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Abstract— Resilient Packet Ring (RPR) is a recent networking
standard developed by the IEEE LAN/MAN working group.
RPR is an insertion buffer, dual ring technology, utilizing a
back pressure based fairness algorithm to distribute bandwidth
when congestion occurs. The fairness algorithm has two modes of
operation, called respectively theaggressive and the conservative
fairness modes. For some scenarios, theaggressive fairness mode
suffers from severe performance deficiencies.

In this paper, we propose two novel contributions. The first
is a measurement method which enables a node to determine
its operating context. The second contribution is a fair rate
calculation method, termed the moderate fairness mode, which
resolves the aggressive mode performance deficiencies while
retaining several other properties provided by the aggressive
mode fairness.

We compare the performance of themoderate fairness mode to
that of the aggressive and the conservative modes by simulations,
and find that for some scenarios themoderate mode outperforms
the aggressive and the conservative modes. For some other
scenarios, the convergence time of themoderate mode is somewhat
longer than that of the aggressive mode.

Keywords: Resilient Packet Ring, Fairness, Performance
evaluation, Simulations, Next generation protocol designand
evaluation, Communications modeling, Next Generation Net-
works Principles, High-speed Networks.

I. I NTRODUCTION AND MOTIVATION

Resilient Packet Ring (RPR) is a new networking standard
developed by the IEEE 802 LAN/MAN Standards Commit-
tee, assigned standard number IEEE 802.17-2004 [1], [2].
Although RPR was developed by the LAN/MAN committee,
it is designed mainly to be a standard for metropolitan and
wide area networks.

RPR is a ring topology network. By the use of two rings
(also called ringlets), resilience is ensured; if one link fails,
any two nodes connected to the ring still have a viable
communication path between them. When a node wants to
send a packet to another node on the ring, it adds (sends) the
packet onto one of the two ringlets. For bandwidth efficiency,
the ringlet that gives the shortest path is used by default,
but a sender can override this (on a per packet basis) if it
for some reason has a ringlet preference. When the packet
travels on the ring, ittransits all nodes between the sender
and the receiver. When it reaches the destination, the packet

is removed (stripped) from the ring. Hence the bandwidth that
would otherwise be consumed by the packet on its way back
to the sender (as is the case in the Token Ring [3]), can be
used by other communications. Such destination stripping of
packets leads to what is commonly known asspatial reuse.

RPR usesinsertion buffer(s)for collision avoidance [4], [5].
When a packet in transit arrives at a node that is currently
adding a packet to the ring, the transiting packet is temporarily
stored in an insertion buffer, called atransit queuein RPR.
In order to get some flexibility in the scheduling of link
bandwidth resources between add- and transit traffic, the
transit queues may be in the order of hundreds of kilobytes
large.

In a buffer insertion ring like RPR, afairness algorithm
is needed in order to divide the bandwidth fairly1 between
contending nodes, when congestion occurs [6], [7].

The RPR fairness algorithm runs in one of two modes,
termed respectively theconservative and the aggressive
modes. Theaggressivemode of operation is simpler (i.e.
requires less code and configuration) than theconservative
mode, and is used by e.g. Cisco Systems. In this paper, the
main focus is on some of the performance deficiencies found
in the aggressivefairness mode. We do however evaluate
the performance of theconservativemode fairness for some
selected scenarios.

The feedback control system nature of the RPR fairness
algorithm makes the amount of add traffic from each sending
node oscillate during the transient phase where the feedback
control system tries to adjust to a new load [8]. Several papers
have reported that in some cases the oscillations decreasesand
(under a stable traffic pattern) converges to a fair distribution of
add rates, while under other conditions, the algorithm diverges,
and oscillations continues [8]–[11].

The main contribution of this paper is twofold. First, we
propose a novel context determination function, to enable a
congested node to determine whether it is utilizing its fair
share of bandwidth or not. Secondly, we propose an alternative
fair rate calculation mode, termed themoderatefairness mode,
with the goal of improving on the properties of theaggressive

1RPR nodes may have different weights, so a fair division does not have to
be an equal one. In this paper, however, we assume all nodes have the same
weight.



mode fairness. The proposed fairness mode, is designed to fit
within the framework given by the current RPR standard.

To evaluate the properties of the three fairness modes, we
use performance evaluation by simulations. We have imple-
mented the RPR standard within the the J-Sim and OPNET
modeler discrete event simulator frameworks [12], [13]. For
this paper however, we use our OPNET implementation.

The rest of this paper is organized as follows: In section II,
we present a brief introduction to the RPR fairness algorithm.
Then, in section III, we present a class of scenarios where a
so-calledmodesthead node in a congestion domain induces
permanent oscillations in the throughput experienced by the
head’s upstream neighbors [14]. Then in section IV, we
discuss some possible solutions to these problems. Then in
sections V and VI, we present our novel contributions handling
these problems. In section VII, we evaluate our contributions
by simulations and compare the performance to that of the
original RPR fairness modes. Finally in sections VIII, IX and
X, we present related work, conclude and present possible
directions for further works.

II. T HE RPR FAIRNESSALGORITHM

When several sending nodes try to send over a congested
link concurrently, the objective of the RPR fairness algorithm
is to divide the available bandwidth fairly between the con-
tending nodes. RPR has three traffic classes: high, medium
and low priority. Bandwidth for high and medium traffic is
pre-allocated, so the fairness algorithm distributes bandwidth
to low priority traffic only. In this paper all data traffic is low
priority.

The fairness algorithm is a closed-loop control system [8].
The goal of the fairness algorithm is to arrive at the “Ring
Ingress Aggregated with Spatial Reuse” (RIAS) fair division
of rates over the congested link [9]. For a congested link,
over which each active node has an infinite demand and all
nodes have equal weights, the RIAS fair bandwidth will be the
capacity of the link divided by the number of active nodes.
Fairness for ring segments having active nodes with different
weights is not covered by the RIAS reference model. In this
paper, all nodes have equal weights, thus we can use the RIAS
reference model.

The control system encompasses all nodes that send over the
same congested link, known in RPR as acongestion domain
[15]. The node directly upstream of the most congested link
is called theheadof the congestion domain. The node in the
congestion domain that is furthest away from the head is called
the tail of the congestion domain. Later in this paper we are
going to use a scenario depicted in figure 1. Here nodes 0, 1, 2
and 3 all send traffic to node 4. When these nodes in total want
to send more than the available bandwidth, the most congested
link will be the link immediately downstream of node 3. Thus,
the congestion domain will consist of the 4 nodes from node
0 to node 3. Node 0 will be the tail of the domain, node 3 the
head.

When a node’s total transit and add traffic amounts to more
than the full bandwidth, the transit queue of the node with
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Figure 1: A congestion domain consisting of 4 active nodes: node 0,
1, 2 and 3. The output link of node 3 is the most congested link in
the domain, thus node 3 is thehead-, while node 0 is thetail of the
congestion domain.

a congested out-link will fill up2. When the transit queue
occupancy is above a threshold calledlow, the node enters
a state calledcongestedand if it is has not observed that there
are downstream nodes that are more congested, it becomes
head of a congestion domain. As head, it starts sending fairness
messages, which is the feedback mechanism of the control
system. These feedback messages instruct the upstream nodes
to restrict their add rate to that of the head’s fair rate estimate.

When a fairness message is received by upstream nodes
in a congestion domain, these nodes restrict their add rate
to the value of the encapsulated fair rate estimate. The head
estimates and advertises new fair rates estimates periodically
(every aging interval (termedagingInterval)). The default
duration of anagingInterval is 100µs.

The time it takes from the head advertises a new fair rate
estimate, until it sees the effect of this action, is the timeit
takes for a fairness message to reach an upstream node, and
then the time it takes for the packets from this node, generated
in accordance with the newly received fair rate estimate, to
reach the head. Hence, in general there is a considerable
feedback latency in the control system. This latency, which
can be considered the time-constant of the congestion domain,
combined with the configuration of the algorithm in the head
for calculating fair rate estimates, decides the stabilityof the
RPR fairness algorithm.

The RPR standard has defined two algorithms for the
calculation of the fair rate estimates. In this paper, although
the main focus is on the improvement of deficiencies found
in the aggressivefairness mode, in section II-A, we provide a
brief description of theconservativefairness mode. For a more
detailed overview of theconservativefairness mode, refer to
[2], [16]. Following the brief overview of theconservative
fairness mode, we provide a brief overview of theaggressive
fairness mode in section II-B. For a detailed overview of the
aggressivefairness mode, refer to [8].

A. Conservative Fairness Mode

In the conservativefairness mode, when using the node
design with two transit queues, the goal of the fairness
algorithm is to maximize the throughput of the congested
link, while at the same time keeping the occupancy of the

2RPR nodes may have one or two transit queues. In the case of a node
with two transit queues, the highest priority traffic will use one transit queue,
while the two lower priority classes will use the other transit queue. In the
RPR model used in this paper there are two transit queues, but since all data
traffic will be of the lowest priority, the high priority transit queue will be
empty.



transit queue for low and medium priority traffic (termed
the Secondary Transit Queue (STQ)) between two thresholds
termedlow andmedium. The layout of theSTQwith associated
queue thresholds and their default level relative to another,
higher threshold, termedhigh, is shown in Fig. 2.

full

increasing queue occupancy

m
edium

high

low

Figure 2: Secondary Transit Queue and associated queue thresholds.
Note that in the figure, the relative location of the thresholds w.r.t.
the high threshold is according to the default settings specified by the
RPR standard. This layout applies to theaggressivefairness mode as
well. In theaggressivefairness mode however, themediumthreshold
is not used.

In this fairness mode, to allow for a more modestly sized
STQ than is used for theaggressivefairness mode, several
techniques are used: i) once theSTQoccupancy exceeds the
mediumthreshold, the actions taken to reduce the queue oc-
cupancy are moreaggressive(fair rate estimate reductions are
done faster) than the corresponding actions taken to increase
the queue occupancy once the occupancy falls below thelow
threshold; ii) to prevent that the fair rate estimate is adjusted
faster (or slower) than the effect can be observed, the time-
constant of the congestion domain is measured and used to set
a timer termed Fairness Round Trip Time (FRTT).

Thus, once the fair rate estimate has been adjusted, the
FRTT timer is reset and no additional rate adjustments are
performed before the FRTT timer expires.

To provide a means of congestion recovery, should theSTQ
occupancy exceed thehigh threshold, the fair rate estimate is
reduced everyagingInterval, regardless of the status of the
FRTT timer.

B. Aggressive Fairness Mode

In the aggressivefairness mode, once a node utilizing the
two-transit buffer design has become congested, it continues to
add traffic until the transit queue occupancy reaches thehigh
threshold (shown in Fig. 2). At this point, the head stops its
add traffic, until the upstream nodes have reduced their send
rate so much that the head’s transit queue occupancy decreases
below the high threshold.

We have previously shown that for theaggressivefairness
mode, the value used by the head as its fair rate estimate,
is the head’s own add rate run through a 2nd order low-pass
filter. Below, we will give the reader a short summary of the
properties of this filter. A detailed analysis of theaggressive
fairness mode with associated stability properties can be found
in [8].

The low-pass filter is shown in Fig. 3. In the figure, the
box with the markingz−1 denotes that the value on the
output of the box is delayed one sampling period (i.e. one

agingInterval) as compared to the value on the input of the
box. The filter input and output-values, denoted respectively
X(z) and Y (z) are the Z-domain representations of the
discrete time-domain signalsx(n) andy(n), wherex(n) is the
add rate of the head andy(n) is the low-pass filtered version,
lpAddRate(n).

lpCoef
1

X(z)

z z−1 −1

addRate(z) Y(z)=lpAddRate(z)

lpCoef−1
1

p

Figure 3: Block diagram of the second-order low-pass filters yielding
the fair rate estimate based on the congestion head’s own send rate
x(n)

In the figure below, the value of the constantsp1 and p2

comes from the RPR configuration parametersageCoefand
lpCoef as shown below:

p1 =
ageCoef − 1

ageCoef
, ageCoef ∈ {1, 2, 4, 8, 16} (1)

p2 =
lpCoef − 1

lpCoef
, lpCoef ∈ {16, 32, 64, 128, 256, 512} (2)

This gives a transfer function,H(z), of the filter as shown in
(3) below.

H(z) =
Y (z)

X(z)
=

1

lpCoef
·

z2

(z − p1)(z − p2)
(3)

Under the assumption that the input to the filter,x(n) is a
step-function, the output of the filter consists of a constant part
and two first-order filter functions. Further, whenlpCoef >

ageCoef , the filter time-constant is dominated by the second
filter stage. In this case, the time-constant,τ , of the filter, can
be approximated by the expression:

τ ≈
−1

ln(p2)
=

−1

ln( lpCoef−1

lpCoef
)
≈ lpCoef [agingIntervals]

(4)

It has been shown that theaggressivemode fairness algo-
rithm does not always reach a stable state [8]. In general,
the calculated fair rate estimate always varies (oscillates)
initially in response to transient load conditions. If the (new)
traffic load is stable, these oscillations should ideally decay as
the fairness algorithm converges to the new fair division of
sending rates. For some scenarios however, even under (new)
stable load conditions, theaggressivemode fairness algorithm
does not converge, and the rate at which each different node
is allowed to send, continues to oscillate.

In the next section, we will present and discuss a class of
scenarios, for which theaggressivemode fairness algorithm
does not converge.



III. U NBALANCED TRAFFIC SCENARIO

As described above, congestion occurs when several senders
at the same time want to transmit more data than the link
capacity (bandwidth) over the same link can sustain (all links
in RPR have the same capacity). Some senders may be greedy,
i.e. they want to send as much as possible. Other senders send
at a limited rate. For modest senders, i.e. senders sending
less than their fair share, RPR should not impose any rate
restrictions. For nodes having more to send than their fair
share, RPR should restrict their sending rate to their fair share.

In the case where the head of a congestion domain is a mod-
est sender, utilizing theaggressivefairness mode, this induces
permanent oscillations in the throughput of its upstream greedy
senders. An example of this, using 1Gbit/s links, is shown in
figure 4 below.
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Figure 4: Modest congestion head node. The figure plots throughput
per sender node measured at node 4.

As seen in the figure, the induced oscillations in the
throughput of the individual nodes upstream of the head causes
the aggregate throughput of the congested link to oscillate.
This leads to a reduction in link utilization of the congested
link. For illustrative purposes, we have checked the actual
numbers of this scenario. When the congestion domain head
is configured as modest sender, adding traffic at 5% of the link
rate, the link-utilization converges toward a value of 92.8%.
For the same scenario, if we configure the head as a greedy
sender, the link utilization for the congested link converges to
a value of 99.8%. I.e., for a 1Gbit/s link-speed, we incur a
throughput loss of 70 Mbit/s. For scenarios where the head
node is a modest sender, the actual throughput loss depends
on several factors, notably the node configurations and the size
of the congestion domain.

Another effect of the throughput oscillations, is that the
occupancy of theSTQin the head will vary more, thus leading
to greater delay variations for medium and low-priority traffic.

The origin of this oscillatory behavior comes from the
method used by theaggressivefairness mode to control
the send rate of its upstream neighbors. In the event of a

congestion situation, the head of the congestion domain uses
its own add rate as its fair rate estimate, deciding how much
its upstream neighbors should be allowed to send over the
congested link. As we already know, the (modest) head adds
traffic over the congested link at a rate that is below the fair
rate. Thus as long as theSTQoccupancy of the head exceeds
the low threshold, the rate values encapsulated in the fairness
messages will be the head’s own modest add rate. The effect
of these fairness messages, when received by the upstream
neighbors, is that for a period o f time, the aggregate of traffic
crossing the congested link will be less than the capacity of
the same link. As noted above, this results in a reduction in
the link utilization of the congested link.

Before we proceed to the description of our contributions,
in the next section, we present the goals we seek to achieve.

IV. I MPROVING ON STABILITY AND THROUGHPUT

PERFORMANCE FORMODESTHEAD SCENARIOS

As discussed and shown in section III, the presence of a
modest head in a congestion domain where the head utilizes
the aggressivefairness mode, leads to throughput loss and
consequently reduced link utilization for the most congested
link in the congestion domain. Now the question becomes –
is there anything that can be done to improve the performance
of the aggressivefairness mode in this type of scenarios?

One alternative would be to implement an alternative
fairness algorithm where this type of problem is not an issue
[9], [10], [17].

A second alternativeis to modify the current RPRaggres-
sive fairness mode in order to improve its performance in the
presence of a modest head [11]. An inherent constraint for this
alternative is that the proposed modification must fit within
the given RPR standard framework w/o yielding undesirable
side-effects, such as performance degradations for other traffic
scenarios.

A third alternative would be to design an alternative
fairness mode, that fits within the RPR framework, resolves
the above performance deficiencies and can be used regardless
of the sending behavior of the congestion head.

Our proposed solution belongs to the third alternative above,
but can also be used as outlined for the second alternative (i.e.
as an alternative to theaggressivefairness mode, when the
congestion head has a modest sending behavior).

In the context of the second alternative, it is clear that there
must be a way for a congestion head to determine its operating
context, to know whether it is operating as a modest head or
not (i.e. to decide which fairness “mode of operation” to use).

Based on the above discussion, we are ready to introduce a
set of Design Objectives (DOs) which we seek to meet when
designing our contributions.

DO 1: Remove the oscillatory behavior in the presence of
a head with a modest sending behavior.

DO 2: Retain the behavior of the original algorithm in the
presence of a head with a demand greater than or equal to its
fair share.



DO 3: Minimize the changes (state information, code and
processing requirements) to the current algorithm.

DO 4: Fit our modifications into the framework given by
the RPR standard.

DO 5: Allow for interoperability of nodes in a congestion
domain regardless of the fairness mode used.

In the next section (section V), to allow for the fulfillment
of the above Design Objectives in the context of alternative2
outlined above, we propose a context determination method.
Then in section VI, we describe ourmoderatefairness mode.

V. M ONITORING OFCONGESTIONHEAD’ S BANDWIDTH

UTILIZATION

We can envision at least two strategies for providing the
context determination method described in the previous sec-
tion.

One way is to compare the head’s own add rate,lpAddRate,
to the total available bandwidth divided by the number of
active nodes (the fair rate for a congestion domain with all
greedy senders having equal weights). If the head is sending
at a rate close to or above this ratio, one can assume that the
head’s own add rate is a good rate estimate that can be used for
distribution to its upstream neighbors. If the head is sending at
a rate below this ratio, we can assume that the head’s capacity
demand is below the head’s fair share and that the head’s own
add rate should not be used as a fair rate estimate.

This is the method used by Zhou et al. in [11].
There are several problems with this method.Firstly , this

requires knowledge about the number of nodes sending traffic
over the congestion point. The calculation of the number
of nodes sending traffic over the congestion point is not
mandatory for nodes running theaggressivefairness mode.
Secondly, and more seriously; the use of a rate threshold
for switching between two different rate calculation methods
may lead to instabilities. This is especially true when the rate
threshold is set to the fair rate. As the rate algorithm converges
towards the fair rate, it is expected that the add rate of the
congestion head will oscillate around the fair rate [8]. Thus
this will cause the algorithm to constantly switch between
two different rate calculation methods. As seen in their paper,
the oscillations are reduced by a factor 2 as compared to
the original RPR fairness algorithm, but the magnitude of
the oscillations are still 50% of the line rate. The throughput
improvement is 13.4%, leading to a link-utilization of≈87%.

Thirdly , below, we will argue that the basic underlying
assumption, that the head is adding traffic at a rateRhead ≥
C
|X | (whereC is the link capacity andX is the set of nodes
sending traffic over the congested link), is not an indication
of the correctness of the head’s fair rate estimate.

Let us assume that the above assumption was true, and that
we have a scenario, with the setX of active senders, sending
traffic over the congestion point.

With a head adding traffic at a rate ofC|X | , then the head’s
fair rate estimate (Rfair estimate) would be given by (5)
below.

Rfair estimate =
C

|X |
(5)

Further, let us assume that the congestion domain has a set
of nodesY, where each nodei ∈ Y, is sending traffic at a
rate Ri, lower than the rate of the head (Rhead), while the
remaining nodes,|X |− |Y|−1, send as much as possible. We
will now show the error in the fair rate estimate, given by (5)
and the theoretical fair rate, shown in (6) below.

Rfair =
C −

∑
i∈Y Ri −

C
|X |

|X | − |Y| − 1
(6)

Thus the error,E, in the fair rate estimate is given by (7)
below.

E = Rfair −Rfair estimate =
C −

∑
i∈Y Ri −

C
|X |

|X | − |Y| − 1
−

C

|X |
(7)

As shown in (8) below, we can make some general obser-
vations for this function.

∑

i∈Y

Ri → 0 and |Y| → (|X |−2) ⇒ E → C ·
|X | − 2

|X |
(8)

I.e. as the demand of the nodes in the setY decreases
and the number of nodes in the set approaches the remaining
number of nodes in the congestion domain except for one (the
worst-case), the error approachesC · |X |−2

|X | . Thus as the size
of the congestion domain (|X |) increases,E → C. I.e. the
error of the fair rate estimate approaches the link-rate.

In conclusion, it is clear that the use of the node’s own add
rate as a fair rate estimate results in large (fair rate estimation)
errors for some scenarios. Furthermore, it is clear that it is not
possible for the head to reason about the correctness of the
use of its add rate as a fair rate estimate, purely based on its
knowledge of the link-rate, its own add rate and the number
of active senders over the congested link

A second, and novel strategy, for monitoring whether the
congestion head is utilizing its fair share of the bandwidth, is
to measure the fraction of time when the client is allowed to
send traffic but chooses not to do so. By this, a congested node
is able to intelligently reason about the usability of its own
add rate as a fair rate estimate. Given the design of the RPR
MAC layer, this can be easily accomplished. By monitoring
the signal (denotedsendCin the standard) sent from the MAC
layer to the MAC client we can measure the aggregate of the
fraction of the time that i) this signal indicates that traffic
can be transmitted on the ring, regardless of the destination



address and ii) the MAC layer does not receive a packet from
the MAC client. This aggregate represents the link capacity
the local node chooses not to use for local traffic. For a node
with a traffic demand equal to or greater than its fair share,
this aggregate will be zero (as it always have something to
transmit when it is allowed to).
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Figure 5: Modest congestion head node. The figure plots the aged
and low-pass filtered measured aggregate of the time the head node
chooses not to utilize the available bandwidth for transmission of
local traffic.

For the scenario shown in figure 1, with a modest head,
we have measured this (aged and low-pass filtered) aggregate.
This is shown in figure 5. By use of the same aging and low-
pass filtering as is used on other measured variables in the
RPR standard, we get a value which will converge towards
ageCoef ·agingInterval = 400 [µs] as the amount of added
traffic by the head approaches 0 (a very modest head). For the
specific scenario shown here, we see that the long term average
waist (denotedlpWaistTime) of the head is≈ 370 [µs]. Thus
clearly, the value oflpWaistT ime > 0 and by inspecting the
value of lpWaistTime, the head will know that it is operating
in a modest head context and that it should not use its own
add rate as its fair rate estimate.

Given this context determination function, we are ready to
discuss the problem of calculating a fair rate estimate for
distribution by the head to its upstream neighbors.

VI. A LTERNATIVE FAIR RATE ESTIMATE CALCULATION

Given that the head of a congestion domain is not utilizing
fully the bandwidth available for local traffic, we know that
the use of its local add rate as a fair rate estimate, results
in permanent throughput oscillations for its upstream active
neighbors. This also leads to a reduction in link utilization of
the congested link.

From previous work, we know that the way rate adjustments
are performed are critical for the stability of an RPR ring [8]. If
rate adjustments are made too fast, not allowing enough timeto
observe the effect of previously issued fair rate estimates, the
fairness algorithm will not converge to the fair rate. Similarly,

if rate adjustments are made too slowly, the algorithm will
converge, but may result in unfair division of bandwidth and/or
reduced link-utilization during the transient period as well as
prolong the duration of the transient period.

If the new rate estimation method differs greatly from the
method currently used, this may alter the convergence/stability
properties of the fairness method significantly. Thus warrant-
ing a complete study of all aspects of the stability and fairness
properties of the proposed algorithm.

As stated in the introduction, the goal of the control system
is to provide a fair sharing of the bandwidth of the congested
link. In the case of a modest head, this means a fair sharing of
the available bandwidth minus the fraction used by the head.
We know that the theoretical fair rate value to be distributed
to the upstream neighbors reside somewhere in the region
〈lpAddRate, bandwidth−lpAddRate〉 (wherelpAddRate is
the add rate of the congestion domain head). The exact value
depends on the number of upstream active nodes, their weights
and their demand. In the case of all greedy senders having
equal weights, the fair rate value to distribute to upstreamnode
would be bandwidth−lpAddRate

active senders−1
. The head node is regarded as

an active sender, but does not have any additional bandwidth
demands, thus we subtract 1 from the active sender count.

Further, let us assume that an additional requirement to
the fairness algorithm is to maintain theSTQ occupancy
at a relatively constant level above 0 and below thehigh
threshold. By doing this, we obtain three things: i) we keep the
transit delay (for low and medium priority traffic) through the
congested node at a relatively fixed level; ii) we ensure thatthe
node always have traffic to send once the output-link becomes
available, thus avoiding under-utilization of the link; and iii)
we ensure that local traffic gets its fair share (or a fractionof it
in the case of a modest head) as the RPR scheduling algorithm
ensures the scheduling of both local (within the estimated fair
rate bound) and transit traffic while theSTQ occupancy is
below thehigh threshold.

Now, what can be done to achieve this? For the simplicity
of the discussion, we assume that the demand of the upstream
nodes is stable and that they always have more to send than
the capacity of the congested link allows. When the head of
the congestion domain calculates a fair rate estimate to be
distributed to its upstream neighbors, we know that at some
future time, the resulting aggregate traffic from the upstream
nodes is either too high (theSTQ occupancy will increase),
too low (the STQ occupancy will decrease) or correct3 (the
STQoccupancy remains constant).

To achieve a fair division of bandwidth, we monitor the
occupancyof the STQ, just like in the original algorithm. In
addition to this, we also monitor thegrowth-direction of the
STQoccupancy.

3A STQoccupancy that remains constant at 0 or at thehigh-threshold is
not an indication of a correct rate-estimate. But these are special cases that
requires special handling.



A. Operation of the Moderate fairness mode

The aggressivefairness mode declares a node ascongested
when theSTQoccupancy exceeds thelow threshold. From this
point onwards, as long as theSTQoccupancy remains above
the low threshold, the node sends back-pressure messages to
its upstream neighbors. When theSTQoccupancy falls below
the low threshold again, the node reenter theuncongestedstate
and the node signals to its upstream neighbor(s), that they are
allowed to increase their add rate. This rate increase is done
according to their own configuration settings.

In the moderatefairness mode, a node (that was previously
not congested) becomes congested when theSTQ-occupancy
exceeds thelow-threshold. Once a node has become congested
however, the transition back to the uncongested state is done
first once i) theSTQ-occupancy has fallen below thelow-
threshold, and ii) the fair rate estimate equals the maximum
allowed rate. The slight modification associated with the
transition from the congested back to the uncongested stateis
to avoid loosing control over the sending behavior of upstream
nodes, during transient periods where theSTQoccupancy falls
below thelow threshold.

In the absence of a locally available and usable fair rate
estimate (remember that for a modest head scenario, the use of
the node’s own add rate,lpAddRate, prevents theaggressive
fairness mode to stabilize), we introduce a locally maintained
rate estimate. Let us denote this estimatemRate(moderate
Rate estimate). We also maintain aged and low-pass filtered
versions of this variable, denoted respectivelyageMRateand
lpMRate. The value oflpMRate is the fair rate estimate,
which is distributed to the upstream neighbors in the fairness
messages.

lpCoef
1

ageCoef
1

z z−1 −1

lpCoef−1
1

p

ageMRate(z) lpMRate(z)

filter outputfilter input

mRate(z)

Figure 6: Second order low-pass filter as applied to the rate estimate
mRate. The output of the filter,lpMRate, is the fair rate estimate,
distributed to upstream neighbors by a congestion head.

We use the same4 two-stage second-order low-pass filter
construct, used by both theaggressiveand theconservative
modes as shown in Fig. 6. In section II, we showed that for
the values used for the configuration settingsageCoef and
lpCoef (p1 = ageCoef−1

ageCoef
), this filter can be approximated

by a first-order low-pass filter with a time-constant,τ ≈
lpCoef ·agingInterval [s]. In our moderatemode, the input
to this filter is the variable,mRate, while the output of the
filter, lpMRate, is the fair rate estimate.

The basic idea of our fairness mode is simple. If the
STQoccupancy of the congested node increases, the fair rate
estimate is too high and must be decreased. Correspondingly,
if the STQ occupancy of the congested node decreases, the
fair rate estimate is too low and must be decreased.

4With the exception of a divisorageCoef applied at the input.

To aid the convergence process, we use a rate interval,
limited by a maximum and a minimum value, denoted respec-
tively mRateMin andmRateMax. The purpose of this rate
interval is to ensure that, during increasingSTQ occupancy,
the use of the minimum rate value as the fair rate estimate,
guarantees (at some future time) a decreasingSTQoccupancy.
Correspondingly, the use of the maximum rate value as the fair
rate estimate, guarantees (at some future time) an increasing
STQoccupancy. The challenge then, is to maintain and use this
interval, so that theSTQoccupancy can be kept at a relatively
constant level (i.e. at thelow threshold) and at the same time
avoid that theSTQoccupancy falls to 0 or exceeds thehigh
threshold. Note that the size and location of the rate interval,
as given by the values ofmRateMin andmRateMax, will
change during the convergence process as well as in the case
of a change in the applied load.

Upon transition from the uncongested to the congested state,
we initializemRateMin to the value of the node’s own send
rate, lpAddRate. The value ofmRateMax is set to half of
the maximum allowed rate. We also set the fair rate estimate,
lpMRate, to mRateMin, while the low-pass filter input (see
Fig. 6), mRate, is set tomRateMax.

Below follows a description of one iteration of the cyclic
convergence process, starting as we have an increasingSTQ
occupancy at the head, and theSTQoccupancy is below the
low threshold.

When theSTQ occupancy increases, once theSTQ occu-
pancy exceeds thelow threshold, we decrease the fair rate
estimate towards the minimum value of the rate interval
(mRateMin) by setting the input of the low-pass filter to
mRateMin. Once the fair rate estimate has been sufficiently
reduced, theSTQ occupancy will start to decrease. At this
point for the given load, we know that in the future, to ensure
a decreasingSTQoccupancy, the fair rate estimate need not
be set lower than its current value. Thus, we setmRateMin

to the current fair rate estimate.
Next, to oppose the decreasingSTQoccupancy, we increase

the fair rate estimate towards the maximum value of the rate
interval (mRateMax).

Depending on theSTQ occupancy, this is done in one of
two ways. If theSTQoccupancy is above thelow threshold,
to avoid increasing the rate estimate too much and too fast, we
set the input of the low-pass filter tomRateMin+mRateMax

2
.

If this is not enough, and theSTQoccupancy falls belowlow
threshold, the input of the low-pass filter is set tomRateMax.

Once the fair rate estimate has been sufficiently increased,
the STQoccupancy will, as a result, start to increase. At this
point for the given load, we know that in the future, to ensure
an increasingSTQoccupancy, the fair rate estimate need not
be set higher than its current value. Thus, we setmRateMax

to the current fair rate estimate. By this, the cycle is concluded
and we are back to the starting point. For each iteration of this
cycle, the size of the rate interval is improved (reduced).

The actual increase/decrease behavior follows an exponen-
tial ramp function, given by the properties of the second-order



low-pass filter shown in Fig. 6. During the periods5 of increas-
ing STQoccupancy, the filter-input is set tomRateMin, thus
ensuring a monotonic decrease of the fair-rate estimate towards
mRateMin. Correspondingly, during the periods of decreas-
ing STQ occupancy, the filter-input is set tomRateMax,
thus ensuring a monotonic increasing of the fair-rate estimate
towardsmRateMax.

The exponential ramp function ensures that the time, used
to adjust the fair-rate estimate between the max/min values,
remains constant, regardless of the size of the rate-interval.
Thus, during the convergence process, the narrower the rate
interval gets around the RIAS fair rate, the slower the fair rate
estimate is adjusted. This way, the variations in throughput
during steady-state are minimized.

For the simple scenario shown in Fig.1, we will show
the convergence process of ourmoderatefairness mode. In
the scenario, we assume a stable demand by the individual
nodes. The example illustrates, without loss of generality, the
convergence for the transition between a no-load situation,
and a max-load situation (i.e. a worst-case situation). Fora
dynamic scenario, the load-change is typically much smaller.
Thus in this case, the task of the fairness mode is to shift the
established rate interval higher or lower, so that the new fair
rate is included in the interval. This is done by expanding the
rate interval on one side before continuing the convergence
cycle.

Below, the convergence towards the fair rate is illustratedfor
the scenario shown in Fig. 1, using 410µs (82km) link-delays
and a value of 32 for the lpCoef parameter. The convergence
of the fair rate estimate,lpMRate, is shown in Fig. 7a while the
correspondingSTQoccupancy for thehead during the same
period is shown in Fig. 7b. Significant points in the plots and
the discussion have been marked with labels.

Let us assume there are currently no active nodes on the
ring. At time t1 (the point labelled 1), nodes 0, 1, 2 and 3
all start to transmit traffic to node 4. This will cause theSTQ
occupancy of node 3 to start to fill.

At the point labelled 2, node 3 becomes congested, thus we
perform the initial variable assignments as described above.
From this point, the value oflpMRatewill increase towards
mRateMax. The effect on theSTQoccupancy is that at first,
it will have a transient initial increase, before the effectof the
reduced rate value is observable at the head (at point 3). As
long as theSTQ occupancy is above thelow threshold and
decreasing, to oppose the decreasingSTQoccupancy, we set
the input to the low-pass filter tomRateMax+mRateMin

2
. If

this is not sufficient to oppose the negativeSTQgrowth. Once
the STQoccupancy falls below thelow threshold, we set the
input to the low-pass filter tomRateMax. The result is seen at
point 5, where the increased output-value of the low-pass filter
results in an increase in theSTQoccupancy. At this point, the
value of mRateMaxis replaced by the current output value
from the low-pass filter,lpMRate. Thus effectively reducing

5The description in this paragraph is a slightly simplified version of that
provided above, and is thus not entirely correct.
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Figure 7: Illustration of fair rate estimate and STQ occupancy during
rate convergence process, using the simulated scenario with a value
of 32 for lpCoef and 410µs link-delays (82 km links).

the interval of rates,〈mRateMin,mRateMax〉, by improv-
ing (decreasing) the maximum value. From this point, until the
STQoccupancy exceeds thelow threshold, we keep the input
to the low-pass filter constant atmRateMax, thus keeping the
rate value sent to upstream nodes constant. At point 6, the
STQ occupancy once again exceeds thelow threshold, and
to preventSTQ overflow, we set the input to the low-pass
filter to mRateMin. This results in a decrease in the output-
value of low-pass filter. The effect of this is seen at point 7,
where the growth-direction of theSTQoccupancy once again
becomes negative. At this point, we have a new estimate for the
minimum rate-value,mRateMin, thus effectively reducing the
interval of rates,〈mRateMin,mRateMax〉, by improving
(increasing) the minimum value. At point 7, the current rate
adjustment cycle is concluded and the next cycle starts. By
this, we are back to the starting point. At point 7, the only
difference is that when entering the cycle starting at 7, the
interval of rates have been (significantly) reduced compared
to the size of the interval when entering the previous cycle (at
3).

The reader may have noticed that an explanation of the
point labelled 4 has been omitted. At this point, theSTQhas
become empty (because the value ofmRateMinis currently
too low). To rectify this, and to minimize underutilizationof
the link, the value ofmRateMin is corrected slightly based
on its current value and the value ofmRateMax. A similar
corrective action is performed if theSTQoccupancy reaches



the high threshold. A second corrective action we perform
to avoid underutilization of the congested link, as long as
it stays within rate restrictions (if such exist) received from
downstream nodes, is to allow the congested node (the head)
to add traffic to the output-link as long as the transit queue is
empty.

Another observation the reader may have done, is that the
points (i.e. 3, 5 and 7) where theSTQgrowth-direction changes
is not exactly at the local minimum/maximum points forSTQ
occupancy. This is to avoid making any rate adjustments based
on accidental variations inSTQoccupancy (i.e. measurement
“noise”).

B. Comparison of the Moderate and the Aggressive Fairness
Modes

The moderate fairness mode may seem overly complex
compared to theaggressivefairness mode. Added complexity
however, is difficult to overcome. For a greedy head, running
theaggressivefairness mode, whenever the fair rate estimate is
too low, resulting in decreasingSTQoccupancy, theheadmay
quickly (almost immediately) compensate for this using locally
added traffic. And vice versa, when the fair rate estimate is too
high, local traffic can be held back. This makes it possible to
quickly establish self-adjusting rate intervals where thelower
rate limit is established once theSTQoccupancy exceeds the
high threshold and the higher rate limit is established once the
STQoccupancy falls below thehigh threshold. The rate limits
are not explicitly stored in separate variables, but the value
of the localaddRaterate counter, which is the output signal
from the first low-pass filter for theaggressivefairness mode,
is quickly (in a matter of a few aging intervals) updated to
the new rate limit for both the increasing and decreasing rate
periods.

The moderatefairness mode can in some sense, be consid-
ered a generalized version of theaggressivefairness mode. In
the case ofmoderatefairness, we do not (and cannot) rely
purely on the capability of the head to compensate for bad
fair rate estimates by the increase or throttling of local traffic.
Thus we establish and maintain explicit rate intervals to aid the
convergence of the fair rate calculation process. Further,we
cannot use the node’s measurements of locally added traffic
as the fair rate estimate, as the correlation between the node’s
own add rate and the congestion state is rather weak. Thus
we have to introduce a separate rate variable (much the same
way as is done for theconservativefairness mode). Once a
congestion state is established, we regulate the value of the
rate estimate within the established rate interval, based on the
STQoccupancy level and growth direction.

As discussed in section III and shown in Fig. 4, the
establishment of a rate interval based on measurements of
local traffic only, results in large oscillations in throughput
and reduced utilization of the congested link. This is because
the rate interval which is established by measurements of local
traffic is incorrect – it is not centered around the fair rate.In
an interval of rates, where the fair rate should be the center,
the center of the interval is effectively placed at a negative

offset, where the offset is decided by the amount of traffic
transmitted by thehead.

For themoderatefairness mode, once a fair rate estimate
has been calculated, we do not see the the full effect of it
before a system time-constant later. Further, the establishment
and maintenance of maximum and minimum rate values can
only be done by observing local maxima and minima points
of theSTQoccupancy. Thus when using themoderatefairness
mode, the establishment of a rate interval takes more time than
for the aggressivemode.

However, as we shall see in section VII, the performance of
the moderatefairness mode, when used in the presence of a
greedy head, is comparable to that of theaggressivefairness
mode.

VII. PERFORMANCEEVALUATION

In this section, we present results for a set of carefully
selected simulation scenarios. The goal of this selection is to
evaluate and compare the performance of our proposedmoder-
atefairness mode to that of theaggressiveand theconservative
fairness modes for some fundamental load-patterns. Having
done this, it is should be possible to predict the behavior of
our moderatefairness mode for many other load-patterns.

Thus in section VII-A, we start by comparing the behavior
of the moderatefairness mode to that of theaggressiveand
conservativefairness modes when the head has a greedy
sending behavior. Next, in section VII-B we compare the
performance of themoderatefairness mode to that of the
aggressiveand the conservativefairness modes when the
head has a modest sending behavior. In section VII-C, we
demonstrate the ability of themoderatefairness mode to adapt
to a dynamic load scenario. Finally, in section VII-D, we have
run an extensive series of simulations, where we for each test
scenario and each allowed value of thelpCoef parameter, test
the ability of theaggressiveand ourmoderatefairness modes
to converge to the fair division of rates as the size of the tested
network is increased.

In our paper “Congestion Domain Boundaries in Resilient
Packet Rings” [15], we analyzed a problem, where the the
tail of a congestion domain stops the propagation of fairness
messages received from a downstream head. The negative
side-effect of this behavior is that a node upstream of the
tail may send excessive amounts of traffic, thus preventing
the convergence of the fairness algorithm. Thus we incur
both unfairness as well as non-convergence of the fairness
algorithm. In the same paper, we proposed and evaluated a
modification, termed thetail-fix, that solved these problems
by a conditional propagation of the fair rate estimate beyond
the tail of a congestion domain. In the performance evaluation
experiment that follows, we make use of thetail-fix when
evaluating the performance of our proposedmoderatefairness
mode.

A. Convergence when head has a greedy sending behavior

In this experiment, we compare the performance of the
aggressive, themoderateand theconservativefairness modes



in the presence of a greedy head node. Further, in the first part
of the experiment, we use the context determination function
introduced in section V to allow for the selection between
the aggressiveand themoderaterate calculation modes, in
accordance with a node’s sending behavior and congestion
status.

We use the same scenario as before (depicted in Fig. 1), but
for this test, all nodes send as much traffic as possible. The
per node configuration is shown in Table I.

Parameter Name Value
Line Rate 1 [Gbit/s]
Packet size 500 [B] (fixed)
All nodes (in congestion domain) sending behaviorGREEDY
STQ Thresholds
- low 31812 [bytes]
- high 120000 [bytes]
rampUpCoef 64
rampDnCoef 64
ageCoef 4
lpCoef 64
link-delay 410 [µs]
Start of traffic 1.1s

Table I: Configuration for comparison of the three fairness modes in
the presence of a greedy head.

First, we let the context determination function (i.e. the
value of thelpWaistTimevariable), decide whether the head
should use theaggressiveor the moderatefairness modes.
In the case of a greedy head. The value of thelpWaistTime
variable remains at 0, thus theaggressivefairness mode is
used. Next, we force the use of themoderatefairness mode,
regardless of the value of thelpWaistTimevariable. Finally,
we force the use of theconservativefairness mode, regardless
of the value of thelpWaistTimevariable.
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Figure 8: Aggressivefairness mode with a greedy head. This type
of scenario is optimal for theaggressivefairness mode, providing
faster convergence than the two other fairness modes. At time 1.028s
throughput convergence is achieved.

We start by comparing the throughput convergence of the
three fairness modes. From the measurements performed, we
calculate the time it takes for the throughput of all flows to
stabilize at a level within±5% of the steady-state (fair) value.
For the aggressivefairness mode throughput convergence,
shown in Fig. 8, we found as expected that its associated
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Figure 9: Moderatefairness mode with a greedy head. The conver-
gence time is 8ms (steady-state is obtained at 1.136s) longer than for
theaggressivefairness mode for this scenario. Full link-utilization is
achieved as fast as for theaggressivefairness mode.
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Figure 10: Conservativefairness mode with a greedy head. The
convergence time for theconservativefairness mode is much longer
than for the other two fairness modes. Additionally, once steady state
is achieved (shown in Fig. 11), we incur some reduced link-utilization
because of the periodic event of an emptySTQ buffer in the head.

convergence time of 28 ms is the shortest (stable state achieved
at time 1.128s) of the three fairness modes. Full link-utilization
is achieved almost immediately, as the head will utilize any
available bandwidth over the congested link, not in use by
transit traffic.

The throughput convergence for themoderatefairness mode
for the same scenario and using the same configuration is
shown in Fig. 9. The convergence time here is somewhat
higher. Steady state is achieved at time 1.136s, after 36ms.
Full link-utilization however, is achieved immediately (once
the sum of transit and add traffic is sufficient to fill the output
link).

For theconservativefairness mode, the throughput conver-
gence for this scenario is much slower. As seen from Figures
9 and 10, at the time where themoderate fairness mode
has reached steady-state (1.136s), theconservativefairness
mode has only reached 91% link-utilization. As seen in Fig.
11, full throughput for theconservativefairness mode is not
achieved until 1.222s. Furthermore, as seen from Fig. 11, the
conservativefairness mode suffers from sustained oscillations
in total throughput, leading to a minor reduction in link-
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Figure 11: Conservativefairness mode with a greedy head. The
plot shows the reduced link-utilization (reduction in aggregate/total
throughput) caused by the periodic under-run of the head’sSTQ
buffer.

utilization.
In addition to the throughput convergence and link-

utilization characteristics of the three fairness modes, we can
make another observation on the throughput performance of
the three fairness modes. In theaggressivefairness mode,
when the head is greedy, theSTQoccupancy oscillates around
the high threshold. The RPR scheduling rules block local
low-priority traffic whenever theSTQoccupancy reaches this
threshold. This causes the throughput of the head to fall some-
what below the throughput of its upstream greedy neighbors.
For themoderateandconservativemodes, where theSTQoc-
cupancy oscillates around thelow threshold (moderatemode)
or between empty and themedium threshold (conservative
mode), this is not the case. In this case, the head will achieve
its (full) fair share of the available bandwidth. This effect can
be seen when comparing figures 12, 13 and 14.
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Figure 12: Excerpt ofaggressivefairness mode throughput with a
greedy head. As seen in the figure, the traffic from the head (node
3) does not get its full fair share of bandwidth over the congested
link. This is caused by the blocking of local traffic once theSTQ
occupancy exceeds thehigh threshold.
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Figure 13: Excerpt ofconservativefairness mode throughput with
a greedy head. As seen in the figure, the throughput of traffic from
the head is not penalized. This is because in steady-state, theSTQ
occupancy oscillates varies between 0 and themediumthreshold.
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Figure 14: Excerpt ofmoderatefairness mode throughput with a
greedy head. As seen in the figure, the throughput of traffic from
the head is not penalized. This is because in steady-state, theSTQ
occupancy oscillates around thelow threshold. The variations in
throughput may seem large, but are within±2[packets/averaging
interval] of the mean (the fair rate). The averaging period is 2ms.



B. Throughput Convergence for an Unbalanced Traffic Sce-
nario

In this test, we use the configuration shown in Table II.
Notice that the head is configured as a modest sender, sending
CBR traffic at 5% of the line-rate.

Parameter Name Value
Line Rate 1 [Gbit/s]
Packet size 500 [B] (fixed)
Head’s Sending Behavior CBR traffic

at 5% of the line rate
All other active nodes (in congestion domain)GREEDY
sending behavior
STQ Thresholds
- low 31812 [bytes]
- high 120000 [bytes]
rampUpCoef 64
rampDnCoef 64
ageCoef 4
lpCoef 64
link-delay 410 [µs]
Start of traffic 1.1s

Table II: Configuration for comparison of the three fairness modes
in the presence of a modest head.

For this configuration, as expected (discussed in section III),
the throughput convergence of theaggressivefairness mode
(shown in Fig. 15) does not converge to the fair division
of sending rates. Furthermore, the magnitude of the induced
oscillations results in reduced link-utilization (i.e. the total
throughput falls below the maximum obtainable).

The throughput convergence for theconservativefairness
mode is shown in Fig. 16. As seen from the figure, it takes
approximately 72ms just to reach a level of 90% of the
available throughput on the congested link. Furthermore, the
conservativemode of operation causes theSTQoccupancy to
fall to 0 at periodic intervals (just as for theaggressivemode).
For theconservativefairness mode, this leads to a reduction
in link-utilization for the congested link. For this particular
scenario, the average reduction in link-utilization is≈ 0.5%.
Given the small magnitude of theconservativefairness mode’s
throughput-loss during steady-state, this can be neglected for
most practical cases.

Finally, in Fig. 17, we show the throughput convergence
of our moderate fairness mode. As seen from the figure,
the convergence time is 52ms. During the transient phase, as
the rate control algorithm is working on improving the size
and position of the rate interval〈mRateMin,mRateMax〉
(discussed in section VI-A), we have some brief periods
where theSTQbecomes empty, thus resulting in a temporary
reduction in total throughput. Because of the low demand of
the head, there are no local packets available for transmission
every time theSTQ becomes empty. Once steady-state is
obtained however, theSTQdoes not become empty, and we
do no longer incur any reductions in the link utilization.
Furthermore, as seen from the figure, we have a fair sharing
of the capacity of the congested link.
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Figure 15: Aggressivemode throughput convergence when head is
modest. As seen, theaggressivefairness mode does not converge
for this scenario. Additionally, the link utilization (as seen in the
reduction on total/aggregate throughput) is reduced.
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Figure 16: Conservativemode throughput convergence when head is
modest. As seen, theconservativefairness mode converges slowly.
At time 1.172s, the total throughput has only reached 90% of full
link-utilization.
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Figure 17: Moderatemode throughput convergence when head is
modest. Themoderatefairness mode converges within 52ms and after
this point, there is no loss in link-utilization.



C. Convergence for a Dynamic Traffic Scenario

In this test, we use the scenario shown in Fig. 18. The per
node configuration is shown in Table III. The purpose of this
test is to show that ourmoderatefairness mode is able to adapt
to changing load conditions. Thus during the simulation run,
we start by, at time 1.4s, decreasing the load, before we, at
time 1.6s, increase the load.

2 30 1 87654

Figure 18: A congestion domain consisting of various active nodes.
All active nodes send to node 8. Thus the link between nodes 7 and
8 is the most congested link in the domain.

Parameter Name Value
Line Rate 1 [Gbit/s]
Packet size 500 [B] (fixed)
Head’s Sending Behavior CBR traffic at 5% of the line rate
All other active nodes GREEDY
(in congestion domain)
sending behavior
STQ Thresholds
- low 31812 [bytes]
- high 120000 [bytes]
rampUpCoef 64
rampDnCoef 64
ageCoef 4
lpCoef 128
link-delay 410 [µs]
Start of traffic Per node settings specified below

Table III: Configuration for dynamic traffic scenario.

The resulting throughput for the various nodes is shown
in Fig. 19. As seen from the figure, our algorithm converges
nicely as the number of active senders increases as well as
when the number of active senders decreases.

When the load decreases, the rate interval specified by
the fairness mode variables〈mRateMin,mRateMax〉 (dis-
cussed in section VI-A) is located too low. Thus, as a result
of this and the modest demand of the head, theSTQ will
become empty during the transient phase, where the fairness
mode works to shift the position of the rate interval higher.
Thus at time 1.4s, the link-utilization is temporarily reduced
(seen by the dip in total throughput), before reaching its max-
imum value again, following the convergence of the fairness
algorithm.

Similarly, when the load is increased at time 1.6s,
the rate interval specified by the fairness mode variables
〈mRateMin,mRateMax〉 is located too high. Thus, as a
result theSTQoccupancy will exceed thehigh threshold. Thus,
local traffic from the head, will be blocked during portions of
the transient phase, where the fairness mode works to shift
the position of the rate interval lower. We also notice that
following this, the STQ occupancy falls briefly to 0 (seen by
the short reduction in aggregate throughput). Notice that at this
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Figure 19: The figure shows the convergence for themoderatefairness
mode for a dynamic traffic scenario. In this scenario, nodes 0, 3,
4, 5, 6 and 7 transmit traffic from time 1.1s. At time 1.4s, node 4
stops transmitting traffic. Finally, at time 1.6s, nodes 1 and 2 start to
transmit traffic. All nodes operate as greedy senders, expect for node
7, the head, which transmits traffic at 5% of the link-rate.

time (1.6s), although the load change is larger (2 additional
nodes start sending) than at the previous time (1.4s) (1 node
stopped transmitting), the convergence time is approximately
equal to that of the previous load change.



D. Convergence Time as a Function of Aggregate Propagation
Delay

In this section, we want to compare the performance of
our moderatefairness mode to that of theaggressivefairness
mode as the size of the network (congestion domain) to be
controlled increases. We use the scenario shown in Fig. 1.
In this experiment, for each allowed value of thelpCoef
parameter, we run a series of simulations. For each simulation
run, we increase the network size. That is, we increase the
per link propagation delay, thus increasing the time-constant,
τsystem, of the congestion domain. After the simulation has
been executed, we post-process the throughput data obtained,
to determine the convergence time of the fairness mode used.
A non-converging simulation-execution is represented by an
infinite value of the convergence time.

Parameter Name Value
Line Rate 1 [Gbit/s]
(unreservedRate)
Packet size 500 [B] (fixed)
Upstream Nodes GREEDY
Sending Behavior
STQ Thresholds
- low 30000 [bytes], fixed size STQ
- high 120000 [bytes], fixed size STQ

otherwise given by (11) and (12)
rampUpCoef 64
rampDnCoef 64
ageCoef 4
lpCoef {16, 32, 64, 128, 256, 512}
link-delay free variable

(all links are of equal length)
Start of traffic 1.1s

Table IV: Configuration for scenario where we investigate the relation
between convergence of fairness mode and the aggregate propagation
delay of the congestion domain.

The experiment is repeated for various load-configurations
of the head (greedy and modest) for the two fairness modes
as well as using a fixedSTQ size and aSTQ size that is a
function of the aggregate propagation delay.

The configuration of our experiment is summarized in Table
IV and Fig. 20. The results are shown in Fig. 21.

For fast convergence of the fairness mode, let us assume
that the region between theSTQthresholdslow andhigh must
be able to buffer data for a period given by the system time
constant –τsystem. For simplicity, we expressτsystem in terms
of the round-trip propagation delay of the congestion domain
to be controlled as shown in (9) (disregarding transit path and
transmission delays).

τsystem ≈ (|congestionDomain| − 1) · 2 · tlp (9)

In the formula,|congestionDomain| is the size (number
of nodes) in the congestion domain andtlp is the length
(propagation delay) of a single link in the network (all links
are of equal length).

Thus for a period of durationτsystem, the head should be
able to buffer an amount of transit traffic equal to the maxi-
mum amount of local traffic added during the same period.
When receiving transit data at the maximum allowed rate,
unreservedRate, as long at theSTQ occupancy stays below
thehigh threshold, the add rate of the head is limited upwards
by the RPR scheduling rules toaddRate ≤ unreservedRate

2
.

Thus for the configuration of theSTQsize and associated
thresholds, we get the formula as follows:

(high − low) ≥
unreservedRate

2
· τsystem [bits] (10)

Furthermore, if we use the RPR standard’s default value of
the low threshold and convert to units of bytes:

low =
high

4
(11)

We get:

high −
high

4
≥

unreservedRate

16
· τsystem [bytes]

⇒ high ≥
unreservedRate

12
· τsystem [bytes] (12)

For theaggressivefairness mode, we know that the fairness
mode does not converge when the head has a modest sending
behavior (represented by the cross in Fig. 21), thus for this
mode, we present results for a greedy head sending behavior
only.

If we consider the results for theaggressivefairness mode,
we find that larger size of theSTQdoes not translate directly6

to the stable operation of larger networks. This is illustrated
by Fig. 21 a) and b). Fig. 21 a) shows the convergence result
for the scenario, where the size (and associated thresholds) of
the STQis a function of the round-trip propagation delay (i.e.
τsystem) of the congestion domain.

Fig. 21 b) on the other hand, shows the convergence result
for the scenario, where the size (and associated thresholds)
of the STQ is kept fixed according to the settings shown in
Table IV. When we compare the two figures, we see that
the experiment where we use a fixedSTQ size, the fairness
algorithm converges for networks of a larger size than for the
experiment where theSTQsize is a function ofτsystem.

The reason for this is that an increased size of theSTQ
buffers (i.e. when theSTQ size is a function ofτsystem)
contributes to increasing the queueing delay in the transit
path of the congestion domain. This leads to an earlier onset
(i.e. for networks of smaller size) of the problem describedin
[15], where node 1 will periodically assume the role as tail
of the congestion domain. During the periods where node 1
operates as tail of the congestion domain, node 0 is allowed
to transmit traffic at excessive rates, prohibiting convergence
of the fairness algorithm.

6This does not mean the theSTQbuffer can be arbitrarily small.
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If we consider themoderatefairness mode (Fig. 21 c-f),
we see that it is of importance that theSTQ and associated
thresholds are set large enough. The reason for this, is thatthe
observation7 of local optima (i.e. changes in growth direction)
of theSTQoccupancy, should be done without theSTQbecom-
ing empty or exceeding thehigh threshold. While this is OK in
the initial phase (it may actually speed up the convergence in
many cases) of the convergence process, the process will not
converge if theSTQthresholds are set so that these thresholds
are encountered at every cycle of the convergence process.
Equation (12) provides a conservative estimate of the required
threshold setting of theSTQ. The fixed value of theSTQ
high threshold used for experiments d) and f) translates to
a limitation of 120 · 103 ≥ 10

9

12
· τsystem ⇒ τsystem ≤ 1.44ms

for the system time-constant. For themoderatefairness mode
and a head sending at 5% of the line-rate (Fig. 21 f)), we
see that thisSTQ setting provides adequate performance for
a network of a size≤ 10 times this. At this point (i.e. when
τsystem ≈ 14000) however, forlpCoef = 512, we see that
although the fairness mode converges, it takes consideratebly
more time than if we increase the sizing of theSTQ (shown
in Fig. 21 e)).

Another property worth noting for themoderatefairness
mode, is that convergence may take longer if the head is
modest than if the head is greedy. This is in large part due
to the fact that when the head is greedy, the head will be
able to observe the resulting effect of a rate change much
faster than when the head is modest. In particular, a change
in STQoccupancy in response to the head’s change in locally
transmitted traffic may be observable almost immediately.

Finally, if we compare the performance of theaggressive
fairness mode to that of themoderate fairness mode, we
see that convergence for themoderatefairness mode takes
somewhat longer for the greedy head scenarios. However,
provided sufficiently sized and configuredSTQ buffers, the

7Remember that it is the finding of the local optima of theSTQoccupancy
that enables the fairness mode to improve the size and positionof the dynamic
rate range used to limit the adjustment of themoderatemode fair rate estimate,
lpMRate.

moderatefairness mode provides stable operation for a larger
range of network sizes, as well as for unbalanced traffic (i.e.
modest head) scenarios. While the operation of theaggressive
mode fairness mode can be modified to support networks
of larger size (e.g. by using our modification proposed in
[15]), we are not aware of any modifications providing stable
operation in unbalanced traffic scenarios.

In concluding this section, it appears that themoderate
fairness mode provides a stability property where, the con-
vergence of the fairness mode is a function of the network
size and setting of the lpCoef parameter. We have previously
demonstrated this property for theaggressivefairness mode
[8].
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Figure 21: Throughput convergence for RPRAggressiveand Moderatefairness modes.



VIII. R ELATED WORK

Other groups having looked into the problems of sustained
large oscillations and resulting loss of link-utilizationfor
unbalanced traffic scenarios, have mostly solved the problem
by proposing alternate fairness algorithms that would haveto
replace the current RPRaggressivemode fairness algorithm
[9], [10]. Some work have presented results that seems to fit
within the framework given by the RPR standard [11]. In that
work however, the effect of the proposed modifications is to
reduce the symptoms (oscillations) rather than removing them.

IX. CONCLUSION

In this paper we have proposed two novel contributions.
The first contribution is a context determination function,to
enable the head of congestion domain to decide whether it is
using its fair share of bandwidth over the congested link. The
method is based on local information only and does not require
knowledge on the number of nodes sending traffic over the
congestion point. The second contribution is a novel fairness
mode, which we have called themoderate fairness mode.
The moderatefairness mode can be regarded as a generalized
version of theaggressivefairness mode, where we by use of an
explicit, self-adjusting rate interval and the RPR 2-stagelow-
pass filter construct, control the convergence of the (moderate)
fair rate calculation process. By use of this fairness mode,the
problems reported for so called unbalanced load-scenariosis
avoided and we do not incur the large throughput oscillations
and resulting reduced link-utilization.

For the tested scenarios, ourmoderatefairness mode outper-
forms8 theconservativefairness mode in terms of convergence
time and link-utilization. For themoderate fairness mode,
regardless of the sending behavior of the head, the average
steady-stateSTQoccupancy in the head equals thelow thresh-
old. Thus providing a relatively low transit delay for all traffic
classes. This is clearly better than for theaggressivefairness
mode, where for a greedy head, the averageSTQoccupancy
equals thehigh threshold.

In the moderatefairness mode however, the head cannot
compensate for errors in its fair rate estimates purely by the
increase or throttling of local traffic. Thus, for some scenarios,
the convergence time may be somewhat longer than that of the
aggressivefairness mode.

As seen in sections VII-A-VII-D, ourmoderatefairness
mode converges to the fair division of sending rates, as well
as maintaining full link-utilization for a broad range of tested
scenarios, thus we claim conformance to DO1 and DO2.

There is no clear definition of a “minimized set of changes”,
neither is it clear that it makes sense to try to formulate such a
definition. Thus conformance to DO3 can be argued. We have
however, by use of existing statistics data, introduction of a
set of new state variables and a new state machine (for the
fair rate calculation) introduced a new fairness mode. Thus,
we claim conformance to DO3 and DO4.

8Once in steady-state, the link-utilization of theconservativemode is only
slightly lower than that of themoderatefairness mode.

Furthermore, in section VII-A, we have demonstrated that
the use of themoderatefairness mode in the head, inter-
operates well with the use of theaggressivefairness mode in
upstream nodes. We have however not tested interoperability
with the conservativefairness mode, thus we can only claim
partial conformance to DO5.

In conclusion, we will claim that our Design Objectives
(DOs) presented in section IV have been partially fulfilled.

X. FURTHER WORK

In further work, it would be interesting to test ourmoderate
fairness mode for an even broader set of test scenarios.
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