Introduction to computational quantum mechanics

Lecture 3: The Pauli principle and many-body Hilbert space

Simen Kvaal
simen.kvaal@cma.uio.no

Centre of Mathematics for Applications
University of Oslo

Seminar series in quantum mechanics at CMA
Fall 2009
Outline

Tensor product spaces

Configuration space and identical particles

Creation and annihilation operators and N-particle Hilbert space

References
Outline

Tensor product spaces

Configuration space and identical particles

Creation and annihilation operators and N-particle Hilbert space

References
A note on tensor products of Hilbert spaces

- Let \mathcal{H}_i, $i = 1, 2$ be Hilbert spaces, with bases $\{\phi_{i,n}\}_n$, $i = 1, 2$.
- The space $\mathcal{H}_1 \otimes \mathcal{H}_2$ is defined by

$$\mathcal{H}_1 \otimes \mathcal{H}_2 = \text{span} \left\{ \phi_{1,n_1} \otimes \phi_{2,n_2} \in \mathcal{H}_1 \times \mathcal{H}_2 \right\}$$

- Closure with respect to inner product:

$$\langle (\psi_1 \otimes \psi_2) | (\phi_1 \otimes \phi_2) \rangle := \langle \psi_1 | \phi_1 \rangle_1 \langle \psi_2 | \phi_2 \rangle_2.$$

- Examples:

$$L^2(\mathbb{R}^2) = L^2(\mathbb{R}) \otimes L^2(\mathbb{R}).$$

$$\mathbb{C}^{n^2} = \mathbb{C}^{n} \otimes \mathbb{C}^{n}.$$
Example of tensor product space

- The space \(L^2(0, 1) \) has an ONB \(\{ \phi_n \} \) where

\[
\phi_n(x) = \sqrt{2} \sin(n\pi x), \quad n = 1, 2, \ldots.
\]

- Forming the tensor products \(\Phi_{n_1, n_2}(x_1, x_2) \) we get

\[
\Phi_{n_1, n_2}(x_1, x_2) = (\phi_{n_1} \otimes \phi_{n_2})(x_1, x_2) = 2 \sin(n_1 \pi x_1) \sin(x_2 \pi x_2).
\]

- These \(\Phi_{n_1, n_2} \) form a basis for \(L^2(0, 1) \otimes L^2(0, 1) = L^2([0, 1]) \).
Vectors in product spaces

- Expansion in product basis:

\[\Psi = \sum_{n_1,n_2} c_{n_1,n_2} \Phi_{n_1,n_2} \]

- By constructing a bijective map \(I : \mathbb{N}^2 \rightarrow \mathbb{N} \), we see that this is no different than ordinary basis expansions.

\[\Psi = \sum_{\alpha} c_{I^{-1}(\alpha)} \Phi_{I^{-1}(\alpha)}, \quad \alpha = I(n_1,n_2) \]

- We typically abuse notation here and write \(c_\alpha = c_{n_1,n_2} \) etc, as there is usually no danger of confusion. Example of a map \(I \):

![Diagram of a map I]
Outline

Tensor product spaces

Configuration space and identical particles

Creation and annihilation operators and N-particle Hilbert space

References
For a classical system, the \textit{configuration space} \mathbb{X} is the space of configurations, i.e., the set of possible positions x for the system. A manifold.

The quantum mechanical Hilbert space for the quantum version of the system is then

\[\mathcal{H} = L^2(\mathbb{X}) \]

In QM, \mathbb{X} contains additional \textit{discrete degrees of freedom}: for example spin. This has no classical analogue.
Spin/discrete degrees of freedom

- Consider a finite, discrete set S:
 $$S = \{s_1, s_2, \ldots, s_{|S|}\}$$

- Consider the manifold
 $$Y = X \times S.$$
Adding discrete degrees of freedom

- S is equipped with counting measure, so that
 \[L^2(S) = \mathbb{C}^{|S|}. \]

- The space $L^2(\mathbb{X} \times S)$ becomes
 \[L^2(\mathbb{X} \times S) = L^2(\mathbb{X}) \otimes \mathbb{C}^{|S|} \cong L^2(\mathbb{X})^{|S|}. \]

- Ψ is a function of $x \in \mathbb{X}$ and $s \in S$ simultaneously:
 \[\Psi = \Psi(x, s) \rightsquigarrow \Psi_s(x) \]

That is, $\Psi \in L^2(\mathbb{X} \times S)$ is essentially $|S|$ component functions
$\Psi_s \in L^2(\mathbb{X})$, $s \in S$.

- The inner product is
 \[\langle \Psi | \Phi \rangle = \sum_s \langle \Psi_s | \Phi_s \rangle. \]

- “Some degrees of freedom are continuous (which we integrate over), and others are discrete (which we sum over)”.
Identical particles

- Identical particles share all measurable physical characteristics: mass, charge, spin . . .

- In classical mechanics, the particles may be distinguished by attaching a label to each coordinate, i.e., \vec{x}_k. Since we can track each particle in time, we can say “at time t, particle k was at $\vec{x}_k(t)$”.

- Problem: This contradicts quantum mechanics. There is no way to continuously measure the position of each particle in a quantum system.

- Consequence: In quantum physics, indistinguishability is a fundamental concept and profoundly alters the physical properties of a system.
Configuration space of identical particles

- For N identical particles on a manifold \mathbb{X}, the configuration space is

$$\mathbb{X}^N / S_N$$ (also a manifold)

\[\textbf{Figure: }\] Illustration of identification of different permutations of points x_1, x_2 and x_3. In \mathbb{X}^3 (left), exchanging x_i and x_j leads to different points, while on \mathbb{X}^3 / S_3 these points are identified. The result is actually a manifold.
Hilbert space for identical particles

- Working with $L^2(\mathbb{X}^N/S_N)$ is cumbersome.
- But: If $\dim(\mathbb{X}) \geq 3$, the Hilbert space $L^2(\mathbb{X}^N/S_N)$ contains two components. Each is isomorphic to the symmetric and anti-symmetric part of $L^2(\mathbb{X}^N)$, respectively. Note: $L^2(\mathbb{X}^N) = L^2(\mathbb{X})^N$.
- $\Psi(x_1, \cdots, x_N)$ is called symmetric if for every $\sigma \in S_N$
 \[
P_\sigma \Psi(x_1, \cdots, x_N) := \Psi(x_{\sigma(1)}, \cdots, x_{\sigma(N)}) = \Psi(x_1, \cdots, x_N).
\]
- $\Psi(x_1, \cdots, x_N)$ is called anti-symmetric if for every $\sigma \in S_N$
 \[
P_\sigma \Psi(x_1, \cdots, x_N) = \text{sgn}(\sigma)\Psi(x_1, \cdots, x_N).
\]
- The (anti-)symmetric functions in $L^2(\mathbb{X}^N)$ constitute a closed subspace, with projector $\Pi_+ (\Pi_-)$, and is thus a Hilbert space on its own.
Fermions and bosons

- It seems to be a fundamental law of nature, that particles fall into one of two categories:

 \[
 \begin{align*}
 \text{bosons:} & \quad P_{\sigma} \Psi = \Psi \\
 \text{fermions:} & \quad P_{\sigma} \Psi = \text{sgn}(\sigma)\Psi
 \end{align*}
 \]

- Thus, if we study fermions, we work with the anti-symmetric part of \(L^2(\mathbb{X}^N) \), while we use the symmetric part for bosons. (These have projectors \(\Pi_- \) and \(\Pi_+ \), respectively.)

- Typical fermions are electrons, protons, neutrons. Typical bosons are photons and composite particles (such as the hydrogen atom).

- From now on, we work with fermions.
We consider two fermions living on \((0, 1)\), with \(S = \{\uparrow, \downarrow\}\) being the discrete set:

- For one particle: \(\mathbb{X} = (0, 1) \times S\)
- For two particles: \(\mathbb{X}^2 = (0, 1)^2 \times S^2\)

Hilbert space:

\[\mathcal{H} = \Pi - L^2(\mathbb{X} \times S^2). \]

The coordinate of particle \(k\) on the manifold \(\mathbb{X}\) is \(\xi_k := (x_k, s_k)\), so \(\Psi\) is a function of \(\xi_1\) and \(\xi_2\):

\[\Psi = \Psi_{s_1, s_2}(x_1, x_2) \]

Antisymmetry:

\[\Psi_{s_2, s_1}(x_2, x_1) = -\Psi_{s_1, s_2}(x_1, x_2). \]

Inner product:

\[\langle \Psi | \Phi \rangle = \sum_{s_1, s_2} \langle \Psi_{s_1, s_2} | \Phi_{s_1, s_2} \rangle \quad \text{(inner prod. on } L^2(\mathbb{X})) \]
Outline

Tensor product spaces

Configuration space and identical particles

Creation and annihilation operators and N-particle Hilbert space

References
Ok, breathe and relax . . .

Forget all about configuration space and discrete degrees of freedom. Now we’re gonna focus on the anti-symmetry thing and construct a basis for the N-body Hilbert space.

Our starting point now is the fact that:

1. We are given an ONB for $\mathcal{H}_1 = L^2(\mathbb{X})$ — i.e., one-particle Hilbert space
2. $L^2(\mathbb{X}^N) = L^2(\mathbb{X})^N$ (not obvious, but true for spaces of interest, at least)
3. N-fermion Hilbert space is $\mathcal{H}_N = \prod L^2(\mathbb{X}^N)$

Our goal: Obtain a basis for \mathcal{H}_N for all N. This basis is the most important thing in many applications.
Slater determinants

- **Given** an orthonormal basis for $\mathcal{H}_1 = L^2(\mathbb{R})$:

 \[\{ \phi_n : n = 1, 2, \ldots \} \]

- \mathcal{H}_1^N has then an orthonormal basis

 \[\{ \Phi_{n_1, \ldots, n_N} := \phi_{n_1} \otimes \cdots \otimes \phi_{n_N} \} \]

- For any $\Psi \in \mathcal{H}_N = \Pi_+ \mathcal{H}_1^N$, we have

 \[\Psi = \sum_{\vec{n}} c_{n_1, \ldots, n_N} \Phi_{n_1, \ldots, n_N}. \]

- $\Psi \in \mathcal{H}_N$ is antisymmetric, so for any $\sigma \in S_N$:

 \[P_\sigma \Psi = \sum_{\vec{n}} c_{\vec{n}} \Phi_{\sigma(\vec{n})} = \sum_{\vec{n}} c_{\sigma^{-1}(\vec{n})} \Phi_{\vec{n}} = \sum_{\vec{n}} \text{sgn}(\sigma) c_{\vec{n}} \Phi_{\vec{n}} \]

- Thus:

 \[c_{\sigma(\vec{n})} = \text{sgn}(\sigma) c_{\vec{n}}, \quad \forall \sigma \in S_N \]
Slater determinants 2

- In particular: If $n_j = n_k$ for $j \neq k$, $c_{\vec{n}} = 0$.
- We note that we may write:

$$\Psi = \sum_{n_1 < n_2 < \ldots} \sum_{\sigma \in S_N} c_{\vec{n}} \text{sgn}(\sigma) \Phi_{\sigma(\vec{n})} =: \sum_{n_1 < n_2 < \ldots} \sqrt{N!} c_{\vec{n}} \Phi_{\vec{n}}^{SD}.$$

- The Slater determinants can be written:

$$\Phi_{\vec{n}}^{SD} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_{n_1}(x_1) & \cdots & \phi_{n_1}(x_N) \\ \vdots & \ddots & \vdots \\ \phi_{n_N}(x_1) & \cdots & \phi_{n_N}(x_N) \end{vmatrix}$$

- They are orthonormal (easy to show) and constitute a basis for $\mathcal{H}_N = \Pi_- \mathcal{H}_1^N$. Due to double (or $N!$) counting, we need $n_1 < n_2 < \ldots < n_N$.

Pauli exclusion principle

We now have an interesting observation: The index \vec{n} for the Slater determinant basis is replaced by a subset of N integers, since permutations are identified. This is a statement of the indistinguishability of the particles! Particles are “disallowed to be in the same one-particle state ϕ_n”.

Figure: The basis $\Phi_{\vec{n}}$ for \mathcal{H}_1^N is enumerated by ordered sets of N integers, while the basis for \mathcal{H}_N is enumerated by unordered sets.
Creation and annihilation operators

From the fact:

\[\mathcal{B}_N \text{ for } \mathcal{H}_N \longleftrightarrow \text{subsets of } N \text{ integers} \]

we may consider constructing \(\mathcal{B}_{N \pm 1} \) from \(\mathcal{B}_N \) by adding/removing an element to the set.

Moreover:

\[\text{subsets of } N \text{ integers } \longleftrightarrow \text{int’s with } N \text{ nonzero binary digits} \]

Example:

\[\vec{n} = \{3, 5, 8\} \longleftrightarrow \alpha = \cdots 00010010100b \]

So setting or clearing a bit nicely describes the basis mapping.
Creation and annihilation operators 2

- For $\alpha \in \mathbb{N}$, define $\#\alpha =$ number of nonzero bits in binary representation. We may regard α as a subset of integers, with unions, intersections, . . .
- We may write Φ_{α}^{SD} or Φ_{n}^{SD} with no danger of confusion.
- By considering properties of determinants, we may construct \mathcal{B}_{N+1} by adding a row/column to all the N-particle Slater determinants.
- This results in the definition of a creation operator c_{n}^{\dagger} for each $n = 1, 2, \ldots$. This adds a row/column and reorders the determinant so that $n_1 < n_2 < \ldots$. Thus:

$$
c_{n}^{\dagger} \Phi_{\alpha}^{SD} = \begin{cases} (-1)^{j} \Phi_{\alpha \cup \{n\}}^{SD} & \text{if } n \notin \alpha \\ 0 & \text{if } n \in \alpha \end{cases}
$$

The sign change comes from the reordering needed to obtain a Slater determinant with ordered indices.
- By linear extension, c_{n}^{\dagger} is a linear operator that maps \mathcal{B}_{N} onto \mathcal{B}_{N+1}.
Creation and annihilation operators 3

- For all \(n \), \(c_n^\dagger : \mathcal{H}_N \to \mathcal{H}_{N+1} \) is bounded with norm 1. (Obviously!)
- The adjoint \(c_n : \mathcal{H}_{N+1} \to \mathcal{H}_N \) is called an annihilation operator.
- The dagger notation is standard in physics, so we adopt it.
- Fact:

\[
\{c_n, c_m\} = 0, \quad \{c_n, c_m^\dagger\} = \delta_{n,m} 1, \quad \text{where} \quad \{A, B\} := AB + BA
\]

- By defining \(\mathcal{H}_0 \) as some (arbitrary) one-dimensional space with basis vector (“the vacuum”) \(\Phi_{SD}^0 \), we have:

\[
\Phi_{n_1, n_2, \ldots, n_N}^{SD} = c_{n_1}^\dagger c_{n_2}^\dagger \cdots c_{n_N}^\dagger \Phi_{SD}^0, \quad n_1 < n_2 < \cdots
\]

i.e., all Slater determinants can be generated from vacuum using creation operators.

- This is actually a quite vivid and natural description of the underlying mathematics.
Fock space

- For any $\Psi \in \mathcal{H}_N$:

$$\Psi = \sum_{\alpha, \# \alpha = N} c_{\alpha} \Phi_{\alpha}^{SD}.$$

Or, equivalently:

$$\mathcal{H}_N = \bigoplus_{\alpha, \# \alpha = N} \text{Span}(\Phi_{\alpha}^{SD}) \quad \text{(closure implied)}.$$

- Fock space can be defined as:

$$\tilde{\mathcal{H}} = \bigoplus_{N=0}^{\infty} \mathcal{H}_N = \bigoplus_{\alpha} \text{Span}(\Phi_{\alpha}^{SD}),$$

i.e., all Slater determinants with varying number of particles naturally define one big mother of a QM Hilbert space.
A hint at the usefulness

- Often, questions depend on the number of particles present, and we have seen that the Hilbert space has a very complicated structure for many particles.

- On the other hand, we have seen that from a basis for, e.g., $L^2(\mathbb{R}^3)$, or some approximation such as finite element spaces, the corresponding N-body space can “easily” be manipulated using creation and annihilation operators. Implementations can be done using clever bit-pattern manipulations already hinted at.

- Moreover, we shall see later that even the Hamiltonian has a simple form for arbitrary number of particles using c_n^\dagger and c_n.
Outline

Tensor product spaces

Configuration space and identical particles

Creation and annihilation operators and N-particle Hilbert space

References
References

Raimes, S.
Meny-Electron Theory
North-Holland
1972

Leinaas, J.M. and Myrheim, J.
Theory of Identical Particles
Nuovo Cimento 37, pp. 1–23
1977

Frankel, T.
The Geometry of Physics
Cambridge
2004