this equation, τA would be the adjustment fee when
player A requires an adjustment. τB would be used in the corresponding equation for B. The
model may also be generalized to allow for the adjustment fees being stochastic, where τν is the
expected value of the adjustment fee.

4.1. Numerical simulations. As will become clear below, the model involves several strongly
non-linear relationships. Thus, to explore the properties of the model further, numerical simula-
tions are necessary. Figure 2 illustrates the game in setting thresholds. The curves show the best
response functions mA and mB for different values of adjustment fees τν . Higher adjustment fee
leads to more passive play, with critical values further from unity (curves down). The best response
functions are downward-sloping in the rA, 1/rB space, reflecting strategic substitutability in the
sense that players will be more passive (lower values of rA or 1/rB) if the opponent becomes more
active (higher values of rA or 1/rB). Note that the best-response functions are highly non-linear,
implying that the effect of the strategic substitutability will vary sharply depending on the initial
conditions.

The intersections of the best response functions indicate Nash equilibria. For example, point
C in Figure 2 indicates the Nash equilibrium for τA = τB = .35. The equilibrium thresholds
are rA = .950 and 1/rB = .960, implying that player A requires an adjustment whenever he can
increase the real contract payment by 5 percent, while player B requires an adjustment if the real
contract payment can be reduced by at least 4 percent. In this case, the strategic substitutability
is rather strong. For example, if the adjustment costs of player A, τA, is reduced down to .05,
while τB is constant at .35, rA increases to .985, and 1/rB falls to .918, cf. point D. Thus, in
the new equilibrium player A is more active, requiring an adjustment whenever he can increase
the real contract payment by 1.5 percent, as opposed to 5 percent before the change. Then the
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Figure 2. The best response threshold function mA (thin curves) and mB (thick curves)
of players A and B, respectively, for values of τA and τB from .05 to .35. Intersection
between mA and mB gives the Nash equilibrium point (reA, r

e
B) for the particular set of

(τA, τB). Other parameters and processes are as in Table 1.

Table 1. Each row presents the Nash equilibrium point for a combination of τA and τB .
P (reA, r

e
B) is the expected fraction of times that adjustment is undertaken by player A,

and E{T (reA, r
e
B)} is the expected time between adjustments. The process and param-

eters are as in Figure 1, including drift αq = .002 and volatility aq = .01. Furthermore,
β = .005, ηA = 1, and ηB = −1.5.

τA τB reA reB uA(reA, r
e
B) uB(reA, r

e
B) P (reA, r

e
B) E{T (reA, r

e
B)}

.05 .05 .973 1.020 197.3 199.3 .64 5.3

.07 .05 .968 1.017 196.3 200.3 .58 5.9

.05 .07 .976 1.026 198.0 197.9 .74 5.7

.07 .07 .971 1.023 197.1 199.1 .69 6.7

.13 .13 .965 1.029 196.4 198.9 .75 9.9

.13 .23 .970 1.044 197.6 195.9 .87 10.9

.23 .13 .951 1.024 193.7 201.7 .64 12.1

.23 .23 .957 1.035 195.2 199.0 .78 13.7

strategic substitutability effect implies that player B becomes more passive, so that his critical
threshold increases from 4 percent to 8.2 percent.

Given the complex effects with strong non-linearities, it is important to explore the properties
of the model by use of simulations. We have undertaken extensive simulations, along several
dimensions, and Tables 1 and 2 sum up the key results.

As noted above, the basic framework is symmetric in the sense that if the stochastic processes
are symmetric (i.e. Z and Z−1 have the same properties, and so do Q and Q−1), and ηA = −ηB ,
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Table 2. Each row present the Nash equilibrium points for a specific parameter com-
bination given in the first four columns. In all simulations, τA = τB = .07, while the
other parameters as in Table 1.

αq aq ηA ηB reA reB uA(reA, r
e
B) uB(reA, r

e
B) P (reA, r

e
B) E{T (reA, r

e
B)}

.002 .01 1.0 -1.5 .971 1.023 197.1 199.1 .69 6.7

.002 .03 1.0 -1.5 .937 1.044 194.1 198.1 .44 3.2
0 .01 1.0 -1.5 .969 1.020 197.2 199.0 .38 6.7

.006 .01 1.0 -1.5 .969 1.028 195.6 199.5 .97 4.9

.002 .01 .7 -1.5 .964 1.020 197.0 200.5 .61 7.4

.002 .01 1.0 -1.0 .974 1.030 197.7 198.3 .77 7.2

then the behavior will also be symmetric, implying that rA = 1/rB . For example, this would be
the case if Z and Q were geometric Brownian motions without drift. In the numerical simulations,
we will therefore focus on the effects of asymmetries between the players. In almost all simulations,
we include a positive drift αq > 0 in the aggregate price level Q, implying a tendency that the real
value of the contract payment, R, falls over time, relative to the real adjustment outcome, Z.Thus,
it will usually be player A (the seller) who demands an adjustment, unless the critical threshold
of player B is close to unity. Note that the drift may be interpreted as anything that makes the
real value of the contract payment fall relative to the adjustment outcome. For example, if one
interprets the contract as a trade agreement between two countries, higher growth in one country
inducing a gradual improvement in the country’s bargaining position, might also be captured by
such drift.

Table 1 displays Nash equilibria for various combinations of adjustment costs. We observe that
an increase in the adjustment costs for one player makes this player less active, which increases
the expected utility of the opponent, and in addition makes the opponent more active (strategic
substitutability). An implication of the strategic substitutability is that asymmetries between the
players may be exacerbated. Thus, if the adjustment cost of one player becomes higher, making
this player more passive, the opponent becomes more active. However, when the opponent becomes
more active, the first player responds by becoming even more passive. In some cases, the strategic
effect may be substantial.

Table 2 shows the effect of variation in other parameters, where the first row gives the benchmark
simulation.8 Greater volatility aq makes both players more reluctant to require an adjustment,
with thresholds further away from unity, cf. row 2. The intuition is straightforward: With greater
volatility, thresholds close to unity will imply too frequent adjustments, thus players are less active
so as to reduce adjustment costs. This result is the same as derived by Andersen and Christensen
[4]. Note, however, from the last column that the change in behavior is not so large that it prevents
that the expected time between adjustments, E{T}, falls.

Increased drift in the aggregate price level, which, as mentioned above, causes a reduction in
the flow payoff of player A (the seller) over time, has a positive impact on the threshold of player
B. As the drift increases from αq = 0 to αq = .006, rB increases from 1.020 to 1.028, cf. rows 1,
3 and 4 in Table 2. This reflects that under high inflation (high drift), player B need not demand
a adjustment even if he has been “unlucky” with the random movement, so that the contract
payment is high relative to the adjustment payment. As the contract payment is set in nominal
terms, high inflation will fairly soon reduce the real value of the contract payment, so player B
need not incur the costs of an adjustment. In contrast, when there is little or no drift, player B
cannot rely on this effect and must set the threshold level closer to unity to avoid a bad contract
value. This result is in contrast to the findings of Andersen and Christensen [4], where increased
drift makes player B (which corresponds to the principal in their model) more active. Their result

8When interpreting the effects of parameter changes, one should recall that Z is exogenous, implying that we

do not capture any effect on this variable. As argued in section 2.1, endogenising Z would not affect the optimal
threshold values, but in general it would affect the payoffs of the players. Thus, these effects should be treated

more cautiously. The average real value of the contract would also be directly affected by endogenising Z, thus we

do not calculate the effect of parameter changes on this variable.
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is due to their assumption of only one renegotiation; if there is drift that is disadvantageous to
the principal, there will be less reason for the principal to postpone an adjustment in the hope of
a more favorable adjustment a later stage. Indeed, in Andersen and Christensen [3], it is shown
that the effect of drift is ambiguous in the case where it is allowed for many renegotiations.

The threshold of player A is non-monotonic in the drift. Increasing the drift from αq = 0, via
αq = .002 to αq = .006 yields rA equal to .969, .971 and .969, respectively. The non-monotonicity
reflects two opposing effects. On the one hand, stronger drift implies that for a given threshold,
adjustments will be more frequent, so that the total costs incurred from adjustment increase. To
reduce the rise in costs from frequent adjustments, player A will be more reluctant to demand an
adjustment, thus the threshold is decreased. On the other hand, the strategic substitutability in
the choice of thresholds implies that when higher drift increases the threshold of player B, making
him less active, it also increases the threshold of player A. Intuitively, increasing the threshold
of player B raises the expected duration of an beneficial adjustment by player A, making an
adjustment more attractive to A.

Risk aversion for player A, i.e., reducing ηA below unity, has a negative effect on the thresholds
of both players, player A’s further away from unity and player B’s closer to unity, cf. row 5.
Thus, risk aversion makes player A more reluctant to require an adjustment, inducing player B to
become more active. We also see that player B obtains higher expected utility when player A is
more risk averse, corresponding to the well-known result that it is advantageous to bargain with a
risk averse player. One possible interpretation of risk aversion for the seller is a union that is also
concerned about the risk of unemployment, if wages become very high. Under this interpretation,
our results suggest that unions that care about employment are less active (in the sense of having
a threshold further from unity), thus improving the payoff for the firm.

Likewise, making player B less risk loving, by reducing the absolute value of ηB , improves the
situation for player A, as the threshold of both players increases, making player A more active
and player B more passive, resulting in an increase in the expected utility of player A, cf. row 6.

Combining the effect of the various parameters allows for interesting observations in relation to
the literature on downward nominal wage rigidity. As observed by Akerlof, Dickens and Perry [2]
and Lebow, Saks, and Wilson [30] (the latter paper also surveys more recent evidence), nominal
wage cuts are fairly rare, even in a low inflation economy, suggesting that firms rarely require
a downward adjustment in nominal wages. The third row shows that if adjustments costs are
symmetric, and there is no drift (i.e., no inflation and no productivity growth, implying no trend
increase in wages) player B, which corresponds to an employer, undertakes most of the adjustments
(recall that P ( · ) shows the fraction of all adjustments that are induced by player A), implying
that wage cuts would in fact be more common than wage increases. The reason for this asymmetry
lies in the asymmetry in the payoff functions, where ηA < |ηB |. This property reflects that profits
are a convex function of wages; by the envelope theorem, the derivative of the profit function
with respect to wages is equal to the employment level, and the employment is itself a decreasing
function of wages.

However, as noted above the evidence indicates that wage cuts are fairly rare, which implies
that other mechanisms must be so strong that they more than overturns the effect of the profit
function being convex. One effect in this direction is drift in wages, due to inflation, productivity
growth or both. Holding first thresholds values constant, inflation erodes the real value of the
contract payment, implying that the threshold of player A, the seller or worker, will bind more
often, thus he will make most of the adjustments. As showed above, with optimal thresholds, the
drift makes player B, the buyer or firm, less active, further reducing the incidence of wage cuts.
The effect on player A’s behavior is ambigous, as the direct effect of inflation is less active play
by player A (active play and high inflation will lead to too frequent costly adjustment), while
strategic substitutability effect implies that the less active player B makes player A more active.

A numerical example may be illustrative. If the drift equals αq = .002, which corresponds to
annual wage growth of 2.4 percent if the unit of time is one month, this leads to an incidence of
wage cuts of 31 percent (1−.69 = .31), cf. the first row in Table 2. In comparison, Lebow, Saks, and
Wilson [30] report in the years with low median wage growth of an annual median of 2.3 percent
(the years were 1987, 1993, and 1995), 18 percent of all wage changes in the US Employment cost
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index were negative. This suggests that there are also other mechanisms preventing nominal wage
cuts, for example that firms believe that wage cuts may have an adverse effect on workers’ morale,
cf., e.g., Akerlof, Dickens, and Perry [2] or Bewley [7]. Note that if firms for some reason find it
more costly to cut wages and thus become more reluctant to do so, the strategic substitutability
effect will make workers more active, which will magnify the downward rigidity of wages.

5. Weaker assumptions on the stochastic processes

As noted above, in real life situations, payoff functions may often be discontinues when im-
portant new events occur, or when new information is revealed. Thus, it is of interest to see to
what extent our results are robust to discontinuities in the stochastic processes. So far, we have
assumed that if there are jumps in the Z and Q-processes, the size of the jumps is from a contin-
uous decreasing distribution. In this section we also allow for jumps in Z where the distribution
for the jumps has a mass point for a fixed size, implying that E{T (rA, rB)} is not differentiable.
We show that in this case a Nash equilibrium may in some specific cases only exists if one of the
players uses a mixed strategy. The reason is that this may give discontinuities in the optimal
responses mA(rB) and mB(rA) implying that they do not intersect. Then there will be no Nash
equilibrium with constant threshold strategies. However, there will exist a Nash equilibrium in
mixed strategies, in the sense that one player randomizes between two threshold values. From a
theoretical point of view it is interesting to see that if we expand the class of stochastic processes
Z and Q to include a wider class of jumps, then it is necessary to include randomization in the
strategies in order to obtain Nash Equilibrium. To illustrate this, we construct a stylized example
where there is a possibility that the real adjustment outcome Z may take a large fall, which may
lead player B to require an adjustment to reduce the contract payment down to the new, low value
of Z.

Example 5.1. Assume that the aggregate price level Q is constant, except for sudden increases
according to a high intensity Poisson process, where the size of the increases are “small” and
according to a continuous distribution. The real adjustment outcome Z is also constant except for
“large” discrete decreases at a fixed rate 1+ρ, according to a low intensity Poisson process. These
assumptions imply that the ratio of the contract payment relative to the adjustment outcome R/Z
is decreasing, except for sudden jumps where it increases with the percentage ρ.

Consider the situation if player B has chosen a threshold rB < 1 + ρ. Then, if Z decreases
immediately after an adjustment, R/Z will be above the critical threshold of player B, inducing
an immediate adjustment by B. Thus, player A will not benefit from a period with high R/Z
after the decrease in Z. On the other hand, if player A let R/Z fall below rB/(1 + ρ), R/Z will
be below the threshold of the player B even after a decrease in Z. There will be no immediate
adjustment, and player A will benefit from a period of high R/Z. This discontinuity at rB/(1 +ρ)
will imply a discontinuity in mA, i.e., in the optimal threshold of player A. In this example
E{T (rA, rB)} is differentiable except for the curve rA = rB/(1 + ρ) where there is a discontinuity
in ∂E{T (rA, rB)}/∂rν .

The situation is illustrated in Figures 3 and 4. In equilibrium, player A randomizes between
two thresholds r1 ≈ .979 and r2 ≈ .971. Figure 3 shows that R/Z decreases monotonically,
except when it increases to unity at an adjustment, or increases above unity when Z decreases.
Figure 4 illustrates the strategic effects. For values of rB above r3 ≈ 1.035 ≈ 1/.966, the optimal
threshold of player A, rA is increasing in rB due to the strategic effect discussed in Section 4. For
rB < r3 ≈ 1.035, a fall in Z will always induce player B to adjust, implying that player A sets
rA ≈ .979. However, for rB = r3 ≈ 1.035, player A is indifferent between choosing a low threshold
r1, maintaining the possibility of benefiting from a fall in Z, and a high threshold r2, which removes
this possibility. In equilibrium, player A mixes between these two thresholds, with probabilities
ensuring that it is indeed optimal for player B to choose the threshold rB = r3 ≈ 1.035.

Let us now consider the consequences when the distribution for the jumps has a mass point for
a fixed size more formally. Define Sν as the class of strategies for a player ν, where the player
randomizes between two thresholds r1 and r2, where r1 is chosen with probability 1 − q and r2
with probability q. Note that Sν includes pure strategies, where q = 0. Let sν ∈ Sν denote a
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Figure 3. Two realization of R/Z for the same stochastic process, but corresponding
to two different thresholds for player A, r2 = .971 and r1 = .979, in Example 5.1. Player
B has threshold rB = r3 = 1.035. Threshold r1 gives adjustment after every jump where
R/Z increases, while the lower threshold r2 may give periods with high R/Z values. In a
Nash equilibrium, illustrated in Figure 4, player A randomizes between the thresholds r2
and r1. The two independent Lévy processes Z and Q are constants except for discrete
changes according to a Poisson process. The Poisson process for Z has intensity .8
and in the changes, Z decreases with a factor 1.0625. The Poisson process for Q has
intensity approximately 1200 and in the changes, Q increases according to a continuous
distribution such that E{ln(Q(t))} ≈ .13t and Var{ln(Q(t, ω))} ≈ .004t. Furthermore,
τA = .0017 and τB = .0057. The process is modeled with time step .001.

strategy. Furthermore, we assume that each time R/Z is equal to unity or jumps from one side of
unity to the other side of unity, players select one of the two thresholds at random. This procedure
ensures that past fluctuations of Z and Q have no impact on the probability each player perceives
of the thresholds of the opponent.

We extend the definition of the expected values of the objective functions uν to allow for
randomization by both players. Furthermore, we define the optimal threshold for each player
when the opponent randomizes:

mc
A(sB) = inf{rA ∈ [0, 1) | uA(rA, sB) = sup

r
uA(r, sB)},

mc
B(sA) = sup{rB ∈ (1,∞] | uB(sA, rB) = sup

r
uB(sA, r)}.

Thus, the function mc
B(sA) corresponds to the usual optimal response function for player B,

mB(rA), if player A uses a pure strategy. However, mc
B(sA) is also defined if player A randomizes

between thresholds r1 and r2, reflecting a discontinuity inmA(rB). Ifmc
B(sA) changes continuously

from mB(r1) to mB(r2) when q changes from 0 to 1, we say that mc
B(sA) is continuous. Continuity

of the function mc
A(sB) is defined similarly.
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Figure 4. The best response functions mA(RB) (thin curve) and mB(RA) (thick
curve) corresponding to Example 5.1, for rA, 1/rB ∈ [.92, 1]. The dashed curve is
rB = 1.0625rA. When the thresholds satisfy rB < 1.0625rA, there is an adjustment after
every jump in Z. Thus, within this interval rB is immaterial, implying that mA(rB) is
vertical above the dashed curve. In equilibrium, player A’s strategy sA implies random-
ization between the thresholds r2 ≈ .971 and r1 ≈ .979, the endpoints of the horizontal
line in mA for rB ≈ 1.035 ≈ 1/.966. The curve (E{rA(sA)},mc

B(sA)) intersects the
horizontal line in mA at rA = r′ ≈ .973. In a Nash equilibrium, player A selects the
threshold r1 with probability (r′ − r2)/(r1 − r2) ≈ .25 and else r2. The randomization
makes the optimal threshold for player B equal to rB ≈ 1.035 ≈ 1/.966. R and Z are as
defined in Figure 3 and other constants are β = .005, ηA = 1, and ηB = −1.5. The plot
is based on 105 realizations, each sampled at 105 points up to time 100.

A Nash-equilibrium point is a pair of strategies (seA, s
e
B) with seA ∈ SA and seB ∈ SB where

seA = argmaxsA∈SA{uA(sA, seB)},
seB = argmaxsB∈SB{uB(seA, sB)}.

In order to prove existence of a Nash equilibrium, we assume that mν is piecewise continuous and
that mc

ν is continuous in each of the discontinuities in mν . This is a property of the stochastic
processes Z and Q, but it will be fulfilled except in extreme cases. For example, it will not be
fulfilled if Z or Q only take discrete values. We may then formulate the more general theorem for
the existence of a Nash equilibrium.

Theorem 5.2. Assume mν is piecewise continuous and mc
ν is continuous in each of the disconti-

nuities in mν . Then there exists at least one Nash-equilibrium point in which at most one player
randomizes.
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Figure 5. This figure shows non-uniqueness in the Nash equilibrium due to multiple
crossings of the best response curves mA (thin curve) and mB (thick curve) for the
process illustrated in Figure 4 with τA = .0005 and τB = .0045.

When the stochastic processes are discontinuous, we are able to construct examples where there
exist multiple Nash equilibria. In Figure 5, there are two Nash equilibria with constant thresholds,
and one with randomization.

6. Efficiency of the choice of adjustment costs

In this section, we extend the model by allowing an additional stage of the model, taking place
ahead of the basic model, where each of the players may invest in adjustment capacity, reducing
his costs of adjustment of the contract. For example, a firm may have a large salary department,
taking care of the wage negotiations. Let the costs of obtaining adjustment fee τν be given by
the function cν(τν), where we assume that cν is differentiable and strictly decreasing, and that cν
converges to infinity when τν converges to zero, and cν converges to zero when τν converges to
infinity. For simplicity, we assume that cν approaches zero sufficiently fast when τν increases to
ensure that equations (7) and (8) below have a solution.

With a slight abuse of notation, let Wν(τA, τB) denote the expected value of the objective
function of player ν, derived from Nash equilibrium in the basic model with adjustment fees τA
and τB .9

When both players optimize their investment in adjustment capacity, the adjustment fees are
given by the first order conditions

(7)
∂Wν

∂τν
− c′ν(τν) = 0, ν = A,B.

9We do not wish to go into issues of equilibrium selection here, so if there are multiple Nash equilibria, we assume

that players observe a signal indicating which equilibrium applies. Associating probabilities with the various Nash

equilibria, players take the expected value of the objective functions.
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Assuming for simplicity that overall welfare can be measured by the sum of players’ expected
utility, the welfare maximizing levels of investment in adjustment capacity is given by

(8)
∂WA

∂τν
+
∂WB

∂τν
− c′ν(τν) = 0, ν = A,B.

From Theorem 4.1, it follows that the expected value of the objective function for a player
is increasing in the opponent’s cost of adjusting the contract, i.e. that ∂WA/∂τB > 0 and
∂WB/∂τA > 0. This follows from Theorem 4.1, part (iv), showing that higher adjustment costs
makes a player more passive (threshold further from unity), and part (i) showing that a player
gains from his opponent becoming more passive. Thus, it follows that the values of τν that satisfy
(7) give positive values when put into the left-hand side of the equations (8). This implies that for
each solution of (7), there exists a solution of (8) with higher values of τν . This implies that when
each player determines the adjustment fee from (7), there is an over-investment in adjustment
capacity compared to a solution of equations (8).

This over-investment in adjustment capacity is due to the following. First, each of the players do
not take into consideration that the contract payment in our setting is only a matter of a transfer
between the players, so that what one player gains by adjusting the payment is directly linked to
what the other player loses. Second, the first effect is exacerbated by the strategic substitutability
in the choice of thresholds. By investing in adjustment capacity, thus reducing the adjustment fee,
the threshold of the player is moved closer to unity, leading the other player to choose a threshold
further away from unity. The player gains from both changes, i.e., both from lowering his own
adjustment fee, and from inducing the opponent to set a threshold further away from unity.

7. Concluding remarks

The assumption that wages and prices are sticky in nominal terms plays a key role in macro and
monetary economics. However, usually the timing of price adjustment is taken as exogenous. This
has motivated a considerable literature studying the optimal adjustment of prices under stochastic
evolution of money or aggregate prices. In this paper we extend this analysis by considering
bilateral adjustment, where both parties to the trade, both the seller and buyer, are allowed to
require adjustments of the contract.

We show that several of the key results from the literature on unilateral price adjustment
also hold in the more general case of bilateral adjustment. Optimal behavior is characterized by
threshold strategies, where players demand adjustment whenever they can improve the contract
terms by a certain percentage, i.e., whenever the real contract payment, R, is too far away relative
to the outcome of an adjustment of the contract, Z. Player A (the seller) adjusts whenever
R/Z ≤ rA < 1, while player B (the buyer) requires adjustment whenever R/Z ≥ rB > 1. As
expected, higher volatility and larger adjustment costs make players more reluctant to demand an
adjustment, implying threshold values further from unity.

Under rather general assumptions, even allowing for discontinuities in the stochastic processes,
we prove the existence of a Nash equilibrium in thresholds. When we extend the class of stochastic
processes further, it is necessary to include randomization in the strategies to obtain Nash equi-
librium. A second main result is that in equilibrium, there is strategic substitutability in players’
choice of threshold: If one player becomes more active, setting a threshold closer to unity, the
other player becomes more passive, setting a threshold further from unity.

The basic economic setting we analyse has previously been studied by Andersen and Christensen
[4]. However, they focus on only one adjustment, while we consider more general stochastic pro-
cesses, allowing for an unlimited number of adjustments. Our allowing for an unlimited number of
adjustments is important for several of the key results. For example, the strategic substitutability
is in contrast to the finding of Andersen and Christensen [4].

The strategic substitutability may exacerbate asymmetries. If the adjustment costs of one
player, say A, are reduced, this player will respond by raising the threshold closer to unity. How-
ever, this effect will be strengthened by player B raising his threshold, becoming more passive,
further away from unity. Numerical simulations indicate that the strategic effect in some cases is
substantial, depending on the initial conditions.
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If there is drift in the stochastic processes, one player will make most of the adjustments.
The drift will make the opponent more passive, in the form of a threshold further from unity,
as any gain from adjustment is likely to be short-lived and thus small, due to the drift. As the
opponent becomes more passive, the strategic substitutability will make the first player more
active, amplifying the effect of the drift.

One application of these effects is that if there is both a positive drift in the form of a rising price
level, and costs to the firm of cutting nominal wages (e.g., adverse effects on workers’ morale),
these effects will work to make the firm more passive. The workers will then respond by becoming
more active in pushing wages up, thus magnifying the initial asymmetric effect. This magnifiying
effect, which to our knowledge is novel in the literature, suggests that even small costs of cutting
wages may be sufficient to ensure that only a fairly small part of all nominal wage changes are
negative.

We also find that a risk averse player will be more passive, setting a threshold further from
unity, thus benefiting the opponent. In contrast, a risk loving player will be more active, with
adverse effects on the opponent.

Throughout the analysis, the outcome of an adjustment of the contract, Z, is taken as exoge-
nous. This does not affect our analysis of the optimal adjustment behavior, i.e. players’ choice of
thresholds. By the Markov assumption, players’ strategies can only depend on the state variables.
Thus, while the players decide when the adjustment takes place, they cannot affect the outcome
of the adjustment by their choice of thresholds.10 However, by taking the adjustment outcome
as exogenous when we vary parameter values in the numerical simulations, we do not capture
the effect of these parameters on the adjustment outcome. Our simulations should consequently
be viewed as ceteris paribus-exercises, showing the direct effect of parameter changes on optimal
thresholds for adjustment, but keeping the adjustment outcome constant.

We extend the basic model by introducing a stage prior to the model, where players may invest
in ”adjustment ability”, in the sense that they may reduce their own costs of undertaking an
adjustment (e.g., by having a personnel department doing the wage negotiations). We then find
that players will over-invest as compared to the socially efficient level. The over-investment arises
for two reasons. First, players demand an adjustment too often from a social point of view, as
they do not take into consideration that their own gain from better contract terms is reflected in
a loss by the opponent. By investing to lower one’s own adjustment costs, a player will demand
an adjustment more often, thus hurting the other player. Secondly, the strategic substitutability
mentioned above exacerbates the first effect. By reducing one’s own adjustment costs, a player
becomes more active. This makes the opponent more passive, which adds to the gain of the first
player, as an adjustment induced by the opponent becomes less likely.

Our analysis is cast in a specific, but important setting, namely state-dependent adjustment
of a nominal contract between two players, e.g., a labor contract or a tenancy agreement. This
analysis seems relevant for research on macro models with sticky wages and prices. While a
number of recent contributions have introduced state dependendent pricing (see references in the
Introduction), contributions with state dependent wage setting, allowing both parties to require
an adjustment, are still missing. Hopefully, our analysis could be helpful in future work on this
issue.

We also believe that our analysis has wider applications. For example, the gain from trade
between two countries may depend on the trade agreement that prevails between the countries. If
one country perceives adjustment of the agreement as less costly than the other, the former country
will be more active in the sense of being willing to adjust the agreement even when only a small
improvement is possible. Alternatively, if the relative strength of the countries changes over time,
the adverse drift will make the losing country more passive. Our finding of strategic substitutability
in thresholds suggests that these forms of asymmetry will be exacerbated, in the sense that the
active behavior of one country and the passive behavior of the other will reenforce each other. This
exacerbating of asymmetries resembles the finding of Haller and Holden [23], where it is shown

10In contrast, if players could commit to a certain threshold in the future, this would in general affect the

adjustment outcome, and it should consequently be treated as endogenous.
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that asymmetries in the bargaining positions of two countries over an international treaty may
be exacerbated by the country with the ”stronger” bargaining position setting a stricter super-
majority ratification requirement, thus magnifying the effect of the strong bargaining position.

An important restriction of our model is that the gains from trade are taken to be exogenous.
If the gain from trade could be affected by player’s investment or effort decisions, it would be
important to design the contract so as to sustain efficiency. MacLeod and Malcomson [31] show
that simple contracts with rigid contract payment may induce efficiency in some cases. An inter-
esting avenue for future research would be to explore the efficiency properties of a simple nominal
contract in a dynamic, stochastic environment, by an appropriate extension of the present model.

Appendix A. The stochastic processes

For the benefit of the reader we recall the definition of a Lévy process (see, e.g., Sato [33]).

Definition A.1 (Lévy process). A stochastic process Xt is a Lévy process provided the following
conditions hold:
(i) For any n and any 0 ≤ t0 < · · · < tn the random variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are
independent.
(ii) X0 = 0 almost surely.
(iii) The distribution of Xs+t −Xs is independent of s.
(iv) The process is stochastically continuous, i.e., limt↓0 Prob(|Xt| > ε) = 0 for all ε > 0.
(v) The process is right-continuous with left limits.

For Lévy processes we have the Lévy–Khintchine formula for the characteristic function of Xt

(see, e.g., Sato [33])

E{exp(iλXt)} = exp
(
t
(
iαλ− 1

2λ
2a2 +

∫ ∞
−∞

(eiλx − 1− iλxχ{|x|≤1}(x))dσ(x)
))
,(9)

where dσ is a σ-finite measure, denoted the Lévy-measure, with
∫∞
−∞min(|x|2, 1)dσ(x) < ∞ and

σ({0}) = 0. The process is uniquely defined by the quantities (α, a, dσ). The measure σ describes
the size and intensity of the jumps in the process. The process is Gaussian if and only if σ = 0,
and in that case, α denotes the drift and a the volatility. If σ satisfies∫ ∞

1

eηxdσ(x) <∞,

we may conclude that

E{exp(ηXt)} = exp
(
t
(
αη + 1

2η
2a2 +

∫ ∞
−∞

(eηx − 1− ηxχ{|x|≤1}(x))dσ(x)
))

holds and is finite.
To ensure that the objective functions are finite, it is necessary to bound Z and Q relative to

the discount rate β. This requires two additional assumptions. First, we assume that the volatility
of the non-gaussian part is bounded, by assuming that the Lévy-measures satisfy∫ ∞

1

eηhxdσh(x) <∞, h = z, q(10)

for some ηh. We may then define the drift in the processes for the real adjustment outcome Z and
the aggregate price level Q by

µν,h = αhην + 1
2η

2
νa

2
h +

∫ ∞
−∞

(eηνx − 1− ηνxχ{|x|≤1}(x))dσh(x), ην ≤ ηh,

for ν = A,B and h = z, q. We have that E{Zην (t)} = exp(tµν,z) and E{Qην (t)} = exp(tµν,q). For
example, µA,z is the expected rate of increase in the real adjustment payment, adjusted for the
relative rate of risk aversion of player A, ηA. The second assumption is that the drift parameters
µν,h must be bounded by the discount rate β.
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Definition A.2 (Property F). We say that the stochastic contract model has property F if the
following properties hold:
(i) The real adjustment outcome Z(s, ω) = exp(F (s, ω)) and Q(s, ω) = exp(G(s, ω)) where F and
G are Lévy processes given by (αz, az, dσz) and (αq, aq, dσq), respectively.
(ii) There exists ηh such that ∫ ∞

1

eηhxdσh(x) <∞, h = z, q,

and assume that ην ≤ ηh for ν = A,B and h = z, q.
(iii) We have that

µν,h < β, ν = A,B, h = z, q.

Appendix B. Analytic expression—an example

In special cases it is possible to find analytic expressions for some of the variables. Assume the
real adjustment outcome relative to the real contract payment is given by a geometric Brownian
motion Z(t, ω)/R(t, ω) = Z(t, ω)Q(t, ω) = exp((α − a2/2)t + aBt(ω)) where the notation is sim-
plified by the normalization Z(0, ω)Q(0, ω) = 1, and Bt denotes the standard Brownian motion.
Then (see Borodin and Salminen [8, p. 233, formula 3.0.1])

E{exp(−βT (rA, rB))} =
(
rγA(rσB − r−σB )− rγB(rσA − r−σA )

)(
(rB/rA)σ − (rB/rA)−σ

)−1

with γ = αa−2 − 1/2 and σ =
√
γ2 + 2βa−2. By differentiating this expression with respect to β

at β = 0 we find, where σ̃ =
√
a2 + 8β/(2a),

E{T (rA, rB)} =
1

a2γ(rArB)1/2

((rB
rA

)σ̃
−
(rB
rA

)−σ̃)−1

×
[

ln(rA)(rσ̃+1/2
A − r−σ̃+1/2

A )− ln(rB)(rσ̃+1/2
B − r−σ̃+1/2

B )

− ln(rB/rA)

(
rB
rA

)σ̃ +
(
rB
rA

)−σ̃(
rB
rA

)σ̃ − ( rBrA )−σ̃
×
(

(rσ̃+1/2
A − r−σ̃+1/2

A ) + (rσ̃+1/2
B − r−σ̃+1/2

B )
)]

is the expected time to the first adjustment.

Appendix C. Approximation formulas

Given the weak assumptions we impose on the stochastic processes, explicit formulas are difficult
to obtain. However, we can derive some approximate formulas that may provide useful intuition
for how the model works, and to get some sense of the numerical magnitudes that are involved.

We will first explore the effect on the payoff of a player from a marginal reduction in his
threshold. Let players A and B have thresholds r1 > 1 and rB <∞. Consider the situation at T1

when R(T1, ω)/Z(T1, ω) = r1. If player A sticks to the threshold r1, there will be an immediate
adjustment at T1. In contrast, if player A adopts a new threshold r2 < r1, there will be an
adjustment at T2, where T2 denotes the first time after T1 where R/Z has decreased at least by a
factor r2/r1, or increased at least by a factor rB/r1. Formally

T2 = inf{s > 0 | R(T1 + s, ω)/Z(T1 + s, ω) 6∈ (r2, rB)}.

Considering the payoffs associated with selecting the threshold r2, when we let r2 converge to r1
from below, we obtain the effect of a marginal reduction in r1. The limit of the ratio of R/Z is
then

(11) vA(r1, rB) = lim
r2→r1−

E{
∫ T2

0
RηA(T1 + s) exp(−βs)ds}

E{
∫ T2

0
ZηA(T1 + s) exp(−βs)ds}

.

Define vB(rA, r1) correspondingly.
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Assume there is a Gaussian component in either Z or Q, i.e., that either az > 0 or aq > 0.
Then a well-known property of Gaussian processes implies that when r1 is reached, the probability
of reaching rB before r2, converges to zero when r2 → r1−. Furthermore, the expected time until
r2 is reached converges to zero, i.e.,

(12) lim
r2→r1−

E{T2(r2/r1, rB/r1)} = 0.

Equation (12) implies that

(13) vA(r1, rB) ≈ rηA1 .

Thus, vA is quite insensitive with respect to variation in rB . (The more volatile the ratio R/Z
is, and the closer r1 and rB are to 1, the more vA(r1, rB) is sensitive with respect to variation
in rB .) We do not have equality in the limit when r2 → r1, since with probability zero, the
time T2(r2/r1, rB/r1, ω) is positive and in this time period we have that R(s, ω)/Z(s, ω) > r2 and
R(s, ω)/Z(s, ω) may reach rB before r2. In this approximation we neglect the possibility that T2

does not vanish in the limit. By a similar argument, we have vB(rA, rB) ≈ rηBB .
In the proof of Theorem 4.1 below, equation (24), it is shown that the optimal threshold satisfies

(14) vA(mA(rB), rB) = (β − µA,z)(uA(mA(rB), rB)− τA)

if uA(mA(rB), rB) > τA. Correspondingly, if uB(rA,mB(rA)) > τB , then

vB(rA,mB(rA)) = (β − µB,z)(uB(rA,mB(rA))− τB).

When combining (13) and (14) we get the approximations

uA(mA(rB), rB) ≈ 1
β − µA,z

mηA
A (rB) + τA,(15)

uB(rA,mB(rA)) ≈ 1
β − µB,z

mηB
B (rA) + τB .(16)

To obtain some intuition for these expressions, consider the case with time invariant adjustment
outcome, Z = 1, implying that µν,z = 0. If in addition, ηA = 1 and ηB = −1, then (15) and (16)
read uA ≈ rA/β + τA and uB ≈ 1/(rBβ) + τB , which can be rearranged to rA ≈ (uA − τA)β and
1/rB ≈ (uB − τB)β.

The following heuristic argument explains these expressions: By renegotiating the contract, a
player incurs the adjustment fee, and then obtains the expected utility after an adjustment, uν .
Multiplying by the discount rate β, we obtain the equivalent flow payoff. A player should demand
an adjustment when the real contract payment equals the equivalent flow payoff from requiring
an adjustment, i.e., the critical thresholds are given by these formulas.

These approximations imply that the volatility only influences the thresholds through the ex-
pected objective functions uν. These relations may be useful in order to find the optimal thresholds.
Comparing with the numerical simulations in Section 4, these approximations underestimate uA
and uB by about 2 percent. The approximation is better the smaller the volatility in Z and Q.

Appendix D. Proofs

We have the following three technical results that are proved at the end of this section.

Lemma D.1. The real adjustment outcome model Z satisfies

E{1− Zην (t) exp(−βt)} = (β − µν,z)E{
∫ t

0

Zην (s) exp(−βs)ds}.

We need the following definitions before we may state the next lemma. Let

Fν(r1, rA, rB) =
E{
∫ T1

0
Rην (s) exp(−βs)ds}

E{
∫ T1

0
Zην (s) exp(−βs)ds}

where R(0, ω)/Z(0, ω) = r1 and

T1 = inf{s > 0 | R(s, ω)/Z(s, ω) 6∈ (rA, rB)}.
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In this definition we assume Z(0, ω) 6= 1 in order to simplify the expressions. Further, define Pτ
as the probability for passing the boundary rτ at t = T1, i.e.,

(17) PA = Prob(R(T1, ω)/Z(T1, ω) ≤ rA)

and PB = 1− PA.

Lemma D.2. Assume that if there are jumps in Z(t, ω) or Q(t, ω), then the jumps are from
a continuous and decreasing distribution. Then E{T (rA, rB)} and Fν(r1, rA, rB) for ν = A,B
are differentiable. In addition FA(r1, rA, rB) is increasing in all variables and FB(r1, rA, rB) is
decreasing in all variables.

Lemma D.3. Assume that if there are jumps in Z(t, ω) or Q(t, ω), then the jumps are from
a continuous and decreasing distribution. Then vA(rA, rB) is increasing in both variables and
differentiable where

∂vA(rA, rB)
∂rB

< (β − µA,z)
∂uA(rA, rB)

∂rB
.

Correspondingly, vB(rA, rB) is decreasing in both variables and differentiable where

∂vB(rA, rB)
∂rA

(β − µB,z)
∂uB(rA, rB)

∂rA
.

Proof of Theorem 2.1. The objective function may be written

Uν(t1, . . . , ω) =
∞∑
j=0

(∫ tj+1

tj

Rην (s, ω) exp(−βs)ds− τνZην (tj+1, ω) exp(−βtj+1)
)

= τν +
∞∑
j=0

Zην (tj , ω) exp(−βtj)
(∫ tj+1

tj

Qην (tj , ω)
Qην (s, ω)

exp(−β(s− tj))ds− τν
)
.

The expected value of integral in the last expression above is bounded due to property F . Then
E{Uν} is bounded if the number of adjustments is finite.

If there is an infinite number of adjustments, it is in addition necessary to bound

E{
∞∑
j=0

Zην (tj) exp(−βtj)}.

This expression is bounded due to property F .
When both τA, τB > 0, neither player benefits from requiring adjustment immediately all the

time, e.g., have a critical threshold equal to 1. Hence the problem is well-defined.
Let T satisfy ti < T ≤ ti+1. Define CT as the contribution to the objective function for t < T

that cannot be changed when t ≥ T , that is,

CT =
i−1∑
j=0

(∫ tj+1

tj

Rην (s, ω) exp(−βs)ds− τνZην (tj+1, ω) exp(−βtj+1)
)

(18)

+
∫ T

ti

Rην (s, ω) exp(−βs)ds

and Hν(ti+2 − ti+1, . . . , ω) as the contribution to the object function after ti+1, that is,

Hν(ti+2 − ti+1, . . . , ω) =
∞∑

j=i+1

(∫ tj+1

tj

Rην (s, ω) exp(−βs)ds

− τνZην (tj+1, ω) exp(−βtj+1)
)
.

The function Hν(ti+2−ti+1, . . . , ω) has the same distribution as Uν(t0, . . . , ω). Then we may write
the objective function as

Uν(t1, . . . , ω)
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= CT + Zην (T, ω) exp(−βT )
(Rην (T, ω)
Zην (T, ω)

∫ ti+1

T

Rην (s, ω)
Rην (T, ω)

exp(−β(s− T ))ds

+
Zην (ti+1, ω)
Zην (T, ω)

exp(−β(ti+1 − T ))(Hν(ti+2 − ti+1, . . . , ω)− τν)
)
.

The ratios R(s, ω)/R(T, ω) and Z(ti+1, ω)/Z(T, ω) are independent of R(T, ω) and Z(T, ω) due
to the Markov properties. The future contribution to the object function depends on R(T, ω) and
Z(T, ω), but the optimal strategy is only a function of the ratio R(T, ω)/Z(T, ω) and there is no
memory in the game, i.e., dependencies on tj < T , R(s, ω) for s < T or Z(s, ω) for s < T .

Let sB and sA denote the strategies of player B and player A, respectively. With a slight
abuse of notation, let UA(sA, sB , ω) denote the objective function with the strategies sA and sB ,
respectively. Then supsA E{UA(sA, sB)} is well-defined and there is a sequence sA,i such that

(19) lim
i→∞

E{UA(sA,i, sB)} = sup
sA

E{UA(sA, sB)}.

Define the sequence of sets Si where r ∈ Si if player A with strategy sA,i requires contract
adjustment for any interval for any price Q( · , ω) at time t where R(t, ω)/Z(t, ω) = r. To ensure
that the sets are non-empty, add the number 0 to Si. If the adjustment is not the first time t when
R(t, ω)/Z(s, ω) = r, this is not critical, since it is the contribution to the objective function of the
player in the future that is critical. Since all r ∈ Si satisfies 0 ≤ r < 1, then for any sequence {ri}i
with ri ∈ Si, there is an accumulation point r′ (if several, take the largest). Consider a strategy
s′ with a critical threshold r′. Since the expected value of the future contribution to the objective
function at time t only is a function of the present R(t, ω)/Z(t, ω), and equation (19), then

E{UA(s′, sB)} = sup
sA

E{UA(sA, sB)}.

If the adjustment outcome ZQ does not only change in discrete jumps, then the adjustments will
come with shorter and shorter time intervals if rA → 1. Assuming τA > 0, then the adjustment
cost dominates the objective function which implies that the accumulation point r′ < 1. If the
price ZQ only changes in discrete jumps, then the relative flow payoff can only take discrete
values and r = 1 cannot be an accumulation point for the chain where all elements in the chain
satisfies ri < 0. This implies that the critical threshold may be set equal to the accumulation
point 0 ≤ r′ < 1.

Correspondingly, if player A has the same strategy in each time interval, then there is a cor-
responding argument showing that there cannot be a better strategy for player B than what is
possible to obtain with a critical threshold rB . �

Proof of Theorem 3.1. Let H ′ν be defined as Hν in the proof of Theorem 2.1 but with T < t1 and
with parameters rA and rB instead of t1 − t0, . . . . The definition of Uν(rA, rB , ω) in (1) and (3)
implies

Uν(rA, rB , ω) =
∫ t1

t0

Rην (s, ω) exp(−βs)ds+ Zην (t1, ω) exp(−βt1)(H ′ν(rA, rB , ω)− τν).

The stochastic variables Uν and H ′ν have similar distribution and have expectation equal to uν .
The time for the end of the first interval t1 is independent of what is happening after t1 due to the
Markov property. Hence Zην (t1, ω) exp(−βt1) is independent of H ′ν(rA, rB , ω). This implies that

uν(rA, rB) = fν(rA, rB)− τνhν(rA, rB) + hν(rA, rB)uν(rA, rB),

leading to

uν(rA, rB) =
fν(rA, rB)− τνhν(rA, rB)

1− hν(rA, rB)
,

which can be rewritten as

(20) uν(rA, rB) =
fν(rA, rB)− τν
1− hν(rA, rB)

+ τν .
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It follows from Appendix A that E{Z(t)} is differentiable. Assuming E{T (rA, rB)} is differen-
tiable, we may do the following calculation

∂hν
∂rτ

= E{(ην − βZ(T−))Zην−1(T−) exp(−βT )}∂E{T}
∂rτ

and
∂fν
∂rτ

= E{Rην (T−) exp(−βT )}∂E{T}
∂rτ

where T− denote the left limit and τ = A or τ = B. This implies that fν and hν are differentiable
and the derivatives satisfy

∂uν
∂rµ

=
∂fν
∂rµ

(1− hν) + (fν − τν)∂hν∂rµ

(1− hν)2
=

∂fν
∂rµ

+ (uν − τν)∂hν∂rµ

1− hν
for µ = A,B. �

Proof of Theorem 4.1. We first prove that the assumption that if there are jumps in R(t, ω) or
Z(t, ω) then the jumps are from a continuous and decreasing distribution implies that E{T (rA, rB)}
is differential. Let PA(rA, rB) be defined from (17). Then

E{T (rA −∆r, rB)} − E{T (rA, rB)} = PAE{T (
rA −Deltar

rA
,
rB
rA

)}.

The Markov property and the additional assumption on the jumps, implies that in the limit when
∆r vanish, the influence of the second argument rB/rA reduces, implying that E{T (rA, rB)} is
differential. (i) From equation (20) we have

(21) uν(rA, rB) =
fν(rA, rB)

1− hν(rA, rB)
− τν

1− hν(rA, rB)
+ τν .

Lemma D.1 gives

(22)
fA

1− hA
=

E{
∫ T
0
RηA(s) exp(−βs)ds}

(β − µA,z)E{
∫ T
0
ZηA(s) exp(−βs)ds}

.

Combining these implies

(23) uν(rA, rB) =
Fν(1, rA, rB)
β − µA,z

− τν
1− hν(rA, rB)

+ τν .

This expression is used in order to show that uA is increasing in rB and that uB is decreasing in
rA. Lemma D.2 states that FA(r1, rA, rB) increases in rB and FB(r1, rA, rB) decreases in rA. The
second term has the same sign since hA is decreasing in rB and hB is increasing in rA.

(ii) Theorem 3.1 states that fν , hν , and uν are continuous. To simplify the expressions below,
define the expected value of the objective functions of each of the players, given optimal play by
this player, as

um,A(rB) = sup
rA

uA(rA, rB),

um,B(rA) = sup
rB

uB(rA, rB).

Then um,A is continuous and mA is well-defined, piecewise continuous and uA(mA(rB), rB) =
um,A(rB) and uB(rA,mB(rA)) = um,B(rA).

Let rB > 1 be fixed. We will first prove that there is a value 0 ≤ rA < 1 that maximizes
uA(rA, rB). The function uA(rA, rB) is defined for 0 ≤ rA < 1. We will give an argument that
the maximum value is attained for rA in the closed interval [0, 1 − ε] for ε > 0 sufficiently small.
Since the interval is closed, the maximum value will be attained for a value rA = mA(rB).

If Z or Q have a Brownian term, then T (rA, rB) vanishes with probability 1 when rA → 1.
Then hA(rA, rB) → 1 and fA(rA, rB) → 0 when rA → 1. Furthermore the expression (5) for uA
implies that uA(rA, rB) → −∞ when rA → 1. If there are only jumps in ZQ, then T (rA, rB)
does not necessarily vanishes with probability 1 when rA → 1. But for 1 − ε < rA < 1 for ε
sufficiently small, then either uA is constant for rA in the interval or the change in middle term in
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equation (23) is dominating. This term is negative. Hence for each value for rB , there is a value
rA = mA(rB) < 1 where uA(rA, rB) = um,A(rB).

We will prove that the value rA = mA(rB) is unique, i.e., if rA 6= mA(rB), then uA(rA, rB) <
um,A(rB). Let t1 be the time for the first contract adjustment. Furthermore, let W1 and W2 be
two new stochastic variables that are identical to UA except that a different strategy (a different
limit for rA) is used before t1. After t1, we set rA = mA(rB). The first contract adjustment in W2

and W1, if required by player A, is required when R/Z reaches the values r2 < r1 < 1, respectively.
Let Pr1 denote the probability that R(t, ω)/Z(t, ω) reaches r1 before it reaches rB . In case the
ratio reaches rB first, there is no difference between W1 and W2. Further, let T1 = T (r1, rB , ω)
denote the time of the first contract adjustment for W1. Finally, let

Er1 = E{exp(−βT1(r1, rB))}

given that r1 is reached. For the strategy associated with W2 there is a contract adjustment when
R/Z reaches r2 or rB . Assuming r1 is reached, there is contract adjustment when either the ratio
decreases with a factor r2/r1 or increases with a factor rB/r1. Let T2 = T (r2/r1, rB/r1, ω) denote
the time between r1 is reached and either r2 or rB is reached. Let w1 and w2 be the expected
values of W1 and W2, respectively. Assuming that r1 is reached before rB , then

w1 = E{CT1}+ Er1E
{

(um,A(rB)− τA)ZηA(T1) exp(−βT2)
}

and

w2 = E{CT1}+ Er1E
{∫ T2

0

RηA(T1 + s) exp(−βs)ds

+ (um,A(rB)− τA)ZηA(T1 + T2) exp(−βT2)
}

where CT1 is defined in (18). As noted above, W1 = W2 are identical except if r1 is reached. Since
the probability that r1 is reached before rB is Pr1 , the difference is

w2 − w1 = Pr1Er1E
{∫ T2

0

RηA(T1 + s) exp(−βs)ds

− (um,A(rB)− τA)(ZηA(T1)− ZηA(T1 + T2) exp(−βT2))
}

= Pr1Er1E
{∫ T2

0

RηA(T1 + s) exp(−βs)ds

− (β − µA,z)(um,A(rB)− τA)
∫ T2

0

ZηA(T1 + s) exp(−βs)ds
}

= Pr1Er1

(E{∫ T2

0
RηA(T1 + s) exp(−βs)ds}

E{
∫ T2

0
ZηA(T1 + s) exp(−βs)ds}

− (β − µA,z)(um,A(rB)− τA)
)

× E{
∫ T2

0

ZηA(T1 + s) exp(−βs)ds}.

Lemma D.1 is used in the second equality. Define the limit of the discounted real adjustment
outcome when the lower threshold is slightly reduced by

LA(r1, rB) = lim
r2→r1−

E{
∫ T2

0
ZηA(T1 + s) exp(−βs)ds}

r2 − r1
.

Due to the Markov property and property F , the numerator is monotone and hence the limit is
well-defined. Letting r2 → r1, we have

∂w1

∂r1
= −Pr1Er1(vA(r1, rB)− (β − µA,z)(um,A(rB)− τA))LA(r1, rB)

where vA is defined by (11). Hence, ∂w1
∂r1

= 0 when

(24) vA(r1, rB) = (β − µA,z)(um,A(rB)− τA).
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According to Theorem 3.1 and Lemma D.3, um,A(rB) and vA(r1, rB) are continuous and
vA(r1, rB) is increasing in r1. Consider the function w1(r1, rB) with rB fixed. Then w1(r1, rB)
reaches its maximum with respect to r1 either for r1 = 0 or for a value r1 > 0 when ∂w1(r1,rB)

∂r1
= 0.

Since vA(r1, rB) is increasing in r1, then ∂w1
∂r1

changes sign when (24) is satisfied. Hence, the max-
imum is unique. Since the periods between contract adjustments are independent then the value
r1 that maximizes w1 also maximizes uA(rA, rB). Hence, there is a unique value rA = mA(rB)
that maximizes uA(rA, rB).

The corresponding argument may be applied for uB(rA, rB). However, since rB varies in an
unbounded interval we should consider uB as a function of 1/rB instead of rB when applying the
argument. This is possible since uB(rA, rB) is well-defined as rB approaches ∞.

(iii) Above it is proved that the optimal value mA(rB) satisfies the equation

vA(mA(rB), rB) = (β − µA,z)(uA(mA(rB), rB)− τA).

Differentiating both sides with respect to rB gives
∂vA
∂rA

dmA

drB
+
∂vA
∂rB

= (β − µA,z)(
∂uA
∂rA

dmA

drB
+
∂uA
∂rB

).

Since
∂vA
∂rB

< (β − µA,z)
∂uA
∂rB

from Lemma D.3 and ∂uA/∂rA = 0 since mA(rB) is the optimal value of rA, this implies that
∂vA
∂rA

dmA

drB
> 0.

Since ∂vA/∂rA > 0, then also dmA/drB > 0, i.e., mA(rB) is a strictly increasing function. The
proof that mB(rA) is strictly increasing is similar.

(iv) Equation (6) may be used in order to prove that mA(rB) decreases when τA increases,
assuming mA(rB) > 0. The function uA(rA, rB) has an optimal value for rA = mA(rB) > 0. Since
uA is differentiable, there exists an ε > 0 such that ∂uA

∂rA
(rA, rB) > 0 for mA(rB)−ε < rA < mA(rB)

and ∂uA
∂rA

(rA, rB) < 0 for mA(rB) < rA < mA(rB) + ε. If τA is increased, then ∂uA
∂rA

is decreased
which implies a reduction in the rA value where ∂uA

∂rA
= 0. This implies that increasing the

adjustment fee reduces the optimal threshold value mA(rB). Correspondingly, it is proved that
mB(rA) strictly increases when τB increases assuming mB(rA) > 0.

(v) Since um,ν and vν are continuous, we infer that the functions mA(rB) : (1,∞]→ [0, 1) and
mB(rA) : [0, 1) → (1,∞] are continuous. In the infinite rectangle defined by 0 ≤ rA < 1 and
rB > 1, mA(rB) gives a continuous path between the lines defined by rB = 0 and rB = ∞.
Similarly, mB(rA) gives a path in the same rectangle between the lines defined by rA = 0 and
rA = 1. Hence, these two curves must intersect at least once, giving an equilibrium point. �

Proof of Theorem 5.2. The existence of at least one equilibrium point (reA, r
e
B) is proved similarly

as in Theorem 4.1 where it is assumed that the price E{T (rA, rB)} is differentiable, i.e., the
equilibrium point is the intersection between mA(rB) and mB(rA). But in this case, these curves
are not necessarily continuous which implies that there might not be an intersection.

Define graphs MA and MB by extending the curves mA(rB) and mB(rA) by continuity as
follows: Wherever mA(rB) or mB(rA) make jumps, connect the two sides across the jump by
straight lines with constant rB and rA, respectively. (See Figure 4.) Since MA and MB are
continuous, they must intersect. If the intersection is on the straight lines, then randomization is
necessary as illustrated in Section 5. Assume mB(rA) intersects a straight line in MA connecting
the two points (r1, reB) and (r2, reB). Then mB(r1) and mB(r2) give values of rB on opposite side of
reB . We may then define a one parameter family of strategies sA where the probability for choosing
r1 varies in the interval 0 ≤ q ≤ 1. Since mB(r1) and mB(r2) give values of rB on opposite side
of reB , then also the endpoints mc

B(sA) when sA varies in the one-parameter family give values
on the opposite side of reB . The continuity of mc

B(sA) ensures that there is a strategy seA that
randomizes rA between r1 and r2 such that mc

B(seA) = rB . There is a corresponding argument if
mA(rB) intersects a straight line in MB .
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The continuity of mc
A(sB) and mc

B(sA) implies that it is not necessary that both players ran-
domize at the same time. If MA and MB intersect with two straight lines, then there may be two
Nash equilibria defined by using mc

A(sB) and mc
B(sA), respectively. �

Proof of Lemma D.1. Let ti = it/n and Z(0, ω) = 1. Then

E{1− Zην (t) exp(−βt)} = E{
n∑
i=0

(
Zην (ti) exp(−βti)− Zην (ti+1) exp(−βti+1)

)
}

= E{
n∑
i=0

Zην (ti) exp(−βti)(1−
Zην (ti+1)
Zην (ti)

exp(−β(ti+1 − ti))}

=
1
t1
E{1− Zην (t1) exp(−βt1)}E{

n∑
i=0

Zην (ti) exp(−βti)t1}.

We have that

lim
t→0

E{1− Zην (t) exp(−βt)
t

} = lim
t→0

1− E{Zην (t)} exp(−βt)
t

= lim
t→0

1− exp(t(µν,z − β))
t

= β − µν,z

and

lim
n→∞

E{
n∑
i=0

Zην (ti) exp(−βti)t1} = E{
∫ t

0

Zην (s) exp(−βs)ds}.

Combining these three calculations proves the lemma. �

Proof of Lemma D.2. The assumption that if there are jumps in Q(t, ω) and Z(t, ω), then the
distribution for the jumps is from a continuous deceasing distribution implies that the distribution
R(t, ω)/Z(t, ω) is a continuous distribution with one mode. Then also the conditional distribution
for R(t, ω)/Z(t, ω) conditioned on t < T also is a continuous distribution with one mode. This
implies that E{T (rA, rB) is differentiable. When E{T (rA, rB) is differentiable it follows directly
that Fν(r1, rA, rB) is differentiable.

We will first prove that FA(r1, rA, rB) is increasing in r1. Let R1, Z1 and R2, Z2 be two different
independent realizations ofR(t, ω) and Z(t, ω) whereR1(0, ω)/Z1(0, ω) = r1 andR2(0, ω)/Z2(, ω) =
r2 and r2 < r1. The Markov property implies that

P (R1(t, ω)/Z1(t, ω) < r) < P (R2(t1, ω)/Z2(t1, ω) < r)

for t > 0. The limitation on the distribution for the jumps in Z(t, ω) and Q(t, ω) implies that this
property also is satisfied if we condition on rA < Ri(t, ω)/Zi(t, ω) < rB , i.e.

P (R1(t, ω)/Z1(t1, ω) < r|t < T1) < P (R2(t, ω)/Z2(t, ω) < r|t2 < T2)

where T2 is defined similarly as T1. Since small jumps are more likely than large, we do not have
the possibility that is illustrated in Example 5.1. Define r̃i by the equation

E{
∫ Ti

0

Rηνi (s) exp(−βs)ds} = r̃ηνi E{
∫ Ti

0

Zηνi (s) exp(−βs)ds}

for i = 1, 2. Then r̃2 < r̃1. This implies that FA(r2, rA, rB) < FA(r1, rA, rB). It is similarly for
r2 > r1 implying that FA(r1, rA, rB) is increasing in r1.

Then we will prove that FA(r1, rA, rB) is increasing in rA. Let 0 < rs < rA and define
Ts = T (rs, rB). Then

FA(r1rs, rB) =
E{
∫ T
0
RηA(s) exp(−βs)ds}+ E{

∫ Ts
T
RηA(s) exp(−βs)ds}

E{
∫ T
0
ZηA(s) exp(−βs)ds}E{

∫ Ts
T
ZηA(s) exp(−βs)ds}

.



28 H. HOLDEN, L. HOLDEN, AND S. HOLDEN

The interval (T, Ts) is either empty or R(T, ω)/Z(T,Ω) ≤ rA. Since FA(r1, rA, rB) is increasing in
r1 we have

FA(rA, rs, rB) =
E{
∫ Ts
T1
RηA(s) exp(−βs)ds}

E{
∫ Ts
T1
ZηA(s) exp(−βs)ds}

< FA(rA, rs, rB)

This implies that FA(r1, rA, rB) is increasing in rA. It is proved similarly that FA(r1, rA, rB) is
increasing in rA and the corresponding properties for FB(r1, rA, rB). Note that ηA > 0 > ηB . �

Proof of Lemma D.3. We have

vν(rA, rB) = lim
r1→rν

rην1 Fν(rA/r1, rB/r1).

Lemma D.2 states that Fν is differentiable and FA(r1, rA, rB) increases in rA and rB while
FB(r1, rA, rB) decreases in rA and rB . Hence also vν is differentiable.

It is left to prove
∂vA
∂rB

< (β − µA,z)
∂uA
∂rB

and the corresponding result for vB . Using equation (23) it is sufficient to prove that

∂vA
∂rB

=
∂

∂(rB/r1)
lim

r1→rA
rηA1 FA(rA/r1, rB/r1) ≤ ∂FA(1, rA, rB)

∂rB
.

The above result follows from

(25)
∂FA(r1, rA, rB)

∂rB
≤ ∂FA(1, rA, rB)

∂rB

for r1 < 1. We have R(0, ω)/Z(0, ω) = r1 and R(s, ω)/Z(s, ω) ∈ (rA, rB) for s < T1. We
may split in two cases; that there exists s < T1 such that R(s, ω)/Z(s, ω) ≥ r′ for s < T1 or
Rην (s, ω)/Zην (s, ω) < r′ for all s < T1. Let P ′ denote the probability for the first case, and let
T ′ < T1 denote the corresponding time if this happens. We define r′ such that

(26) E{
∫ T1

T ′
Rην (s) exp(−βs)ds} = E{

∫ T

0

Rην (s) exp(−βs)ds}

with T defined by (4). If R/Z is continuous then r′ = 1. If R/Z has jumps, then r′ < 1 such that
the E{R(T ′)}/E{Z(T ′)} is close to 1. Equation (26) implies

E{
∫ T1

0

Rην (s) exp(−βs)ds} = E{
∫ T ′

0

Rην (s) exp(−βs)ds}+ P ′E{
∫ T1

T ′
Rην (s) exp(−βs)ds}.

Correspondingly, we have

E{
∫ T1

0

Zην (s) exp(−βs)ds} = E{
∫ T ′

0

Zην (s) exp(−βs)ds}+ P ′E{
∫ T1

T ′
Zην (s) exp(−βs)ds}.

We also have

E{
∫ T ′

0

Rην (s) exp(−βs)ds} = r̃ηνE{
∫ T ′

0

Zην (s) exp(−βs)ds}

where r1 < r̃ < 1 since r1 < R(s, ω)/Z(s, ω) < 1 in these integrals. Then

Fν(r1, rA, rB) =
E{
∫ T ′
0
Rην (s) exp(−βs)ds}+ P ′E{

∫ T1

T ′
Rην (s) exp(−βs)ds}

E{
∫ T ′
0
Zην (s) exp(−βs)ds}+ P ′E{

∫ T1

T ′
Zην (s) exp(−βs)ds}

=
r̃ηνE{

∫ T ′
0
Zην (s) exp(−βs)ds}+ P ′E{

∫ T1

T ′
Rην (s) exp(−βs)ds}

E{
∫ T ′
0
Zην (s) exp(−βs)ds}+ P ′E{

∫ T1

T ′
Zην (s) exp(−βs)ds}

=
r̃ηνE{

∫ T ′
0
Zην (s) exp(−βs)ds}+ P ′Fν(1, rA, rB)E{

∫ T1

T ′
Zην (s) exp(−βs)ds}

E{
∫ T ′
0
Zην (s) exp(−βs)ds}+ P ′E{

∫ T1

T ′
Zην (s) exp(−βs)ds}

= r̃ηνd+ Fν(1, rA, rB)(1− d)
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for 0 < d < 1. This implies equation (25). We prove

∂vB
∂rA

< (β − µB,z)
∂uB
∂rA

correspondingly.
�
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