Hybrid particle-field molecular dynamics for biological systems

Hyllerås seminar

Sigbjørn Løland Bore
University of Oslo, Norway

Friday, September 6, 2019
Biological scale

- Complex organism
- Organ
- Tissue
- Cell
- Organelle
- Atom
- Molecule
- Macromolecule
- Macromolecular complex

Scale:
- Organ: 10^{-4} m
- Tissue: 10^{-2} m
- Cell: 10^{-6} m
- Organelle: 10^{-8} m
- Atom: 10^{-10} m
Coarse-graining

\[Z = \int d\Gamma \, e^{-\beta H(\Gamma)} \]

\[Z \simeq \int d\Gamma_{\text{CG}} \, e^{-\beta H(\Gamma_{\text{CG}})} \]

- Fewer degrees of freedom
- Speedup of dynamics
The hybrid particle-field method

\[H(\{r\}) = H_0(\{r\}) + W[\{\phi(r)\}] \]

Particle-particle-Hamiltonian \hspace{1cm} Density-field interaction-energy

\[\sum_{i<j} V_{ij} \]

\[\sum_i V_k(r_i) \]

\[F_i = -\nabla_i V_k(r_i) \]

\{r\} \equiv \{r_1, \ldots, r_N\}, particle positions.

\{\phi\} \equiv \{\phi_1, \ldots, \phi_M\}, particle-type number densities.
Computation of forces

1) Linear interpolation:
\[\{ \mathbf{r} \} \rightarrow \{ \phi_{nml} \} \]

2) Finite-differences:
\[\{ \phi_{nml} \} \rightarrow \{ \nabla \phi_{nml} \} \rightarrow \{ \nabla V_{nml} \} \]

3) Force interpolation:
\[\{ \nabla V_{nml} \} \rightarrow \mathbf{F}_i \]
Implementation and parallelization

Distribute particles

Compute V_k and ∇V_k

Interpolate and integrate forces

$t = t + \Delta t$
corresponds to update frequency δt?

Yes

No communication

Excellent scaling for small and large systems!

Interaction energy: Polymer-theory

\[W[\phi] = \int d\mathbf{r} \frac{1}{2\rho_0} \left(\sum_{k\ell} \tilde{\chi}_{k\ell} \phi_k(\mathbf{r}) \phi_\ell(\mathbf{r}) + \frac{1}{\kappa} \left(\sum_\ell \phi_\ell(\mathbf{r}) - \rho_0 \right)^2 \right) \]

- **Mixing**
 \[\tilde{\chi}_{k\ell} > 0 \rightarrow Likes \ not \ to \ mix \]
 \[\tilde{\chi}_{k\ell} \leq 0 \rightarrow Likes \ to \ mix \]

- **Compressibility**
 \[\kappa \sim 0 \rightarrow incompressible \]
 \[\kappa \gg 0 \rightarrow very \ compressible \]

Net effect

\[V_k(\mathbf{r}) = \frac{1}{\rho_0} \left(\sum_\ell \tilde{\chi}_{k\ell} \phi_\ell(\mathbf{r}) + \frac{1}{\kappa} \left(\sum_\ell \phi_\ell(\mathbf{r}) - \rho_0 \right) \right) \]

\(\rho_0 \): density-parameter related to the volume per bead.
Hybrid Particle-Field Model for Conformational Dynamics of Peptide Chains

\[H = H_0(\{r\}) + W[\rho(r)] \]

S.L Bore et al., JCTC, 2018
Previous work

Cα-representation

Reconstruction of dipole
Two-bead model

\[V(\gamma, \phi) = V(\gamma) + V(\phi) ? \]

4-Alanine

\[\rightarrow V(\gamma, \phi) = \frac{1}{2} k(\phi) (\gamma - \gamma_0(\phi))^2 + V_{\text{prop}}(\phi, \lambda) \]
Propensity potential

Boltzmann Inversion

Desired PMF \rightarrow PMF \rightarrow Propensity potential \rightarrow Actual PMF

- $-1 \leq \lambda < 0 \implies$ Helical
- $0 < \lambda < 1 \implies$ Extended
- $\lambda = 0 \implies$ Random

\[
V_{\text{prop}}(\phi, \lambda) = \frac{1}{2} \left((|\lambda| - \lambda) V_\alpha(\phi) + (|\lambda| + \lambda) V_\beta(\phi) + (1 - |\lambda|) V_0(\phi) \right)
\]
Phase-diagram: homo-poly-peptide

<table>
<thead>
<tr>
<th>$\tilde{\chi}_{k\ell}$</th>
<th>CB</th>
<th>H_2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB</td>
<td>0</td>
<td>α</td>
</tr>
<tr>
<td>H_2O</td>
<td>α</td>
<td>0</td>
</tr>
</tbody>
</table>

The phase-diagram illustrates the stability of different peptide conformations as a function of λ and α. The conformations include:

- **i:** Random coil
- **ii:** α-helix
- **iii:** β-hairpin
- **iv:** Extended
- **v:** Helix-coil-helix
- **vi:** β-floor/helix
- **vii:** Helical bundle

The diagram shows the transition regions between these conformations for peptide lengths of 15 aa, 30 aa, and 60 aa. The color gradient indicates the probability of each conformation, with darker colors representing higher probability.
HP-model

<table>
<thead>
<tr>
<th>$\tilde{\chi}_{k\ell}$</th>
<th>C_{BP}</th>
<th>C_{BH}</th>
<th>H_2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{BP}</td>
<td>0</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>C_{BH}</td>
<td>α</td>
<td>0</td>
<td>α</td>
</tr>
<tr>
<td>H_2O</td>
<td>0</td>
<td>α</td>
<td>0</td>
</tr>
</tbody>
</table>

α-part: PHPPHHPPHPPHHPHPH

β-part: PHPHPHPHPHPHPHHPH

HP-polymer interacting with membrane

\[\lambda = -0.25 \]

\[\lambda = -0.50 \]

\[\lambda = -0.75 \]

Outlook

- Parametrization: Toy-model \rightarrow 20 amino-acids
 - Chemical specific $\tilde{\chi}_{k\ell}$-parameter
 - Strategies for modeling $V(\phi, \gamma)$
 - Machine-learning?
 - New PhD-student Manuel Carrera

- Electrostatics
 - Particle-field method for electrostatics

- Application of current model
 - Tsudo Yamanaka, Yamagata University, Japan
Electrostatics in Hybrid particle-field

\[\nabla \left(\epsilon(r) \nabla \psi(r) \right) = -\rho(r) \]

H.B. Kolli et al. JCTC, 2018

S.L. Bore et al., JCTC, 2018
Electrostatic screening: Atomistic vs coarse-grained

Atomistic molecular dynamics:
- Charges are resolved
- Screening is modeled directly

Coarse-grained molecular dynamics:
- Charge resolution is lost
- Screening modeled indirectly

Idea: \[\nabla \cdot (\epsilon(\mathbf{r}) \nabla \psi(\mathbf{r})) = -\rho(\mathbf{r}) \] (Generalized Poisson equation)
External potential in a density dependent dielectric

Electrostatic interaction energy:

\[
W_{\text{elec}}[\{\phi(r)\}] = \frac{1}{2} \int \mathrm{d}r \frac{D(r) \cdot D(r)}{\epsilon(r)},
\]

\(\{\phi\}\) : number densities. \(D\) : displacement field. \(\epsilon\) : permittivity.

Potential felt by particles of type \(K\):

\[
V_{\text{ext},K}(r) = \left(\frac{\delta W_{\text{elec}}}{\delta \phi_K(r)} \right) = \int \mathrm{d}r' \frac{\delta W_{\text{elec}}}{\delta D(r')} \frac{\delta D(r')}{\delta \phi_K(r)} + \frac{\delta W_{\text{elec}}}{\delta \epsilon(r)} \frac{\partial \epsilon(r)}{\partial \phi_K(r)} q_K \psi(r)
\]

\(\psi\) : electrostatic potential. \(E\) : electrostatic field \((E = -\nabla \psi = \epsilon D)\).
Modelling: density dependence of the dielectric

Density weighted average:

$$\epsilon(\{\phi(r)\}) = \sum_{K}^{M} \frac{\epsilon_K \phi_K(r)}{\phi_0(r)},$$

ϵ_K: dielectric of particle type K. ϕ_0: local total particle density.

Potential felt by particle of type K:

$$V_{\text{ext},K}(r) = q_K \psi(r) - \frac{1}{2} \epsilon_K - \frac{\epsilon(r)}{\phi_0(r)} |E(r)|^2,$$

Forces on particle of type K:

$$F_K = -\nabla V_{\text{ext},K}(r) = q_K E(r) + \frac{1}{2} \nabla \left(\frac{\epsilon_K - \epsilon(r)}{\phi_0(r)} |E(r)|^2 \right).$$
Force computation and molecular dynamics

Compute ρ_{lmn} & ϵ_{lmn}

Solve GPE

Compute forces F_i

New positions

Partitioning of ions (1)

Ions in a phase separated oil/water mixture of ϵ_o and ϵ_w. ($RT \times \chi_{ow} = 30 \text{ kJ mol}^{-1}$)

Distribution coefficient:

$$D_{o/w} = \frac{c_o}{c_w}$$

c_0 and c_w: concentration of ions within each phase.
Partitioning of ions (2)

\[D_{o/w} = f(c, P_{o,w}^\pm, P_{o,w}^{ip}, K_w) \]

\(c \): concentration of ions.

Born theory of ions:

\[\log P_{o/w}^\pm = \gamma \left(\frac{1}{\epsilon_w} - \frac{1}{\epsilon_o} \right) \]

\(\epsilon_o \): dielectric constant of the solvent.

\(K_w \): ionization constant of water.

\(D_{o/w} \): partition coefficient of ions between oil and water.

\(P_{o/w}^{ip} \): ionization potential of water.

\(P_{o/w}^\pm \): partition coefficient of ions between oil and water.

\(K_o \): dissociation constant of oil.
Outlook

- Implementation
 - Parallel version
 - Improve on accuracy

- Application
 - Antonio De Nicola: Charged lipids
 - Ken Schafer: Molecular packing of SDS
 - Victoria Ariel Bjørnestad

![Small angle scattering diagram](image)

Exp. vs sim.
Acknowledgements

University of Oslo, Norway:
Michele Cascella
Hima Bindu Kolli
Morten Ledum
Victoria Ariel Bjørnestad
Reidar Lund

Yamagata University, Japan:
Giuseppe Milano
Antonio De Nicola
Tsudo Yamanaka

Sendai University, Japan:
Toshihiro Kawakatsu