Steve Pepper

The typology and semantics of binominal lexemes

Noun-noun compounds and their functional equivalents

Faculty of Humanities

Draft 2020-04-25
Colophon
“Some people seem to think that there is one correct set of optimal comparative concepts, and that comparative concepts should not be based on intuition or chosen “arbitrarily” (in Gilbert Lazard’s words). But this is wrong: There are myriad ways of comparing languages, and thus myriad possible comparative concepts. Which kinds of concepts are the most productive concepts, most likely to yield deeper insights, is a matter for research. In fact, finding good comparative concepts is one of the most important ingredients of the creative process for successful comparative research.”

(Martin Haspelmath, email to the LingTyp mailing list, 2016-01-20)
Contents

Figures xi
Tables xv
Preface xix
Acknowledgements xxi
Abbreviations xxiii
Typographical and naming conventions xxv

1 Towards a comparative concept 1
 1.1 Background 2
 1.1.1 Topic Maps and associative thought 2
 1.1.2 Nominal compounding in Nizaa 5
 1.2 Binominal lexemes as a comparative concept 7
 1.2.1 The limitations of compounding 7
 1.2.2 The potential of binominal lexemes 8
 1.2.3 An onomasiological perspective 10
 1.2.4 Defining the object of study 12
 1.3 Theoretical framework 15
 1.4 Design of the study 17
 1.4.1 An empirical, data-driven approach 17
 1.4.2 Research questions 17
 1.5 Structure of this work 18

2 Earlier work 21
 2.1 Compounding 22
 2.1.1 Bauer (2001) 22
 2.1.2 Arnaud (2004) 29
 2.1.3 Morbo/Comp (2004-2006) 32
 2.1.4 Scalise & Bisetto (2009) 34
 2.1.5 Guevara & Scalise (2009) 37
2.2 Word-formation
 2.2.1 Aikhenvald (2007)
 2.2.2 Štekauer, Valera & Körtvélyessy (2012)

2.3 Prefiguring binominals
 2.3.1 Levi (1978) – Complex nominals
 2.3.2 Rainer (2013) – Relational adjectives, etc.
 2.3.3 Bauer & Tarasova (2013) – Adnominal modification

2.4 Morphological complexity
 2.4.1 Haspelmath & Tadmor (2009) – WOLD
 2.4.2 Urban (2012)

2.5 Chapter summary

3 Meanings, languages and data
 3.1 The meaning list
 3.1.1 Initial extraction of 159 meanings
 3.1.2 Evaluation against five languages
 3.1.3 Expansion to 201 meanings
 3.1.4 Reduction to 100 meanings
 3.1.5 Overall evaluation
 3.2 The language sample
 3.2.1 Types of sample
 3.2.2 The present sample
 3.2.3 Overall evaluation
 3.3 Data collection
 3.3.1 Online database
 3.3.2 Questionnaires
 3.3.3 Dictionaries
 3.3.4 Data cleansing
 3.4 Chapter summary

4 Data annotation
 4.1 Identifying binominals
 4.1.1 Identifying thing-roots
 4.1.2 Identifying thing-affixes
4.2 Determining the head
4.2.1 Binominals consisting of two thing-roots
4.2.2 Binominals consisting of a thing-root and a thing-affix
4.3 Defining the construction
4.4 Data analytics
4.4.1 Data analytics by language
4.4.2 Data analytics by meaning
4.5 Chapter summary

5 Typological classification
5.1 Theoretical prerequisites
5.1.1 Koptjevskaja-Tamm (2002; 2003)
5.1.2 Croft (2003)
5.2 A non-hierarchical alternative
5.3 Binominal types
5.3.1 No additional marker: jxt, cmp, der and cls
5.3.2 One additional marker: prp, gen, adj and con
5.3.3 Two additional markers: dbl
5.4 Unattested strategies
5.4.1 Head-marking correlate of prp (prn)
5.4.2 Head-marking correlate of adj (nml)
5.5 Gradience
5.6 Data analytics
5.6.1 Distribution of binominals by type
5.6.2 Intralingual competition
5.6.3 Compounding as a universal
5.6.4 Genealogical and areal patterning
5.7 Chapter summary

6 Semantic relations
6.1 Theoretical prerequisites
6.1.1 Background
6.1.2 Nominal modification (Bauer & Tarasova 2013)
6.1.3 Metonymy and derivation (Janda 2011)
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>An integrated approach to classification</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A low-level classification</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A high-level classification</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extending Hatcher’s classification</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Classifying binominals</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Bourquifier</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bourque2</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Hatcher-Bourque classification</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Data analytics</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low-level semantic relations</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-level semantic relations</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>Chapter summary</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Typological generalizations</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Word order typology</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constituent order</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistency</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixed languages</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Binominals and possessives</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anchoring and typifying nominal modifier constructions</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparing non-binary typologies</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data analytics</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Strategies and semantics</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intralinguistic patterns</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-linguistic patterns</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Chapter summary</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Conceptual generalizations</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>The two-paths hypothesis</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Head-framing vs. modifier-framing</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Elaboration sites and the relationality cline</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>Species-framing vs. attribute-framing</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Chapter summary</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A model of associative relations</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.1 Metonymic relations (Peirsman & Geeraerts 2006)</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.2 Cognitive relations (Koch and Blank)</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3 Topic Maps: roles and granularity</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.4 Putting it all together: the PHAB model</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.5 Chapter summary</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Conclusion</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.1 Summary</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2 Contribution to science</td>
<td>334</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2.1 Typology</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2.2 Semantics</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2.3 Methods</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.3 Further research</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.4 Envoie</td>
<td>346</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>347</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td>377</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Languages</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Sources</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Meanings</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Strategies and constructions</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Binominal data set</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F. Database structures</td>
<td>479</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Questionnaire</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. Additional tables</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name index</td>
<td>493</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language index</td>
<td>499</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subject index</td>
<td>505</td>
<td></td>
</tr>
</tbody>
</table>
Figures

Figure 1: The TAO model ... 3
Figure 2: The anatomy of an association .. 3
Figure 3: The five basic onomasiological types 11
Figure 4: Extent of compounding in 13 languages 32
Figure 5: Classifying compounds (Bisetto & Scalise 2005) 35
Figure 6. Classifying compounds (Scalise & Bisetto 2009) 36
Figure 7: Scales of preference in compounding (Guevara & Scalise 2009) 40
Figure 8: Extract from questionnaire (Štekauer et al 2012) 45
Figure 9: Pepper as a loanword in WOLD 52
Figure 10: SQL query used to extract meanings from WOLD 63
Figure 11: View of the table 'meaning' in its original form 64
Figure 12: View of the table 'meaning' showing frequencies 71
Figure 13: Simplified view of the table 'word' showing various constructions 71
Figure 14: Number of constructions as a function of number of meanings 72
Figure 15: Cross-linguistic representation of meanings 82
Figure 16: Distribution of meanings across semantic fields 83
Figure 17: Distribution of meanings across semantic types 83
Figure 18: Areal distribution of language sample 88
Figure 19: Extract of the data after import 93
Figure 20: Subset of the Polish data ... 101
Figure 21: Givón’s scale of temporal stability 104
Figure 22: Subset of the Polish binominal data showing constructions 115
Figure 23: Distribution of data by language and meaning 117
Figure 24: Basic data summary (by language) 118
Figure 25: Morphological complexity (A/S) by language 120
Figure 26: Binominal frequency (NN/S) by language 121
Figure 27: Basic data summary (by meaning) 123
Figure 28: Vocabulary sizes across semantic fields 124
The typology and semantics of binominal lexemes

Figure 29: Morphological complexity (A/S) by meaning .. 125
Figure 30: Binominal frequency (NN/S) by meaning ... 126
Figure 31: Binominal frequency (NN/A) by meaning ... 127
Figure 32: Major structural types of PNPs in Europe .. 130
Figure 33: Strategies for relating concepts and their diachronic relationships 137
Figure 34: Typological classification of binominal lexemes 141
Figure 35: Degree of fusion (Bybee 1985) .. 142
Figure 36: Formal classification showing gradient phenomena 161
Figure 37: Number of binominals by type .. 168
Figure 38: Areal distribution of binominal types .. 168
Figure 39: Preferred binominal types by number of languages 170
Figure 40: Geographical distribution of binominal type preferences 171
Figure 41: Intralingual competition .. 171
Figure 42: Correlations between binominal types ... 172
Figure 43: Attested, common and dominant binominal types 174
Figure 44: The Indo-European spectrogram .. 176
Figure 45: The Indo-European scatter plot .. 177
Figure 46: Hatcher’s reworking of Jespersen’s classification 198
Figure 47: Bourque’s template for POSSESSION .. 216
Figure 48: The Bourquifier – FAMILY ESTATE .. 217
Figure 49: The Bourquifier – BEESWAX ... 218
Figure 50: The Bourquifier – OAK TREE ... 230
Figure 51: The Bourquifier – BEAR CUB ... 230
Figure 52: The Bourquifier – SUNBURN ... 232
Figure 53: Boathouse words ... 233
Figure 54: The Bourquifier v 3.0 .. 235
Figure 55: Overall frequency of low-level semantic relations 238
Figure 56: Number of languages that exhibit a particular relation 240
Figure 57: Number of meanings that exhibit a particular relation 241
Figure 58: Number of binominal types that exhibit each relation 242
Figure 59: Low-level semantic relations across binominal types 243
Figure 60: Semantic relations and semantic types .. 243
Figure 61: How low-level relations vary across semantic fields 244
Figure 62: Binominals, languages, meanings and strategies by htype 246
Figure 63: High-level semantic relations across binominal types 247
Figure 64: How high-level relations vary across semantic types 249
Figure 65: How high-level relations vary across semantic fields 249
Figure 66: Constituent order by binominal type .. 255
Figure 67: Constituent order in compounds by area 256
Figure 68: Distribution of right-headed and left-headed binominals 258
Figure 69: Grades of similarity across anchoring and binominal strategies 276
Figure 70: Residuals for cells in the Polish contingency table 281
Figure 71: Non-normal distribution of marking across languages 285
Figure 72: Normal distribution of marking across meanings 287
Figure 73: The Bourquifier – WINDMILL ... 295
Figure 74: Conceptual variability of head and modifier 302
Figure 75: Scatterplot of heads and modifiers .. 304
Figure 76: Heatmap of heads and modifiers by semantic type 305
Figure 77: Species- vs. attribute-framing ... 312
Figure 78: Semantic relations as a hierarchy ... 314
Figure 79: The anatomy of an association ... 324
Figure 80: The PHAB model of associative relations 328
Tables

Table 1: Croft’s grid of basic cross-linguistic constructions
Table 2: Language sample (Bauer 2001)
Table 3: Order of noun-adjective and noun-modifier (Bauer 2001)
Table 4: Noun + Adjective tetrachoric tables
Table 5: Order of noun-possessor and noun-modifier (Bauer 2001)
Table 6: Noun + Possessor tetrachoric tables
Table 7: Consistency of head-modifier ordering (Bauer 2001)
Table 8: Consistency of head-modifier ordering (Pepper 2015)
Table 9: Languages covered in Arnaud (2004)
Table 10: Onomasiological cross-linguistic comparison (Arnaud 2004)
Table 11: Languages represented in Morbo/Comp
Table 12: Morphological classification (Štekauer et al. 2012)
Table 13: Examples of WOLD meanings
Table 14: Binominal constructions yielded by NOSTRIL
Table 15: Additional constructions yielded by EARLOBE
Table 16: Constructions lost with a sample of 84 meanings (extract)
Table 17: Meanings represented by lost constructions
Table 18: Final set of 100 meanings
Table 19: Complete list of languages in the database
Table 20: Genetic distribution of languages
Table 21: Areal distribution of languages
Table 22: Preliminary classification of structural types
Table 23: Overall database statistics
Table 24: Types of PNP and binominal
Table 25: Reordered binominal types
Table 26: Preferred binominal types by language
Table 27: Levi’s (1978) classification applied to six binominal types
Table 28: Bourque’s semantic relations
Table 29: Variety of word-formation types – professions 221
Table 30: Summary of changes to Bourque’s system 234
Table 31: Hatcher-Bourque classification 236
Table 32: Most frequent low-level semantic relations 241
Table 33: Summary of high- and low-level semantic relations 245
Table 34: Constituent order pace Morbo/Comp 254
Table 35: Languages with significant degree of mixed order 261
Table 36: Strategies and high-level relations in Mapudungun 263
Table 37: Strategies and high-level relations in Greek 263
Table 38: Strategies and high-level relations in Barain 263
Table 39: Strategies and low-level relations in Barain 264
Table 40: Strategies and low-level relations in Barain (rev.) 265
Table 41: Heine’s set of eight event schemes 267
Table 42: Anchoring/non-anchoring comparison table 270
Table 43: Noun-possessor tetrachoric tables (Pepper 2015) 272
Table 44: Pepper scale for non-binary typological comparison 273
Table 45: Comparing anchoring and binominal strategies 275
Table 46: Koch’s motivational grid 279
Table 47: Strategies and high-level relations in Polish 280
Table 48: χ^2-squared and Fisher tests for 22 languages 283
Table 49: Number of markers per binominal type 283
Table 50: Coding of binominals for number of markers 284
Table 51: Coding of languages for weighted average of markers (excerpt) 284
Table 52: Coding of meanings for weighted average of markers (excerpt) 284
Table 53: Semantic relations in Nizaa 294
Table 54: Motivational grid for Kalamang with row sums 297
Table 55: Simplified motivational grid for Kalamang 298
Table 56: Competition between cmbR and conR in Kalamang 299
Table 57: Conceptual variation in heads and modifiers 301
Table 58: Salience of elaboration sites (by relation) 307
Table 59: Salience of elaboration sites (by role) 308
Table 60: Components that elaborate the concept HOUSE 308
Table 61: Peirsman & Geeraerts’ metonymical patterns 317
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Bourquifier template for PRODUCTION</td>
<td>318</td>
</tr>
<tr>
<td>63</td>
<td>Metonymic patterns and semantic relations</td>
<td>318</td>
</tr>
<tr>
<td>64</td>
<td>Blank’s ten cognitive relations</td>
<td>322</td>
</tr>
<tr>
<td>65</td>
<td>Association types in the Italian Opera Topic Map</td>
<td>326</td>
</tr>
<tr>
<td>66</td>
<td>Morbo/Comp database structure</td>
<td>483</td>
</tr>
<tr>
<td>67</td>
<td>Language sample (Štekauer, Valera & Körtvélyessy 2012)</td>
<td>484</td>
</tr>
<tr>
<td>68</td>
<td>The original 201 meanings (alphabetical order)</td>
<td>485</td>
</tr>
<tr>
<td>69</td>
<td>The original 201 meanings (“binominality” order)</td>
<td>487</td>
</tr>
<tr>
<td>70</td>
<td>Constructions lost with a sample of 84 meanings</td>
<td>489</td>
</tr>
</tbody>
</table>
Acknowledgements

I owe a major debt of thanks to my supervisors, Professor Emeritus Rolf Theil and Professor Åshild Næss, both of the University of Oslo: Rolf, for believing in my somewhat unorthodox ideas, and for his polyglot knowledge of a phenomenal number of languages; Åshild for her attention to terminological detail and for trying, usually in vain, to make me stick to my schedule. I also thank the Department of Linguistics at the University of Oslo, in particular Helge Lødrup and Andreas Sveen, for betting on such an ageing horse.

The initial inspiration for this research stems from my work with Topic Maps, and I would like to take this opportunity to acknowledge all of my co-conspirators in that venture, in particular Steve Newcomb. The world may not yet have appreciated the value of what we were doing, but history will be our judge.

In the field of linguistics, three eminent scholars, Bill Croft, Martin Haspelmath and Ron Langacker, have provided much of my inspiration. I take my hat off to them, for their integrity and for the quality of their respective life works.

In addition to the above, I have drawn particular inspiration from the work of Pierre Arnaud, Laurie Bauer, Yves Bourque, Anna Granville Hatcher†, Laura Janda, Masja Koptjevskaja-Tamm, Pavol Štekauer and Mathias Urban. Many thanks to all of you. I hope any criticisms I have voiced are taken in the spirit in which they are intended: as a reflection of my admiration, and a sincere desire to advance our scientific understanding of language.

Many colleagues provided the encouragement I needed from time to time to keep going through the ups and downs of writing a dissertation; they include Kjell-Magne Yri, Sonia Cristofaro, Martin Haspelmath (again), Pavol Štekauer (again) and Pierre Arnaud (again). I owe Pierre a special debt of gratitude for being my sparring partner as I developed the Hatcher-Bourque classification and the PHAB model.

Thanks also to Bård Uri Jensen and Natalia Levshina for checking my statistics, to Robert Forkel for helping me decipher the WOLD data, and to Lynn Rosentrater for generating the maps.
Many people have contributed data to my database, and I thank them all profusely.\footnote{Especial thanks to the contributor who wrote “I’ve learnt much from your project and collecting the data for you”. As typologists we rely immensely on language documenters. It’s nice to know that the debt is not always one-sided.} Without you guys, I would not have had the empirical basis on which to develop my ideas. I acknowledge you in Appendix B, Sources, along with the language(s) you assisted me with. You are, in alphabetical order:

My biggest debt of all is to my life partner, Sylvia Schwab, without whose love, understanding and encouragement this work would never have seen the light of day in any form whatsoever.
Abbreviations

Note: Abbreviations whose description contains a page reference (e.g. 740) denote postbases in Central Yupik (ESU); references are then to Jacobson (2013).

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1st person</td>
</tr>
<tr>
<td>3</td>
<td>3rd person</td>
</tr>
<tr>
<td>ABL</td>
<td>ablative</td>
</tr>
<tr>
<td>ABS</td>
<td>absolute</td>
</tr>
<tr>
<td>ABST</td>
<td>abstract</td>
</tr>
<tr>
<td>ACC</td>
<td>accusative</td>
</tr>
<tr>
<td>ACT</td>
<td>action</td>
</tr>
<tr>
<td>ADIZ</td>
<td>adjectivizer</td>
</tr>
<tr>
<td>ADLT</td>
<td>adult</td>
</tr>
<tr>
<td>AG</td>
<td>agreement marker</td>
</tr>
<tr>
<td>AGT</td>
<td>agent</td>
</tr>
<tr>
<td>AL</td>
<td>alienable possession</td>
</tr>
<tr>
<td>ANAPH</td>
<td>anaphoric</td>
</tr>
<tr>
<td>ANTIP</td>
<td>antipassive</td>
</tr>
<tr>
<td>APPL</td>
<td>applicative</td>
</tr>
<tr>
<td>AQ3</td>
<td>thing that resembles N in some respect (740)</td>
</tr>
<tr>
<td>AR(AQ)</td>
<td>little piece of N (741)</td>
</tr>
<tr>
<td>ASS</td>
<td>associative</td>
</tr>
<tr>
<td>ATTR</td>
<td>attributive</td>
</tr>
<tr>
<td>AUG</td>
<td>augmentative</td>
</tr>
<tr>
<td>BN</td>
<td>bound noun</td>
</tr>
<tr>
<td>CENGAQ</td>
<td>one with a small N (748)</td>
</tr>
<tr>
<td>CIRC</td>
<td>circumfix</td>
</tr>
<tr>
<td>CL</td>
<td>class marker</td>
</tr>
<tr>
<td>CLF</td>
<td>classifier</td>
</tr>
<tr>
<td>COLL</td>
<td>collective</td>
</tr>
<tr>
<td>CON</td>
<td>connective</td>
</tr>
<tr>
<td>CUUN</td>
<td>device for V-ing; device associated with N (758)</td>
</tr>
<tr>
<td>DAT</td>
<td>dative</td>
</tr>
<tr>
<td>DEF</td>
<td>definite</td>
</tr>
<tr>
<td>DEP</td>
<td>dependency marker</td>
</tr>
<tr>
<td>DER</td>
<td>derivational affix</td>
</tr>
<tr>
<td>DET</td>
<td>determiner</td>
</tr>
<tr>
<td>DEV</td>
<td>devalued</td>
</tr>
<tr>
<td>DIM</td>
<td>diminutive</td>
</tr>
<tr>
<td>DUAL</td>
<td>dual</td>
</tr>
<tr>
<td>ERG</td>
<td>ergative</td>
</tr>
<tr>
<td>ESS</td>
<td>essive</td>
</tr>
<tr>
<td>F</td>
<td>feminine</td>
</tr>
<tr>
<td>FAM</td>
<td>familiar</td>
</tr>
<tr>
<td>GEN</td>
<td>genitive</td>
</tr>
<tr>
<td>GNL</td>
<td>general</td>
</tr>
<tr>
<td>ILITAQ</td>
<td>device for protecting N (764)</td>
</tr>
<tr>
<td>INAL</td>
<td>inalienable possession</td>
</tr>
<tr>
<td>INDF</td>
<td>indefinite</td>
</tr>
<tr>
<td>INF</td>
<td>infinitive</td>
</tr>
<tr>
<td>INS</td>
<td>instrumental</td>
</tr>
<tr>
<td>IRIN</td>
<td>forms names of weekdays (767)</td>
</tr>
<tr>
<td>LAT</td>
<td>lative</td>
</tr>
<tr>
<td>LE</td>
<td>linking element</td>
</tr>
<tr>
<td>LEK</td>
<td>one with N or Ns, one having N (786)</td>
</tr>
<tr>
<td>LIG</td>
<td>ligature</td>
</tr>
<tr>
<td>LK</td>
<td>linker</td>
</tr>
<tr>
<td>LLEQ1</td>
<td>former N (796)</td>
</tr>
<tr>
<td>LOC</td>
<td>locative</td>
</tr>
<tr>
<td>M</td>
<td>masculine</td>
</tr>
<tr>
<td>NFE</td>
<td>noun-forming enclitic</td>
</tr>
<tr>
<td>NH</td>
<td>nonhuman</td>
</tr>
<tr>
<td>NMLZ</td>
<td>nominalizer</td>
</tr>
<tr>
<td>NOM</td>
<td>nominative</td>
</tr>
<tr>
<td>NONF</td>
<td>nonfinite</td>
</tr>
<tr>
<td>NONS</td>
<td>nonsubject</td>
</tr>
<tr>
<td>OBL</td>
<td>oblique</td>
</tr>
<tr>
<td>OWN</td>
<td>owner</td>
</tr>
<tr>
<td>PAUC</td>
<td>paucal</td>
</tr>
<tr>
<td>PERF</td>
<td>perfective</td>
</tr>
<tr>
<td>PER</td>
<td>pertensive</td>
</tr>
<tr>
<td>PL</td>
<td>plural</td>
</tr>
<tr>
<td>POSS</td>
<td>possessive</td>
</tr>
<tr>
<td>PREF</td>
<td>prefix</td>
</tr>
<tr>
<td>PREP</td>
<td>preposition</td>
</tr>
<tr>
<td>PROP</td>
<td>proprietary</td>
</tr>
<tr>
<td>PROX</td>
<td>proximate</td>
</tr>
<tr>
<td>PSR</td>
<td>possessor</td>
</tr>
<tr>
<td>PST</td>
<td>past</td>
</tr>
<tr>
<td>Code</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>PURP</td>
<td>purposive</td>
</tr>
<tr>
<td>QLIQ</td>
<td>the one located far in the area of space denoted by N (848)</td>
</tr>
<tr>
<td>QUQ</td>
<td>one that is V, one that is like N (851)</td>
</tr>
<tr>
<td>REC</td>
<td>receptacle</td>
</tr>
<tr>
<td>RED</td>
<td>reduplication</td>
</tr>
<tr>
<td>REL</td>
<td>relative</td>
</tr>
<tr>
<td>RELN</td>
<td>relational noun</td>
</tr>
<tr>
<td>SG</td>
<td>singular</td>
</tr>
<tr>
<td>SGLT</td>
<td>singulative</td>
</tr>
<tr>
<td>SPEC</td>
<td>specific</td>
</tr>
<tr>
<td>STC</td>
<td>construct state</td>
</tr>
<tr>
<td>SUF</td>
<td>suffix</td>
</tr>
<tr>
<td>SUP</td>
<td>superessive</td>
</tr>
<tr>
<td>TAQ2</td>
<td>thing of/pertaining to N (874)</td>
</tr>
<tr>
<td>TMP</td>
<td>temporal</td>
</tr>
<tr>
<td>UAQ</td>
<td>imitation N, thing similar to or reminiscent of N (890)</td>
</tr>
<tr>
<td>UNPOSS</td>
<td>unpossessed</td>
</tr>
<tr>
<td>YAGAQ</td>
<td>baby N, little N (903)</td>
</tr>
<tr>
<td>YAQ</td>
<td>meaning difficult to determine (905)</td>
</tr>
<tr>
<td>YNG</td>
<td>young</td>
</tr>
</tbody>
</table>
Typographical and naming conventions

The following typographical conventions are used in this work:

- **N PREP N, Mod.ADJZ Head** – a (binominal) construction.
- **[Gloss]** – a morpheme gloss.

 Note: Leipzig Glossing Rules are followed, EXCEPT THAT, for improved readability, I use periods instead of hyphens for morpheme breaks (Rule 2), and colons instead of periods for one-to-many correspondences (Rule 4). Where hyphens appear in glosses, they reflect the presence of a hyphen in the original orthography.
- **MEANING** – a concept or language-independent meaning, in particular one that belongs to the set of 100 meanings used as a basis for the data collection.
- **vernacular** – a linguistic item in an object language; in lower case throughout, irrespective of language-specific casing conventions.
- **DEU** – an ISO 639-3 language code.

 Note: In my database languages are identified by glottoCode, as defined in Glottolog 2.7 (Hammarström et al. 2016). However, the corresponding ISO 639-3 code is used in the text and in tables since it is both shorter and more transparent. Languages can be looked up by ISO code in Appendix A (page 379) and by name in the Index of Languages (page 499). To find the ISO code for a language in the database, use either the index or Appendix B (page 383). One language, Caijia does not have an ISO code; to save space in tables I have taken the liberty of assigning it the unused code CAI, but database applications should use the glottoCode caij1234.
- **Page numbers given in the form page ## (as above) refer to the present work; those given as p. ## refer to a page in another, recently referenced work.**
- **code** – file names, variable names and computer code, including SQL queries and R scripts (R Core Team 2018).
- **‘She’ is used throughout for the gender neutral pronoun in preference to s/he.**

Glottolog 2.7 is taken as the authority for language names and genetic affiliations (except for Rif Tarifit, which has been assigned the name Tarifiyt-Beni-Iznasen-Eastern Middle Atlas). Where I know of a pending update in Glottolog, as is the case with Äiwoo (formerly Ayiwo), I use the updated form. For languages mentioned in the text I use the full name as given in the appendices and index, except in the case of familiar languages such as Eng., Ger., Rus., Jap. etc. Some principles for language names are proposed in Haspelmath (2017a).
Chapter 1. Towards a comparative concept

1 Towards a comparative concept

The primary goal of this work is to present a functional-typological, empirically-based, cross-linguistic account of *binominal lexemes*. These are lexical items that consist primarily of two nominal constituents and whose function is to name a (complex) concept that involves an unstated (or underspecified) relation between two entities.\(^1\) The most familiar strategy that serves this purpose is the Germanic Noun-Noun Compound, e.g. German *eisen.bahn* [iron.way], but there are many others, including French Prepositional constructions – *chemin de fer* [road PREP iron]; Turkish Izafet constructions – *demir yol.u* [iron road.3SG]; and Russian Relational Adjective constructions – *želez.naja doroga* [iron.ADJZ road]. All of the above combine the meanings IRON and ROAD/WAY to denote the meaning RAILWAY, but do so using quite different morphosyntactic strategies.

Starting from a set of 100 meanings,\(^2\) I repurpose data from the World Loanword Database (WOLD) – supplemented by data collected specifically for this project – to develop a classification of morphosyntactic strategies (four of them exemplified above), and a two-tiered taxonomy of semantic relations. Both of these are applied to a set of nearly 4,000 binominals (as I call them for short) from 106 languages, in order to reveal linguistic universals. My framework is that of traditional Greenbergian typology, as elaborated by Bill Croft in his theory of Radical Construction Grammar (2001). The annotation of the data, however, follows the principle of framework-free grammar (Haspelmath 2015) – that languages should be described in their own terms and not in terms of aprioristic assumptions – and should therefore be amenable to linguists of all theoretical persuasions.

While the main purpose of the study is to chart the morphosyntactic and semantic diversity of binominal lexemes, a secondary goal is to develop a cross-linguistically valid classification of associative relations that has applicability beyond the immediate scope of binominals, to metonymy, lexical semantics and beyond. As such, I make a contribution to cognitive linguistics as well as linguistic typology.

\(^1\) A more precise definition of binominal lexeme is developed in §1.2.4.

\(^2\) The term ‘meaning’ as used here reflects the usage in WOLD. See §3.1.
1.1 Background

In this introductory chapter I describe the genesis of the present study in personal terms and, at the risk of taking my linguist readers out of their comfort zone, I start in the context of my earlier work in the field of information technology. Hopefully the relevance will soon become apparent; if not, it will definitely do so later.

1.1.1 Topic Maps and associative thought

Before becoming a linguist I devoted ten years of my life to developing, promoting and implementing a radically new approach to information management called Topic Maps (Pepper 2002; 2010a). Topic Maps\(^1\) is based on a simple model that emerged from an attempt to formalize the structure implicit in finding aids such as back-of-book indexes, glossaries and thesauri, all of which involve some form of knowledge representation. (I return to this topic in §8.3.) The core of the Topic Maps model consists of topics, associations and occurrences (hence the title of my 2002 paper, *The TAO of Topic Maps*). TOPICS represent the subjects of interest in the domain covered by the topic map; ASSOCIATIONS represent relationships between those subjects; and OCCURRENCES are a special kind of association that links information about the subject to the topic that represents it.

For example, in the domain of Italian opera, some key subjects are the composer Puccini, his operas *Tosca* and *Madame Butterfly*, and the city Lucca, where he was born, all of which can be represented by topics. Various relationships between these subjects, such as the fact that *Tosca* and *Madame Butterfly* were composed by Puccini, or that the composer was born in Lucca, can be expressed using associations; and information that pertains to these subjects, such as a biography of Puccini, a map of Lucca, or the libretto of *Madame Butterfly*, can be linked to the relevant topics as occurrences (Figure 1).

Topics, associations and occurrences can all be classified by type: Puccini can be assigned to the type ‘person’ or ‘composer’; the nature of his relationship with *Madame Butterfly* specified as ‘composed by’; information resources characterized as ‘biography’, ‘libretto’, ‘map’, and so on. The concepts TOPIC TYPE, ASSOCIATION TYPE and OCCURRENCE TYPE are all part of the core Topic Maps model (and incidentally, they are also topics).

\(^1\) It is the convention to use initial capitals to refer to the technology itself or the ISO specification (in the singular; hence, “Topic Maps *is*”), and all lower case when referring to the document-like artefacts, a kind of semantic map, that the standard describes (hence, “topic maps *are*”).
The relationship between a topic and its type is actually a built-in association type (‘instance of’), which is privileged in the model because of its ubiquity and importance in knowledge modelling. Another predefined association type, ‘subtype of’, represents the relationship between types at different levels of schematicity, such as those between the topic types ‘opera’→‘work of art’→‘product’, or between the association types ‘composed by’→‘created by’→‘produced by’ (Figure 2). Notice that the kind (or type) of role played by a topic in an association (here, ‘work’ and ‘composer’) can also be specified explicitly. There is more to the model, including facilities for handling context, naming and identification, but these need not concern us here.
In my work with Topic Maps I was continually struck by parallels with natural language. On reflection, this should not come as any surprise. After all, Topic Maps is a way of representing human knowledge, and natural language – in addition to its others functions – is also a form of knowledge representation. I often wondered how the one might inform our understanding of the other, and in particular, how an understanding of language might inform the ways in which we use Topic Maps, and the further development of the standard. Viewing computer-oriented models such as this from the perspective of language seemed to me a much more exciting and worthwhile endeavour than the mainstream approach of viewing language from a computational perspective.

Some of the parallels are obvious. Topics are like nouns in that they prototypically denote objects or ‘things’, while associations are like verbs in that they represent various kinds of relationship; associations of different arities (unary, binary, ternary) resemble clauses of different valencies (intransitive, transitive, ditransitive); role types correspond (albeit at a finer level of granularity) to semantic roles (agent, patient, etc.); the ability to view and traverse an association from different directions is reminiscent of profiling in active and passive constructions; the ability to reify associations (and treat them as topics) is analogous to nominalization; and so it goes on.

The Topic Maps model turned out to be extremely intuitive and very easy for users to understand. I believe the reason for this is because it reflects the way people think. This was eloquently expressed by Vannevar Bush in 1945 in his seminal paper, As we may think:

> The human mind…operates by association. With one item in its grasp, it snaps instantly to the next that is suggested by the association of thoughts, in accordance with some intricate web of trails carried by the cells of the brain. It has other characteristics, of course; trails that are not frequently followed are prone to fade, items are not fully permanent, memory is transitory. Yet the speed of action, the intricacy of trails, the detail of mental pictures, is awe-inspiring beyond all else in nature (Bush 1945).

Bush’s paper drew attention to the importance of associative relations in the field of information management, where hierarchical classification had hitherto ruled the roost. It inspired much subsequent work on hypertext, including the ideas of Ted Nelson (who coined the term hypertext), Doug Engelbart (who implemented it in Augment) and Bill Atkinson (developer of Apple’s Hypercard application), and eventually it played a central role in Tim Berners Lee’s invention of the World Wide Web (Pepper 2007). The models that underlie today’s cutting-edge semantic
technologies – such as RDF (Shadbolt & Gibbins 2010) and Topic Maps (Pepper 2010a) – are based on associative relations between entities and directly or indirectly inspired by Bush and his reflections on how the mind works.¹

So what does all of this have to do with binominals? Well, it explains my interest in compounding, in particular noun-noun compounding, as I explain below, and it plays an important role in the discussion of associative relations in Chapter 8.

1.1.2 Nominal compounding in Nizaa

Fast forward to 2010. At the ripe old age of 57, Steve has finally figured out what to be when he grows up: he wants to be a linguist. Inspired by his encounter with Rolf Theil, a professor of linguistics at the University of Oslo with an extraordinary ability to infect his students with the passion he has for his subject, Steve has finished a BA and is now casting around for a suitable thesis topic for his MA in Language Documentation and Description at the School of Oriental and African Studies in London. Given the focus of the course, he decides to write about a “lesser-studied” language and approaches Rolf with the idea of using the latter’s unpublished field notes on the Cameroonian language Nizaa, collected during the 1980s. Rolf agrees and suggests a list of possible topics, including one which immediately resonates: nominal compounds in Nizaa. “There are quite a few,” writes Rolf, “and the weird thing is that there are both head first and head last compounds” (p.c. 2010-03-25, my translation). The presence of both left- and right-headed compounds is very unusual cross-linguistically and thus deserving of study.²

It struck me that nominal compounds have something in common with Topic Maps. A noun denotes a thing, which would be represented in a topic map by a topic (like the topics ‘person’ and ‘opera’ in Figure 2). Furthermore, there is a relationship between the two constituents of a compound that resembles an association (such

¹ This despite my claim (Pepper 2008) that some of Bush’s ideas led people up the garden path.
² The other topics suggested by Rolf, for the benefit of anyone on the look-out for an MA topic, were:
(1) Verbal inflection in Nizaa The language has primarily aspectual categories, plus something that resembles free/conjunct in Fulfulde. (2) Verbal derivation in Nizaa Many of the same categories as in Fulfulde, and then some. (3) Noun inflection in Nizaa The language has primarily basic form, locative, plural and something that is either “definite” or “specific”. The latter will likely be the most challenging; it is expressed through a low tone on the end of the word. (5) Word order in Nizaa Lots of fun to be had here. The basic structure is SVO, but with SOV when the verb is negative, and moreover with SxOV (x = aux). (6) Adjectives in Nizaa Like many other languages it doesn’t have that many, but it is interesting to study the kind of semantic domains they cover.
as ‘composed by’) between two topics. But that relationship is unstated and therefore implicit; it is therefore more like a generic, untyped association: the “see also” relation in a back-of-book index, or the “related term” (RT) relation in a thesaurus. The research question I posed was: Could an understanding of the nature of the relationships inherent in Nizaa compounds help explain the presence of two different compounding strategies in Nizaa?

It turned out that it could. Rolf’s handwritten word lists yielded over 500 likely compounds, 200 or so of them noun-noun compounds, with a 7:5 split between head-initial and head-final, thus confirming the two original claims. An analysis of the semantic relations then led to the striking discovery that while left-headed compounds exhibit one set of relations, right-headed compounds exhibit another and completely orthogonal set of relations (see Pepper 2010b: 41; 2016: 300). In all, 15 different kinds of semantic relation were found among left-headed compounds and seven among right-headed compounds, but none of these relations occurred across both types of compound. In other words, left-headed compounds are built from a completely different set of semantic relations than right-headed compounds. The findings can be summarized as follows:

- In right-headed compounds, relations labelled PART, KIN and POSSESSION predominate, e.g. cam bʉʉ [finger head] ‘fingertip’ (part-whole) and dāāŋ njew [horse iron] ‘bit’ (possession).

- In left-headed compounds, there is a greater range of relations, many of which are more-or-less attributive, including LOCATION, RESEMBLANCE, PURPOSE, OCCUPATION and MATERIAL, e.g. nii cūn [person tree] ‘carpenter’ (purpose or occupation) and cam ŋunnam [finger child:DIM] ‘little finger’ (resemblance).

An analysis of these results within the framework of Cognitive Grammar led to the postulation of my “two-paths hypothesis”: namely that the two types of compound in Nizaa reflect two quite different “paths of mental access” to the target concept: the one, in right-headed compounds, via a related concept, exploits what Langacker (1993) calls our “reference point ability”; the other, in left-headed compounds, via a superordinate concept, employs our general cognitive ability to categorize and sub-categorize. Thus FINGERTIP is conceptualized via the more salient concept of FINGER using a relation of contiguity, while CARPENTER is conceptualized as a subtype of the more salient concept of PERSON, suitably restricted by reference to the material used to carry out the profession.

In Pepper (2010b:51) I also hypothesized that “both compounding strategies are in fact employed by most – if not all – languages; they just do not usually surface
quite so clearly [in the grammar] as in Nizaa”, and furthermore that “the same duality probably … underlies the widely accepted distinction between subordinate and attributive compounds” proposed by Bisetto & Scalise (2005) (see Pepper 2016 for further development of the latter idea).

For a naïve MA student, this seemed like a major discovery; something that was worth following up in a doctoral project. For, if the study of compounding in a single, little known African language could reveal such an insight, what might not a large-scale cross-linguistic study of compounding bring to light?

1.2 Binominal lexemes as a comparative concept

1.2.1 The limitations of compounding

Such was the genesis of the present project, whose initial goals were “to document the cross-linguistic diversity of phenomena in nominal compounding, to test existing hypotheses regarding universals of compounding, and where possible to propose new generalizations” (from the original project description). Phenomena to be studied included “formal marking, head position (and its correlation with constituent order in the clause and noun phrase) and semantic relations.”

Despite the enormous interest in compounding over recent decades, culminating in the publication of the Oxford Handbook of Compounding (Lieber & Štekauer 2009a), very little typological work had been done. The one notable exception is Bauer’s (2001) study of a genealogically and areally well-balanced sample of 36 languages (§2.1.1). Therefore, as a journeyman piece, and to test the project idea, my project plan called for a pilot study to replicate Bauer’s work. This was in the spirit of the “re-doing typology” debate in Linguistic Typology 10(1), except that I chose to focus on nominal compounding rather than compounding in general. The reason for this departure from Bauer’s design was a feeling that neither his paper nor other cross-linguistic studies of compounding, specifically Guevara & Scalise (2009) and Štekauer, Valera & Körtvélyessy (2012), had lived up to their potential in terms of producing new and compelling insights. My preliminary diagnosis for this was that the attempt to cover the whole gamut of compounding had obscured some really interesting cross-linguistic patterns (see §2.1). Restricting the object of study to noun-noun compounds (or more precisely, determinative noun-noun compounds, see below) might be more fruitful, and would also fit better with the Topic Maps-inspired approach I was thinking of taking.
The pilot study provided interesting insights into the issues involved in replicating a typological survey, but it also revealed the need to define the object of study in terms of a semantically or functionally defined ‘comparative concept’. It was apparent that the consequence of not doing so would be to restrict the scope of the investigation to something formally precise and uncontroversial but rather innocuous and uninteresting (e.g. “root compounds”), and/or risk having to continually defend a very broad notion of compounding against those who will argue that most of my examples are not compounds at all but something else. In other words, a new approach was required.

1.2.2 The potential of binominal lexemes

My intention had all along been to conduct a typological study in line with the kind of best practices advocated by functionalists like Matthew Dryer and Martin Haspelmath. One such best practice is to start out from a comparative concept that is not based on formal, language-specific descriptive categories (Haspelmath 2010). My starting point was noun-noun compounds, but it is well-known that compounding is notoriously hard to define, especially cross-linguistically (see inter alia Bauer 2001; Lieber & Štekauer 2009b; Bauer 2017). Linguists disagree profoundly on what is and what is not a compound. An extreme example of this was Paolo Ramat’s statement in his opening keynote at the Word-Formation Theories II conference in Košice, Slovakia in June 2015 that Ger. Regierungschef ‘head of government’ is not a “true” compound because it contains a linking element, -s-. Other linguists dispute whether a construction involving prepositions, such as Fr. chemin de fer, is a compound (some might admit them as compound phrases or prepositional compounds, Bauer 2001: 705), and no-one, to my knowledge, has ever entertained the idea that Rus. železnaja doroga might be a compound.

Now, what interests me, as is surely apparent by now, is the way in which speakers bring together two nominal concepts in order to name a new concept. That being the case, a lexical unit like chemin de fer is just as interesting as a “true” compound like Eng. railway, Ger. eisenbahn and Nor. jernbane. Furthermore, English solar energy and Czech sluneční energie [sun:ADJZ energy] are just as relevant as Nor. solenergi [sun:energy] and Ger. sonnenenergie [sun:LE:energy], since they involve the same semantic relation, Ř ("from" or “produced by”), between the same two concepts – SUN and ENERGY – to denote the same target concept – SOLAR ENERGY,

1 Paolo has since informed me that he was being deliberately provocative, but the point stands.
and thus presumably involve the same underlying associative processes. All of these examples can be reduced to three basic schemas: **NN, N PREP N** and **N.ADJZ N**. What they have in common (in addition to their function as naming units) is that their major constituents represent two nominal concepts (RAIL, IRON, WAY; SUN, ENERGY; GOVERNMENT, CHIEF) and that the relation is unstated (or underspecified). This realization offered a convenient way out of the above-mentioned definitional impasse: I could simply use a cognitive-functional comparative concept instead of the formal concept of noun-noun compound. So if we now ask ourselves, what is the primary function of noun-noun compounds, the answer seems to be: to provide generic names for complex concepts, utilizing the names of two existing concepts, between which there is an implicit, but unstated, relation. Noun-noun compounding could thus be characterized as a **binominal naming strategy** and my project would become, in informal terms, a cross-linguistic study of noun-noun compounds and their functional equivalents, with my comparative concept ‘binominal lexeme’ (or just ‘binominal’), provisionally defined as:

1. **binominal lexeme** (provisional)

 a lexical item that consists primarily of two nominal constituents and whose function is to name a complex concept that involves an unstated (or underspecified) relation between two entities

The term ‘lexeme’ is used in the sense of a lexical item that has a naming, rather than a descriptive function, cf. Booij (2009). Štekauer prefers the term ‘naming unit’ for what is essentially the same thing:

> I consistently use the term *naming unit* when referring to units generated within my approach to word-formation. This term was first suggested by V. Mathesius (1975). In my approach, it substitutes for terms like *word, lexeme, lexical unit*, etc. because of their inconsistent use and varying connotations in linguistic literature (Štekauer 1998: 165, fn.2).

I experimented with the term ‘binominal naming unit’ for a while, but it felt too unwieldy, and so I opted for binominal lexeme instead.¹

My definition was a good first approximation, but several issues remained. I had known all along that I wanted to exclude coordinative compounds, such as Hmong Daw zaub-mov [vegetable-rice] FOOD or Vietnamese bô mẹ [father mother] PARENTS from my study, since their typology has been described by Wälchli (2005). This was easily done by clarifying that the relation should not be what Koch (2001: 1144)

¹ Unlike Aronoff (1976:xii), I had no personal reason to avoid the term ‘lexeme’.
describes as a relation of “co-taxonomic similarity between subordinate concepts of the same superordinate concept”; that is, by specifying that my research topic was restricted to *determinative* noun-noun compounds and their functional equivalents. Another, more serious, problem was that I wanted to exclude synthetic compounds like *truck driver* in which the head is a deverbal noun. There were two reasons for this. First of all, they are inherently less interesting in terms of their semantic relations, because the relation is stated explicitly: a truck driver is an Agent who *DRIVES* trucks; they correspond to the typed association ‘composed by’ in Figure 2. Secondly, it seemed likely that the presence of the verbal element would likely involve a different set of properties, related to argument structure, which again would complicate the typology unnecessarily.¹

1.2.3 An onomasiological perspective

The answer to this dilemma presented itself when I came across Pavol Štekauer’s (1998) classification of “onomasiological types”. The onomasiological approach to linguistics in the field of word-formation was pioneered within the Prague school of linguistics by Miloš Dokulil (1962; 1994).² Its purpose, according to Štekauer, is to reveal “how cognitively grounded categories are linguistically represented through the word-formation processes” (Štekauer, Valera & Körtvélyessy 2012: 237). In considering the product of word-formation, Štekauer (1998: 10) discerns five Onomasiological Types of naming unit, based on the presence or absence of the ‘onomasiological mark’, and the status of the latter. The ‘onomasiological base’ (B) is essentially equivalent to the semantic head and is assumed always to be present. The mark is a conceptual modifier that can be either simple (M) or complex; a complex mark consists of a determined (or actional) constituent (MA) and a determining (qualifying) constituent (MQ).

The five types can be briefly characterized as follows (see also Figure 3):³

¹ Cf. Tratz & Hovy’s (2010) experience with “significant overlap” between their PURPOSE and OBJECT categories, and their decision to remove the latter from their taxonomy. Jackendoff’s (2009) need for two compound schemata for noun-noun compounds (the argument schema and the modifier schema) reflects the same issue.

² Unfortunately, much of the literature is in Czech or Slovak and inaccessible to many linguists.

³ Štekauer has since extended this model, first with a sixth type (Körtvélyessy, Štekauer & Zimmermann 2015) and then to an eight-type model (Štekauer 2016). I have argued (Pepper 2018) that these changes are inconsistent and that they destroy backwards compatibility unnecessarily. However, the first three types, which are most relevant to the present discussion, are the same in all three versions of the model, so I refrain from discussing the matter further here.
OT1 all three constituents are present in the naming unit → \(M_Q + M_A + B \)
E.g. truck driver < TRUCK\(_Q\)+DRIVE\(_A\)+AGENT\(_B\);

OT2 the determining element of the mark \(M_Q \) is omitted → \(M_A + B \)
E.g. driver < \(\emptyset_Q \)+DRIVE\(_A\)+AGENT\(_B\);

OT3 the determined element \(M_A \) is omitted → \(M_Q + B \)
E.g. trucker < TRUCK\(_Q\)+\(\emptyset_A \)+AGT\(_B\);

OT4 the mark is simple → \(M + B \)
E.g. blackbird < BLACK\(_M\)+BIRD\(_B\);

OT5 no mark; the absence of onomasiological structure
E.g. time\(_{VERB} \) < TIME\(_{NOUN}\)

Figure 3: The five basic onomasiological types
(after Štekauer 1998)

My comparative concept of binominal lexeme is thus identical to Onomasiological Type 3: binominals are complex naming units consisting of an onomasiological base and the determining element of the onomasiological mark, but without the determined, i.e. actional, element (hence the unspecified nature of the semantic relation). Adopting this onomasiological perspective has a number of important consequences. Firstly, synthetic compounds are ruled out of scope. Because of the presence of the actional element (DRIVE), they are Onomasiological Type 1, not Type 3. The onomasiological perspective thus provides a theoretical underpinning and further justification for the decision mentioned above (page 10) to exclude such compounds from the study. Secondly, as derivational affixes and lexical roots are accorded the same status in the onomasiological model, nouns derived from other nouns, such as Slovak železnica must be included. So, too, must noun classifier constructions, such as Bora tůň.heju [nose.CM(hole)] NOSTRIL. This fits nicely with the constructionist view underlying my choice of research topic, in that it opens up the possibility...
of investigating some aspects of the syntax-morphology-lexicon continuum. And thirdly, colour terms and other words representing qualities are out of scope when they function as the onomasiological mark (as in *blackbird*), since such constructions are of Type 4. However, when they represent the base, as in Takia *patun kdabogon* [egg:3SG yellow:3SG] YOLK, lit. “yellow of egg”, they are in scope (see further page 103 ff).

1.2.4 Defining the object of study

Štekauer’s model of onomasiological types provided a satisfying rationale for regarding binominal lexemes as a cross-linguistic category, and for justifying the exclusion of synthetic compounds and the inclusion of both denominal derivations and classifier constructions. Unfortunately, though, this model is not widely known or generally subscribed to, so it seemed advisable to define my object of study in more theoretically neutral terms. The definition given in (1) on page 9 was thus in need of further refinement. The first issue is that the term ‘nominal constituent’ includes deverbal nominalizations, such as *driver* in *truck driver*, which we now know are Onomasiological Type 1. Simply replacing ‘nominal constituent’ with ‘noun’ does not solve the problem, and in any case, ‘noun’ is a language-specific descriptive category and therefore unsuitable for cross-linguistic comparison, as many typologists have pointed out (e.g. Croft 2001, Haspelmath 2012). To avoid what Croft terms “methodological opportunism”, I considered adopting Haspelmath’s term ‘thing-root’: “a root that denotes a physical object (animate or inanimate)”. This clearly excludes *driver*, since DRIVE is an ‘action-root’, “a root that denotes a volitional action” in Haspelmath’s terms. However, Haspelmath makes a distinction between roots and affixes; thus, the term ‘thing-root’ does not include nominalizing affixes of the *železnica* type. In order to include these, I require a subdivision of affixes parallel to Haspelmath’s subdivision of roots into thing-root, action-root and property-root. I propose the terms ‘thing-affix’, ‘action-affix’ and ‘property-affix’, defining the first of which as “an affix that denotes a physical object (animate or inanimate)”. Then, since roots and affixes are both morphs, I propose the superordinate concept of ‘thing-morph’ to cover both (2).

1 Other linguists use other terms for semantic, cognitive or onomasiological types or classes: Croft has objects, actions and properties; Langacker has thing and relationship (processual or non-processual); Dokulil has substance, action, quality and concomitant circumstance, etc. I have chosen to adopt Haspelmath’s terminology (thing, action, property) because it denotes linguistic items rather than conceptual classes, even though it is based on the latter.
(2) **thing-morph**
a morph that profiles a thing (prototypically a physical object, animate or inanimate)

The definition in (2) involves two significant changes relative to Haspelmath’s definition of thing-root (over and above replacing root with morph): firstly, in using the verb ‘profile’ instead of ‘denote’, I embrace the terminology of Cognitive Grammar (the difference between the two can be ignored for present purposes); secondly, I allow for the inclusion of non-prototypical thing-morphs that profile more abstract entities than physical objects. Having introduced the notion of thing-morph, I can now amend the provisional definition in (1) in such a way that nouns derived from other nouns (denominal derivation) and noun classifier constructions come within its scope, and synthetic compounds (and other forms involving an actional element) are excluded (3).

(3) **binominal lexeme** (final)
a lexical item that consists primarily of two thing-morphs and whose function is to name a complex concept that involves an unstated (or underspecified) relation between two entities

The word ‘primarily’ makes it clear that additional morphological material may be present, provided that its function is grammatical. The functional part of the definition is actually redundant, since there will always be some kind of relation between the entities profiled by the thing-morphs in such a lexical item. However, the additional clarification does no harm, and serves to make the underlying concept clearer, so I choose to leave it in. It also serves to direct attention to what will become a major concern from Chapter 6 onwards.

Binominal lexemes are called binominals for short and I use the term binominal construction to refer to schemas that individual binominals instantiate, such as **Mod Head** for typical Germanic “root” compounds and **Head PREP Mod** for prepositional compounds. Note that the term binominal in my sense does not include constructions that do not name a generic concept, even when it occurs in the term used by other linguists (4); see also Masini (2016).

(4) a. **binominal quantifier constructions**, such as Sp. *un montón de amigas* ‘a heap of friends’ (Verveckken 2015)
b. **expressive binominal NPs**, like *an angel of a child* (Foolen 2004)
c. **type binominals**, such as Fr. *une espèce de baleine* ‘a kind of whale’ (Mihatsch 2016)
Informally, I describe binominals as *noun-noun compounds and their functional equivalents*. The following list of binominals from around the world (5), all of which mean RAILWAY (unless otherwise stated), illustrates some of the variety covered by my comparative concept and offers a taste of things to come:

(5) a. root compounds: German *eisen.bahn* [iron.track], Vietnamese *đường sắt* [road iron]

b. compounds with linking elements: Plains Cree *pīwāpisk.o.mēskanaw* [iron.CON.road]

c. prepositional compounds: French *chemin de fer* [way of iron]

d. relational compounds: Russian *želez.naja doroga* [iron.ADJZ road]

e. genitival lexemes: Bezhta *kil.o.s hino* [iron.OBL GEN way]

f. construct case lexemes: French *mesila.t barzel* [track.STC iron]

g. izafet constructions: Turkish *demir.yol.u* [iron.road.POSS:3SG]

h. denominal nominalizations: Slovak *želez.n.ica* [iron.ADJZ.NMLZ]

i. double-marking: Takia *ŋdu.n awa.n* [nose.3SG mouth.3SG] NOSTRIL

j. classifier constructions: Murui Huitoto *ui.tīraï* [eye.CL(hair)] EYELASH

As noted above, synthetic compounds are out of scope; so too are NVN constructions such as Vietnamese *bữ ăn sáng* [meal eat morning] BREAKFAST, in which the determined element of the onomasiological mark is also present; contrast this with Kildin Sami *īnc.es’.pierrk* [morning.ATTR.meal] which has the same nominal constituents but lacks the actional constituent. Also out of scope are compounds composed of a noun plus an adjective (unless the adjective is denominal, as in the case of *železnaja doroga*).

The comparative concept of binominals as used in the present work is novel, but it is not entirely without precedent. It is in some sense present, lurking (so to speak) in the background and waiting to be discovered, in three studies discussed in the next chapter, viz. Levi (1978) on ‘complex nominals’ (§2.3.1), Rainer (2013) on ‘relational adjectives and their competitors’ (§2.3.2), and Bauer & Tarasova (2013) on ‘adnominal nominal modification’ (§2.3.3).
1.3 Theoretical framework

The present study is conducted within the framework of Radical Construction Grammar, Bill Croft’s elaboration of traditional Greenbergian typology. This framework proceeds from three basic assumptions regarding morphosyntax:

The first of these is that the proper unit for grammatical analysis is a (morphosyntactic) construction… The second assumption is that one must always investigate a construction with respect to how its morphosyntactic form expresses its function, which in our analysis includes both meaning and information packaging. These first two assumptions are shared by construction grammar… and the second assumption is characteristic of functionalist theories of grammatical structure… The third assumption is that one must always examine how the morphosyntactic expression of a function varies across languages. The third assumption, combined with the first two, is the hallmark of linguistic typology (Croft forthcoming).

In describing the function of constructions, Croft advocates separating semantic content from what he calls ‘information packaging’ (otherwise known as ‘discourse function’ or ‘information structure’). Semantic content is described in terms of three basic semantic classes: objects, properties and actions; while information packaging is organized around the following skeletal structure:

- **reference** – what the speaker is talking about
- **predication** – what the speaker is asserting about the referents in a particular utterance
- **modification** – additional information provided about the referent.

<table>
<thead>
<tr>
<th>Semantic class</th>
<th>Propositional act</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>reference</td>
</tr>
<tr>
<td>object</td>
<td>UNMARKED NOUNS</td>
</tr>
<tr>
<td>property</td>
<td>deadjectival nouns</td>
</tr>
<tr>
<td>action</td>
<td>action nominals, complements, infinitives, gerunds</td>
</tr>
</tbody>
</table>

Table 1: Croft’s grid of basic cross-linguistic constructions

1 A “strange title”, Martin Haspelmath once tweeted, suggesting Explaining syntax: A non-aprioristic approach as more appropriate (https://twitter.com/haspelmath/status/1088018620670726144).
Since all three semantic classes can refer, modify or predicate, a 3×3 grid of basic cross-linguistic constructions is obtained (Table 1); cf. Croft (1991: 67; 2001: 88; 2003: 185; forthc.: 13, 29). In this model,

The nominal modifier construction (cxn) expresses modification with an object concept. The most common type of nominal attributive phrase is the possessive or genitive phrase as in The boy’s bicycle. English uses a distinct construction with the clitic -’s (p. 40).

Binominals are a special kind of nominal modifier construction in which a process of lexicalization is underway (and which may proceed as far as univerbation). In terms of Koptjevskaja-Tamm’s distinction between anchoring and nonanchoring relations in adnominal possession, discussed in §7.2.1, binominals are essentially equivalent to the nonanchoring type. Again, though, they are situated towards the lexical end of the syntax-morphology-lexicon continuum, and they are therefore ideal for exploring this continuum: as naming units they are all part of the lexicon, but while some (such as chemin de fer) are ‘syntactic’ or ‘phrasal’ in nature, some (like železnica) are ‘morphological’, while others (eisenbahn) are “problematic” (Jackendoff 2009) in a theory with a strict division between lexicon and grammar.

While the present study is typological, it does not belong to either morphological or syntactic typology as traditionally understood. I situate it myself within lexical typology, despite the fact that it is broader in many respects than most studies within that field. As Kibrik (2012) points out, the latter “usually focuses on rather restricted and specialized domains such as color terms, kinship terms, body part terms, or motion-in-water verbs”. In his own work Kibrik aims to pose more general questions, and the paper cited here proposes “an approach to profiling the verbal lexical system of a language in its entirety” (p. 496). I do not presume to suggest that my study does the same with respect to the nominal lexical system, but perhaps it is a contribution to such a goal.
1.4 Design of the study

1.4.1 An empirical, data-driven approach

The experience of replicating Bauer (2001) through the pilot study mentioned in §1.2.1 made it clear that descriptive grammars would not be the best source for the kind of data needed for a broad cross-linguistic study of binominals. Most grammars cover compounding in one way or another, albeit often briefly and with few examples, as witness the experiences reported by Bauer (page 24) and Guevara et al (page 34). But very few grammars make specific reference to other kinds of binominal word-formation, let alone describe them in any detail or discuss how they compete with one another within the language in question. It is as if the functional equivalents of compounding fall between two stools: they belong neither to ‘morphology’ (and its subdomain, word-formation), because they have a phrasal aspect, nor to ‘syntax’, because they are lexical. Grammars would do well to start including a separate chapter on the lexicon and the strategies by which it is enriched.

The seeds of an alternative approach to the use of grammars were sown for me by Pierre Arnaud’s (2004a) study, in which he compares the extent of compounding in 13 languages by first establishing a list of 29 concepts (or meanings) and then investigating how these are named. That such an onomasiological approach could work on a larger scale was confirmed by Matthias Urban’s (2012) dissertation, and when I then came across the World Loanword Database (Haspelmath & Tadmor 2009a), I was presented with both a principled method of constructing a list of meanings (§3.1) and a way to kick-start my data collection (§3.3).

All of the above-mentioned studies are described more fully in Chapter 2, along with seminal studies of compounding (§2.1) and word-formation (§2.2) in cross-linguistic perspective. Together they inspired the design of the present study, which is a detailed analysis of binominal lexemes representing 100 meanings across 106 languages, drawn from approximately 10,000 data points. More precise details of how the meanings and languages were selected, how the data was gathered, and how it was analysed are given in Chapter 3.

1.4.2 Research questions

Since binominals as such have not previously been identified as an object of study, it was only possible at the outset to formulate very general research questions, which reflect its exploratory, data-driven nature:
The typology and semantics of binominal lexemes

- What is the extent and diversity of binominal word-formation in the world’s languages? In other words, what are the functional equivalents of noun-noun compounds in the world’s languages?
- How can binominals be classified typologically, in terms of morphosyntactic structure and semantic relations?
- What generalizations can be made and how can these be explained?
- How do the preference patterns exhibited by individual languages correlate with areal, genetic and typological features?
- How do binominal strategies relate to strategies for expressing attributive possession?

More precise research questions emerged from the data as the study progressed and are presented in Chapters 7 and 8.

1.5 Structure of this work

Croft (2003: 2) offers three linguistic definitions of typology that correspond to “the three stages of any empirical scientific analysis”, viz. classification (based on observations of empirical phenomena), generalization (in this case, the formulation of language universals) and functional-typological explanation. These are expanded by Song (2007: 9) into five stages of “doing typology” as follows:

(a) identification of a phenomenon to be investigated
(b) generation of a language sample
(c) creation of a typological classification
(d) formulation of a typological generalization
(e) explanation of the typological generalization

While this scheme is slightly artificial, in the sense that scientific research does not proceed in such discrete steps, I largely follow this scheme in the structure of the present work. The first stage has been covered in this chapter and will be further elucidated in the literature review that follows (Chapter 2, Earlier work). There I discuss work that influenced my choice of comparative concept and research design. This includes cross-linguistic studies of word-formation (especially compounding), studies that prefigure the concept of binominals, and large-scale, typological studies that take a broadly onomasiological approach. (Other work that pertains to more specific topics is discussed in the appropriate context).

Chapter 3, Meanings, languages and data, covers the second of Song’s five stages. I start out by treating in some detail the important methodological issue of how I
selected the meanings and to what extent they can be considered representative (§3.1). I then describe and evaluate the language sample (§3.2), my sources of data (open database, questionnaires, dictionaries and grammars) and the challenges posed by each of them (§3.3). The final section covers the preliminary data annotation (“coding”) that preceded the development of the typological classification (§4).

In Chapter 5, *Typological classification*, I present a classification of morphosyntactic strategies (Song’s third stage), following a discussion of a number of theoretical prerequisites in which I have recourse to the work of Koptjevskaja-Tamm and Croft. Among other things, I raise issues associated with the use of hierarchical classifications and put forward an alternative approach, based on a kind of semantic map. I also consider the issue of gradience, including how it can be captured in a visual representation. Finally I present statistics regarding the distribution of the nine basic strategies that I have identified in the data.

In Chapter 6, *Semantic relations*, I develop a second classification, based on the unstated (or underspecified) relation between the two nominal constituents of a binominal. Again I start out with theoretical prerequisites, this time invoking Bauer & Tarasova and Janda. After reviewing the literature and having a rant, I make a point of not reinventing the wheel: instead I reuse two pre-existing systems: Hatcher’s high-level (schematic) system of four relations, and Bourque’s low-level system of 25 relations. I suggest minor amendments to Bourque and a significant extension to Hatcher, and then follow Arnaud’s example by integrating the two into a single whole: the Hatcher-Bourque classification. The chapter concludes with statistics regarding the distribution of semantic relations in the data.

In Chapter 7, *Typological generalizations*, my goal is to formulate generalizations of the kind appropriate to Song’s fourth stage. Three topics are considered: word order (§7.1), the relationship between possessives and binominals (§7.2), and the hypothesis of a correlation between binominal strategies and semantic relations (§7.3).

In Chapter 8, *Conceptual generalizations*, I depart from traditional Greenbergian typology in order to investigate whether the data can provide insights into matters more related to conceptual organisation. First I look for evidence to support my two-paths hypothesis (§8.1) and then present two dichotomies and a cline that are suggested by the data: head-framing versus modifier-framing (§8.2), relational and sortal nouns (§8.3) and species-framing versus attribute-framing (§8.4).
In Chapter 9, *A model of associative relations*, I probe deeper into the realm of Cognitive Linguistics in an attempt to develop an overarching model of associative relations that can encompass not just the semantic relations discussed in Chapter 6, but also metonymic relations (§9.1) and cognitive relations as understood in lexical typology (§9.2). Finally I once again force the linguist reader out of her comfort zone in order to show how Topic Maps can enrich the discussion (§9.3).

Chapter 10, *Conclusion*, offers a brief summary, discusses the contribution to science of the present work, and indicates areas for further research.

The appendices are as follows:

A A list of languages cited (ordered by ISO code for ease of reference), together with the family and genus to which they belong and the area in which they are spoken (page 379).
B A list of every source of data and grammatical information for each of the languages in the sample, ordered by language name (page 383).
C The list of meanings, how they are categorised, and various statistics associated with them (page 389).
D An inventory of possessive and binominal constructions and the strategies they embody, ordered by area, genus and language, with an example of each (page 391).
E The complete binominal data set (page 444).
F A summary of the database structure (page 479).
G The questionnaire sent to contributors (page 481).
H Various tables that were too large for the main body of the work (page 483).

In the spirit of the “re-doing typology” debate in Linguistic Typology 10(1), and in order to encourage reuse and replication, the data and scripts used in this project are all available for free download from the Tromsø Repository of Language and Linguistics, https://dataverse.no/dataverse/trolling.
2 Earlier work

The topic of binominal lexemes as conceived in this study has not previously been investigated as such, and there are no cross-linguistic studies of binominals from either an onomasiological nor any other perspective. The most relevant work, in terms of helping me arrive at my comparative concept and the onomasiological methodology, falls into four categories:

- Cross-linguistic studies of specific types of binominal, in particular noun-noun compounds
- More general cross-linguistic studies of word-formation
- Studies that prefigure the concept of binominals
- Large-scale typological studies that employ an onomasiological approach

In this chapter I discuss each of these in turn, in particular those aspects that helped shape the present work. In §2.1 Compounding I consider Bauer (2001), Arnaud (2004b), Scalise & Bisetto (2009), the Morbo/Comp project directed by Sergio Scalise at the University of Bologna, and Guevara & Scalise (2009). In §2.2 Word-formation I discuss Aikhenvald (2007) and Štekauer, Valera & Körtvélyessy (2012). In §2.3 Prefiguring binominals I present three studies that in one way or another anticipate the concept of binominals without actually recognizing it as a category: Levi (1978), Rainer (2013), and Bauer & Tarasova (2013). Finally, in §2.4 Morphological complexity I describe two studies – Haspelmath & Tadmor (2009) and Urban (2012) – that helped me fine-tune the onomasiological methodology that I wanted to adopt.

Other literature, some of it of crucial importance to my work, will be presented and discussed in later chapters where it is most relevant: in Chapter 5, Typological classification, Koptjevskaja-Tamm’s (2002; 2003) and Croft’s (2003) typologies of possessive constructions; in Chapter 6, Semantic relations, the work of Hatcher (1960), Bauer & Tarasova (2013), Bourque (2014) and Arnaud (2016) on the semantics of compounding, and of Janda (2011) on metonymy in word-formation; in Chapter 7, Typological generalizations, Koptjevskaja-Tamm (2004) on anchoring and non-anchoring relations and Koch’s (2001) idea of motivational grids; and in Chapter 8, Conceptual generalizations, Peirsman & Geeraert’s (2006) inventory of metonymic relations, and Blank’s (2003) work on conceptual associations.
2.1 Compounding

2.1.1 Bauer (2001)

Bauer (2001) is a cross-linguistic survey of compounding based on a genetically and areally diverse sample of 36 languages (see Table 2). The sample comprises six languages from each of Dryer’s large linguistic areas (A, E, O, G, N, S), with each language belonging to a different genus.¹

<table>
<thead>
<tr>
<th>Africa (A)</th>
<th>Australia / New Guinea (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hebrew HEB (Semitic)</td>
<td>Yimas YEE (Lower Sepik-Ramu)</td>
</tr>
<tr>
<td>Tswana TSN (Bantoid)</td>
<td>Kobon KPW (Madang)</td>
</tr>
<tr>
<td>Yoruba YOR (Defoid)</td>
<td>Siroi SSD (Madang)</td>
</tr>
<tr>
<td>Ewe EWE (Kwa)</td>
<td>Waskia WSK (Madang)</td>
</tr>
<tr>
<td>Turkana TUV (Nilotic)</td>
<td>Mara MEC (Mangarrayi-Marana)</td>
</tr>
<tr>
<td>Kanuri KNC (Saharan)</td>
<td>Arabana ARD (Karnic)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eurasia (E)</th>
<th>North America (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abkhaz-Adyge ADY (NW Caucasian)</td>
<td>Kalaallisut KAL (Eskimo-Aleut)</td>
</tr>
<tr>
<td>Chukchi CKT (Chukotko-Kamchatkan)</td>
<td>Kiowa KIO (Kiowa-Tanoan)</td>
</tr>
<tr>
<td>Tamil TAM (Dravidian)</td>
<td>Tz’utujil TJI (Mayan)</td>
</tr>
<tr>
<td>Danish DAN (Germanic)</td>
<td>Dakota DAK (Siouan)</td>
</tr>
<tr>
<td>Basque EUS (Basque)</td>
<td>Takelma TKM (Takelma)</td>
</tr>
<tr>
<td>Finnish FIN (Finnic)</td>
<td>Shoshone SHH (Northern Uto-Aztecan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Southeast Asia & Oceania (O)</th>
<th>South America (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khmer KHM (Khmeric)</td>
<td>Paumarí PAD (Arawan)</td>
</tr>
<tr>
<td>Vietnamese VIE (Vietic)</td>
<td>Hixkaryána HIX (Parukotoan)</td>
</tr>
<tr>
<td>Maori MRL (Eastern Malayo-Polynesian)</td>
<td>Cayubaba CVB (Cayubaba)</td>
</tr>
<tr>
<td>Batak Toba BBC (NW Sumatra-Barrier Isl)</td>
<td>Pirahã MYP (Pirahã)</td>
</tr>
<tr>
<td>Yue Chinese YUE (Sinitic)</td>
<td>Imbabura Highl. Quichua QVI (Quechua II)</td>
</tr>
<tr>
<td>Thai THA (Kam-Tai)</td>
<td>Paraguayan Guaraní GUG (Tupi-Guarani)</td>
</tr>
</tbody>
</table>

Table 2: Language sample (Bauer 2001)

¹ According to Glottolog 2.7, three of the languages chosen to represent Australia/New Guinea (Kobon, Siroi and Waskia) are now considered to belong to the same genus (Madang).
Bauer starts out by developing a definition of compound (6) which is only intended to present a “focal notion” of the way in which the term compound is used in the paper, since the author acknowledges that neither phonological, grammatical nor semantic isolation are necessary or sufficient criteria for compoundhood.

(6) **compound**

a lexical unit made up of two or more elements, each of which can function as a lexeme independent of the other(s) in other contexts, and which shows some phonological and/or grammatical isolation from normal syntactic usage (p. 695).

Topics covered by Bauer include compound types, the order of elements, semantic relations, morphological and phonological effects, and how to delimit compounds from other multi-word lexical items, such as lexicalised phrases (Fr. *comme il faut* [as it is _necessary] ‘proper’; Fr. *pomme de terre* [apple of earth] ‘potato’; Eng. *women’s liberation* and *cat’s paw*; and Ger. *Vergiß.mein.nicht* [forget.me.not] ‘forget-me-not’). The discussion of compound types is based on Pāṇini’s classification of Sanskrit compounds:

- **tatpuruṣa** (determinative) compounds in which one element modifies the other;
- **karmadhāraya** compounds are either adjective-noun (e.g. Eng. *black.bird*) or two nouns in apposition (e.g. Eng. *fighter-bomber*);
- **dvandva** (copulative, aggregative, coordinative) compounds “have two or more words in a coordinate relation, such that the entity denoted is the totality of the entities denoted by each of the elements”;
- **bahuurvṝhi** (possessive, exocentric) compounds are exemplified by the name of the type, *bahu.vṝhi* [much.rice] ‘a rich person (i.e. someone who owns a lot of rice)’, cf. Eng. *red.head*;
- **avyayībhāva** compounds¹ are mentioned by Bauer for the sake of completeness, but not discussed since the term “is not used by recent scholars”;
- **upapada-samāsa**, (synthetic, verbal, verbal-nexus) compounds.²

According to Bauer, the synthetic (or verbal) compound type is “not particularly well-defined”. While it has mostly been discussed with reference to the Germanic languages, such compounds are “much more widespread”. Bauer cites Lieber’s (1994) definition (“compounds whose head elements are derived from verbs”), but

¹ Uninflected adverbial compounds (http://learnsanskrit.org/nouns/compounds/avyayibhava)

² Bauer does not use the Sanskrit term for this type of compound.
points to a lack of agreement concerning the kinds of derivation to be included.\footnote{Lieber classifies speech-synthesizer as a synthetic compound but not speech synthesis, on the grounds that synthesis is not (overtly) derived from synthesize. In Štekauer’s scheme (§1.2.3), these would be classified as Onomasiological Types 1 and 3, respectively.} According to Bauer, “much of the discussion of these compounds in the literature has centred on the fact that the modifying element in the compound is (usually) interpreted as an argument of the verb from which the head element is derived.” This observation alerted me to the fact such compounds may involve a different set of properties than root compounds and prompted me to exclude them from this study (cf. §1.2.2 and §1.2.3).

Under the rubric “morphological effects”, Bauer declares stem juxtaposition to be “the norm” in compounding. Items linked by prepositions (e.g. Fr. chemin de fer [road of iron] ‘railway’) are not considered here. Otherwise the constituents may be linked by “some kind of linking element” (e.g. Khmer yian.ə.thaan [vehicle.LK.place] ‘garage’), or through “some inflectional form of one of the elements” (e.g. Yimas num.n numpran [village.OBL pig] ‘domesticated pig’), and sometimes it may be unclear which of these is involved. Inflectional forms are usually case-markers and the most common are those used for possession, whether by marking the possessor (e.g. Fin. auto.n.ikkuna [car.GEN.window] ‘car window’) or the possessum (e.g. Takelma p’iyin sge’xabā: [deer its:hat] ‘deerskin hat’). However, other case markers are also found, including nominative, accusative, dative, ablative, instrumental, oblique, adessive and more.

As for phonological effects, in addition to morphophonemic and morphotonemic changes that are “concomitants of the compounding process in languages such as Japanese and Nama”, Bauer provides examples of a number of processes in which phonological material is elided, ranging from the merger of two vowels, to the shortening of the first or even both elements, as in the Hebrew blend rakevel < rakevet + kevel [train cable] ‘cable car’.

In his brief discussion of “meanings in tatpuruṣa compounds”, Bauer laments the lack of information in most descriptions regarding the kinds of semantic relations exhibited by compounds, but says that the available evidence suggests – for some languages at least – that there may not be any finite list of relationships.\footnote{I return to this issue in Chapter 6, Semantic relations.} In his own sample, “underlying semantic relationships of location” appear to be most common (e.g. Eng. furniture store, bone cancer), and the next most frequent type is where the head is made from the material in the modifier (e.g. Eng. sandcastle).
The evidence, he concludes, suggests that “compounds may be used prototypically to indicate location or source (especially if ‘made from’, ‘made by’, ‘belonging to’ and ‘coming from’ are all interpreted as sources).”

Also of relevance to the present work is Bauer’s discussion of the correlations between the order of head noun and modifier in compounds with the order of (i) noun and adjective, and (ii) noun and possessor. Table 3 shows the results obtained for the noun-adjective comparison. Bauer comments that it is “not necessarily the case” that the order of head and modifier nouns in a nominal compound reflect the order of noun and adjective, and he observes “a slight preference” for modifier noun + head noun structures (right-headed compounds), independent of the syntactic order of adjective and noun.

<table>
<thead>
<tr>
<th>Word Order</th>
<th>A</th>
<th>E</th>
<th>O</th>
<th>G</th>
<th>N</th>
<th>S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Adj & N-Mod</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>N-Adj & Mod-N</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Adj-N & N-Mod</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Adj-N & Mod-N</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>insufficient data</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 3: Order of noun-adjective and noun-modifier (Bauer 2001)

What Bauer fails to observe is that his data actually reveal a very common kind of distribution in which “three types are attested and one type is not (or is extremely rare)” (Croft 1990: 56). This becomes very clear if the data are represented in the form of a tetrachoric table, as in Table 4a. From this we can derive the implicational universal Adj-N → Mod-N (that is, adjective-noun order implies modifier-head noun order in compounds). Furthermore, it can be concluded that Mod-N (i.e. right-headedness) is the dominant order cross-linguistically, and that N-Mod (i.e. left-headedness) is the recessive order. The numbers come out slightly differently in my replication of Bauer’s study (mentioned earlier on page 7), which was based on the same sources but restricted to nominal compounds (Pepper 2015), but they still support the same implicational universal (see Table 4b). It is no longer possible to ascertain the reason for the discrepancy in the numbers, since the data points from which Bauer derived his tables are no longer extant (Bauer, p.c.). As for the

1 My own results, presented in §6.4, suggest a different scale of frequency.
replication study, no unambiguous order of head and modifier could be determined for six languages; three of these (Kanuri, Yue Chinese and Tz'utujil) have both left- and right-headed compounds, and three (Mara, Kalaallisut and Hixkaryána) appear not to have compounds at all. Moreover, in Tz'utujil adjectives may appear either before or after the noun. (The language that exhibits the “extremely rare” combination of adjective-noun and head-modifier orders is Cayubaba.)

<table>
<thead>
<tr>
<th></th>
<th>N-Mod</th>
<th>Mod-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Adj</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Adj-N</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

(a) Bauer 2001

<table>
<thead>
<tr>
<th></th>
<th>N-Mod</th>
<th>Mod-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Adj</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Adj-N</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

(b) Pepper 2015

Table 4: Noun + Adjective tetrachoric tables
(Bauer 2001; Pepper 2015)

Turning to the correlation between the order of head and modifier and the order of possessor and possessum, Bauer observes a “slightly better match” (shown in Table 5). Again, representing the data as a tetrachoric table (Table 6a) reveals a distribution from which it is possible to derive the implicational universal **Poss-N ⊆ Mod-N**, with **Mod-N** (right-headedness) again emerging as dominant. In this case, however, only the two harmonic correlations (**N-Poss & N-Mod** and **Poss-N & Mod-N**) can really be said to be frequent. And while the **Poss-N & N-Mod** can be characterized as “extremely rare”, the other disharmonic pattern, **N-Poss & Mod-N**, is also rather infrequent. The data thus tend toward a biconditional universal of the type **Poss-N ≡ Mod-N**.

<table>
<thead>
<tr>
<th>Word Order</th>
<th>A</th>
<th>E</th>
<th>O</th>
<th>G</th>
<th>N</th>
<th>S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Poss & N-Mod</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>N-Poss & Mod-N</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Poss-N & N-Mod</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Poss-N & Mod-N</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>insufficient data</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 5: Order of noun-possessor and noun-modifier (Bauer 2001)

In my replication study, this tendency turned into an exceptionless pattern (Table 6b). No disharmonic patterns were found at all: either the head is on the left in both compounds and possessive constructions, or it is on the right in both.
Once again, the reasons for this discrepancy between the two studies cannot be ascertained for certain because Bauer’s data are no longer extant. However, a clue can be found in a comment made by Bauer concerning the numbers he arrived at:

It is not entirely clear how much weight can be attributed to such figures, given the lack of consistency across languages in the ordering of modifier and head in compounds [i.e. that many languages have both head-initial and head-final compounds]. Although it might be expected that this would be fixed in any individual language, that is the case only in about half of my sample from any of the areas used. The figures are given below in [Table 7]. The figures given in this table show inconsistencies across compounds of all word-classes, but even if only noun compounds are considered, there is considerable inconsistency. The figures for nouns alone are parenthesised in [Table 7]. It must be recalled that many languages are consistent because only one pattern of compound is reported (p. 697).

This carries the very strong implication that disharmonic (i.e. mixed) order of head and modifier is the norm and that harmonic ordering is the exception.

Bauer’s figures can be compared with those obtained in my replication study. In Table 7, the numbers for what Bauer terms ‘consistent ordering’ are split across the rows labelled ModN and NMod (representing right-headed and left-headed compounds respectively); these are collated in row 3. Since the replication study only investigated nominal compounds, the numbers in Table 8 correspond to those in parentheses in Table 7. The relevant comparison is thus between the numbers in parentheses in both tables (shown in boldface).

<table>
<thead>
<tr>
<th>Word Order</th>
<th>A</th>
<th>E</th>
<th>O</th>
<th>G</th>
<th>N</th>
<th>S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistent ordering</td>
<td>3 (3)</td>
<td>3 (5)</td>
<td>4 (4)</td>
<td>4 (6)</td>
<td>2 (3)</td>
<td>2 (3)</td>
<td>18 (24)</td>
</tr>
<tr>
<td>Inconsistent ordering</td>
<td>3 (3)</td>
<td>3 (1)</td>
<td>2 (2)</td>
<td>2 (0)</td>
<td>3 (3)</td>
<td>3 (2)</td>
<td>16 (11)</td>
</tr>
<tr>
<td>Unclear or missing</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (0)</td>
<td>1 (1)</td>
<td>2 (1)</td>
</tr>
</tbody>
</table>

Table 7: Consistency of head-modifier ordering (Bauer 2001)
Observe that 30 languages were considered to have consistent ordering in the replication study, as against just 24 in the original; the corresponding numbers for inconsistent ordering are three and eleven. Again, it is no longer possible to trace the reasons for the discrepancy between the results obtained by Bauer and myself from investigating the same languages using the same sources, but certain hints can be obtained from a detailed examination of the two sets of data. Looking at the bottom row in each table, we observe first of all that while I concluded that three languages (Mara, Hixkaryana and Kalaallisut) do not have compounds, Bauer, based on the same sources, concludes that only one of them does not. Then, comparing the numbers for each linguistic area, we can observe that

- only one of the African languages (Kanuri) was found by me to have both right-headed and left-headed compounds, as against three according to Bauer;
- the Eurasian language that Bauer considered to have inconsistent ordering was found to be head-final (ModN) by me;
- only one language from Southeast Asia and Oceania (Yue Chinese) was found by me to have both orderings, as against Bauer’s two;¹
- one of the Australia/New Guinea languages (Mara) was found by me not to have noun compounds, whereas Bauer considers it to have consistent ordering;²

¹ It is not unlikely that the second language considered by Bauer to be mixed was Vietnamese, which is sometimes reported to have both left-headed and right-headed compounds. However, every native Vietnamese compound is left-headed; only compounds loaned from Chinese are right-headed. The former predominate and the latter are less transparent for native speakers: “A native speaker may not be aware of the etymology of each element within the [Sino-Vietnamese compound] construction” (Nguyễn 1997: 72, 77). Dinh (2002: 150) does not mention right-headed compounds and states that the head noun “is always in the first position.” On this basis I assigned the code NMod to Vietnamese; Bauer’s criteria may have been different.

² Heath (1981) does not mention nominal compounds explicitly. However, he does state that a “noun in adjectival (modifying) function may be integrated into the NP” and to follow the nuclear noun.
• in North America, I found one language (Kalaallisut) did not have compounds, while Bauer is of a different opinion;¹
• only for South America do the two analyses coincide.

The most important conclusion to be drawn from this (apart from the need to make one’s data available for future researchers) is that different types of compound should be treated separately in order for patterns to emerge clearly. In summary, Bauer (2001) provides a good overview of the many issues involved in the study of compounding, but the study does not lead to any new insights. This is probably because compounding as a whole is too heterogeneous, in which case a study that focuses on nominal compounds only (or perhaps just noun-noun compounds, or even determinative noun-noun compounds) might bear more interesting typological fruit. It could also be because Bauer’s study was merely a limited pilot that did not offer the scope for investigating specific issues (such as semantic relations and word order correlations) in more depth.

2.1.2 Arnaud (2004)

Arnaud (2004a) is an edited collection of studies of compounding in the sixteen languages listed in Table 9. In a short concluding chapter, entitled Problématique du nom composé, Arnaud discusses a range of general issues, including those of definition, ambiguity, headedness, demarcation, semantic relations, prosody and borrowing, many of them barely touched on by Bauer, before finally presenting a short onomasiological study in which 29 meanings are examined across 13 languages in order to assess the extent of compounding in each language. It was this study that first gave me the idea of applying the onomasiological method in my own research. Arnaud describes the method as follows:

Pour comparer les langues, on peut, dans le sens onomasiologique, établir une liste de concepts et voir comment ceux-ci sont dénommés. Il s’agit évidemment d’établir une liste qui réduise les différences culturelles au maximum, c’est-à-dire comportant des concepts de parties du corps, espèces naturelles, phénomènes météorologiques, artefacts répandus … (Arnaud 2004a:347).²

¹ The possibilities for compounding more than one independent lexical stem are “extremely limited” (Fortescue 1984). Sadock (2003) mentions “a few sporadic forms that can be considered compounds”, but both his examples appear to be calques.
² To compare languages, one can, in the onomasiological sense, establish a list of concepts and look at how these are named. It is obviously a question of establishing a list that reduces cultural differences to a minimum, that is to say, comprising concepts for body parts, natural species, meteorological phenomena, widely used artefacts …/
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>Africa (A)</th>
<th>Southeast Asia & Oceania (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Atlas Tamazight TZM (Berber)</td>
<td>Khmer KHM (Khmeric)</td>
</tr>
<tr>
<td>Bambara BAM (Mande)</td>
<td>Kumak NEE (Eastern Malayo-Polynesian)</td>
</tr>
<tr>
<td>Eurasia (E)</td>
<td>Angami Naga NJM (Kuki-Chin-Naga)</td>
</tr>
<tr>
<td>Turkish TUR (Turkic)</td>
<td>Gado ADL (Macro-Tani)</td>
</tr>
<tr>
<td>Basque EUS (Basque)</td>
<td>Australia / New Guinea (G)</td>
</tr>
<tr>
<td>Modern Armenian HYE (Armenian)</td>
<td>Gunwinggu GUP (Gunwinyguan)</td>
</tr>
<tr>
<td>Welsh CYM (Celtic)</td>
<td>North America (N)</td>
</tr>
<tr>
<td>Udi UDI (Lezgic)</td>
<td>Southern East Cree CRJ (Algonquian)</td>
</tr>
<tr>
<td>Hungarian HUN (Hungarian)</td>
<td>South America (S)</td>
</tr>
<tr>
<td>Pidgins & Creoles (P)</td>
<td>Santiago del Estero Quichua QUS (Quechua II)</td>
</tr>
<tr>
<td>Tok Pisin TPI (English-based Creoles)</td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Languages covered in Arnaud (2004)

Arnaud’s results are reproduced below as Table 10 and summarized in Figure 4, in which the vertical axis displays the number of compound per language out of a possible total of 29. Clearly, the extent of compounding various greatly from one language to another, and this raises the question of what languages that disfavour compounding do instead. In the case of French, the answer is well-known: complex concepts, such as RAILWAY, that are typically expressed through compounding in, say, English and German (and, to judge by Figure 4, Basque, Cambodian and Welsh as well) are often expressed using a prepositional construction, as in chemin de fer [road of iron]. This prompted the central research question of the present work: What are the functional equivalents of noun-noun compounds in the world’s languages?

+ composé	compound
(+) très probablement un composé	very probably a compound
+’ exocentrique secondaire	secondary exocentric
+, il existe une autre dénomination non composée	non-compositional alternative exists
– donnée non disponible	data not available
/ ne s’applique pas à la culture	not applicable in the culture
x cranberry compound	cranberry compound

Legend for Table 10
<table>
<thead>
<tr>
<th>meaning (English)</th>
<th>meaning (French)</th>
<th>ENG</th>
<th>DEU</th>
<th>HYE</th>
<th>EUS</th>
<th>GUP</th>
<th>GR</th>
<th>FRA</th>
<th>CYM</th>
<th>HUN</th>
<th>KHM</th>
<th>NEE</th>
<th>TZM</th>
<th>TUR</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>skull</td>
<td>CRÂNE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>×</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>forehead</td>
<td>FRONT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eyebrow</td>
<td>SOURCIL</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>×</td>
<td>+</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eyelash</td>
<td>CIL</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pupil</td>
<td>PUPILLE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nostril</td>
<td>NARINE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>canine</td>
<td>CANINE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>elbow</td>
<td>COUDE</td>
<td>×</td>
<td>+</td>
<td>(+)</td>
<td>×</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wrist</td>
<td>POIGNET</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thumb</td>
<td>Pouce</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>knee</td>
<td>GENOU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td>+</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calf</td>
<td>MOLLET</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>×</td>
<td>+</td>
<td>+</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ankle</td>
<td>CHEVILLE</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>toe</td>
<td>ORTEIL</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>navel</td>
<td>NOMBRIL</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anus</td>
<td>ANUS</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>butterfly</td>
<td>PAPILLON</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dragonfly</td>
<td>LIBELLULE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>×</td>
<td>+</td>
<td>+</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grasshopper</td>
<td>SAUTERELLE</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>turtle</td>
<td>TORTUE</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bat</td>
<td>CHAUVE-SOURIS</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rainbow</td>
<td>ARC-EN-CIEL</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hail</td>
<td>GRÊLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>–</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>necklace</td>
<td>COLLIER</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(×)</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bracelet</td>
<td>BRACELET</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cradle</td>
<td>BERCEAU</td>
<td>+</td>
<td>+</td>
<td>/</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>home</td>
<td>FOYER</td>
<td>+,</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>x</td>
<td>+</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hook</td>
<td>HAMECON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quiver</td>
<td>CARQUOIS</td>
<td>+</td>
<td>/</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>/</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | 12 | 18 | 7 | 22 | 7 | 3 | 4 | 18 | 14 | 19 | 14 | 4 | 9 |

Table 10: Onomasiological cross-linguistic comparison (Arnaud 2004)
2.1.3 Morbo/Comp (2004-2006)

Morbo/Comp was an international research project on compounding, devised and directed by Sergio Scalise and based at the University of Bologna from 2004 to 2006. Its aim was to collect compounding data in a standardized manner in order to facilitate cross-linguistic comparison:

A systematic compilation of compounding data allowing interlinguistic comparison does not exist. As a result, every hypothesis proposed so far is descriptively inadequate and language-specific. For instance, data on the degree of endocentricity/exocentricity in the world’s languages is not available yet. There is no reliable source of data describing the different attested types of compounds, the structural complexity of possible compound words, the presence and typology of linking elements, plural formation, distribution of different structures in the world’s languages, whether categorial and semantic head coincide, etc. (Guevara et al. 2006).

The project website at http://morbocomp.sslmit.unibo.it/ (accessed 2017-12-07) lists, among other things, 16 papers dating from 2004 to 2006 and another three in preparazione, but the site appears not to have been updated since late 2006. Papers continued to appear for another four years or so, however, including the two discussed below, along with a special issue of the journal Lingue e linguaggio.

1 No publications or presentations are listed in the activities section after that date, and an event scheduled for January 2007 is shown as “forthcoming” (accessed 2018-06-10).
(2/2009) containing papers on compounding in Russian, Chinese, Turkish, Finnish, Swedish, Czech and Portuguese. To judge by the authorship of these papers, the principal participants in the project, besides Scalise himself, were Antonietta Bisetto, Antonella Ceccagno, Antonio Fábregas, Emiliano Guevara and Chiara Melloni. The database was reported by Guevara et al. (2006) to include data from the 25 languages shown in Table 11, and by Guevara & Scalise (2009) to contain around 80,000 compounds from 21 languages. The plan was for the data to be published online “soon” (Guevara et al. 2006) but unfortunately, as is so often the case, this never came to pass.

According to the website, the data were taken from the following sources:

- specific studies
- existing corpora (such as e.g. CELEX for Dutch)
- grammars and dictionaries
- competence of native speakers
- Internet
- semi-automated extraction from textual corpora

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutch</td>
<td>NLD</td>
<td>Basque</td>
<td>EUS</td>
<td>Belarussian</td>
<td>BEL</td>
</tr>
<tr>
<td>English</td>
<td>ENG</td>
<td>Greek</td>
<td>ELL</td>
<td>Bulgarian</td>
<td>BUL</td>
</tr>
<tr>
<td>German</td>
<td>DEU</td>
<td>Catalan</td>
<td>CAT</td>
<td>Polish</td>
<td>POL</td>
</tr>
<tr>
<td>Norwegian</td>
<td>NOR</td>
<td>French</td>
<td>FRA</td>
<td>Russian</td>
<td>RUS</td>
</tr>
<tr>
<td>Swedish</td>
<td>SWE</td>
<td>Italian</td>
<td>ITA</td>
<td>Serbo-Croatian</td>
<td>HBS² (Slavic)</td>
</tr>
<tr>
<td>Finnish</td>
<td>FIN</td>
<td>Latin</td>
<td>LAT</td>
<td>Japanese</td>
<td>JPN</td>
</tr>
<tr>
<td>Hungarian</td>
<td>HUN</td>
<td>Spanish</td>
<td>SPA</td>
<td>Korean</td>
<td>KOR</td>
</tr>
<tr>
<td>Turkish</td>
<td>TUR</td>
<td>Portuguese</td>
<td>POR</td>
<td>Mandarin</td>
<td>CMN</td>
</tr>
<tr>
<td>Hebrew</td>
<td>HEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11: Languages represented in Morbo/Comp

The structure of the database is shown in Table 66 (see page 483). The project design called for each compound to be annotated with various properties, including its word class (or “output category”); internal structure (based on the word classes or “input categories” of the constituents); head position; linking element(s); locus of morphological marking; gender of constituents and compound; and English gloss.

1 Languages shown in italics in Table 11 are not mentioned in Guevara & Scalise (2009).
2 The ISO 639-3 code point HBS now has the name South-Western Slavic.
In fact only 4,000 or so of the 80,000 compounds were ever analysed in such detail (Sergio Scalise, p.c.). The effort required was simply too much for the resources available and the group “experienced great difficulties in obtaining enough data to achieve an adequate description of compounding phenomena”:

Traditionally, typological surveys are based on written sources: dictionaries and grammars. In this way, a high number of languages, well-balanced from the typological and areal point of view, is relatively easy to achieve. [However, this methodology] proved to be useless to collect compounding data: traditional written sources usually do not include enough examples of the various structural patterns and/or classes. The Morbo/Comp database has relied heavily on native speakers’ work to collect, classify and analyze manually all the represented examples. Unfortunately, this approach turns [out] to be quite slow and costly (Guevara et al. 2006).

As a result, the database is very far from being genetically and areally balanced, as the authors readily admit: 21 of the 25 languages are spoken in Europe, 17 are Indo-European and all but one of them belong to the same linguistic area, Dryer’s (1992) Eurasia. (The exception, Mandarin Chinese, is also spoken on that continent, but is assigned by Dryer, along with the rest of Sino-Tibetan, to Southeast Asia & Oceania.) This suggests that another approach is required in order to build a database suitable for use in cross-linguistic comparison and provides support for the decision taken in the present study to adopt Arnaud’s onomasiological method.

Despite these limitations, the Morbo/Comp project produced a number of useful results. In the present context the two most important are Scalise and Bisetto’s classification of compounds (§2.1.4) and the investigation into the “universals of compounding” by Guevara and Scalise (§2.1.5), which are discussed in the next two sections.

2.1.4 Scalise & Bisetto (2009)

Scalise and Bisetto’s (2009) paper is a reworking and further refinement of an earlier paper (Bisetto & Scalise 2005) in which the authors address the problem of how to classify compounds. They start by reviewing nine classification schemes, ranging from Bloomfield (1933) and Marchand (1969) to Bauer (2001) and Booij (2005). The authors point out a lack of “interlinguistic homogeneity” in most of these schemes, which they trace to three causes: (a) language-specific terminology, (b) neglect of certain categories (e.g. adjectival compounds), and (c) inconsistent definitional criteria. The latter concerns the unsystematic combination of the criteria “presence of head” and “semantic relation”.

34 Draft. Please do not cite. Comments to: pepper.steve@gmail.com. 2020-04-25
As an alternative, they propose a novel typological classification based on the “very simple” assumption that what is special about compounds is the fact that the two constituents are linked by a grammatical relation which is not overtly expressed (cf. *apron string* vs. *string of the apron*). Therefore, we would like to suggest that the classification of compounds be uniquely and consistently based on this criterion. The possible grammatical relations holding between the two constituents of a compound are basically the relations that hold in syntactic constructions: subordination, coordination and attribution (Bisetto & Scalise 2005: 326).

Accordingly, they propose a three-way top level distinction between subordinate, attributive and coordinate compounds (none of which are defined), with a further subdivision of each into endocentric and exocentric, dependent on “the presence or absence of a head constituent” (Figure 5).

![Figure 5: Classifying compounds (Bisetto & Scalise 2005)](image)

Four years later this model was extended through the introduction of an intermediate level, as shown in Figure 6 (Scalise & Bisetto 2009: 49ff). In the new proposal, subordinate compounds are subdivided into verbal-nexus and ground, ostensibly on the basis of whether or not the head is “deverbal or non-deverbal”.¹ In addition, attributive compounds are split into attributive and appositive, on the basis of whether the non-head is an adjective (or verb) expressing a property of the head directly, or a noun specifying such a property indirectly (“in apposition”) through one of its own properties. As in the 2005 proposal, each of the resulting classes is subdivided into endocentric and exocentric.

¹ The exocentric *lavapiatti* ‘dishwasher’ < ‘wash.v’ + ‘dishes’ should, of course, be classified with *pickpocket* under verbal-nexus, not under ground. I assume this is a printing error.
Two things may be observed about the resulting classifications: Firstly, there is an logical inconsistency in the use of criteria for the second-level divisions that involve the status of a head (deverbal or not) or non-head (adjectival or nominal) when the further subdivision into endocentric and exocentric suggests that there may not be a head. Secondly, the distinction between endocentric and exocentric is really orthogonal to the rest of the classification, in the same way as, say, the output category. Indeed, “exocentricity” is in many cases better explained as a function of metonymy (and/or metaphor), rather than as a property peculiar to compounds (Bauer 2008).

Whatever the merits or demerits of the later classification, the basic tripartite distinction between subordinate, attributive and coordinate compounds, common to both proposals, has been widely adopted, for example by Lieber in her introductory textbook on morphology (Lieber 2010). Lieber characterizes the three compound types as follows:

“In an attributive compound the non-head acts as a modifier of the head. So snail mail is (metaphorically) a kind of mail that moves like a snail, and a windmill is a kind of mill that is activated by wind [...] In coordinative compounds, the first element of the compound does not modify the second; instead, the two have equal weight [...] In subordinative (sic) compounds one element is interpreted as the argument of the other, usually as its object” (op.cit.)

Thus for Lieber, windmill is a prototypical attributive compound, while for Bisetto and Scalise it is a prototypical subordinate compound, as shown in Figure 6. This discrepancy is unlikely to be due to an unintentional error, as was probably the case with lavapiatti (see footnote 1 above). In both of their papers, Bisetto and Scalise
classify *steamboat* – another compound with the semantic structure X POWERED BY Y – as a subordinate compound, so we can assume that their classification of *windmill* was intentional. And since Lieber uses *windmill* as a prototypical example throughout her chapter on compounding in all three editions of her book, we can safely assume that her characterization of it as an attributive compound is equally deliberate. In short, Lieber considers the POWERED BY relation to be one of attribution, whereas Bisetto and Scalise consider it to be one of subordination. This raises the question: what does “subordination” actually mean in the context of the relation between two nominals? As noted above, Scalise and Bisetto do not provide any definition. In the case of a verb and a nominal its meaning is clear: if the nominal can be regarded as an argument of the verb, then it is subordinate to it. But in what sense is *mill* subordinate (or not, as the case may be) to *wind* in *windmill*? I address this issue in Pepper (2016) in the light of data from Nizaa (see §1.1.2) and suggest that subordination is best understood in terms of the reference point ability (Langacker 1993) and involves one of two different paths of mental access to the target concept (the other being access via a superordinate concept). These issues will come to the fore later in the investigation of semantic relations and conceptual universals (Chapters 6 and 8).

2.1.5 Guevara & Scalise (2009)

The most important attempt from a typological perspective to synthesize the results of the Morbo/Comp project is Guevara and Scalise’s (2009) paper, *Searching for universals of compounding*. The paper starts by introducing the project and justifying the search for universal properties in compounding. It then discusses the four “important issues for the typological study of compounding”: the definition of compound, the classification of compounds, the position of the head constituent, and the definition of compound type. Existing definitions, such as those of Bauer (quoted above) and Olsen (2000) (“the combining of two free forms or stems to form a new complex word”) are found to be “neither totally satisfactory nor sufficiently comprehensive”. The many definitions of compounding that one finds in the literature are “tightly predetermined by the theoretical choices made by the author(s)”:

Consequently, one’s views and beliefs regarding the fundamental notions of morphology – and of linguistics in general – are critical in shaping a working definition for compounding. In other terms, one’s conception of hotly debated (and never agreed upon) issues such as word, morpheme, stem, root, lexicon, concatenation, etc., will contribute in shaping one’s definition of compound.
The typology and semantics of binomial lexemes

It was in order to solve this dilemma that I developed the comparative concept of binominal lexeme. Guevara and Scalise, for their part, simply set the definitional issue to one side and look for general tendencies in the world’s languages. This leads them to identify the presence of a relation \mathcal{R} between the constituents of a compound, which is not explicitly (phonetically) realized, as a key defining feature. The authors then invoke canonical typology (Brown, Chumakina & Corbett 2013) and offer a definition of *canonical compound* in terms of the following four criteria:

a) syntactic atomicity (no anaphoric relations between an internal constituent of a compound and an external element);
b) lexical integrity;
c) lexical nature of constituents (lexemes, i.e. words, stems or roots), members of one of the major lexical categories;
d) the whole is a member of one of the major lexical categories.

Defined in this way, the canon matches “the most productive compound-types” of well-studied languages (i.e. Germanic, Romance and Chinese). So-called ‘phrasal compounds’,¹ “which diverge from the canonical” in that one of the constituents is syntactic not lexical in nature, are not excluded from the domain of compounding but regarded as a less-canonical subtype.²

Regarding the classification of compounds, Guevara and Scalise reproduce and adopt the 2005 version of the scheme proposed by Bisetto and Scalise (§2.1.4), with its tripartite top-level division into subordinate (SUB), attributive (ATT) and coordinate (CRD), which they contend fits phrasal and neoclassical compounds just as well as ‘normal’ compounds, but again, no definitions are provided.

A number of issues are addressed in the section devoted to the notion of the “head” and the position of the head constituent, including the distinction between the formal head and the semantic head, and the difficulty of determining the head in (i) coordinate compounds like It. *studente-lavoratore* ‘student-worker’, and (ii) verbal nexus compounds with the structure $[V+N]_N$, such as It. *rompi.ghiaccio* [break-ice] ‘icebreaker’. They conclude (contra Haspelmath 2002) that the former should be regarded as having two heads rather than none. As for the latter, the upshot

² Unfortunately, Guevara and Scalise do not go on to develop their four criteria in such a way that a theoretical space of possibilities emerges clearly, as one would in “mainstream” canonical typology. There is therefore no way of determining how closely any specific compound conforms to the canon.
appears to be that the word has a formal head (since the features of *ghiaccio* “percolate” to the compound as a whole), but no semantic head (since an icebreaker is neither a kind of break nor a kind of ice). This leads to the following definitions:

An *endocentric compound* has at least one formal head and at least one semantic head.

If an endocentric compound has only one formal head and only one semantic head, then the two must coincide. If a compound has one or more formal heads and no semantic head, it will be considered *exocentric*. If a compound has one or more semantic heads and no formal head, it will also be considered *exocentric*.

This differs from the approach taken in the present study, focuses on the semantic head and takes metonymy (and metaphor) into account when determining whether or not a compound has a head (see §4.2).

Regarding the position of the head, Guevara and Scalise (rightly) reject the right-hand head rule put forward by Williams (1981) and also the idea that the position of the head is a parameter that is fixed for any given language (Scalise 1994), and instead “prefer to maintain […] that in every language there is a canonical position of the head, which may be disregarded by certain compound-types”. The notion of ‘compound type’ is then defined in terms of four properties: output category (e.g. N), structure (e.g. N+N), classification (e.g. SUB) and position of the head (e.g. Right).

In order to reveal typological universals, the Morbo/Comp database is subdivided into four “genetically related groups”:

- Romance: Catalan, French, Italian, Spanish
- Germanic: Dutch, English, German, Norwegian, Swedish
- Slavic: Bulgarian, Polish, Russian, Serbo-Croatian
- East Asian: Mandarin, Japanese, Korean¹

Data from these languages, comprising about 3,000 compounds, is analysed on the basis of five features that are defined in terms of the generic structure $[X \mathcal{R} Y] Z$ (p.116):

¹ The authors acknowledge that Mandarin, Korean and Japanese are neither genetically related nor typologically homogenous.
The typology and semantics of binominal lexemes

a) \(Z \) = Output Category
b) \(X \) and \(Y \) = Input Categories
c) \(\mathcal{R} \) = Relation between constituents (Classes)
d) \([X \ Y]\) = Combination of Categories
e) \([X \ Y] \ Z\) = Headedness

Scales of preference are computed for each of these features, leading to the results shown in Figure 7.

Output category: \(N > A > V > \text{Adv} > (\ldots) \)
Input category: \(N > A > V > \text{Adv} > (\ldots) \)
Classification: SUB > ATT > CRD
Headedness: Right > No Head > Left > Both
Combinations: \([N+N]\) >
\([A+N]\) > \([N+A]\) > \([A+A]\) >
\([V+N]\) > \([N+V]\) > \([V+V]\) > (\ldots)

Figure 7: Scales of preference in compounding (Guevara & Scalise 2009)

These results can be summarized as follows:

- nominal compounds are more common than adjectival compounds, which are more common than verbal compounds, etc.;
- the most common constituents are nouns, followed by adjectives, verbs, etc.;
- subordinate compounds are more common than attributive compounds, which in turn are more common than coordinate compounds;
- right-headed compounds predominate, followed by exocentric compounds, left-headed compounds and coordinate compounds;
- noun-noun combinations are most common, followed by other combinations.

A few more insights can be gleaned from a closer reading of the text, for example, the greater prevalence of coordinate compounds in East Asian languages (32%) compared to the mean (19%). In addition, Guevara and Scalise have enough data to provide empirical evidence against a number of “false universals”, including the aforementioned “right-hand head rule”, the “root compounding parameter” (Snyder 2001), and the notion of the head as “locus inflectionis” (e.g. Zwicky 1985).

All in all, however, considering the size and scope of the Morbo/Comp project, these results constitute somewhat meagre pickings. Moreover, the lack of balance in the sample, and the apparently unsystematic manner in which the data were collected (see §2.1.3), cast some doubt on the validity of the findings. Also, in view of
the still untapped cross-linguistic potential of what appears to be the most widespread form of compounding in the world’s languages, I do not share the authors’ opinion that future work should concentrate on the analysis of compound types other than “endocentric subordinate right-headed [N+N]N compounds”. It is true that there have been many studies of NN compounds in individual languages, and also a handful of comparative studies, e.g. Bauer (1978) on English, Danish and French and Takada (2008) on French and Japanese, but, as far as I am aware, there has not been a single large-scale cross-linguistic study of such compounds.

2.2 Word-formation

2.2.1 Aikhenvald (2007)

Aikhenvald (2007) is a survey of the kinds of word-formation patterns found in the world’s languages, written for a volume whose aim was to give field linguists “a good idea of what to look for” when describing a language (Shopen 2007: xv). There is broad coverage of both general issues (including the nature of the word, morphological typology, structure and iconicity, productivity, lexicalization and grammaticalization), and specific types of word-formation: noun incorporation, compounding and derivation, and the chapter ends with a set of “suggestions for field workers in describing types of word-formation.” Here I focus on the sections devoted to compounding and derivation.

The section on compounding starts by addressing the issue of how to distinguish compounds from phrases. Four kinds of criteria are put forward: phonological, morphological, morphosyntactic and semantic. None of these are claimed to be universal, however, and thus “compounds have to be defined on language-internal criteria” (p. 24). Nominal compounds receive separate treatment from verbal compounds and compounding in other word classes. A number of “parameters of cross-linguistic variation” are listed (and exemplified), including:

- free forms, cranberry morphemes and special forms of free morphemes
- case-marked forms (e.g. nominative, genitive, elative, allative)
- closed classes in compounds (e.g. personal, reflexive and deictic pronouns)
- compounds formed on phrases
- typical non-referentiality of compound constituents
- productivity, sources and position of the head (if any)

However, the discussion of each issue is quite cursory. The flavour of the chapter as a whole is conveyed by the following discussion of head position:
In Germanic, Slavic and Finno-Ugric languages the head usually follows the modifier – e.g. Estonian pea-linn (head-city) ‘capital’, vana-linn (old-town) ‘downtown, old town’, cf. German Haupt-stadt (head-town) ‘capital’ – while in Romance languages the modifier can follow the head, as in Italian caffelatte ‘type of coffee’, or precede it, e.g. Portuguese boa-vida (good-life) ‘a bon vivant’ (cf. noun phrase vida boa (lit.: ‘life good’) ‘good life’). In Tagalog nominal compounds, the head typically precedes the modifier, thus creating the reverse order to that in their English counterparts (Schachter and Otanes 1972: 110), e.g. puno-ng-mangga (tree-LINKER-mango) ‘mango-tree’, tubig-ulam (water-rain) ‘rainwater’.

The further discussion of nominal compounds focuses on two kinds of contrast: the one based on the nature of the compound head (endocentric vs. exocentric vs. coordinate), the other on the word class of its constituents (root vs. synthetic):

- Endocentric compounds denote a subclass of items referred to by one of their elements (i.e. the head); exocentric compounds denote something which is different from either of their components;\(^1\) and coordinate compounds “consist of two juxtaposed nouns which refer to a unitary concept”.

- Root compounds “do not have a verb base”, while synthetic compounds “consist of a verbal root with its argument” (which may be a direct object, an oblique constituent, or an intransitive subject). The latter are said to overlap with lexical compounding, which is one of the five functional types of noun incorporation distinguished by Aikhenvald.\(^2\)

Notable for its absence from the discussion of compounding is any mention of the formation of new lexical items with more phrasal origins, such as chemin de fer and żeleznaya doroga. For Aikhenvald, as for most linguists, this process is not part of word-formation. But, we might ask, if not there, then where does it belong? Word-formation purports to be about the ways in which languages enrich their lexicons, but as long as it is viewed as a branch of morphology, and morphology as distinct from syntax, there is no home for the two above-mentioned formations.

Aikhvenvald’s discussion of derivation follows the same pattern as compounding and centres around different ways of classifying derivational processes:

\(^1\) In Aikhenvald’s usage this definition includes both typical Romance ‘verbal nexus’ compounds, such as Por. quebra-cabeça [break-head] ‘puzzle, crossword’, which has an implicit head, and bahu-vrihi compounds, such as Eng. egghead ‘a type of intellectual’, which has a metonymic head.

\(^2\) Quite what this “overlap” resides in is unclear, since all the examples of synthetic compounds are nominal, while all the examples of “lexical compounding” are verbal.
• The functional classification distinguishes between category-changing processes and category-preserving processes, depending on whether or not the process in question leads to a change of word class. In addition there are category-defining processes which are typical for a particular word class.

• The formal classification distinguishes between affixes and morphological processes: affixes can be continuous (prefixes, suffixes, infixes) or discontinuous (circumfixes, transfixes); morphological processes include apophony, reduplication, prosodic modification and subtraction, conversion, repetition and metathesis, and also acronyms, clipped forms, abbreviations and blends.

Aikhenvald (2007) is clearly not a typological study in the sense of Song (2007), with its five distinct stages (page 18). She does present a number of typological classifications within the broad domain of word-formation, but these are not based on any particular sample. In fairness, it is not her purpose to formulate and explain typological generalizations, but simply to describe the diversity of the domain. Nevertheless, certain generalizations are made. Among these are:

• “Compounding is widespread in isolating languages, while derivation is a property of languages of other types” (p. 9).

• “Numeral classifiers as independent words tend to occur in analytic isolating languages” whereas “in synthetic languages numeral classifiers tend to be affixes” (p. 10-11).

• Compounds “typically have fixed constituent order, which may be distinct from the order in noun phrases” (p. 26).

• Most languages of the world have more suffixes than prefixes. No language has prefixes without having suffixes (p. 45).

From the perspective of the present study, the value of the paper lies in its comprehensive coverage of the features to be found cross-linguistically in the domain of word-formation, rather than in any insights regarding language universals.

2.2.2 Štekauer, Valera & Körtvélyessy (2012)

Štekauer, Valera & Körtvélyessy (2012) is a typological study more along the lines advocated by Song. The phenomenon under investigation is word-formation in all of its breadth; a ‘basic sample’ of 70 languages is employed, along with a more

1 As she writes in Aikhenvald (2013): “Until the majority of human languages have been thoroughly analysed and documented, it seems most judicious to follow a qualitative approach, leaving quantitative analysis until such time in the future when more data is available and can be assessed.”
balanced subset of 55 languages called the ‘study sample’ (see Table 67 on page 484). Most of the data comes from questionnaires, but published sources were used for some languages. The creation of a typological classification is a task left to the reader. According to the authors, “various sorts of typological classifications can be inferred” from the data they present. These are primarily determined by the specific method of analysis, semasiological or onomasiological. In particular, the typological classification pertains to the preferences for formal ways of expression of cognitive categories and for the semantic scope of the individual formal means of expression of genetically, morphologically and/or geographically related languages (p. 8).

Given that the authors do not develop any classification, very few generalizations are possible, and there are therefore correspondingly fewer observations to explain. The study thus takes only the first couple of steps along Song’s path and should be regarded, as the authors state, as “a first, tentative probe” (p. 329).

A useful aspect of the study is the inclusion of the questionnaire as an appendix. The questionnaire starts with a metadata section with fields for the name of the language, and its genetic affiliation, geographic area and “morphological type”. The genetic classification is based primarily on the World Atlas of Language Structures (Haspelmath et al. 2005) and supplemented by informants, but the source of the morphological type is unclear. The only clue as to the typology employed (but not the details, definitions or criteria used in the classification) is a table on p. 11 (Table 12). This is a pity, since the morphological typology plays a major role in the study, its values being specified for every language in every one of the many “language list” tables throughout the book, and appearing as one of the three independent variables in the statistical analyses in Chapter 7.

<table>
<thead>
<tr>
<th>Morphological (Sapirean) classification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agglutinative languages (of various types)</td>
<td>30</td>
</tr>
<tr>
<td>Fusional (of various types)</td>
<td>12</td>
</tr>
<tr>
<td>Isolating (of various types)</td>
<td>7</td>
</tr>
<tr>
<td>Polysynthetic (of various types)</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 12: Morphological classification (Štekauer et al. 2012)
The body of the questionnaire has three parts. Part I asks (1) which word-formation processes\(^1\) are productive in the language, (2) their level of productivity on a scale of 1 to 5, and (3) more detail regarding the four basic word-formation processes: (A) prefixation, (B) suffixation, (C) compounding and (D) reduplication. The questions relating to compounding (3C) give a feel for the overall enterprise and are therefore reproduced in their entirety in Figure 8. The questions under points (d) and (e) are pertinent to the present study. Part II of the questionnaire concerns the most productive ways of forming various semantic categories of noun and verb, and Part III gives contributors the opportunity to provide additional comments that might complete the picture of productive word-formation processes in the language.

(a) Is compounding recursive?
(b) Are there adjectival (Adjective + Adjective) compounds?
(c) Does the language make productive use of verbal compounds?
(d) Does the language make productive use of noun (Noun + Noun) compounds?
 Which of the following are found:
 1. Stem + Stem compounds?
 2. Stem + Link + Stem compounds (the link being specific to compounding)?
 3. At least one Stem is phonologically modified
(e) If the language makes productive use of compounds both with and without a linking element, which type is more productive?
(f) Are there any copulative compounds?
 Which, if any, of the following are found:
 1. Substantival?
 2. Adjectival?
(g) Are there any exocentric compounds? Which, if any, of the following are found:
 1. words like redskin?
 2. words like French garde-manger?

Figure 8: Extract from questionnaire (Štekauer et al. 2012)

The book based on the data thus acquired is in two parts. The first consists of two theoretical chapters devoted to the scope of word-formation and the fuzzy nature of the boundary between word-formation and syntax. Spencer (2000: 315) is quoted regarding the separation of compounds from phrases as being “one of the more vexed problems in morphological theory”. Perhaps this is why there is no further mention in the study of “phrasal lexemes” (Masini 2009) like chemin de fer and železnaya

\(^{1}\) The 20 processes comprise those listed by Aikhenvald in her formal classification of derivation processes (page 43) and combinations thereof, together with the other two major word-formation types, incorporation and compounding.
doroga: Apparently Štekauer and his colleagues follow Aikhenvald in excluding such constructions from the domain of word-formation.

The second part of the book contains the cross-linguistic analysis and comprises five chapters. The first three of these adopt a semasiological perspective and investigate three kinds of process: (i) the combination of free morphemes (compounding, reduplication and blending); (ii) processes involving bound morphemes (affixation of various kinds); and (iii) processes that do not involve the addition of derivational material (conversion, segmental alternation, suprasegmental alternation and subtractive processes, including back-formation). An onomasiological approach is used in chapter 4 to examine the formal mechanisms used to express various semantic categories: nominal (agent, patient, instrumental, locative, animate gender); evaluative (augmentatives and diminutives, phonetic iconicity and word-classes); verbal (causative, transitivity, intransitivity and iterativity and/or intensification); and “word-class changing” (action nouns and abstract nouns). The final chapter contains a statistical analysis and is followed by a short epilogue.

The first four analytical chapters consist mainly of tables presenting the data collected using the questionnaire. Thus, for example, the first table in Chapter 3 lists the 50 languages (out of the basic sample of 55 languages) that make productive use compounding, along with their genetic affiliation (language family, not genus), morphological type and geographical area. Section 3.1.1.4 treats noun-noun compounds. It consists of a table listing the 44 languages that exhibit this feature, examples of compounds with and without linking elements, and a cursory discussion of three theoretical issues: the position of the head, semantics and linking elements.

The fifth analytical chapter is quite different, consisting of a set of statistical analyses using the chi square test and multiple correspondence analysis (MCA). Both methods of analysis are applied to the twenty word-formation processes using the three independent variables: language family, morphological type, and basic word order. With the chi-square test and a null hypothesis of a 50-50 chance of any language exhibiting each of the twenty processes, the principal result is that “four word-formation processes occur consistently more frequently than expected: prefixation, suffixation, compounding and reduplication [and that they] occur regardless of the internal classifications used (by language family, morphological type or word order), even if only suffixation does so for all the types within the independent variables.” MCA is a clustering technique that makes it possible to explore similarities and differences across data sets that involve multiple variables. In a first analysis covering every language family only Afro-Asiatic, Austroasiatic and Indo-
European are well-discriminated. By discarding all the other language families, associations are revealed between:

- Austroasiatic and the absence of suffixation
- Indo-European and the absence of tone/pitch and the presence of both prefixation and suffixation
- Afro-Asiatic and the presence of suffixation and reduplication

The same technique, used with a more fine-grained exploration of various subtypes of the four word-formation processes prefixation, suffixation, compounding and reduplication, produces *inter alia* the following results:

- **prefixation**: Sino-Tibetan, Kartvelian and Indo-European cluster together at one end of a gradient, while Dravidian and Uralic are at the other, with Australian and Japanese in between.
- **suffixation**: Khoisan, Siouan, Trans-New Guinea and Afro-Asiatic cluster at one end of a gradient, with Indo-European, Uralic, Kartvelian and Matacoan at the other (and with clear separation between the first two and the last two of the latter).
- **compounding**: Sino-Tibetan clusters with Indo-European as regards the presence of most types of compounding, while Totonacan clusters with Altaic and Niger-Congo in terms of the absence of most types of compounding.

The final statistical analysis concerns the onomasiological data and relates to the expression of various semantic categories by different word-formation processes. The chief result obtained is that “suffixation is the process which is used most by the sample languages throughout all the semantic categories used”. Of interest to the present study is that compounding is used rather little for such purposes, in particular for the formation of agent, patient, instrument and action nouns.

In conclusion, Štekauer, Valera & Körtvélyessy (2012) provides plenty of data across a relatively broad sample of languages, but fails to uncover any particularly interesting generalizations. It confirms the rich diversity of word-formation in the world’s languages (despite ignoring phrasal lexemes), but stops short of trying to explain the associations that it has discovered or making any kind of predictions, since, according to the authors, “such a motivation or prediction would be a matter of speculation rather than of clear linguistic facts”.

2020-04-25 Draft. Please do not cite. Comments to: pepper.steve@gmail.com
2.3 Prefiguring binominals

I coined the term binominal lexeme for the present study, but the concept itself – that of constructions that serve the same function as noun-noun compounds – is not without precedent. It figures implicitly in the following three studies: Levi (1978) on ‘complex nominals’, Rainer (2013) on ‘relational adjectives and their competitors’, and Bauer & Tarasova (2013) on ‘adnominal nominal modification’. Taken together they serve to validate binominal lexeme as a comparative concept.

2.3.1 Levi (1978) – Complex nominals

Levi (1978) is one of the most cited studies of compounding in English.¹ Unlike Warren, writing the same year on semantic relations, Levi is concerned with both syntax and semantics, albeit from a Generative Semantics perspective that is not relevant to the present study. The reason why the work is of interest here is that it is based on the concept of ‘complex nominals’, a term covering three “partially overlapping sets of expressions”, viz. (a) nominal compounds, (b) nominalizations, and (c) noun phrases with non-predicating adjectives (p. 1). On the basis of the examples provided, these can be defined more precisely as:

(a) compounds consisting of two root nouns (e.g. apple cake, windmill)
(b) deverbal nouns modified by a denominal adjective or a root noun (e.g. musical criticism, metal detection)
(c) denominal adjective plus noun (e.g. musical criticism, electric shock)²

There is some overlap between Levi’s notion of complex nominals and the concept of binominals as defined in §1.2.4: all of Levi’s nominal compounds are binominals, since they consist of two thing-roots; none of her nominalizations are, since they include an action-root; and some of her ‘nonpredicate NPs’ are – more precisely, those that involve a base noun representing a nominal concept, but not those that involve a deverbal noun. On the other hand, the present concept of binominals goes considerably beyond Levi’s notion of complex nominals in that it includes:

a) Constructions that involve one or two inflected nominal roots – including genitives (Bezhta kilos hino [iron:GEN way] RAILWAY); pertensives (Malagasy lalam.by [road:PER.iron] RAILWAY); and various other possessive constructions (Galibi Carib emoli sakilali [nose:3SG aperture:3SG] NOSTRIL).

¹ Earlier studies, including Mätzner (1860), Jespersen (1942) and Hatcher (1960) are discussed in Chapter 6.
² These categories are not disjunct, in that deverbal nouns qualified by denominal adjectives (e.g. musical criticism) belong to both types (2) and (3).
b) Constructions that involve two nominals linked by a grammatical element such as a preposition (Tarifit abrid n mašina [road PREP train] RAILWAY), a postposition (Japanese budō no ki [grape POSTP tree] VINE), or some other kind of particle (Swahili tundu la pua [hole CON nose] NOSTRIL).

c) Constructions that consist of a thing-root and a thing-affix (Slovak želez.n.ica [iron.ADJZ.NMLZ] RAILWAY) or a thing-root and a noun classifier (Bora túú.heju [nose.CM(hole)] NOSTRIL).

Levi’s claim, that “all [complex nominals] must be derived by just two syntactic processes, predicate nominalization and predicate deletion” (p. 6), is not relevant to the present study, with its cognitive-functional orientation, but her typology of nine (“recoverably deletable”) predicates is relevant to the discussion of semantic relations in Chapter 6.

2.3.2 Rainer (2013) – Relational adjectives, etc.

As the title indicates, the principal research question addressed by Rainer (2013) is whether relational adjectives can express any kind of semantic relation. He concludes that they do indeed seem to be able to express “any relation…except for the privative relation and for cases where some specific relation is blocked due to the interference of a rival pattern” (p. 26). In addressing his research question, Rainer devotes considerable space to the topic of relational adjectives and their competitors, the latter being (i) genitives, (ii) nominal compounds, (iii) prepositional phrases and attributivizers, and (iv) derivation. The paper takes a cross-linguistic approach, focusing on Latin and Slavic when discussing genitives, on German for compounds, Romance (with passing mention of the Hungarian attributivizer) with regard to prepositional phrases, and Arabic in the discussion of derivation.

However, the main interest of the paper from the perspective of the present study resides in Rainer’s implicit recognition of the cross-linguistic comparative category of binominals. In fact, Rainer comes extremely close to the definition adopted in §1.2.4, when he refers to “the expression of complex concepts consisting of two nominal concepts linked by some relational concept” (p. 27). For him this is the core competence of relational adjectives; for me it is the defining characteristic of binominal lexemes. Thus, aside from the fact that the present notion of binominals also includes noun classifier constructions, which are not mentioned by Rainer, his concept of “relational adjectives and their competitors” is essentially identical to that of binominal lexemes, and thus serves to validate it as a comparative concept.
2.3.3 Bauer & Tarasova (2013) – Adnominal modification

Bauer & Tarasova (2013) is a study of “the meaning relationships holding between the elements of endocentric nominal compounds in English.” Taking the relations underlying Levi’s (1978) set of recoverably deletable predicates as their starting point, the authors show that the same relations are found in a number of different constructions in which a noun is modified by another noun (‘adnominal nominal modification’). They conclude that these relations are not specific to compounding and must arise “from the nature of the modification”, a conclusion that is of interest in the context of my attempt to develop a model of associative relations in Chapter 9. I return to their study in §6.1.2, in connection with the classification of semantic relations. The interest here, however, is in the kinds of construction considered by Bauer and Tarasova. These are listed in (7) and illustrated using the items provided by the authors to exemplify Levi’s USE relation (N₂ USE N₁):

(7) a. noun-noun compounds (*steam iron*)
 b. associative (i.e. relational) adjective plus noun (*manual labour*)
 c. prenominal possessives (*car’s driver*)
 d. postnominal possessives (*driver of the car*)
 e. neoclassical compounds (*hydromancy < water + divination*)
 f. blends (*paratroops < parachute + troops*)

It should be noted that Bauer and Tarasova’s study is not limited to naming units, but also includes what Koptjevskaja-Tamm (2004) terms ‘anchoring’ (as opposed to ‘nonanchoring’ relations (cf. §7.2.1). Thus, (7c) *car’s driver* and (7d) *driver of the car* do not qualify as binominals because they are not lexical items and therefore fall outside the scope of the present study. (On the other hand, *car driver* denotes a generic concept rather than a specific individual and is therefore a naming unit. However, it is also not a binominal since it contains an actional element (*drive*) and is thus OT1, not OT3.) But this does not mean that these two constructions are outside the scope of the present study: Bauer & Tarasova provide three examples of prenominal possessives that clearly are naming units: *dog’s breakfast* (“a confused mess or mixture”),¹ an instance of the HAVE relation, *ladies’ man* (“a man who is fond of, attentive to, and successful with women”),² exemplifying the reversed HAVE relation, and *wolf’s bane* (“aconite; esp., a tall Eurasian plant (*Aconitum lycocotonum*) with showy, yellow flowers”),¹ which embodies the FOR relation. As for postnominal possessives, none of Bauer & Tarasova’s examples are clearly

¹ https://www.merriam-webster.com/dictionary/
² https://www.collinsdictionary.com/
naming units, presumably because this is a relatively marginal lexeme-formation strategy in English, but a word like *man-of-war* (“a combatant warship of a recognized navy”)\(^1\) shows that it does occur.

Thus all six of Bauer and Tarasova’s constructions can be accommodated by the notion of binominal, and the first four of them actually occur in the database. Neoclassical compounds and blends are not attested, presumably because they are not common enough to have been captured using the list of 100 meanings, or because they tend to be less analysable synchronically and may therefore have been coded as monomorphemic by contributors. However, a few examples did turn up in the list of 201 meanings used in the early phase of the project (see §3.1.3). These include the Hindi neoclassical form *par.deśī* [*foreign_region.inhabitant*] *STRANGER*, which is “a Sanskrit word built like German *Auszländer*” (Claus-Peter Zoller, p.c.), and the Italian *pomeriggio*, which is “a sort of blend between *pomeridiano* ‘postmeridian’ and *meriggio* ‘midday (ancient)’” (Francesca Masini, p.c.). To summarize: Bauer and Tarasova’s category of “nominals that modify other nominals” is very nearly co-extensive with that of binominal lexemes, provided the former is restricted to lexemes that have a naming function. (The notion of binominal presented in Chapter 1 includes two types – denominal derivation and classifier constructions – that are not covered by Bauer and Tarasova; the status of neoclassical compounds as possible subtypes of derivation is discussed in §6.1.2.) Their study thus serves, once again, to confirm the validity of binominal lexeme as a comparative concept.

2.4 Morphological complexity

This section brings together two rather different studies: the World Loanword Database (WOLD) and Matthias Urban’s (2012) dissertation on “lexico-semantic associations”. What they have in common, and what makes them relevant to the present project, is that they both involve large datasets, adopt an onomasiological approach (from meaning to form, cf. §2.1.2), and are concerned (each in their own way) with morphological complexity.
The typology and semantics of binominal lexemes

2.4.1 Haspelmath & Tadmor (2009) – WOLD

The World Loanword Database (Haspelmath & Tadmor 2009a) is the online version of *Loanwords in the world's languages: A comparative handbook* (Haspelmath & Tadmor 2009b). It comprises vocabularies (mini-dictionaries of about 1000-2000 entries) of 41 languages from around the world, with comprehensive information about the loanword status of each word. Sources and donor languages are provided for loanwords in each of the 41 languages, and users are able to compare loanwords across languages.

The reason WOLD was particularly useful to me is that the data set on which it is based is freely available under a Creative Commons license and could be used as a starting point for the present project. For this reason, the description given here focuses primarily on the structure and contents of the database, rather than the use to which it was put in the original project. The database contains data from 41 languages (see the map in Figure 18 on page 88 for the areal distribution):

Archi, Bezhta, Ceq Wong, Dutch, English, Galibi Carib (Kali’ina), Gawwada, Gurinji, Hausa, Hawaiian, Hmong Daw (White Hmong), Hupdë, Imbabura Highland Quechua, Indonesian, Iraqw, Japanese, Kanuri, Kekchi (Q’eqchi’), Ket, Kildin Sami, Lower Sorbian, Malagasy, Manange, Mandarin Chinese, Mapudungun, Old High German, Oroqen, Querétaro Otomi, Romanian, Saramaccan, West Slovakian Romani (Selice Romani), Seychelles Creole, Swahili, Takia, Tarifit (Tariifiyt Berber), Thai, Vietnamese, Wichi, Yakut (Sakha), Yaqui, Zinacantán Tzotzil.

Regarding the sample, Haspelmath & Tadmor (2009c:3) write:

1 http://wold.cld.org/

2 See Appendix A for genetic affiliations, language codes, etc. Note that some of the language names used here differ from those in WOLD (see *Typographical and naming conventions* on page xxv).
In selecting languages for inclusion in the project, an effort was made to represent the world’s genealogical, geographical, typological and sociolinguistic diversity. However, the overriding factors were practical. Languages could only be included if a specialist in the language volunteered to invest the considerable amount of time and effort needed to complete the database and to write a book chapter based on the findings. Indeed, no serious and timely offer to contribute a database and book chapter was turned down.

The authors admit that their language sample is not ideal and that “some regions or language families are over- or underrepresented, as are some typological and sociolinguistic types.” They also point out that the inclusion of a number of closely related languages led to some skewing of the statistics, since, for example, a word loaned by a parent language would count as a loanword in each of its descendants, whereas in fact it represents a single borrowing event. While they cannot claim that the sample is representative of the world’s linguistic diversity, the authors emphasize that it is much better than anything that existed before their project and preferable to using just one or two languages.

Our sample includes languages indigenous to all continents and belonging to many language families. Some of the languages are spoken by hundreds of millions while others only by a few thousands or even a few hundred. Some have a history going back millennia, while others are not normally written to this day. Some are official languages of nation states while others are spoken by ethnonlinguistic minorities. Typologically, the sample includes highly isolating languages as well as synthetic languages, both more fusional ones and more agglutinative ones.

The data are organized around a set of 1,460 meanings based on the Intercontinental Dictionary Series (Key & Comrie 2015). These meanings are grouped into 24 semantic fields1 and five broad semantic categories: Noun, Verb, Adjective, Adverb and Function word, which correspond to Things and entities, Actions and processes, Properties, Manner and location, and Grammatical meanings (p. 7). Examples of meanings and how they are categorized are given in Table 13.

1 Agriculture and vegetation, Animals, Basic actions and technology, Clothing and grooming, Cognition, Emotions and values, Food and drink, Kinship, Law, Miscellaneous function words, Modern world, Motion, Possession, Quantity, Religion and belief, Sense perception, Social and political relations, Spatial relations, Speech and language, The body, The house, The physical world, Time, Warfare and hunting.
Each of the 1,460 meanings is represented by zero or more translation equivalents (‘words’) in each of the 41 languages. Sometimes a language has no counterpart for a particular meaning, while in other cases it has several counterparts. For each word, information is provided about its orthographic form, analysability (with a morpheme gloss for analysable words), loanword status, age, etc. For the most part the morpheme glosses follow the Leipzig Glossing Rules (Comrie, Haspelmath & Bickel 2015), some with more detail than others, for example, the Archi word meaning ‘the nostril’ (8).

(8) *muč-li-n klan* [nose(iii)-OBL.SG-GEN hole(IV)SG.NOM]

The inclusion of the morpheme gloss, along with the semantic classification, the number of meanings and the size of the language sample, meant that the WOLD data was able to fulfil two functions in the present project. Firstly, it enabled a starter set of meanings to be extracted in a principled fashion (as described in §3.1.1), and secondly, it provided an initial source of data for the project (see §3.3.1). The question of analysability played an important role in the original loanword project:

In assessing the possible loanword status of a word, the first question was whether the word was analyzable (i.e. morphosyntactically complex) within the language. If this was the case, it was almost certain that it was created by speakers of the language rather than borrowed from some other language. *Such words were not considered loanwords*, even when they contained borrowed elements (p. 12, emphasis added).

In other words, if a word was marked as analysable, the additional information provided by the contributor – including the morpheme gloss – was not utilized in the loanword project. This information, however, was essential in the present project, as will be seen in the following chapter. As someone who spent two of his previous lives working with international standards (ISO 8879: SGML and ISO 13250: Topic Maps), and issues related to data longevity and reuse, it is very gratifying to have been able to reuse the WOLD data, especially the bits that had been essentially

<table>
<thead>
<tr>
<th>meaning</th>
<th>semantic category</th>
<th>semantic field</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE EYELID</td>
<td>Noun</td>
<td>The body</td>
</tr>
<tr>
<td>THE TRAIN</td>
<td>Noun</td>
<td>Modern world</td>
</tr>
<tr>
<td>TO EAT</td>
<td>Verb</td>
<td>Food and drink</td>
</tr>
<tr>
<td>RIPE</td>
<td>Adjective</td>
<td>Food and drink</td>
</tr>
<tr>
<td>SOUR</td>
<td>Adjective</td>
<td>Sense perception</td>
</tr>
</tbody>
</table>

Table 13: Examples of WOLD meanings
discarded by the original project. This was possible because of the project editors’ commitment to the principles of Open Data, for which they are to be commended.

2.4.2 Urban (2012)

At first glance Urban’s dissertation appears to overlap considerably with this work: Both are concerned with morphologically complex items in the nominal lexicon and both apply an onomasiological, data-driven approach. However, the research questions they address are quite different. Urban describes the dissertation as a “typological study concerned with formal and semantic patterns in the lexicon with a focus on referring (“nominal”) expressions” (p. 773). That, in a sense, is also topic of the present work. More precisely, though, Urban’s work (as the title suggests) is an investigation into two different, but related aspects of the lexicon: (i) morphological analyzability and (ii) semantic associations. With respect to the former of these, Urban presents the following (abridged) research questions:

- Are there significant differences between the languages of the world with respect to the degree of morphologically complex terms in the lexicon, possibly correlating with the affiliation to a particular language family or a linguistic area?
- Is the predominance of simplex lexical items in the better-known European languages an atypical phenomenon, attributable to extensive language contact and concomitant lexical borrowing?
- What is the role that the language-specific means of word-formation have to play?
- Is it appropriate to postulate a typological trait for languages with a pronouncedly high degree of complex formations in the lexicon, and how could this trait be reasonably delimited?
- How do differences in the degree of morphological complexity in the lexicon correlate with other typological variables, in particular those relating to structural properties?

In addition to the degree of morphological complexity in the lexicon, Urban is interested in the kinds of semantic association exhibited by both morphologically complex terms (9a) and also monomorphemic lexical items that exhibit semantic extension in the form of polysemy (9b). Both examples in (9) involve a “lexico-semantic association” between the concepts SKIN and BARK.

(9) a. Mbum MDD ɲgàŋ-kpù [skin-tree] ‘bark’
 b. Bezhta KAP beš ‘skin, bark’
Urban assumes, probably correctly, that an “identical or at the very least highly similar” cognitive process is taking place which links the meanings ‘skin’ and ‘bark’ in both of these instances:

From a semantic point of view, this [cognitive process] is the important commonality between the terms in the two languages. The difference lies in the formal realization: in Bezhta no overt sign of the relationship on the level of the signifier is present (beš can refer to both ‘skin’ and ‘bark’), whereas in Mbum, the meaning ‘bark’ is realized by a morphologically complex term. But, to reiterate, the semantic pattern is fundamentally the same (pp. 57–58).

Following Koch & Marzo (2007), Urban adopts the term ‘lexical motivation’ to cover “ties between words and the meanings they convey, regardless whether they are realized formally by word-formation relations or by polysemous or ambiguous conflation in a single monomorphemic lexical item.” In order to study such ties, Urban adopts an onomasiological approach and starts from a set of 160 nominal meanings, most of which are also found in WOLD. (Unfortunately, no explanation is provided of the selection procedure.) Meanings are grouped into four semantic domains: Topological and nature-related terms; Artefacts; Body-part terms; and terms for Phases of the day (together with a small number of miscellaneous). Despite the number of meanings per domain varying considerably (71, 26, 52 and 11, respectively), some limited use is made of this parameter in the analysis. Of the 160 meanings, 17 are represented by binominals in English, viz. ADAM’S APPLE, AIRPLANE, EYEBALL, EYEBROW, EYELASH, EYELID, FINGERNAIL, HEADLAND, MILKY WAY, NOSTRILS, RAINBOW, RIVER BED, SATURDAY, SUNRISE, SUNSET, WATERFALL, WHIRLPOOL. This gives a rough measure of the frequency of binominal concepts in Urban’s meaning list, i.e. approximately 10%.

A genealogically balanced variety sample of languages was constructed using the method developed by Rijkhoff et al. (1993) and Rijkhoff & Bakker (1998), which involves the calculation of a Diversity Value (see page 85), adapted for use with the most recent genetic classification developed by Dryer (2005). Data was collected primarily from dictionaries and supplemented with information from grammars and grammar sketches.

Turning to the thesis itself, chapters 1 and 2 provide an introduction to the major research questions and a brief discussion of the history of research in this area. Chapter 3 describes the general design of the study, presents the meaning list and language sample and outlines the analytical framework. It sets about developing a classificatory grid (inspired by Koch & Marzo 2007) to map the various kinds of
semantic relation against the ways in which they are formally expressed. Urban’s starting point for his classification of “formal relations”, which make a basic division into analysable and unanalysable forms, is a set of data points that all mean FLAME (10).

(10) a. Hausa HAU harshe [tongue, flame]
 b. Khoekhoe NAQ hōra.b [flame.3SG:M]
 c. Lenakel TNL nam.nam- [tongue.RED-]
 d. San Mateo del Mar Huave HUV netitit < ne.atitit [NMLZ.to_flame.much]
 e. Toaripi TQO a.uri [fire.tongue]
 f. Kildin Saami SJD tōl.njūxxčem’ [fire:GEN:SG.tongue]
 g. Swahili SWH ulimi wa moto [tongue of fire]
 h. Fijian FIJ yame(.yame) ni buka [tongue(.RED) POSS fire]
 i. Rama RMA abúng ngárkali ~ abúng ngarkalima [fire flame]

(10a) is monomorphemic and therefore classed as unanalysable, whereas (10b-i) are all classed as analysable. (10b-d) are subclassified as derived and subdivided into alternation (10b), reduplication (10c) and plain, i.e. conversion (10d). (10e-i) are grouped together as lexically analysable. Urban notes that (10e-h) all contain two morphemes with lexical meaning and could in theory be further subclassified as either compound or phrasal lexeme. However, he argues that there are no satisfactory cross-linguistic criteria for making such a distinction and groups them together under the “deliberately ambiguous” cover term ‘lexical analysability’. Within this group (10i) is subclassified as redundant (i.e. pleonastic) because one constituent has the same meaning as the whole. Since the more specific word-formation strategies are not used in the analysis, the classification of morphologically complex forms consists essentially of two categories: derived and lexical. A major consequence of this is that “differences in the presence of additional grammatical material that different languages require to be present are disregarded.” Thus one axis of the classificatory grid (the formal axis) consists of just two types. This represents a major difference from the present project, in which I develop a more fine-grained typological classification (see Chapter 5).

Likewise, Urban’s semantic classification consists of a “very basic and very broad distinction of semantic relations into two types, traditionally called similarity-based or metaphorical and contiguity-based or metonymic” (p. 85). Similarity relations are further subdivided into perceptual or functional, and contiguity relations into spatial, functional, perceptual, provenience, configurational, and temporal. These
subdivisions are not operationalized, however, and are merely offered as a “preliminary typological grid that may serve as a starting point for further work on this topic.” Again this contrasts with the present work which applies a much more fine-grained semantic classification (see Chapter 6).

Urban’s Chapter 4 presents a “coarse first step” in which languages are positioned on a continuum from strongly derivational (and hence weakly lexical) to strongly lexical (and hence weakly derivational), depending on the number of derived vs. lexical items they exhibit. Their positions on the continuum are analysed in terms of areal distribution using three established models for dividing the world into geographical areas (Dryer-6, Nichols-11 and Nichols-3). This is followed by a detailed discussion of “data from languages with different typological profiles” and interaction with the subtypes ‘derived type dominant’, ‘lexical type dominant’ and ‘mixed profile’. The conclusion is that the analysis clearly reveals “an association of preferred word-formation techniques with certain linguistic types”, and that languages in which the derived type is dominant cluster in certain areas of the world, “most notably the American Northwest (affixal type of polysynthesis) and the Northwest Amazon region in South America (derivational use of noun classifiers).”

Chapter 5 contains a quantitative analysis of the data. Using typological parameters drawn from the WALS (Haspelmath et al. 2005), Urban attempts to provide an explanation for the variation in the frequency of analysable lexical items. This turns out, perhaps surprisingly, to correlate with “phonological complexity (in particular complexity in the consonant inventory and in the structure of the syllable), as well as with the canonical structure of the nominal lexical root” (p. 773). The simpler the syllable structure, the smaller the consonant inventory, the shorter the monomorphemic native lexical morpheme, “the more analysable terms the sample languages have in their nominal lexicon” (p. 299). As for correlations regarding the kinds of semantic relation most often exhibited by a language, the most striking finding is that “the dominant word-formation device influences whether the language will favour contiguity- or similarity-based denominations in morphologically complex lexical items.” Urban concludes:

This is a non-trivial finding, since…there is no a priori reason that compounds must be metaphorical and derivatives must be metonymic semantically. It is also a highly interesting finding because, put in other words, one can observe here that languages, depending on the nature of aspects of their grammar (i.e. word-formation), carve up the essentially same or near-same reality, as represented by the meanings on the list which are presently studied, in quite different ways (p. 298).
Chapter 6 is concerned with semantic associations – “links between meanings in certain semantic domains as well as common metaphorical transfers across languages.” It investigates both areal patterns and “globally common strategies to express a particular meaning.” The investigation of semantic associations and their cross-linguistic distribution starts with an adjacency diagram, showing how certain meanings cluster together. There follows an analysis of various semantic fields (e.g. AEROSOLS), the meanings belonging to them (in this case, SMOKE, STEAM, CLOUD and FOG), and the strength of associations between the various meanings. The concern is thus mainly with the frequency of associations between individual meanings and not their semantics.

A short concluding chapter sums up the dissertation’s contribution as follows:

This study hopefully demonstrated two things: first, that the lexicon is not just merely “an appendix of the grammar, a list of basic irregularities” (Bloomfield 1933: 274), a doctrine that is still very much alive in many theoretical approaches to Linguistics, but that its formal structure is systematically determined by complexity of the roots and of the sound system. Neither are semantic structures completely random, but they are both amenable to areal influence in colexifying and analyzable terms, and, with regard to the latter, they co-vary to some extent with the type of word-formation most commonly used in individual languages (p. 369).

Overall, the dissertation is a treasure trove of interesting material, but there is rather little in the way of easily discernible conclusions. The present work shares with Urban’s a concern with the broad domain of complexity in the nominal lexicon and the onomasiological approach, but the research interests of the two are quite different. For Urban, semantic associations are central (and investigated through polysemy as well as morphological complexity), but these are restricted to two very broad types (contiguity and similarity), whereas in the present study, semantic relations are investigated at a greater level of detail. Moreover, while Urban’s formal typology is limited to two types (derived and lexically analysable), the present work develops a more detailed classification of one type of complex nominal, binominal lexemes.

2.5 Chapter summary

This chapter has discussed previous work, from cross-linguistic studies of compounding (and word-formation more generally), to studies that prefigure the notion of binominals and onomasiological studies of the lexicon. Each of them has helped shape the present study in one way or another. My project was originally envisaged
as a large-scale version of Bauer (2001), but replicating that study (with the focus narrowed to nominal compounding) led to the realization that the comparative concept should be defined in functional-semantic rather than formal terms if interesting progress was to be made. This was confirmed implicitly by the paucity of new insights produced by the Morbo/Comp project and in the work of Štekauer et al. The results of Morbo/Comp also raised awareness of the need for a principled way to collect data and the need for cross-linguistic breadth.

Rainer (2013), supported by Bauer & Tarasova (2013), and to some extent Levi (1978), provided confirmation that there are certain topics – in particular, those involving semantic relations – that can be usefully investigated by adopting the broader, functionally-oriented perspective of binominal lexemes. That this would involve plenty of formal diversity was confirmed by both Aikhenvald (2007) and Štekauer et al. Arnaud (2004b) gave the first hint that an onomasiological approach might be productive, and both Haspelmath & Tadmor (2009b) and Urban (2012) showed that such an approach is workable on a large scale. The former also constituted a source of readily available data, while the latter showed that the range of topics that could potentially be investigated with data of that kind is very great: so great, indeed, that one should beware the danger of trying to cover everything. Beyond this, there is any amount of previous work that is relevant to this project (concerning, for example, choice of comparative concept, sampling techniques, developing a classification, analysing semantic relations, metonymy and more). That work will be presented and discussed in the context of later chapters where it more properly belongs.
This chapter is about methodology and data. It covers the second stage of Song’s recipe for doing typology (cf. page 18): that is, generation of a language sample, which I take to include the collection of data. Since the meaning list constitutes the foundation of the database, I explain in some detail in §3.1 how I constructed it. I describe how the initial set of 159 meanings was generated from WOLD, how it was tested against five languages and extended to a list of 201 meanings, and the principled manner in which it was later reduced to the final set of 100 meanings.

§3.2 is concerned with the language sample. Here I discuss various sampling techniques and present the sample of 106 languages used in the project. In §3.3 I cover the process of data collection, which was based on open data from the WOLD database, questionnaires, dictionaries and grammars, each of which presented its own challenges. Finally, §3.4 offers a short summary of the overall process.

3.1 The meaning list

Having decided upon a data-driven, onomasiological approach (see §1.4.1), it was necessary to construct a meaning list. The primary desiderata for such a list are that it should yield as many binominals as possible (both within each individual language and across the sample of languages as a whole), and that it should yield as many different types of binominal as possible. In other words, it should exemplify as many morphosyntactic strategies as possible for each language.

The most efficient and principled method of arriving at such a list would be to query an existing set of data, and my initial thought was to use the Morbo/Comp database for this purpose. As described in §2.1.3, that database was reported to contain 80,000 compounds from over 20 languages, annotated inter alia for category (N, V, A, P, etc.), structure ([N+N], [N+A], [V+N], etc.) and gloss (i.e. English translation equivalent). It was envisaged that a suitable list of meanings could be extracted from this database by querying it for compounds of category N with the structure [N+N], grouping these by gloss, and ordering the resulting list of glosses by the number of compounds representing each gloss. However the data turned out to be unsuitable for this purpose. This was because fewer than 5% of the 80,000 compounds had in fact been analysed and classified by type, and not all of these
had been glossed. With only 704 glossed [N+N] compounds distributed across 23 languages, there was no basis for selecting a set of meanings in a principled manner. Fortunately, the WOLD database (described in §2.4.1) turned out to be more suitable for the purpose of extracting a set of meanings, for three reasons: firstly, it contains a large and fully annotated data set (1,460 meanings in 41 languages); secondly, it is constructed around the notion of ‘meanings’, so these do not have to be inferred from translation equivalents; and thirdly, it is freely available online. Unlike the Morbo/Comp database, however, entries in WOLD are not annotated in such a way that it is possible to query for forms consisting of two nouns. As noted on page 54, information is provided about analysability, and analysable forms are given a morpheme gloss: for example, Archi muč-li-n klan NOSTRIL is glossed as [nose(iii)-OBL.SG-GEN hole(IV)SG.NOM]. But such glosses are not generalized into forms that correspond to Morbo/Comp’s [N+N], which in the case of the Archi example might be given as N.GEN N or Mod.GEN Head. In short, WOLD can be queried for complex nominals, but not for binominals. For this reason, a multi-step process was used. In the first step, an initial list of meanings was extracted from WOLD. This consisted of the 159 meanings that are most often represented by complex (i.e. analysable) nominals (§3.1.1). In the next step, this list of meanings was tested using a small number of languages where it was known in advance what kinds of binominal construction to expect (§3.1.2). As a result of this examination, the list was extended to 201 meanings (§3.1.3). Data was then collected and analysed for a total of 50 languages and, on the basis of this data, it became possible to reduce the list to the 100 meanings that were most often represented as binominals (§3.1.4).

3.1.1 Initial extraction of 159 meanings

Binominals almost always denote things and entities. In other words, they denote the kinds of meanings that belong to the semantic category Noun in WOLD; they very rarely denote actions and processes (Verb), properties (Adjective), manner and location (Adverb), or grammatical meanings (Function word). Moreover, they are always analysable (i.e. morphosyntactically complex), since by definition they consist (at a minimum) of two thing-morphs. Building on these facts, and exploiting the metadata available in WOLD, an SQL query (11) extracted the subset of meanings with the semantic category “Noun” that are represented by analysable forms in one or more languages. These were sorted in descending order of the number of languages in which the meaning is represented by one or more analysable forms.
select
 p.id, p.name as meaning, count(distinct vs.id) as langs
from
 meaning as m,
 parameter as p,
 valueset as vs,
 value as v,
 counterpart as cp,
 word as w
where
 m.pk = p.pk and
 p.pk = vs.parameter_pk and
 v.valueset_pk = vs.pk and
 v.pk = cp.pk and
 cp.word_pk = w.pk and
 m.semantic_category = 'Noun' and
 substring(w.analyzability from 1 for 10) = 'analyzable'
group by
 p.id, p.name
order by
 langs desc, meaning;

Figure 10: SQL query used to extract meanings from WOLD

The query returned a three column table with the headings id (identifier), meaning, and langs, with the data sorted in descending order of langs (cf. the boldfaced portions of the query). Those meanings that are most frequently represented by complex (i.e. analysable) words were therefore at the top of the list. The resulting CSV file containing 928 rows was imported into an Excel spreadsheet called meaning (Figure 11). Observe that the meaning NOSTRIL is represented as a complex form in 35 of the 41 languages, MIDDAY in 32, etc.

The original query did not count the number of languages in which each meaning was represented by an analysable word, but rather the number of analysable words for each meaning. With this query, the meaning COUSIN appeared at the top of the list, with a count of 38, followed by NOSTRIL, with a count of 37. The difference is due to the fact that some meanings have multiple counterparts in some languages. For example, COUSIN has six (analysable) counterparts in Tarifit, e.g. yəğği.s n xači [daughter.3sg of maternal_aunt], all of which use the same construction Head.3SG PREP Mod:STC. As a result, undue weight is given to such meanings, as can be seen from the fact that under the revised query, the result of which is shown in (12), COUSIN only gets a count of 16. By querying for languages instead of words, this problem was avoided.
A	B	C
1 | id | meaning | langs
2 | 4-231 | nostril | 35
3 | 14-45 | midday | 32
4 | 4-213 | eyelid | 31
5 | 17-26 | pupil | 29
6 | 3-819 | spider web | 29
7 | 2-71 | stepfather | 29
8 | ... | |

Figure 11: View of the table 'meaning' in its original form

From this list, the top 159 meanings were selected. The cut-off point was set at meanings that are represented by complex words in 16 or more languages. This left space to balance the sample later, as described in §3.1.2 and §3.1.3, by adding further meanings in order to achieve the target of 200 meanings (originally chosen for commensurability with Urban 2012). A cut-off point of 17 languages would have resulted in 133 meanings and the need to add a further 67 during balancing, which was deemed too many; a cut-off point of 15, on the other hand, would have resulted in 191 meanings and space for only a further nine to achieve balance, which would have been too few. This resulted in the “starter set” of 159 meanings shown in (12), in which the number of languages where each meaning is represented by at least one analysable form (i.e. the value of langs) is given in parentheses.

(12) NOSTRIL (35); MIDDAY (32); EYELID (31); PUPIL, SPIDER WEB, STEPFATHER (29); FISHERMAN, MERCHANT, PARENTS, STEPMOTHER, THUMB (27); DEFENDANT, EARLOBE (26); BREAKFAST, EARTHQUAKE, MURDER, NIPPLE OR TEAT, SKULL, SPINE, WATERFALL (25); EARWAX, POTTER, STEPSON, YOLK (24); CAPTIVE OR PRISONER, DIVORCE, DRINK, EYELASH, PLAINTIFF, RAPE, SHORE, STEPDaughter, TAILOR, TOE (23); ANCESTORS, BEGGER, FOOD, KID, MARRIED WOMAN, NATIVE COUNTRY, STRANGER, TEACHER, THIEF (22); ANXIETY, BAD LUCK, DAWN, HERDSMAN, QUARREL, SUPPER, WRIST, YOUNG MAN (21); ARSON, BEEHIVE, BEESWAX, BEGINNING, BIRTH CERTIFICATE, BLACKSMITH, BRACELET, DINNER, DOORPOST, EARRING, OLD WOMAN, PALM OF HAND, PITY, SORCERER OR WITCH, WHETSTONE, WHIRLPOOL, WIDOWER (20); ANKLE, DARKNESS, DESCENDANTS, GLOVE, HOSPITAL, HOST, LUNCH, MARRIED MAN, MEAL, PROSTITUTE, REMAINS, SCULPTOR, SHOEMAKER, SHOULDERBLADE, SWELLING, WOMB (19); AFTERNOON, AIRPLANE, BOY, BRUISE, CARPENTER, COCK/ROOSTER, COLLARBONE, COOKHOUSE, COOK, DECEIT, DISEASE, GUARD, LICENSE PLATE, MAGIC, MEETING HOUSE, MISTAKE, MOTHER-IN-LAW (OF A MAN); NURSE, PERJURY, PESTLE, ROOF, SERVANT, TOILET, TOOL, WEDDING, WIDOW (18); CALF, CHIEFTAIN, CROWD, DEFEAT, ENVY OR JEALOUSY,
FARMER, FIREPLACE, FISHING LINE, FLAME, FOOTPRINT, FREEMAN, GRIEF, JUDGMENT, LAMB, MARE, NIECE, OLDER SISTER, SCREWDRIVER, SIBLING, SPECTACLES/GLASSES, SUNDAY, TWINS, VEIN OR ARTERY, YOUNGER SISTER (17); ANGER, BABY, COUSIN, EAST, ELECTION, END, FOAL OR COLT, GIRL, HANDKERCHIEF OR RAG, IDEA, INTENTION, ITCH, NEIGHBOUR, POSTCARD, PRAISE, QUEEN, RAINBOW, RAZOR, RIB, SCHOOL, VICTORY, WEAPONS, WEDNESDAY, WEST, YOUNG WOMAN, YOUNGER BROTHER (16).

Two things may be observed from the English words used as labels. Firstly, many of the meanings (but by no means all) are represented as binominals in English – specifically, noun-noun compounds – e.g. eyelid. This inspired a certain degree of confidence that the list of meanings had the potential to yield a substantial crop of binominals cross-linguistically. Secondly, many of the labels (and thus the English language counterparts) are not binominals. Some of these are monomorphemic, indicating that, while some meanings, e.g. pupil, clearly have analysable counterparts in many languages, they do not do so in all. Others are analysable but not binominal, such as shoemaker, which contains the actional element MAKE and is thus of Onomasiological Type 1 (see page 11), and beginning, which consists of the onomasiological base (the nominalizing affix -ing) and the determined element of the mark (BEGIN), but no determining element, and is thus of Onomasiological Type 2. Moreover it can be observed that while SHOEMAKER probably has a rather high potential to be expressed as a binominal in some languages, for example through the combination of the two nominal concepts SHOE and AGENT, parallel with potter, and as is the case in Wichí sapatu.wu [shoe.AGT], the same cannot be said for BEGINNING, which often involves an actional element with the meaning BEGIN.

3.1.2 Evaluation against five languages

Since a major goal of the project is to document the variety of morphosyntactic strategies that are used to express binominal concepts, it was necessary to test the initial list of meanings against some languages for which both data and the ‘answer key’ (i.e. information regarding the kinds of strategies to anticipate) were readily available. The languages chosen for this purpose were French, Welsh, Turkish,

1 Note that the names of these meanings are all prefixed by the word “the” in WOLD in order to distinguish Nouns from homonymous Verbs (prefixed with “to”). In the present work the article is not used, since only meanings belonging to the semantic category Noun have been selected.

2 This also turns out to be the case with the WOLD data, where none of the words meaning BEGINNING are binominals.
Nizaa and Japanese. French and Japanese are represented in WOLD and thus the required data was readily available. For Welsh, Turkish and Nizaa data was collected from dictionaries and word lists. Each form that denoted one of the 159 meanings was analysed in order to determine the kind of construction it manifested. The results are detailed in the remainder of this section.

French

Based on the literature (Arnaud 2015; Bourque 2016), the following constructions were anticipated for French:

- **Head Mod**
- **Head de Mod** (and also, but marginally, **Head de:DET Mod**)
- **Head à Mod**, (and also, but marginally, **Head à:DET Mod**)
- **Head PREP Mod**, (where PREP stands for prepositions other than de and à).

One additional pattern, not mentioned by either Arnaud or Bourque, was found in the WOLD data: **Head Mod.ADJZ**, e.g. *incendie volont.aire* [fire will.ADJZ] ARSON. Two patterns (**Head Mod** and **Head à Mod**) were not encountered. In order to ensure that such constructions were represented, the 20 meanings in (13) and (14) were selected from Bourque’s database and added to the list of meanings in (12).¹

(13) **Head Mod** (5x)

(14) **Head à Mod** (15x)

¹ Meanings given in bold are represented in WOLD but were not among the top 159 produced by the SQL query. For these meanings the number of languages in which it is represented by a complex word in WOLD is given in parentheses.
Welsh

A set of data points was created for Welsh using Evans & Thomas (1994) and Hawke, Fychan & Roberts (2014). Based on the literature (Zimmer 2000; Awbery 2004), the following constructions were anticipated:

- **Head.Mod, Head DET Mod, Head PREP (DET) Mod, Mod.Head**

There were no missing patterns, but only three examples of the Mod.Head type were found in the 159 meaning sample. The 20 meanings added on the basis of the analysis of French data (above) resulted in a further 10 examples of this type. Adding the two meanings in (15) then yielded three more examples.

(15) **Mod Head** (2x)

gyddf.orch [neck.chain], gyddf.gadwyn [neck.chain] NECKLACE (10), rheil.foord [rail.road] RAILWAY

Turkish

Using Akdikmen (2006) a set of data points was created for Turkish. Based on the literature (Kornfilt 1997; van Schaaik 2002), the following constructions were anticipated:

- **Mod Head.3SG, Mod Head**

Both of these were encountered with relatively high frequency. However, two subtypes of Mod Head mentioned by van Schaaik (2002: 21) were not encountered. These are (i) **Mod Head** constructions in which baş ‘head’ is the first element; and (ii) **Mod Head** constructions in which the first element denotes a material. In order to have such constructions represented, the meanings in (16) and (17) were added.

(16) **Mod baş Head**

baş.kent [head.city] CAPITAL CITY

(17) **Mod MATERIAL Head**

altin yüzük [gold ring] GOLD RING, taş köprü [stone bridge] STONE BRIDGE

Nizaa

Due to the lack of a comprehensive dictionary it was not possible to create a full set of data points for Nizaa. However it was possible to use Theil’s unpublished wordlist (Theil Endresen nd) to find out whether the constructions predicted in the literature (Pepper 2010b) would be revealed by the set of meanings. Those constructions are

- **Head Mod, Mod Head**
Both patterns were encountered, despite the fact that rather few of the 159 meanings have translation equivalents in the data sources (18,19).

(18) **Head Mod**

nii danni [person work] **FARMER** (17); *nii simni* [person darkness] **CAPTIVE OR PRISONER** (23); *kōw ṃnu* [bone head] **SKULL** (25)

(19) **Mod Head**

nyūr yāa [nose hole] **NOSTRIL** (35); *twāny lāa* [ear dirt] **EARWAX** (24); *ṁnu kōw* [head bone] **SKULL** (25)

Since the list of meanings covered both left- and right-headed compounds in Nizaa, there was no need for further additions.

Japanese

Based on the literature (Hinds 1986; Kageyama 2009; Hasegawa 2015) the following constructions were anticipated:

- **Mod Head, Mod no Head**

55 examples of **Mod Head** were found in the WOLD data but only two of **Mod no Head**. Some of the latter (20) were already present in WOLD but not part of the initial meaning list, and Kageyama (2016: 492ff) proffered further examples (21).

(20) **Mod no Head** (in WOLD)

waki no shita [armpit GEN under] **ARMPIT** (11); *ki.no.mi* [tree.GEN.fruit] **NUT** (10); *e.no.gu* [painting.GEN.??] **PAINT** (9); *budō no ki* [grape GEN tree] **VINE** (14); *toshishita no kyōdai* [age:down GEN sibling] **YOUNGER SIBLING** (9); *toshiue no kyōdai* [age:up GEN sibling] **OLDER SIBLING** (9)

(21) **Mod no Head** (additional)

ko.no.ha [tree.GEN.leaf] **LEAF**; *hi.no.de* [sun.GEN.rise] **SUNRISE**; *kumo.no.su* [spider.GEN.web] **SPIDER WEB**; *nomi.no.iti* [flea.GEN.market] **FLEA MARKET**; *ama.no.kawa* [heaven.GEN.river] **MILKY WAY**; *mago.no.te* [grandchild.GEN.hand] **BACK SCRATCHER**

In order to increase the representation of **Mod no Head** constructions, **ARMPIT**, **NUT**, **VINE**, **FLEA MARKET** and **MILKY WAY** were added to the set of meanings and the word *kumo.no.su* **SPIDER WEB** was added to the data set, since it does not appear in the Japanese WOLD vocabulary (http://wold.cldc.org/meaning/3-819#2/24.3/4.8), despite being one of the WOLD meanings.

1 Theil’s word list contains two entries with the definition *crâne* ‘skull’ (see Pepper 2016: 301).
3.1.3 Expansion to 201 meanings

Based on the results of testing against the five languages discussed in the preceding section, the list of 159 meanings was extended by the 30 meanings in (22), seven of which (shown in bold) were already present in WOLD and 23 were new.

(22) **ARMPIT**; **BACKPACK**; **BEE**; **BICYCLE PUMP**; **BOW TIE**; **CAPITAL CITY**; **DAIRY COW**; **FLEA MARKET**; **GOLD RING**; **HAND BRAKE**; **HANDBAG**; **HORSESHOE**; **HUMMINGBIRD**; **KEYWORD**; **LIPSTICK**; **MAIL BOX**; **MILKY WAY**; **NECKLACE**; **NUT**; **PADDLE WHEEL**; **POSTAGE STAMP**; **RAILWAY**; **STONE BRIDGE**; **SUGAR CANE**; **TOILET PAPER**; **TOOLBOX**; **TOOTHBRUSH**; **VINE**; **WATER PUMP**; **WINDMILL**

In order to bring the total number of meanings to 200, a further eleven meanings were selected from WOLD (23). The selection process was based on three criteria:

(i) the meaning should be relatively frequently represented by analysable words in WOLD;
(ii) it should have the (subjectively judged) potential to be represented by a binominal, and
(iii) it should have the potential to be found in most of the world’s languages. Criterion (i) ensured that the meaning would often be represented by a complex form, even if it didn’t meet the threshold set for the original list of 159 meanings. Criterion (ii) was based on hints implicit in the English form (e.g. EYE + BROW, TREE + TRUNK) or, in the case of simplex English forms, information available elsewhere (such as Urban 2012) indicating that such meanings are often represented by complex forms (e.g. BARK from TREE + SKIN, CAVE from EARTH + HOLE). Criterion (iii) meant avoiding meanings that were overly culture-specific.

(23) **ARCTIC LIGHTS**; **BARK**; **BICYCLE**; **CAVE**; **EYEBROW**; **SPRING OR WELL**; **STABLE OR STALL**; **TEAR**; **THATCH**; **TRAIN**; **TREE TRUNK**

Finally, **FIREWOOD** (not present in WOLD) was added to the list of meanings on something of a whim, because it seemed to be a good candidate for being found in most languages and for being represented by binominals in many of them. This brought the total to 201, 177 of them present in WOLD and 24 new. The complete list of 201 meanings is given in Appendix H (Table 68) on page 485.

3.1.4 Reduction to 100 meanings

Having finalized the list of 201 meanings it was possible to start the process of data collection, which is described in §3.2.3. During that process it became apparent that the list of meanings was far too large and that, given the overall scope of the project, the amount of work required to collect and analyse forms representing 201 meanings in each of the targeted 100 languages would be prohibitive. It therefore became
imperative to reduce the number of meanings drastically. By this time data had been collected and analysed for 50 languages.\(^1\) In addition to the kind of basic information available in WOLD regarding analysability and morpheme gloss, each item had been annotated for its basic structural type (see Table 22 on page 100; binominals are coded NN). From this it became clear that some meanings were much more likely to be represented by binominal constructions than others. For example, of the 52 words meaning NOSTRIL, 40 were binominal (most of them consisting of nouns meaning NOSE and HOLE), whereas none of those meaning VICTORY were (not surprisingly, many of the latter were derived from verbs with the actional meaning WIN). The set of meanings, in other words, was not optimal and could be pruned without significant reduction in the number and diversity of binominal constructions in the data. This was accomplished in several steps.

First, three columns were added to the spreadsheet meaning, as shown in Figure 12. Recall that column C (langs) shows the number of languages in which the meaning is represented by an analysable word in WOLD; that information is no longer relevant at this stage. Column D (words) shows the total number of words per meaning (including monomorphemic forms) in the expanded database of 50 languages; column E (NN) shows the number of different binominal constructions per meaning; and column F (freq) shows the frequency of binominals (NN / words) as a percentage. The table is sorted in descending order by column F. Observe that NOSTRIL is represented by 52 words and 40 NN constructions.\(^2\) The remaining 12, including Fr. narine and Sakha tani; are not (synchronically) analyzable. NOSTRIL is the meaning most frequently represented as a binominal, followed by EARLOBE, PALM OF HAND, ARCTIC LIGHTS, etc. The meanings least often denoted by binominals are DIVORCE, ITCH, PRAISE, QUARREL, REMAINS, SWELLING, VICTORY, none of which are represented by as much as a single binominal: Like VICTORY, most of them are derived from action-roots and are thus OT1 or OT2 and not OT3 (see page 11).

\(^1\) French, German, Hindi, Hungarian, Irish, Italian, Lithuanian, Polish and Welsh, in addition to the 41 languages found in WOLD (see page 52).

\(^2\) At this stage there were 42 binominals that represented NOSTRIL in the data set of 50 languages, but two languages had two words for this concept and used the same construction for both: Indonesian lubang hidung [hole nose] and rongga hidung [cavity nose] (both Head Mod) and Swahili mwanzi wa pua [bamboo CON nose] and tundu la pua [hole CON nose] (both Head CON Mod). These four data points thus give rise to just two constructions.
The complete ranking of meanings in order of “binominality potential”, that is, the likelihood of being represented as a binominal, is given in Appendix H (Table 69) on page 487. This ranking offers a principled method for trimming the list of meanings. A cut-off point could be chosen at random, for example, at 25, 50, 100 or 120 meanings, but it is important to know what the consequences of the choice will be, since there is a trade-off to be made: the smaller the size of the meaning sample, the easier it is to collect data, but the greater the risk of missing out on interesting morphosyntactic patterns. In order to arrive at an optimal cut-off, a consequence analysis was performed using the results of the formal analysis described in §4. As explained there, every binominal was annotated with its construction, as shown in Figure 13.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ID</td>
<td>meaning</td>
<td>langs</td>
<td>words</td>
<td>NN</td>
</tr>
<tr>
<td>2</td>
<td>4-231</td>
<td>nostril</td>
<td>38</td>
<td>52</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>4-221</td>
<td>earlobe</td>
<td>43</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>4-331</td>
<td>palm of hand</td>
<td>29</td>
<td>31</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>1-771</td>
<td>arctic lights</td>
<td>24</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>4-222</td>
<td>earwax</td>
<td>45</td>
<td>48</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>3-819</td>
<td>spider web</td>
<td>48</td>
<td>49</td>
<td>31</td>
</tr>
</tbody>
</table>

Figure 12: View of the table 'meaning' showing frequencies

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>language</td>
<td>word</td>
<td>gloss</td>
</tr>
<tr>
<td>2</td>
<td>Gawwada</td>
<td>sint.itte</td>
<td>[nose.SG:F]</td>
</tr>
<tr>
<td>3</td>
<td>German</td>
<td>nase.n.loch</td>
<td>[nose.LE.hole]</td>
</tr>
<tr>
<td>4</td>
<td>Gurinji</td>
<td>jitji jarriny</td>
<td>[nose hole]</td>
</tr>
<tr>
<td>5</td>
<td>Hmong Daw</td>
<td>qhov ntswg</td>
<td>[hole nose]</td>
</tr>
<tr>
<td>6</td>
<td>Iraqw</td>
<td>foxār duunga'</td>
<td>[hole:of nose]</td>
</tr>
<tr>
<td>7</td>
<td>Kanuri</td>
<td>sùwülĩ kânzà.bè</td>
<td>[opening nose.GEN]</td>
</tr>
<tr>
<td>8</td>
<td>Ket</td>
<td>olaŋ.d qūk</td>
<td>[nose.GEN hole]</td>
</tr>
<tr>
<td>9</td>
<td>Lower Sorbian</td>
<td>nos.owa źêrka</td>
<td>[nose.ADJ hole]</td>
</tr>
<tr>
<td>10</td>
<td>Swahili</td>
<td>tundu la pua</td>
<td>[hole CON nose]</td>
</tr>
<tr>
<td>11</td>
<td>Takia</td>
<td>ŋdu.n awa.n</td>
<td>[nose.3SG mouth.3SG]</td>
</tr>
<tr>
<td>12</td>
<td>Wichi</td>
<td>to.nhes.pe’</td>
<td>[POSS.nose.LOC]</td>
</tr>
<tr>
<td>13</td>
<td>Yakut</td>
<td>murun ɣhayayah.a</td>
<td>[nose hole.3SG]</td>
</tr>
</tbody>
</table>

Figure 13: Simplified view of the table 'word' showing various constructions
To exploit this annotation, a script was written to calculate how many constructions would appear in the data for meaning samples of sizes ranging from 1 to 201. The results of this analysis are shown in Figure 14.

![Figure 14: Number of constructions as a function of number of meanings](image)

The graph shows the number of constructions found in the 50-language sample for various meaning sample sizes. 201 meanings yield 276 constructions, an average of 5.52 constructions per language. At the other end of the scale, a single meaning (the most binominal meaning, NOSTRIL) yields 38 constructions, since the data set contains 38 different constructions that express this meaning (24).

(24) Archi **Mod.GEN Head**
Ceq Wong **Head Mod**
Dutch **Mod Head**
English **Mod Head**
Galibi Carib **Mod.POSS Head.POSS**
Gawwada **BASE.FEM**
German **Mod.LE.Head**
Gurinji **Mod Head**
Hausa **Head.LK Mod**
Hawaiian **Head Mod**
Hmongs **Daw Head Mod**
Hungarian **Mod Head**
Hupdë **Mod Head**
Imbabura Quechua **Mod Head**
Indonesian **Head Mod**
Iraqw **Head.CON Mod**
Irish **Head Mod.GEN**
Japanese **Mod Head**
Kanuri **Head Mod.GEN**
Kekchi **Head Mod**
Ket **Mod.GEN Head**
Lower Sorbian **Mod.ADJZ Head**
Malagasy **Head Mod**
Manance **Mod Head**
Mandarin Chinese **Mod Head**
Mapudungun **Head Mod**
Oroqen **Mod.APOSS Head.POSS**
Otomí **Head Mod**
Saramaccan **Mod Head**
Seychelles Creole **Head Mod**
Swahili **Head CON Mod**
Takia **Mod.3SG Head.3SG**
Thai **Head Mod**
Vietnamese **Head Mod**
Wichí **POSS.BASE.LOC**
Yakut **Mod Head.3SG**
Yaqui **Head Mod**
Zinacantán Tzotzil **Head Mod**

Table 14: Binominal constructions yielded by NOSTRIL
Adding the second most binominal meaning, EARLOBE, which was represented by 32 binominals, increased the number of constructions to 50. Note how the addition of these 32 binominals resulted in the addition of only 12 new constructions (25); the remaining 20 constructions were already represented by words denoting NOSTRIL. Note also that a few languages appear in both (24) and (25), for example German, for which we find two different constructions: Mod. LE. Head and Mod. Head.

(25) French Head PREP Mod Old High German Mod Head
Galibi Carib Mod Head.POSS Polish Head Mod. GEN
German Mod. Head Takia Mod. Head. 3SG
Ket Mod. Head Tariffit Head PREP Mod: STC
Kildin Saami Mod. Head Welsh Head Mod
Lithuanian Mod. GEN Head Wichí POSS. Mod Head

Table 15: Additional constructions yielded by EARLOBE

As more meanings are added to the list, the number of constructions increases, as shown in Figure 14. With a list of 40 meanings (roughly 20% of the original list of 201), the number of constructions reaches 171: the Pareto principle (or “80/20 rule”) thus does not apply with this data set, since only 62% of the effects (i.e. constructions) comes from 20% of the causes (meanings). In order to achieve 80% coverage (221 constructions out of the maximum of 276), a set of 84 meanings is required. This would correspond to a 58% reduction of the original sample size and require the inclusion of every meaning (from NOSTRIL to KEYWORD) with a binominality potential of 25% or more (cf. Table 69 on page 487). The number of constructions that would be lost in such a scenario is 55. These are listed in their entirety in Table 70 on page 489, along with each individual binominal conforming to the pattern in question. For convenience, a subset is reproduced here as Table 16. (The significance of the dagger † is explained on page 76.)

The following observations may be made regarding Table 16 (and Table 70):

- Most of the constructions (34 out of 55) are only instantiated by a single binominal, and are therefore probably somewhat peripheral; this is the case for all the types listed for Bezhta and Dutch, for example.
- One construction, Malagasy NMLZ. Base. CIRC, with six instances, is clearly of importance in the language and should therefore not be lost.
- In Zinacantán Tzotzil there are two constructions that have four instances each, Mod. Head and opaque. The latter can obviously be discarded without loss of information, but the former should preferably be retained.
<table>
<thead>
<tr>
<th>Language</th>
<th>Construction</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezhta</td>
<td>† Base.SUP.ATTR māhā.ƛ’ā.kö [door_frame.SUP.ATTR]</td>
<td>SERVANT</td>
</tr>
<tr>
<td></td>
<td>Head Mod</td>
<td>c’uddo c’emuc’ [red egg]</td>
</tr>
<tr>
<td></td>
<td>Mod.ADJZ Head</td>
<td>nucodaq t’ot’ [honey:ADJZ fly]</td>
</tr>
<tr>
<td>Dutch</td>
<td>Base.M</td>
<td>weduwn.aar [widow.M]</td>
</tr>
<tr>
<td>Hindi</td>
<td>Base.AGT</td>
<td>lohā.r [iron.AGT]</td>
</tr>
<tr>
<td></td>
<td>† Mod.ADJZ Head</td>
<td>havā.ī jaḥāz [air.ADJZ ship]</td>
</tr>
<tr>
<td>Irish</td>
<td>Base.NMLZ</td>
<td>drař.ačht [magician.NMLZ]</td>
</tr>
<tr>
<td></td>
<td>† Head Mod</td>
<td>trāth.nóna [occasion.noon]</td>
</tr>
<tr>
<td>Malagasy</td>
<td>Head SOC.Mod</td>
<td>lehilahy manaN.vādy [man with.spouse]</td>
</tr>
<tr>
<td></td>
<td>NMLZ.Base</td>
<td>vehivāvy manaN.vādy [woman with.spouse]</td>
</tr>
<tr>
<td></td>
<td>NMLZ.Base.CIRC</td>
<td>fīnambakāna < faN.ambāka.ana [NMLZ.deceit.CIRC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fījīdiānam < fī.fidy.(an)ana [NMLZ.choice.CIRC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fīalōnana < fī.alōna.ana [NMLZ.jealousy.CIRC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fīkasāna < fī.kāsa.ana [NMLZ.aim/purpose.CIRC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>famosavīana < faN.mosāvy.ana [NMLZ.witchcraft.CIRC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fīadiāna < fī.ādy.ana [NMLZ.fight.CIRC]</td>
</tr>
<tr>
<td>Seychelles Creole</td>
<td>† Base.AGT</td>
<td>prizon.nyen [prison.AGT]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bazar.dye [market.AGT]</td>
</tr>
<tr>
<td>Wichí</td>
<td>Base.AGT</td>
<td>tshotoy.wu [animals.AGT]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tiena.wu [market.AGT]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sapatu.wu [shoe.AGT]</td>
</tr>
<tr>
<td></td>
<td>Base.LOC</td>
<td>kanu.hi [needle.LOC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y’āmekw.hi [excrement.LOC]</td>
</tr>
<tr>
<td>Yaqui</td>
<td>Base.LOC</td>
<td>sisį’iwoo.chi [iron.LOC]</td>
</tr>
<tr>
<td></td>
<td>† Base.NMLZ</td>
<td>ko’oko.a [pain.NMLZ]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ju-ubi.wa.me [RDP~wife.PASS.NMLZ]</td>
</tr>
<tr>
<td></td>
<td>† Mod:PL Head</td>
<td>waim asoa [sister/brother:PL daughter]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>waim marai [sister/brother:PL daughter]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>waim achai [sister/brother:PL father]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>waim maala [sister/brother:PL mother]</td>
</tr>
<tr>
<td>Zinacantán Tzotzil</td>
<td>Mod Head</td>
<td>shokan na [side house]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hmulaviʔantz [inner woman]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meʔanalʔantz [poverty/misery/grief woman]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>meʔanalʔvinik [poverty/misery/grief man]</td>
</tr>
<tr>
<td></td>
<td>opaque</td>
<td>k’op ʔoʔon [word/argument heart]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kachimpa pom [pipe incense]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mishik’pom [belly_button incense]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ton pom [stone incense]</td>
</tr>
</tbody>
</table>

Table 16: Constructions lost with a sample of 84 meanings (extract)
• In Yaqui, the construction **Mod:PL Head** also has four instances. The database was a little inconsistent here, since plural forms of modifiers were otherwise treated in the same way as singular forms, as in Fr. *ruche d’abeille.s* [*hive of bee.PL*] BEEHIVE and *cire d’abeille* [*wax of bee*] BEESWAX, which both were categorized as **Head PREP Mod**. Once this inconsistency was resolved, the Yaqui construction no longer existed.

• One construction, Wichí **Base.AGT**, has three instances, all denoting professions, and should be retained.

• All of the other types are represented by two instances each.

There are 50 different meanings represented in Table 16. These are listed in Table 17 in (descending) order of the number of times they occur in Table 16 (column A). Those meanings that occur most frequently are CHIEFTAIN (5), MAGIC (5), BEE (4), MARRIED WOMAN (4), MERCHANT (4) and MARRIED MAN (4). The table on page 487 shows these six meanings ranked as numbers 98, 105, 101, 135, 103 and 117 respectively in terms of binominality potential. Thus, for these top six to be included, the size of the list would have to be increased by 51, from 84 to 135 (the rank of MARRIED MAN). This would result in the inclusion of many meanings (e.g. POSTAGE STAMP, ROOF and COUSIN, ranked 85th to 87th) that would not contribute to any reduction in the number of lost constructions (since they are not listed in Table 16). Furthermore, the addition of both MARRIED MAN and MARRIED WOMAN is unnecessary, since they employ the same constructions wherever they occur in Table 17 (i.e. in Kanuri, Malagasy, Mapudungun and Takia). It is sufficient to add just one of them.

<table>
<thead>
<tr>
<th>meaning</th>
<th>A</th>
<th>B</th>
<th>meaning</th>
<th>A</th>
<th>B</th>
<th>meaning</th>
<th>A</th>
<th>B</th>
<th>meaning</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>chieftain</td>
<td>5</td>
<td>21</td>
<td>baby</td>
<td>3</td>
<td>11</td>
<td>stepfather</td>
<td>1</td>
<td>16</td>
<td>younger brother</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>magic</td>
<td>5</td>
<td>18</td>
<td>wedding</td>
<td>3</td>
<td>11</td>
<td>meeting house</td>
<td>1</td>
<td>15</td>
<td>tailor</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>bee</td>
<td>4</td>
<td>21</td>
<td>stepmother</td>
<td>2</td>
<td>15</td>
<td>guard</td>
<td>1</td>
<td>12</td>
<td>defendant</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>married woman</td>
<td>4</td>
<td>20</td>
<td>stepdaughter</td>
<td>2</td>
<td>13</td>
<td>younger sister</td>
<td>1</td>
<td>12</td>
<td>envy</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>mercant</td>
<td>4</td>
<td>15</td>
<td>deceit</td>
<td>2</td>
<td>4</td>
<td>afternoon</td>
<td>1</td>
<td>12</td>
<td>screwdriver</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>married man</td>
<td>4</td>
<td>10</td>
<td>shoemaker</td>
<td>1</td>
<td>23</td>
<td>weapons</td>
<td>1</td>
<td>12</td>
<td>murder</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>cookhouse</td>
<td>3</td>
<td>22</td>
<td>herdsman</td>
<td>1</td>
<td>22</td>
<td>prostitute</td>
<td>1</td>
<td>11</td>
<td>disease</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>widower</td>
<td>3</td>
<td>21</td>
<td>blacksmith</td>
<td>1</td>
<td>22</td>
<td>spring or well</td>
<td>1</td>
<td>11</td>
<td>grief</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>neighbour</td>
<td>3</td>
<td>18</td>
<td>sugar cane</td>
<td>1</td>
<td>22</td>
<td>servant</td>
<td>1</td>
<td>11</td>
<td>election</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>toilet</td>
<td>3</td>
<td>17</td>
<td>tool</td>
<td>1</td>
<td>21</td>
<td>beggar</td>
<td>1</td>
<td>9</td>
<td>pity</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>widow</td>
<td>3</td>
<td>13</td>
<td>hospital</td>
<td>1</td>
<td>21</td>
<td>airplane</td>
<td>1</td>
<td>9</td>
<td>beginning</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>captive</td>
<td>3</td>
<td>13</td>
<td>bicycle</td>
<td>1</td>
<td>21</td>
<td>intention</td>
<td>1</td>
<td>9</td>
<td>anxiety</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 17: Meanings represented by lost constructions
From this it was clear that adding more meanings just on the basis of the number of “lost constructions” that they would bring back into the data set was not the most efficient way of increasing the number of constructions represented in the data set as a whole. A more efficient procedure would be to add meanings based on their binominality potential, but only if they occur in both Table 16 and Table 17. On this basis 16 meanings (shown in boldface) were selected from Table 17 and added to the list of 84 that had resulted from applying a cut-off value of 25%. These all have a binominality potential of at least 17% (column b of Table 17) and their addition brings the number of meanings to a total of 100.

The final list of 100 meanings is shown in Table 18. 82 of them are shared with WOLD, and 18 (shown in boldface) are new. This list covers 253 (92%) of the 276 constructions contained in the original data set based on 201 meanings. Those that were lost are marked with a dagger (†) in Table 16 (and Table 70). Some of these losses are clearly unfortunate. For example, it would be interesting to know that Hindi has the Mod.ADJZ Head construction in its arsenal of binominal constructions, that Irish exhibits the occasional head-initial compound, and that Seychelles Creole has a Base.AGT agentive derivation, etc. However, it could never be the goal of the present study to detect every single binominal construction in every language sampled. On the plus side, the retention rate of 92% is remarkable considering that the size of the meaning list has been more than halved, from 201 to 100.

Meanings can be classified in two different ways. As mentioned in §2.4.1, the 1,460 meanings in WOLD are assigned to a set of 24 semantic fields (cf. page 53) and the same classification is retained in the present study for those 82 meanings that also occur in WOLD. The 18 meanings not found in WOLD were assigned to semantic fields following the same principles. Thus, for example, STONE BRIDGE is assigned to Motion on analogy with the bridge (WOLD code 10.74).

Meanings can also be classified by semantic type. Many different classifications have been proposed in the literature. One of these is a scheme (labelled hatcher type in Table 18) consisting of the seven types: Person; Animal; Concrete Object, Substance, Condition; Place; Time; Activity; and Miscellaneous Abstract Entities. This was suggested by Hatcher (1960) as a starting point for subcategorizing the system she had devised for classifying the semantic relations of non-appositional compounds. Since I adopt (and extend) the latter in the present study (see §6.2.2-6.2.3), it seemed reasonable to test her system of semantic types as well. However, as I show in the next section, this led to a very unbalanced result and therefore a revised scheme (labelled semantic type in Table 18) was created instead.
<table>
<thead>
<tr>
<th>#</th>
<th>meaning</th>
<th>semantic field</th>
<th>semantic type</th>
<th>hatcher type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ankle</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>2</td>
<td>arctic lights</td>
<td>The physical world</td>
<td>natural</td>
<td>concrete</td>
</tr>
<tr>
<td>3</td>
<td>backpack</td>
<td>Modern world</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>4</td>
<td>bee</td>
<td>Animals</td>
<td>animal</td>
<td>animal</td>
</tr>
<tr>
<td>5</td>
<td>beehive</td>
<td>Animals</td>
<td>natural</td>
<td>concrete</td>
</tr>
<tr>
<td>6</td>
<td>beeswax</td>
<td>Animals</td>
<td>natural</td>
<td>concrete</td>
</tr>
<tr>
<td>7</td>
<td>bicycle</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>8</td>
<td>bicycle pump</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>9</td>
<td>blacksmith</td>
<td>Basic actions and technology</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>10</td>
<td>boy</td>
<td>Kinship</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>11</td>
<td>bracelet</td>
<td>Clothing and grooming</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>12</td>
<td>breakfast</td>
<td>Food and drink</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>13</td>
<td>carpenter</td>
<td>Basic actions and technology</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>14</td>
<td>chieftain</td>
<td>Social and political relations</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>15</td>
<td>cock/rooster</td>
<td>Animals</td>
<td>animal</td>
<td>animal</td>
</tr>
<tr>
<td>16</td>
<td>collarbone</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>17</td>
<td>cookhouse</td>
<td>The house</td>
<td>location</td>
<td>place</td>
</tr>
<tr>
<td>18</td>
<td>dairy cow</td>
<td>Animals</td>
<td>animal</td>
<td>animal</td>
</tr>
<tr>
<td>19</td>
<td>dinner</td>
<td>Food and drink</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>20</td>
<td>doorpost</td>
<td>The house</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>21</td>
<td>earlobe</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>22</td>
<td>earring</td>
<td>Clothing and grooming</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>23</td>
<td>earwax</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>24</td>
<td>eyebrow</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>25</td>
<td>eyelash</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>26</td>
<td>eyelid</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>27</td>
<td>farmer</td>
<td>Agriculture and vegetation</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>28</td>
<td>fireplace</td>
<td>The house</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>29</td>
<td>fisherman</td>
<td>Warfare and hunting</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>30</td>
<td>fishing line</td>
<td>Warfare and hunting</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>31</td>
<td>flame</td>
<td>The physical world</td>
<td>natural</td>
<td>concrete</td>
</tr>
<tr>
<td>32</td>
<td>flea market</td>
<td>Social and political relations</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>33</td>
<td>foal or colt</td>
<td>Animals</td>
<td>animal</td>
<td>animal</td>
</tr>
<tr>
<td>34</td>
<td>footprint</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
</tbody>
</table>

Table 18: Final set of 100 meanings
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>#</th>
<th>meaning</th>
<th>semantic field</th>
<th>semantic type</th>
<th>hatcher type</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>girl</td>
<td>Kinship</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>36</td>
<td>glove</td>
<td>Clothing and grooming</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>37</td>
<td>gold ring</td>
<td>Clothing and grooming</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>38</td>
<td>hand brake</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>39</td>
<td>handbag</td>
<td>Basic actions and technology</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>40</td>
<td>handkerchief or rag</td>
<td>Clothing and grooming</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>41</td>
<td>herdsman</td>
<td>Animals</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>42</td>
<td>hospital</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>43</td>
<td>host</td>
<td>Social and political relations</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>44</td>
<td>keyword</td>
<td>Modern world</td>
<td>advanced</td>
<td>abstract</td>
</tr>
<tr>
<td>45</td>
<td>kid</td>
<td>Animals</td>
<td>animal</td>
<td>animal</td>
</tr>
<tr>
<td>46</td>
<td>lamb</td>
<td>Animals</td>
<td>animal</td>
<td>animal</td>
</tr>
<tr>
<td>47</td>
<td>license plate</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>48</td>
<td>lunch</td>
<td>Food and drink</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>49</td>
<td>magic</td>
<td>Religion and belief</td>
<td>basic</td>
<td>abstract</td>
</tr>
<tr>
<td>50</td>
<td>mail box</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>51</td>
<td>mare</td>
<td>Animals</td>
<td>animal</td>
<td>animal</td>
</tr>
<tr>
<td>52</td>
<td>married woman</td>
<td>Kinship</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>53</td>
<td>midday</td>
<td>Time</td>
<td>location</td>
<td>time</td>
</tr>
<tr>
<td>54</td>
<td>milky way</td>
<td>The physical world</td>
<td>natural</td>
<td>concrete</td>
</tr>
<tr>
<td>55</td>
<td>mother-in-law (of a man)</td>
<td>Kinship</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>56</td>
<td>native country</td>
<td>Social and political relations</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>57</td>
<td>neighbour</td>
<td>Social and political relations</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>58</td>
<td>niece</td>
<td>Kinship</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>59</td>
<td>nipple or teat</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>60</td>
<td>nostril</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>61</td>
<td>paddle wheel</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>62</td>
<td>palm of hand</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>63</td>
<td>postcard</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>64</td>
<td>potter</td>
<td>Basic actions and technology</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>65</td>
<td>queen</td>
<td>Social and political relations</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>66</td>
<td>railway</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>67</td>
<td>rainbow</td>
<td>The physical world</td>
<td>natural</td>
<td>concrete</td>
</tr>
</tbody>
</table>

Table 18: Final set of 100 meanings (cont.)
Chapter 3. Meanings, languages and data

<table>
<thead>
<tr>
<th>#</th>
<th>meaning</th>
<th>semantic field</th>
<th>semantic type</th>
<th>hatcher type</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>rib</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>69</td>
<td>shoemaker</td>
<td>Clothing and grooming</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>70</td>
<td>shore</td>
<td>The physical world</td>
<td>natural</td>
<td>concrete</td>
</tr>
<tr>
<td>71</td>
<td>shoulderblade</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>72</td>
<td>skull</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>73</td>
<td>sorcerer or witch</td>
<td>Religion and belief</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>74</td>
<td>spectacles/glasses</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>75</td>
<td>spider web</td>
<td>Animals</td>
<td>natural</td>
<td>concrete</td>
</tr>
<tr>
<td>76</td>
<td>spine</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>77</td>
<td>stable or stall</td>
<td>Animals</td>
<td>location</td>
<td>place</td>
</tr>
<tr>
<td>78</td>
<td>stone bridge</td>
<td>Motion</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>79</td>
<td>sugar cane</td>
<td>Agriculture and vegetation</td>
<td>natural</td>
<td>concrete</td>
</tr>
<tr>
<td>80</td>
<td>Sunday</td>
<td>Time</td>
<td>location</td>
<td>time</td>
</tr>
<tr>
<td>81</td>
<td>supper</td>
<td>Food and drink</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>82</td>
<td>tear</td>
<td>Emotions and values</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>83</td>
<td>thatch</td>
<td>The house</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>84</td>
<td>thumb</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>85</td>
<td>toe</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>86</td>
<td>toilet</td>
<td>Modern world</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>87</td>
<td>toilet paper</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>88</td>
<td>tool</td>
<td>Basic actions and technology</td>
<td>basic</td>
<td>concrete</td>
</tr>
<tr>
<td>89</td>
<td>toolbox</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>90</td>
<td>toothbrush</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>91</td>
<td>train</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>92</td>
<td>tree trunk</td>
<td>Agriculture and vegetation</td>
<td>natural</td>
<td>concrete</td>
</tr>
<tr>
<td>93</td>
<td>vein or artery</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>94</td>
<td>vine</td>
<td>Agriculture and vegetation</td>
<td>natural</td>
<td>concrete</td>
</tr>
<tr>
<td>95</td>
<td>water pump</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>96</td>
<td>Wednesday</td>
<td>Time</td>
<td>location</td>
<td>time</td>
</tr>
<tr>
<td>97</td>
<td>widower</td>
<td>Kinship</td>
<td>person</td>
<td>person</td>
</tr>
<tr>
<td>98</td>
<td>windmill</td>
<td>Modern world</td>
<td>advanced</td>
<td>concrete</td>
</tr>
<tr>
<td>99</td>
<td>wrist</td>
<td>The body</td>
<td>body part</td>
<td>concrete</td>
</tr>
<tr>
<td>100</td>
<td>yolk</td>
<td>Food and drink</td>
<td>natural</td>
<td>concrete</td>
</tr>
</tbody>
</table>

Table 18: Final set of 100 meanings (cont.)
3.1.5 Overall evaluation

With the benefit of hindsight, and having collected and analysed data based on the list of 100 meanings, it is possible to enumerate the desiderata for such a list and consider the extent to which the set of meanings that was finally arrived at was optimal in each respect. There are four main desiderata:

1. maximal diversity
2. maximal yield
3. cross-categorial balance
4. cross-linguistic representation

From the description of the methodology given in the preceding four sections it will be apparent that the primary considerations in the present study were those related to maximizing the yield of binominals and the diversity of structural types. In the first stage of the process – the initial extraction of 159 meanings (§3.1.1) – two criteria were applied in order to subset the WOLD data (cf. the query in Figure 10): the words should be analysable (because every binominal must by definition be analysable) and the meaning they express should belong to the semantic category Noun (since the combination of noun plus noun almost invariably results in a noun). The result of the query was a list of meanings commonly represented by complex nominals from which those found in the most languages were selected as a starting point. Note that, at this stage of the process, the information required in order to find those meanings most commonly represented by binominals was not available. In the second stage of the process, the focus was on maximizing the diversity of structural types. This was accomplished by testing the initial set of 159 meanings against five languages for which information regarding types was easily available in the literature (§3.1.2), and then adding new meanings deemed likely to ensure increased variety (§3.1.3), up to a total of 201. Then, in the final stage, having identified and analysed binominals in data from 50 languages, that list of 201 meanings was reduced to 100 meanings in such a way as to ensure that as much structural diversity as possible was retained (§3.1.4).

The degree to which the final set of meanings fulfilled the goals of maximum yield and diversity is hard to assess objectively. Given the lack of any previous work in this area, it is hard to see how the overall process could have been improved, but with hindsight it is evident that certain minor improvements could have been made. For example, it would have been sufficient to have either DINNER or SUPPER but not both, since most languages do not distinguish the two concepts, and one might also eliminate BREAKFAST and/or LUNCH as well, for the same reason. Moreover,
I should have been anticipated that these four meanings would be expressed by one and the same construction in many languages, such that the inclusion of just one of them would have sufficed.

It also turned out that some meanings yielded a lower percentage of binominals in the final data set than in the data set based on 50 languages. These are discussed in §4.4.2 under the rubric Data analytics by meaning. In some cases, this may be because insufficient attention was paid to the last of the four desiderata listed above, cross-linguistic representation. Arnaud, whose “toy” example provided the initial impetus for the onomasiological approach adopted in this study, was quoted earlier (§2.1.2) emphasizing the need to “reduce cultural differences to a minimum” and suggesting that the most appropriate concepts might be “body parts, natural species, meteorological phenomena and widely used artefacts”. He notes further that his own choice of concepts
did not result in sufficient coverage: thus, ‘cradle’ and ‘quiver’ are not relevant in the culture corresponding to Bininj Kun-Wok. The cradle is not indigenous in Khmer culture, but it does have a name. [Fr. foyer ‘home’ < fireplace] corresponds to metonymic shifts that are not found in all languages.

Clearly, body parts are an important source of concepts for a study of binominals, but only secondary body parts, such as EARLOBE, EYELASH and NOSTRIL (all of which are in the final list), since they tend to be named in terms of primary body parts such as EAR, EYE and NOSE (none of which are included). On the other hand, body parts cannot be allowed to dominate, since they would tend to use the same construction and thus limit the overall diversity of morphosyntactic structures.

Natural species are less suitable: those that are well-known, such as LION or GOAT, tend to have monomorphemic names, while sub-species, such as MOUNTAIN LION or MOUNTAIN GOAT, have much more restricted habitats and are less likely to have denotations in many languages. Only with domestic species, such as SHEEP and HORSE, is this problem avoided, and then only when specified for age or sex: LAMB and MARE, although monomorphemic in English, are often denoted by complex nominals cross-linguistically (for example, as ‘sheep child’ or ‘woman horse’). These are well-represented in the meaning list and given special attention in §8.4.

Arnaud’s meteorological phenomena (to which might be added natural phenomena in general) figure fairly widely in the present list with meanings such as RAINBOW, MILKY WAY, SHORE, BEESWAX and FLAME, but at least one such phenomenon, ARCTIC LIGHTS, should have been removed on the grounds of limited geographical occurrence.
Finally, widely used artefacts suffer from the same problem as natural species: those that are widely used and/or general tend to be denoted by a single morpheme, such as BAG, BRIDGE or RING. In order to yield binominals, more narrowly defined subtypes are required (thus BACKPACK, STONE BRIDGE and EARRING, all of which are on the list), but this, in turn, tends to reduce the number of languages in which the concept is applicable. One way to mitigate this problem would be to loosen the concepts in some way, such as “bag carried in a particular way (e.g. using the arm, back, hand, head or shoulder)”, “bridge made of a particular material (e.g. stone, iron, wood)”, but that was not done in the present study.

Figure 15: Cross-linguistic representation of meanings

Figure 15 shows which meanings most often have reflexes in the languages of the sample (whether as binominals, other kinds of complex nominal, monomorphemic words or loanwords) and which are least often represented. On average, each meaning is represented in 77 of the 106 languages, and as expected, body parts dominate the top end, while concepts belonging to the semantic field Modern world dominate the bottom. A bias towards languages spoken in more technologically advanced societies is thus built in to the meaning list and was commented on by a number of contributors. However, there was always a danger that removing this bias might reduce the diversity of structural types. Since the aim of the present study is to explore diversity rather than make predictions, it is arguably better to accept the bias rather than risk removing it.

As for the desideratum of categorial balance, this relates to the possibility of making statistical comparisons across groups of meanings. These are often more reliable if the groups are of roughly the same size and none of them too small. Two kinds of groupings are relevant to the list of meanings: semantic field and semantic type. The distribution of meanings across the set of semantic fields inherited from WOLD
is very uneven (Figure 16). As a result, semantic field cannot form the basis of any robust comparisons or typological generalizations (unless these are restricted to, say, The body vs. Modern world).

![Distribution of meanings across semantic fields](image)

Figure 16: Distribution of meanings across semantic fields

The distribution across Hatcher’s set of semantic types was also very uneven, as noted above (cf. Figure 17a). (Note that this does not mean that the scheme is unfit for the purpose for which it was intended: non-appositional compounds in general. Since the latter can consist of action- and property-roots as well as thing-roots, types such as Place, Time, Activity and Abstract are more likely to occur than they do in binominals.) In my revised system of semantic types Hatcher’s Place and Time are combined into Location, and Concrete is split into Body part, Natural phenomenon, Basic technology (or concept), and Advanced technology (or concept). The resulting distribution of the 100 meanings (Figure 17b) is much more balanced and therefore more suitable for statistical analysis.

![Distribution of meanings across semantic types](image)

Figure 17: Distribution of meanings across semantic types
The typology and semantics of binominal lexemes

The 100 meanings shown in Table 18 constitute the tertium comparationis of this study. That is, the independent points of comparison that allow data to be compared across languages. Having established this list, data collection could start in earnest. For commensurability with Urban (2012) I had set a goal of 100 languages: the question was, what sample of languages to use, and how to collect the data. These issues are discussed in sections §3.2 and §3.3.

3.2 The language sample

3.2.1 Types of sample

The question of language sampling arises from the fact that it is not possible within the scope of a single study to include data from every one of the 7,000 languages that are extant in the world today. This is not just a matter of the limited resources available to typological studies, but also the lack of documentation for most of the world’s languages. Bakker (2011) estimates that for about two thirds of existing languages, no grammar or even grammatical sketch is currently available, and it can be assumed that the situation regarding dictionaries is at least as bad. As a result, typological studies are invariably based on a subset, or sample, of languages. However, as Bakker points out, “there is no such thing as an all-purpose sample. Different kinds of research questions call for different sampling strategies and sample sizes.” There are essentially three kinds of language sample:

- **probability sample** a (stratified) sample that is areally and genetically as unbiased as possible and that therefore permits the broadest generalizations and predictions
- **variety sample** a sample that is optimized in order to illustrate diversity as fully as possible
- **convenience sample** an (opportunity) sample based primarily on the availability of data

For a **probability sample** the world is divided into a certain number of regions and equal numbers of languages are selected from each region such that none of them belong to the same family or genus. The most well-known and widely-used division into geographical areas is to be found in Dryer (1992) and consists of six macro-areas: Africa, Eurasia (excluding Southeast Asia), Southeast Asia & Oceania, Australia-New Guinea, North America and South America. A revision of this scheme by Hammarström & Donohue (2014), based on purely geographical criteria, was adopted for the 2013 version of WALS (Dryer & Haspelmath 2013) and
consists of Africa, Australia, Eurasia, Papunesia, North America and South America. Other schemes include Tomlin’s (1986: 28, 301) set of 26 (mostly) “non-controversial linguistic or cultural areas,” Nichols’ (1992: 25) 10 “large areas which are areally coherent and areally discrete from one another”, and the revision of the latter by Nichols, Witzlack-Makarevich & Bickel (2013) into 10 macro-areas and 24 smaller scale areas.

The division into genetic groupings is complicated by the fact that our knowledge of family relationships among languages is far from complete; by the availability of different, competing classifications; and by the need to select a time-depth that is appropriate to the specific research question. Based on the 625 languages in his database at the time, Dryer (1992) listed 253 genetic groups that are “roughly comparable in time depth to the subfamilies of Indo-European”. These distribute across his six macro-areas as follows: Africa (47), Eurasia (36), Southeast Asia & Oceania (21), Australia-New Guinea (30), North America (71), South America (48).

A more extensive and up-to-date genealogical language list is available from WALS and consists of 543 genera divided across 258 top-level language families (“the highest level widely accepted by specialists”) and containing a total of 2,679 languages.

The term **variety sample** appears to have been first used by Rijkhoff et al. (1993), who describe its purpose and significance as follows:

> [If] one tries to account for all possible realizations of a certain meaning or structure across languages, like definiteness or relative clause, then the sample should display the greatest possible diversity. This approach is particularly relevant in the greater context of a theory of grammar. In a variety sample (as opposed to a probability sample) it is very important to have cases of the rarest type, since “exceptional types test the theory” (Perkins 1988: 367). If a general theory of grammar is to be universally valid it has to provide for the grammars of all languages, whatever their genetic origin, linguistic type, or geographical location (p. 171).

A sampling technique called Diversity Value (DV) was developed by Rijkhoff and his colleagues for generating variety samples of any predetermined size, based on a language classification chosen by the user (see also Rijkhoff & Bakker 1998). An alternative technique, called the Genus-Macroarea (GM) method, was developed by Miestamo (2003; 2005) and the two are compared in Miestamo, Bakker & Arppe (2016). The details of the two methods need not concern us here, since neither was used in the present study. However, it is worth noting that while DV (unlike GM) involves no areal stratification, the results achieved by the two techniques are quite similar.
The two types of sample discussed above are ideals. In practice, most typological studies make use of a **convenience sample**. This is because “there may be practical circumstances which force a researcher to just grab the data which happen to be available and sufficiently reliable” (Bakker 2011). As will be seen below, this is largely the case in the present study. However, as Song (2001: 20) points out:

> a good number of ground-breaking typological works are based on such convenience samples (e.g. Greenberg 1963; Comrie 1976; Keenan & Comrie 1977; Nichols 1986 *inter alia*). The obvious shortcomings in their samples notwithstanding they did not only provide much insight into the nature of human language, which continues to play an important role in typological research. But, more often than not, they also gave impetus to subsequent large-scale research.

In other words, a convenience sample may still produce valuable results, provided Song’s injunction is borne in mind:

> Needless to say, any generalizations or inferences based on such convenience samples should only be taken as what they are – suggestions or preliminary findings concerning cross-linguistic patterns, or language universals – and they should naturally undergo further empirical verification, or revision on the basis of more languages, or more adequately constructed language samples.

Of the typological investigations of compounding and word-formation covered in Chapter 2, only Bauer’s study (§2.1.1) is based on a probability sample; it follows Dryer’s model almost to the letter (see Table 2 on page 22).¹ Urban’s (2012) study (§2.4.2) is based on a variety sample of 109 languages, constructed using Rijkhoff and Bakker’s technique, from which various subsets are extracted, including:

- a “core sample” of 94 languages, each of which contained at least 65 per cent of the items on his list of 160 concepts; and
- a “statistics sample” of 78 languages, which is a genetically balanced subset of the core sample since it is restricted to one language per family.

In selecting languages for inclusion in WOLD (§2.4.1), the editors attempted to represent the world’s genealogical, geographical, typological, and sociolinguistic diversity, but the overriding factors were practical and, as a result, their language sample is “not ideal”, for a number of reasons (Haskelmath & Tadmor 2009b: 3). However, the authors contend that their sample is preferable to using just one or

¹ To be precise, Bauer follows Dryer in using his six geographical areas and selecting six unrelated languages from each area. However, he deviates from Dryer’s method in that his data points are based on individual languages (e.g. Danish) rather than genera (e.g. Germanic).
two languages, or to relying on intuition. (For a map showing the geographical distribution of WOLD languages, see Figure 18 on page 88).

The sample used in Arnaud (2004a) is very much one of convenience, consisting as it does simply of those languages that are represented in Arnaud (2004b). Still, all of Dryer’s six geographical areas are represented (see Table 2 on page 22). The Morbo/Comp database, as noted on page 34, is not balanced (all of its 25 languages are spoken in Eurasia), but this was to some degree inevitable, given the kind of data that was collected (see §2.1.3). Finally, the sample used by Štekauer, Valera & Körtvélyessy (2012), although also clearly one of convenience, is somewhat more areally balanced, and a subset of the “basic sample” provides better genetic balance (see Table 67 on page 484).

3.2.2 The present sample

As far as the present study is concerned, one might assume that a variety sample would be most appropriate. As Bakker (2011) points out, the need for a variety sample “arises when linguistic variables are explored about which not much is known”, and that is exactly the case when it comes to binominal lexemes. However, it quickly became apparent that a variety sample constructed according to the DV and GM methods would not reveal some of the variety known to exist. To give an example, the tables found in Miestamo, Bakker & Arppe (2016: 272–273) show that a 100-language sample constructed using the DV method with the Ethnologue 15 classification would only contain 11 languages from Eurasia; the same method used with the Glottolog classification would have just nine Eurasian languages; and the GM method with the WALS classification would be restricted to a mere eight Eurasian languages. Given that there are 36 genera in Eurasia (according to Dryer 1992), of which 10 are Indo-European, this means that Indo-European would be represented with two or at most three languages, which means that the diversity discussed in §5.6.2 would not be observable.

If a variety sample of the type found in the literature was not appropriate, neither was a probability sample, which would reveal even less diversity. As a result of such considerations, and not least due to resource constraints, a policy of ‘managed opportunism’ was adopted. The 41 WOLD languages (see page 52) constituted the foundation of the sample, and to these were added four of the five languages used for testing the meaning list (§3.1.2).¹ Thereafter, languages were added based on questionnaires completed by language experts and – to quote the words of the

¹ All except Nizaa, for which too little data was available.
WOLD editors – “no serious and timely offer to contribute to the database was turned down”. In order to compensate a little for the resulting lack of genealogical, areal and typological balance, I added a few languages (e.g. Central Yupik, Navajo and Puyuma) using dictionaries, but it was not a goal to achieve a fully balanced sample.

The resulting convenience sample is known to represent a greater diversity than might otherwise have been achieved (for example, within Indo-European). Moreover, the inclusion of multiple languages from a single genus permits comparisons at the micro-typological level (for example, the one that reveals binominals to be rather good indicators of genus, see §5.6.2). There is, as Saulwick writes, “value in providing a micro-typology of interfamilial differences, because these differences aid the typologist in developing a more nuanced appreciation of (cross-)linguistic facts” (2007: 107).

Figure 18: Areal distribution of language sample

The final sample consists of the 106 languages shown in Figure 18 and listed in Table 19 on the next page. (The map includes ISO 693-3 language codes which are legible via zooming in the electronic version of this document.) A more detailed listing, ordered by ISO code, and including the genetic affiliation and geographical location of every language, is to be found in Appendix A. For a list of sources, and in order to look up the ISO code from the language name, see Appendix B. In the next section I provide a more detailed description and evaluation of the sample.
Table 19: Complete list of languages in the database

<table>
<thead>
<tr>
<th>Language</th>
<th>Language</th>
<th>Language</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Äiwoo</td>
<td>German</td>
<td>Latvian</td>
<td>Slovak</td>
</tr>
<tr>
<td>Akkadian</td>
<td>Greek</td>
<td>Lithuanian</td>
<td>Somali</td>
</tr>
<tr>
<td>Amharic</td>
<td>Gurindji</td>
<td>Lower Sorbian</td>
<td>Srenge</td>
</tr>
<tr>
<td>Anindilyakwa</td>
<td>Harakmbut</td>
<td>Malagasy</td>
<td>Swahili</td>
</tr>
<tr>
<td>Archi</td>
<td>Hausa</td>
<td>Malayalam</td>
<td>Tagalog</td>
</tr>
<tr>
<td>Assamese</td>
<td>Hawaiian</td>
<td>Maltese</td>
<td>Takalog</td>
</tr>
<tr>
<td>Baa</td>
<td>Hebrew</td>
<td>Mamara Senoufo</td>
<td>Tarifit</td>
</tr>
<tr>
<td>Bambara</td>
<td>Hindi</td>
<td>Manange</td>
<td>Thai</td>
</tr>
<tr>
<td>Bandial</td>
<td>Hmong Daw</td>
<td>Mandarin Chinese</td>
<td>Ticuna</td>
</tr>
<tr>
<td>Barain</td>
<td>Ho-Chunk</td>
<td>Mapudungun</td>
<td>Trinitario</td>
</tr>
<tr>
<td>Basque</td>
<td>Hungarian</td>
<td>Mbyá Guaraní</td>
<td>Turkish</td>
</tr>
<tr>
<td>Bezhta</td>
<td>Hupdë</td>
<td>Murui Huitoto</td>
<td>Tuwari</td>
</tr>
<tr>
<td>Cabécar</td>
<td>Imbabura Quechua</td>
<td>Navajo</td>
<td>Vietnamese</td>
</tr>
<tr>
<td>Caijia</td>
<td>Indonesian</td>
<td>Nepali</td>
<td>Walman</td>
</tr>
<tr>
<td>Central Yupik</td>
<td>Iraqw</td>
<td>Norwegian</td>
<td>Warta Thuntai</td>
</tr>
<tr>
<td>Ceq Wong</td>
<td>Irish</td>
<td>Old High German</td>
<td>Wawa</td>
</tr>
<tr>
<td>Chakali</td>
<td>Italian</td>
<td>Oroqen</td>
<td>Welsh</td>
</tr>
<tr>
<td>Croatian</td>
<td>Japanese</td>
<td>Polish</td>
<td>Western Farsi</td>
</tr>
<tr>
<td>Czech</td>
<td>Kalamang</td>
<td>Puyuma</td>
<td>Western Mari</td>
</tr>
<tr>
<td>Datooga</td>
<td>Kam</td>
<td>Querétaro Otomi</td>
<td>Wichi</td>
</tr>
<tr>
<td>Dutch</td>
<td>Kambaata</td>
<td>Romanian</td>
<td>Wik-Mungkan</td>
</tr>
<tr>
<td>English</td>
<td>Kanuri</td>
<td>Russian</td>
<td>Wolof</td>
</tr>
<tr>
<td>Estonian</td>
<td>Kekčhí</td>
<td>Saramaccan</td>
<td>Yakut</td>
</tr>
<tr>
<td>Finnish</td>
<td>Ket</td>
<td>Selice Romani</td>
<td>Yaqui</td>
</tr>
<tr>
<td>French</td>
<td>Kildin Sami</td>
<td>Seri</td>
<td>Zinacantán Tzotzil</td>
</tr>
<tr>
<td>Galibi Carib</td>
<td>Korean</td>
<td>Seychelles Creole</td>
<td></td>
</tr>
<tr>
<td>Gawwada</td>
<td>Kupsabiny</td>
<td>Sidamo</td>
<td></td>
</tr>
</tbody>
</table>

3.2.3 Overall evaluation

The sample consists of 106 languages distributed across 42 families and 72 genera. On average there are 1.47 languages per genera, 2.52 languages per family and 1.7 genera per family, but the distribution, as noted above, is very uneven (Table 20). Two families, Indo-European and Afro-Asiatic, account for over a third (34%) of the languages in the sample and 17% of the genera. At the other end of the scale, 28 families are represented by a single language. Of the 72 genera, 18 are represented by more than one language (26).

(26) Slavic (6), Cushitic (5), Germanic (5), Indo-Aryan (4), Semitic (4), Oceanic (3), Romance (3), Baltic (2), Bantoid (2), Celtic (2), Chadic (2), Core Mayan (2), Finnic (2), Gur (2), Nilotic (2), North-Central Atlantic (2), Nuclear Torricelli (2), Turkic (2)
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>family</th>
<th>languages</th>
<th>genera</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Indo-European</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>2. Afro-Asiatic</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>3. Atlantic-Congo</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>4. Austronesian</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5. Uralic</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6. Altaic</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7. Nilo-Saharan</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8. Sino-Tibetan</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9. Austro-Asiatic</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10. Mayan</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11. Nakh-Daghestanian</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>12. Nuclear Torricelli</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>13. Pama-Nyungan</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14. Pidgins & Creoles</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 20: Genetic distribution of languages

The genetic balance of the sample could be restored by selecting one language from each of the genera in (26). This would result in a sample of 72 languages, none of which belong to the same genus. In order to fulfil the requirements of a probability sample, that sample would then have to be further reduced to account for geographical distribution since, as Table 21 shows, the sample is unbalanced in that respect too.

<table>
<thead>
<tr>
<th>area</th>
<th>languages</th>
<th>genera</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Africa</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>2. Eurasia</td>
<td>39</td>
<td>21</td>
</tr>
<tr>
<td>3. Oceania/SE Asia</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>4. PNG/Australia</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>5. North America</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>6. South America</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7. Pidgins/Creoles</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 21: Areal distribution of languages
Almost a quarter of the sample is accounted for by Africa and over a third by Eurasia. (Pidgins and Creoles are ignored in this context since their genetic relationships cross-cut areal boundaries; Saramaccan and Seychelles Creole, which have Eurasian lexifiers, are found in South America and off the coast of Africa, respectively.) Of the six large geographical areas, PNG/Australia is least well represented, with eight languages in all, and thus a balanced subset of the current sample could contain no more than \((6 \times 7 = 42)\) languages.

Defining such a subset has not been a priority in the present study since the focus has been on exploring diversity rather than making predictions. In future research, efforts will be made to expand the representation of PNG/Australia, North America and South America. Adding data from a further 11 languages would suffice for a balanced sample of 72 languages (12 per area). This would mean eliminating 27 Eurasian, 12 African and two Oceanian/SE Asian language already in the database.

3.3 Data collection

This section describes the principal sources of data: the WOLD database (§3.3.1), questionnaires (§3.3.2) and dictionaries (§3.3.3). Additional data and information concerning attributive possession that forms the basis of the analysis in §7.2 was mostly collected from grammatical descriptions, as documented in Appendix D. §3.3.4 describes the kind of clean-up that was performed on the data.

3.3.1 Online database

The WOLD database, described in §2.4.1, was used not only to generate the initial list of 159 meanings (as described in §3.1.1), but also to furnish the data for 82 of the 100 meanings covering the 41 languages listed on page 52. There are a number of sources for the WOLD data. At the outset of this project (2015) two datasets could be downloaded from the WOLD website at http://wold.clld.org: a CLDF file and a two-file dataset in RDF format. However, neither of these were complete, and both lacked the all-important field containing the gloss, which I needed in order to be able to analyse complex forms. The GitHub site at http://github.com/clld/wold2 contained a file called data.zip which held the complete data set in the form of 48 CSV and JSON files (Haspelmath, Tadmor & Forkel 2010). These included the glossing information, but this was buried inside a JSON field and inaccessible to

1 In the spirit of the “re-doing typology” debate in *Linguistic Typology* 10(1), this section contains some technical detail which is intended to aid the further reuse of the WOLD data and enable replication of the present study.
most tools. That problem could be solved by importing the data into a relational database that supports JSON, but doing so from a set of 48 files would be a very time-consuming and error-prone task. Fortunately it turned out that the data was also available in the form of a PostgreSQL dump in another GitHub project at http://github.com/clld/wold-data. This file, once downloaded and uncompressed, could be loaded directly into the DBMS. It was now possible to extract an initial data set from WOLD using an SQL query (27).

(27)

```sql
select
    u.id as id,
    l.name as language,
    p.name as meaning,
    u.name as word,
    u.jsondata::json->>'gloss' as gloss
from
    meaning as m,
    word as w,
    unit as u,
    counterpart as cp,
    value as v,
    valueset as vs,
    parameter as p,
    language as l
where
    w.pk = u.pk
and m.pk = p.pk
and cp.word_pk = w.pk
and cp.pk = v.pk
and v.valueset_pk = vs.pk
and vs.language_pk = l.pk
and vs.parameter_pk = p.pk
and m.semantic_category = 'Noun'
and ( 
    p.name = 'the ankle' or
    p.name = 'the arctic lights' or
    ... 95 lines omitted ...
    p.name = 'the windmill' or
    p.name = 'the wrist' or
    p.name = 'the yolk'
)
order by language, meaning, word
```

This selected every translation equivalent (or “word”) for each of the 100 meanings present in WOLD.\(^1\) For each such word the query extracts the identifier, language, meaning, word and gloss. The result of the query, a table containing 3,326 rows, was written to a CSV file of 3,422 lines. The discrepancy between the number of rows in the query result and the number of lines in the CSV file was due to the fact that some cells in the table contained a new line (\(\rightarrow\)), for example the gloss for the Hausa word meaning NOSTRIL (28).

\(^1\) Recall from §3.1.4 that only 82 of the 100 meanings are to be found in WOLD.
This file would not import cleanly into Microsoft Excel, which erroneously interprets a new line that occurs inside a quoted string as a record end. The CSV file was therefore modified by replacing such new lines with spaces. Once this had been done, the file could be imported into Excel (Figure 19).

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>language</td>
<td>meaning</td>
<td>word</td>
</tr>
<tr>
<td>2</td>
<td>Hausa</td>
<td>the nostril</td>
<td>kàfář háncii</td>
</tr>
<tr>
<td>3</td>
<td>Swahili</td>
<td>the nostril</td>
<td>mwanzi wa pua</td>
</tr>
<tr>
<td>4</td>
<td>Swahili</td>
<td>the nostril</td>
<td>tundu la pua</td>
</tr>
<tr>
<td>5</td>
<td>Tarifiyt Berber</td>
<td>the nostril</td>
<td>tìnzà</td>
</tr>
<tr>
<td>6</td>
<td>Thai</td>
<td>the nostril</td>
<td>ruucamùuk</td>
</tr>
</tbody>
</table>

Figure 19: Extract of the data after import

The WOLD database furnished translation equivalents for 82 of the 100 meanings selected for this project. To collect data from the 41 WOLD languages for the 18 meanings not found in WOLD, I used two methods. Dictionaries were consulted where available (and where I had knowledge of the script); this was the case for 10 of the 41 languages, viz. Dutch, English, Hausa, Hawaiian, Indonesian, Iraqw, Japanese, Kanuri, Romanian and Swahili. For the remaining 31 languages the original WOLD contributors were contacted by email. 15 of these responded and were willing to help. This low response rate (bearing in mind that contributors were only being asked to provide translations for 18 meanings) gave a strong indication that cold calling potential contributors by email would not be a generally viable method for collecting large amounts of data.

One important observation that was made during this process was that the number of meanings for which translation equivalents existed varied considerably from one language to another. In the case of Kanuri only two of the 18 were found in the source (reké SUGAR CANE and fómform WATER PUMP) and neither of these were analysable. For Iraqw, only three meanings were found in the dictionary (miwa SUGAR CANE, fura TOOTHBRUSH and yaaér doori MILKY WAY), and of these only the latter could be analysed [river:CON sky].

1 Regular expressions were used for this purpose. The search string was ζ;\[^\r\n\]+\r\n and the replace string \1¬ (where ¬ denotes a word space). The search expression picks out unclosed quoted strings at the end of a line and replaces the new line with a space. The \r was necessary to avoid picking up end-of-line cells that contained a final semicolon. This works because rows are delimited by the two-byte sequence CR-LF (i.e. \r\n), whereas new lines inside cells are LF only (i.e. \n).
On the other hand, all 18 of the additional meanings had counterparts in Dutch and all of them were analysable. Once again, this highlighted a bias in the meaning list due to the inclusion of concepts that are only familiar in industrialized societies. At this stage of the project, however, there was nothing that could be done to rectify this.

3.3.2 Questionnaires

The experience of using dictionaries to supplement the WOLD data (§3.3.1), and even more that of adding complete data sets from Welsh and Turkish dictionaries in order to test the meaning list (§3.1.2), made it clear that I would not be able to collect data for a further 50 languages by my own efforts in the time available (the reasons are discussed in the next section). It was therefore decided to solicit the help of other linguists. A questionnaire was devised that consisted of two worksheets in an Excel workbook, the first containing a page of instructions and the second the list of meanings, along with French, Spanish and Russian translation equivalents, for use when the contact language is other than English (Appendix F). Contributors were asked to provide the most canonical translation equivalent for each meaning, using the Latin script (or IPA) and the native script (where applicable), together with a morpheme gloss for morphologically complex translation equivalents, using a modified version of the Leipzig Glossing Rules (Comrie, Haspelmath & Bickel 2015).¹ It was also possible to add comments regarding the source of loans and calques.

On the basis of the four languages that I had added myself, I estimated that it would take a minimum of eight hours to complete the original 201 meaning questionnaire, depending on how well the contributor knew the language and its morphological complexity. As mentioned above, it was clear from the experience of contacting colleagues by email to supplement the WOLD data with an additional 18 meanings that the response rate from cold calling for a questionnaire of this size would be very low indeed. I therefore recruited contributors through networking at various events (summer schools, conferences, etc.) during the course of the project.

The first version of the questionnaire, containing all 201 meanings, was completed by 25 contributors before being replaced by the version containing 100 meanings, which was completed by a further 40 colleagues. I owe these linguists an enormous debt. Without them the present project would not have been possible.

¹ See Typographical and naming conventions on page xxv for the modified glossing rules.
Of course, this part of the data collection was not all plain sailing. A number of people who agreed to supply data failed to deliver, and others had to be prodded several times. A very small amount of the data turned out to be unusable because the contributor lacked the expertise to perform the morphological glossing, but all in all the quality of the data received was sufficient for the purpose to hand.

3.3.3 Dictionaries

Using bilingual dictionaries to collect data for a project of this kind poses a variety of challenges relating to (i) the availability of such a dictionary, (ii) the familiarity of the researcher with the script it employs, (iii) its size, and (iv) the amount of morphological detail it contains.

The first point is obvious: If no dictionary or wordlist exists for a language, the only way to collect data is from a speaker, usually by means of a questionnaire. Moreover, the dictionary must be two-way (or else there must exist two one-way dictionaries that complement each other). This is because using a dictionary to collect and analyse data is a two-step process: a meaning (e.g. RAILWAY) is first looked up in the source-to-target section (e.g. English-Malagasy); then the translation equivalent (here, lalamby) must be looked up in the target-to-source section (e.g. Malagasy-English), in order to understand whether it is monomorphemic or polymorphemic and, if the latter, what its constituents are.

Knowledge of the script is also an absolute prerequisite for being able to utilize a dictionary, again for obvious reasons. Thus, for the present researcher it was not possible to supplement the WOLD data for languages like Thai and Chinese, despite the availability of good dictionaries, because of insufficient familiarity with the scripts. It was also not possible to collect new data for languages such as Arabic, Hebrew and Persian, or languages where the dictionary used an unfamiliar contact language, e.g. Russian. For such languages, questionnaires were the only solution.

Size matters when using a dictionary because it is important that the data be as complete as possible, in order to reveal the full variety of constructions. As a case in point, only one of the 18 additional meanings used to supplement the WOLD data (shown in bold in Table 18 on page 77) was found in the dictionary used for Malagasy (Vaovao 1969), viz. lalamby RAILWAY (which was actually found under ‘railroad’). Whether this is because the language truly does not have words for the other 17 meanings, or because a dictionary of 118 pages was too small to include them, is hard to say. At any rate, such uncertainty is less likely to arise when a more comprehensive dictionary is available.
Finally, the more morphological information contained in the dictionary, the easier it is to determine the structure of complex words. To illustrate this point, take once more the case of *lalamby*: Looking up the word in a Malagasy-English dictionary (Richardson 1885) confirms that it does indeed mean ‘railway’, but no additional information is provided. Close by one finds *lalana*, meaning ‘a road, a way, a path’, which is a typical constituent in many words for railway, but there is no entry for *by*, which might otherwise be a candidate for the second constituent. A conjecture that the second constituent might mean ‘iron’ is confirmed by looking up the latter in the English-Malagasy dictionary, where it is translated as *vy*. The difference is not an issue, since it can be assumed that assimilation is occurring. A more serious problem is that we are none the wiser regarding the actual process that takes place when *lalana* and *vy* combine to produce *lalamby*. Fortunately, the answer was to be found in the only grammar available to the present researcher (Parker 2014) – a 66-page reprint from 1883 – which mentions “euphonic changes” (including replacing *v* with *b*), which occur “when *n* or *m* is inserted between two words as the sign of an indefinite possessive or ablative case”, and the fact that “final syllables -*na*, -*ka*, and -*tra* are contracted sometimes by rejection of the final syllable” (pp. 8-9, see also p. 33). This process occurs in several of the Malagasy words found in WOLD, e.g. *tràno.N hàla* [house.GEN.spider] SPIDER WEB. Applying the same pattern, the word could be glossed as [road.GEN.iron]. The point being made is that arriving at the correct solution would have required much less effort if the dictionary had included morphological information of the kind illustrated in (29).

(29) **railroad** N *lalamby* < *lalana* ‘road, way, path’ + -N- (POSS) + *vy* ‘iron’

The need for such detailed information becomes even more acute with languages such as Central Yupik and Navajo, that have highly complex morphology.

3.3.4 Data cleansing

Before the analysis could proceed some limited data cleansing was required. The WOLD data was mostly accepted in the form found in the database, but obvious typos and coding errors were corrected and consistency enforced. In addition, all glosses were revised to conform to the conventions used throughout this project: that is, the use of standard abbreviations, and the use of periods instead of hyphens to mark morpheme boundaries (see *Typographical and naming conventions* on page xxv). Thus, for example, AG.N, which is used to denote *nomen agentis* in the Iraqw vocabulary, was changed to AGT (‘agentive’), while Takia *yu sa-n byouŋ* [war possession-3SG things] WEAPONS was changed to *yu sa.n byouŋ* [war POSS.3SG things].
In many cases the glossing did not follow the guidelines set down by WOLD, which was to provide “a morpheme-by-morpheme gloss, i.e. a hyphenation and a gloss in square brackets” (Haspelmath & Tadmor 2009b: 12) and to use standard abbreviations given in the Leipzig Glossing Rules and/or Croft (2003: xix). For example, the two items in (30a) were amended as shown in (30b), both for consistency and to enable automated processing of the database.

(30) a. Eng. *nostril* [NOSE + archaic THIRL ‘hole’]
 Otomí ‘yoda [‘yo = ?; da = eye]

 b. Eng. *nos.tril* [nose.hole]
 Otomí ‘yo.da [??.eye]

Sometimes the glossing was not even internally consistent. For example, in the Takia data the word *sa-n* occurs four times, glossed twice as [its] and twice as [POSS-3SG]. For consistency, all four occurrences were amended to [POSS.3SG]. Furthermore, the glossing was not always accurate, as demonstrated by the Malagasy words discussed in the preceding section, where the abbreviation GEN (genitive) was used instead of PER (pertensive) or CON (construct) to gloss a suffix that marks the possessum rather than the possessor. These were also corrected manually.

In at least one case the wrong semantic category had been assigned to a meaning. Thus *TO ULULATE* is misclassified as Noun throughout the original database.¹ Some mono-morphemic words were classified as analysable by the contributor, e.g. Vie. *mí* EYELID. In such cases the classification was simply changed to unanalysable. Moreover, some words were classified as analysable rather than semi-analysable or unanalysable even though they are not analysable to present-day lay speakers, which was the criterion that should have been applied (see Haspelmath and Tadmor 2009: 12). A case in point is the *nostril* example given in (30) above. While native speakers have an intuition that this word is related formally (as well as semantically) to *nose*, none would see it as the combination of words meaning NOSE and HOLE. It should therefore not have been classified as analysable in the database. Despite this, such instances were retained on the grounds that it would not have been possible for me to double-check every single gloss: I needed to trust my contributors. Finally, certain words were classified as (fully) analysable even though the gloss shows that one or more components is opaque, as was the case with the Otomo example in (30). These were reclassified as semi-analysable. Data provided

¹ See http://wold.clld.org/meaning/18-99912#6/5.500/-56.000. This did not affect the present project since the meaning did not appear in either the original set of 159 WOLD meanings or the additional set of 18 meanings.
via the questionnaire required similar treatment, despite the detailed instructions that had been provided to the contributors (see Appendix F on page 479).

3.4 Chapter summary

In this chapter I have documented how I arrived at the list of meanings, presented the language sample and described how the data were collected and cleaned.

The meaning list plays a crucial role in a project such as this, since it basically determines what kind of data will be collected. I therefore went to considerable pains to ensure that it was constructed in a principled manner and that it was maximally fit for purpose. Even so, with hindsight it can be seen that the list could have been improved in a number of ways. I hope that, by providing detailed documentation of the process and an evaluation of the results, I have made it easier for researchers who wish to use the onomasiological approach to avoid some of my mistakes.

The other factor that is crucial in determining the shape of the data is the language sample. My sample was neither genetically nor areally balanced, despite covering 72 genera spread across the whole world; nor was it a variety sample in the sense of Rijkhoff, Bakker and Miestamo. But this, I argued, was not a problem, given that my research questions did not involve making predictions, and was in some sense even an advantage, since it allowed me to make some microtypological comparisons that would not otherwise have been possible.

Also in this chapter I described some of the pros and cons of various data collection methods (viz. open databases, dictionaries and questionnaires). None of these are perfect, they each present their own challenges, but together they provided me with a set of over 10,000 data points which I make available via TROLLing, the Tromsø Repository of Language and Linguistics. In the next chapter I describe how the data were annotated and engage with some of the theoretical issues that arose.
4 Data annotation

The annotation (or coding) of the data consisted of three parts: (i) distinguishing binominals from other words (§4.1), (ii) determining the head of each binominal (§4.2), and (iii) establishing the type of construction (§4.3). All three tasks were first performed on an early version of the database consisting of 201 meanings and data from 50 languages. (Recall that annotation of the first 50 languages provided the basis for reducing the number of meanings from 201 to 100 in a principled manner, as I documented in the preceding chapter.) After reducing the meaning list from 201 to 100, the same tasks were performed on data from a further 56 languages.

In this chapter I describe each task in the context of theoretical issues that arose. The latter include: distinguishing roots from affixes; distinguishing thing-roots from action-roots and property-roots; distinguishing thing-affixes from action-affixes and property-affixes (and the differential treatment of the three); the notion of ‘head’ in the context of binominals consisting of two thing-roots and binominals consisting of a thing-root and a thing-affix; and how to generalize the structures exhibited by binominals into more schematic (language-specific) constructions. To conclude, I present analytics regarding vocabulary size, morphological complexity and binominal frequency, both cross-linguistically and across meanings (§4.4).

4.1 Identifying binominals

The first annotation task consisted in a rough categorization of each word based on its onomasiological type (cf. page 11). Words consisting primarily of two thing-morphs (cf. §1.2.4) were assigned the code NN. Words consisting of three or more thing-morphs can usually be decomposed into binary constituents and tend to share the same structure as binominals, but they are not binominals sensu stricto and were therefore assigned the codes 3n or 4n in order to enable closer examination at a later stage. Binominals whose constituents are in a coordinate relation were assigned the code CO, despite consisting of two thing-morphs, since coordinate compounds had been ruled out of scope in this study (see page 9). Most analysable words containing an actional element were flagged v, but those consisting of one
The typology and semantics of binominal lexemes

action-root and two thing-roots, e.g. Vie. *bữa ăn sáng* [meal eat morning] BREAKFAST, were coded separately as NVN, in order that they could be revisited later. In addition, certain other codes were applied, as shown in Table 22.

<table>
<thead>
<tr>
<th>code</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>words consisting of two thing-roots (OT3) – binominal lexemes</td>
</tr>
<tr>
<td>3n</td>
<td>words consisting of three thing-roots</td>
</tr>
<tr>
<td>4n</td>
<td>words consisting of four thing-roots</td>
</tr>
<tr>
<td>CO</td>
<td>coordinate constructions</td>
</tr>
<tr>
<td>V</td>
<td>form containing a verbal (OT1 or OT2)</td>
</tr>
<tr>
<td>NVN</td>
<td>words consisting of two lexical nominals and a verbal (OT1)</td>
</tr>
<tr>
<td>XX</td>
<td>words that require closer analysis</td>
</tr>
<tr>
<td>x</td>
<td>other analysable word (not relevant for this study, many OT4)</td>
</tr>
<tr>
<td>sa</td>
<td>semi-analysable word</td>
</tr>
<tr>
<td>un</td>
<td>unanalysable word</td>
</tr>
</tbody>
</table>

Table 22: Preliminary classification of structural types

The coding is illustrated below in Figure 20, which shows a subset of the Polish data. Some rows and columns have been omitted and the contents of the columns *word* and *gloss* have been simplified. (In the database, *word* does not contain morpheme breaks; these are instead shown in *gloss* (thus, for example, cells F5897 and H5897 actually read "kolej żelazna" and "kolej żelazna [course iron.ADJZ]").

Columns c1 and c2 show the first and second (major) constituent, respectively.

The reason for adding structural codes to the data was to identify binominals. As explained in §1.2.4, these are defined as lexical items that consist primarily of two thing-morphs. The latter are in turn defined as morphs that profile (or denote) things, prototypically physical objects (animate or inanimate). The task therefore consists in identifying thing-morphs and differentiating them from other kinds of morph, in particular action-morphs – that is, morphs that profile actions.

In the discussion that follows I consider first thing-roots and thereafter thing-affixes. Croft (2000) points out that the division between root and affix, has been assumed to be clear-cut: “In fact it is not, and the chief reason for this fact is the diachronic process of grammaticalization, which causes root morphemes bearing lexical meaning to acquire grammatical meaning, generally becoming affixes in the process.”

1 There is also a note (not shown here) indicating that this form is dated. The modern word is *kolej*.

Draft. Please do not cite. Comments to: pepper.steve@gmail.com. 2020-04-25
<table>
<thead>
<tr>
<th>E</th>
<th>G</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>5830</td>
<td>zorza polar.na</td>
<td>[dawn pole.ADJZ]</td>
<td>arctic lights</td>
<td>NN</td>
<td>dawn</td>
<td>pole</td>
</tr>
<tr>
<td>5833</td>
<td>past.uch</td>
<td>-</td>
<td>beehive</td>
<td>un</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5840</td>
<td>śniad.anie</td>
<td>[eat_breakfast.NMLZ]</td>
<td>breakfast</td>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5849</td>
<td>platek uch.a</td>
<td>[lobe ear.GEN]</td>
<td>earlobe</td>
<td>NN</td>
<td>lobe</td>
<td>ear</td>
</tr>
<tr>
<td>5851</td>
<td>wosk.o.wina</td>
<td>[wax.LE.NMLZ]</td>
<td>earwax</td>
<td>NN</td>
<td>wax</td>
<td>NMLZ</td>
</tr>
<tr>
<td>5863</td>
<td>dziewczyn.ka</td>
<td>[girl.DIM]</td>
<td>girl</td>
<td>NN</td>
<td>girl</td>
<td>DIM</td>
</tr>
<tr>
<td>5865</td>
<td>złot.y pierścionek</td>
<td>[gold.ADJZ ring]</td>
<td>gold ring</td>
<td>NN</td>
<td>gold</td>
<td>ring</td>
</tr>
<tr>
<td>5869</td>
<td>pastuch</td>
<td>[mind/graze.AGT]</td>
<td>herdsman</td>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5874</td>
<td>ryb.ak</td>
<td>[fish.AGT]</td>
<td>fisherman</td>
<td>NN</td>
<td>fish</td>
<td>AGT</td>
</tr>
<tr>
<td>5882</td>
<td>poł.u.dnie</td>
<td>[half.LE.day]</td>
<td>midday</td>
<td>NN</td>
<td>half</td>
<td>day</td>
</tr>
<tr>
<td>5883</td>
<td>droga mlecz.na</td>
<td>[road milk.ADJZ]</td>
<td>milky way</td>
<td>NN</td>
<td>road</td>
<td>milk</td>
</tr>
<tr>
<td>5889</td>
<td>sutek</td>
<td>-</td>
<td>nipple or teat</td>
<td>un</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5890</td>
<td>nozdrze</td>
<td>-</td>
<td>nostril</td>
<td>un</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5894</td>
<td>poczt.ów.ka</td>
<td>[post.ADJZ.DIM]</td>
<td>postcard</td>
<td>NN</td>
<td>post</td>
<td>DIM</td>
</tr>
<tr>
<td>5895</td>
<td>garnc.arz</td>
<td>[pot.AGT]</td>
<td>potter</td>
<td>NN</td>
<td>pot</td>
<td>AGT</td>
</tr>
<tr>
<td>5896</td>
<td>krół.owa</td>
<td>[king.F]</td>
<td>queen</td>
<td>NN</td>
<td>king</td>
<td>F</td>
</tr>
<tr>
<td>5897</td>
<td>kolej żelaz.na</td>
<td>[course iron.ADJZ]</td>
<td>railway</td>
<td>NN</td>
<td>course</td>
<td>iron</td>
</tr>
<tr>
<td>5899</td>
<td>kolej</td>
<td>-</td>
<td>railway</td>
<td>NN</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5907</td>
<td>pajęcz.yna</td>
<td>[spider.F]</td>
<td>spider web</td>
<td>NN</td>
<td>spider</td>
<td>F</td>
</tr>
<tr>
<td>5910</td>
<td>kamień.ny most</td>
<td>[stone.ADJZ bridge]</td>
<td>stone bridge</td>
<td>NN</td>
<td>stone</td>
<td>bridge</td>
</tr>
<tr>
<td>5917</td>
<td>palec u nogi</td>
<td>finger PREP leg</td>
<td>toe</td>
<td>NN</td>
<td>finger</td>
<td>leg</td>
</tr>
<tr>
<td>5923</td>
<td>pociąg</td>
<td>-</td>
<td>train</td>
<td>un</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5926</td>
<td>wino.rośl</td>
<td>[wine.grow:NMLZ]</td>
<td>wine</td>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5930</td>
<td>wiatr.ak</td>
<td>[wind.NMLZ]</td>
<td>windmill</td>
<td>NN</td>
<td>wind</td>
<td>NMLZ</td>
</tr>
<tr>
<td>5931</td>
<td>nad.garst.ek</td>
<td>[over.handful.DIM]</td>
<td>wrist</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5932</td>
<td>żółt.ko</td>
<td>[yellow.DIM]</td>
<td>yolk</td>
<td>NN</td>
<td>yellow</td>
<td>DIM</td>
</tr>
</tbody>
</table>

*Figure 20: Subset of the Polish data*¹

Having despaired of the task of distinguishing between ‘words’ and ‘affixes’ in his 2011 paper on the indeterminacy of word segmentation, Haspelmath (2019) offers the follow definition of ‘affix’:

(31) **affix**: a non-promiscuous bound form which is not a root

This of course presupposes a definition of ‘root’, which Haspelmath (2012: 123 fn. 9) defines in passing as ‘morphs that denote things, actions, or properties’. This

¹ The significance of the shaded cells is explained on page 109.
The typology and semantics of binominal lexemes

makes the assumption that only roots can denote things, actions and properties, which conflicts with the position taken in the present study that nominal affixes denote things, verbal affixes denote actions, and adjectivizers denote properties (cf. §1.2.4). Haspelmath’s definition of affix thus breaks down even before we attempt to interpret the notions of ‘promiscuity’ and ‘boundness’.

Croft (2001) discusses the distinction between root and affix in the context of “heads” and roots in morphology, and argues that the semantic notion of primary information bearing unit (PIBU),¹ but not that of profile equivalent (roughly, “head”), is “relevant to morphological organization at the word level with respect to the root-affix distinction” (p.268); however, he stops short of providing a definition of affix. There are thus no widely accepted cross-linguistic definitions for roots and affixes, but for present purposes the kind of definitions given in introductory textbooks such as Haspelmath & Sims (2010) will suffice (32). We will have to deal with certain in-between phenomena, such as affixoids (see page 162), but these are not very frequent and will not affect the overall analysis to any great extent.

(32)
affix: a morpheme that must attach to a base and cannot occur by itself
root: a base that cannot be analysed further – i.e. a base that consists of a single morpheme

4.1.1 Identifying thing-roots

Most of the time it is fairly straightforward to identify roots that profile things and distinguish them from roots that profile actions or properties. This can be demonstrated using the data in Figure 20. Referring to the English glosses in column G, we observe that all the following clearly denote things (some more prototypically than others):

pole, breakfast, lobe, ear, wax, girl, gold, ring, day, road, milk, pot, king,
course, iron, spider, stone, bridge, finger, leg, wine, wind, handful

Similarly, the following clearly denote actions:

eat, mind/graze, grow

Some of the other glosses are not so clear-cut. For example, fish can denote either a thing or an action – as can dawn and post; yellow can denote a property or a thing (as in ‘the yellow of an egg’) – as can half. The problem of distinguishing things from actions and properties is analogous to that of determining the direction of

¹ This concept is discussed in §4.2.
conversion from one word class to another, for which Marchand (1964) developed a set of eight criteria. Of these, the most important is that of semantic dependence, as this is “as often as not sufficient in itself to solve the question” (p. 10).\footnote{The other criteria are restriction of usage, semantic range, semantic pattern, phonetic shape, morphologic type and criterion of stress.}

According to the criterion of semantic dependence, “the word that for its analysis is dependent on the content of the other pair member is necessarily the derivative”. Several illustrations are provided:

The verb \textit{saw} must be derived from the substantive \textit{saw}. \textit{Saw} sb is satisfactorily defined as ‘a cutting instrument with a blade, having a continuous series of teeth on the edge’. That the instrument may be used for the action of \textit{sawing} need not be included in the definition. On the other hand, the content analysis of the verb must necessarily include the semantic features of the substantive \textit{saw}: \textit{saw} vb ‘use a saw, cut with a saw’. — The verb \textit{knife} is naturally analysable as ‘wound with a knife’ whereas the substantive \textit{knife} does not lean on any content features of the verb \textit{knife}, which does not exist in the vocabulary of many speakers who commonly use the noun. — A parallel case we have in \textit{telephone} vb and \textit{telephone} sb. For its analysis, the verb relies on the semantic features of the substantive \textit{telephone}. — Though seemingly parallel to \textit{telephone} and \textit{saw} the case of \textit{whistle} sb (the name of the instrument) with regard to \textit{whistle} vb is the reverse. The analysis of the verb does not call for any semantic features of \textit{whistle} sb (the instrument). Whistling is aptly described by ‘forcing the breath through the teeth or compressed lips’ whereas the instrument \textit{whistle} has for its explanation recourse to the content features of the verb: \textit{whistle} ‘instrument used for whistling’ (pp. 12-13).

In the absence of other evidence, the criterion of semantic dependence can be used to distinguish Things from other kinds of denotation. Thus \textit{fish} as Action is dependent on \textit{fish} as Thing (it can only be defined through reference to fish as Thing) and therefore the latter is primary. In the same way, \textit{yellow} as Thing is dependent on \textit{yellow} as Property (it can only be defined through reference to its colour), which is thus primary.

Sometimes, though, other evidence compelled a different diagnosis to that suggested by semantic dependence. The most important was the test used to determine the semantic head (described below). When \textit{yellow} combines with \textit{egg} to denote \textit{yolk}, as is the case in, for example, Welsh \textit{melyn.ŷ} [yellow.egg], it is clear that \textit{yellow} is the head (since a yolk \textsc{isa} yellow something and not an \textit{egg}). This fact suggests that, in this particular case, \textit{yellow} should be regarded as denoting a Thing and not a Property (even if, as a thing, it is largely defined in terms of a property). Allowing
ourselves to switch briefly from semantic types to word classes, what this in effect means is that adjectives – and not only relational adjectives, but also qualitative adjectives – are somehow slightly more acceptable as denoters of things than verbs. This can be explained through reference to Givón’s (2001: 54) scale of temporal stability (Figure 21).

<table>
<thead>
<tr>
<th>most stable</th>
<th>noun</th>
<th>adj</th>
<th>adj</th>
<th>verb</th>
<th>verb</th>
<th>verb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tree</td>
<td>green</td>
<td>sad</td>
<td>know</td>
<td>work</td>
<td>shoot</td>
</tr>
</tbody>
</table>

Figure 21: Givón’s scale of temporal stability

Givón’s claim is that

Nouns, verbs and adjectives may be placed on the scale of time-stability of coherently bundled experience… The prototype of the class noun occupies the most time-stable end of the scale… Prototype verbs occupy the other end of the time-stability scale…

While prototype nouns code bundles of experienced features (‘horse’, ‘chair’, ‘woman’, ‘tree’), the cognitive status of adjectives is a bit more murky… Many languages do not code durable single properties of nouns as adjectives, but rather as verbs (see examples further below) and occasionally even nouns. But as Dixon (1982) has noted, if a language has the lexical category adjective at all, it tends to include at least the most durable physical properties of prototype nouns: size, shape, color, consistency, texture, weight, smell, taste. This supports our view (and Bertrand Russell’s) that prototype adjectival concepts are abstracted from the direct experience of prototype noun-coded entities. It also explains why prototype adjectives occupy the same extreme time-stable end of our temporal stability scale as prototype nouns (pp. 50-54; emphasis added).

This provides theoretical justification for regarding certain prototypical adjectives, such as colours, as thing-roots, at least when they behave like nouns as the head of a nominal construction. Additional confirmation comes from the scale of property concepts presented by Croft (forthc.) which shows colour terms to be among those most likely to recruit object modification constructions.

Another kind of evidence comes from the word class of the item in question. This cannot always be determined, but sometimes the morphological shape of the item (or some other element of the word) provides an indication of the word class. In the Äiwoo word *me.ki.tei* [person.IPV.fish] FISHERMAN, the presence of the imperfective affix *-ki-* provides a fairly good indication that *tei* refers to the Action of fishing rather than the Thing involved in that action.
However, care must be taken in such cases. For instance, it cannot be simply assumed that combination with a nominalizing affix indicates an action-root. In many languages “nominalizing” affixes can also combine with thing-roots (e.g. Eng. potter < potN + -er). In case of doubt, internal evidence can sometimes be of help. Thus Mapudungun *challwa.fe* [fish.NMLZ1] FISHERMAN was accepted as a binominal lexeme based on internal evidence from *ruka.fe* [house.NMLZ1] CARPENTER.\(^1\) Without the presence in the database of this form, where *house* is clearly a thing-root, *challwafe* might have been rejected on the internal counterevidence of *wizü.fe* [give_shape.NMLZ1] POTTER.\(^2\)

A similar situation is encountered with Kambaata *hoga’aan.chu* [plough.AGT.ACC] FARMER and *tum.aan.chu* [pound/forge.AGT.ACC] BLACKSMITH, in which the status of *plough* and *pound/forge* is unclear. In this case, evidence for the presence of action-roots in such constructions is available in the form of the words for HERDSMAN and SORCERER OR WITCH, which, to judge by the gloss contain elements that are clearly actional: herding and perform magic, respectively (for the actual data see Appendix E). Admitting the former two words would result in a new type of binominal construction for which no other internal evidence exists. In this case, however, the criterion of semantic dependence argues in favour of inclusion.

In general, in cases of doubt an inclusive approach was adopted, on the grounds that it is better to include some dubious data than to risk missing out on potentially interesting phenomena. This was, however, tempered by alertness to the fact that any anomalies that turn up in the later analysis should be regarded with suspicion if they can be associated with such data.

I will conclude this discussion of issues involved in identifying thing-roots with the case of *over* in Pol. *nad.garst.ek* [over.handful.DIM] WRIST. In the Polish, *nad-* is a locative prefix, whereas in the English gloss it is a locative preposition with an inherently relational, un-thing-like character. However, elsewhere in the database where *over* appears in the gloss, the situation is less clear-cut, for example in Mapudungun *wente nge* [over eye] EYELID, where *wente* seems to be considerably more thing-like and to denote a location (that is, ‘the area above something’) rather than a relation as such.\(^3\) The same applies to Kalamang *kelkam elao.un* [ear under.3POSS] EARLOBE, where the presence of the possessive marker strongly suggests a thing-like interpretation of *under* (‘the underneath part of something’).

\(^1\) See the next section regarding the contribution of the affix -fe to the word’s status as a binominal.

\(^2\) Smeets (2008: 500) provides additional confirmation that *challwa* is a noun (and *challwa*- a verb).

\(^3\) Smeets (2008: 572) translates *wente* as “(N, Adv) top, on top of”.

Thus, in its relational sense as a preposition, *over* seems to fall outside the thing-action-property trichotomy applied here,⁠¹ but as a locative it can be interpreted as a kind of place, and thus as a thing-morph.

4.1.2 Identifying thing-affixes

Whereas the presence of any root other than a thing-root was enough to disqualify a word from being regarded as a binominal, affixes are treated slightly differently, as an examination of the Polish affixes in Figure 20 will reveal.

In accordance with the onomasiological perspective outlined in §1.2.3, affixes that derive nouns are regarded as profiling Things, while those that derive verbs are considered to profile Actions and those that derive adjectives profile Properties. Examples of thing-affixes in Figure 20 are the very general nominalizer *NMLZ* and the relatively specific agentive (*AGT*), diminutive (*DIM*) and feminine (*F*) affixes.⁠² These are all considered to profile Things at some level of generality. When such an affix combines with a thing-root, the result is a binominal lexeme (labelled NN in Figure 20) according to the definition adopted in this project.

The Polish data does not contain any action-affixes, but the Romanian data does: the -i suffix in *vrăj.i.tor* [magi.e.VBLZ.AGT] SORCERER OR WITCH. Constructions like these are treated analogously to Vietnamese *būa ăn sáng* [meal eat morning] BREAKFAST; that is, the verbalizer is regarded as an actional element, the form is interpreted as Onomasiological Type 1, and the code *NVN* is assigned. The presence of an action-affix is thus sufficient to disqualify a word from being considered a binominal.

That is not the case, however, with property-affixes like *ADJZ*. Whereas a non-derived adjective like Pol. *chory* ‘ill’ in combination with a thing-root or thing-affix is classified as Onomasiological Type 4 (cf. *blackbird*, page 11), a *denominal* adjective like Pol. *mlecz.na* [milk.ADJZ] ‘milky’ in combination with a thing-root or thing-affix is classified as Type 3, i.e. as a binominal.⁠³ In other words, when it comes to determining binominal status, thing-roots and thing-affixes are treated uniformly (both are acceptable nominal constituents), as are action-roots and action-affixes (both are equally unacceptable). But while a property-root like *chory* is unacceptable, a property-affix like -*na* is simply disregarded (for the purpose of determining whether or not the item is a binominal). The reason for this is that both

¹ In the onomasiological model it would fall within the fourth category, concomitant circumstance.
² Note that the abbreviation *F* denotes a feminine derivational affix and not a gender marker.
³ It is unclear whether this accords 100% with Štekauer’s (1998) system.
thing- and action-affixes are substantive: they signal the presence of a new thing or action in the expression. Property-affixes, on the other hand are non-substantive: a denominal adjectivizer merely signals the presence of some kind of relation between its base and the qualified noun, and therefore has a purely grammatical function.

Like property-affixes, inflectional affixes such as GEN (genitive) and PL (plural), and linking elements (LE) such as the -o- in Pol. *wosk.o.wina* [wax.LE.NMLZ] EAR-WAX are also ignored for the purpose of determining binominal status. So too are function words, including prepositions, determiners and pronouns. All of these, however (with the exception of number markers) are taken into consideration when determining the kind of construction (see §4.3 below), and even more so when it come to determining the morphosyntactic strategy (see Chapter 5).

4.2 Determining the head

Once binominals had been identified, the English gloss of the primary constituents was added in columns M and N (labelled c1 and c2, respectively). This would prove useful in ensuring consistency in later stages of the analysis. In addition, the position of the head was indicated in column U, as either L (left-headed) or R (right-headed), cf. Figure 20.1

As noted above, coordinate constructions were assigned their own code (CO). As a result, meanings that tend to be represented by coordinate constructions (e.g. COUSIN, PARENTS and SIBLING) were not retained when the list of meanings was reduced from 201 to 100 (cf. §3.1.4). The consequence of this was that in the final version of the database the vast majority of binominals (over 90%) exhibit a clear head-modifier structure.2

There are two reasons why it is a desideratum to know which of the primary constituents is the head. First, the position of the head affects the type of construction. Thus, a head-initial compound **Head Mod** is considered to be a different construction from a head-final compound **Mod Head**. The second is that the nature of the semantic relation between the two main constituents of a binominal cannot be determined without knowing which is the head and which is the modifier. For example, in

1 The traditional terms left-headed and right-headed can be confusing in languages that are written from right to left. They should not be interpreted literally, but as synonyms for head-initial and head-final, respectively.

2 Most of the exceptions involve age or gender and are discussed in §8.4.
terms of Bourque’s 2014 classification used in Chapter 6, the relation in *houseboat* is FUNCTION (“a boat that serves as a house”), while that in *boathouse* is PURPOSE (“a house intended for boats”). If one did not know which of the two constituents *house* and *boat* was the head, it would not be possible to determine the precise relation exhibited by each binominal.

In the following discussion of how the head was identified separate treatment is given to binominals consisting of two thing-roots and binominals consisting of a thing-root and a thing-affix.

4.2.1 Binominals consisting of two thing-roots

The question of how to identify the head in compounds (the prototypical type of binominal lexeme) has been addressed by Scalise & Fábregas (2010), who suggest (p. 124) recognizing three distinct types of head:

- **semantic head**: defines the semantic class of the whole word
- **categorial head**: defines the lexical category of the word
- **morphological head**: defines the formal properties of the compound as a lexical item (e.g., its gender and its inflectional class).

For various reasons, only the semantic head is relevant to the present project. First, the primary constituents of most binominals are nouns; therefore, since binominals are in practice also nouns, there is no way of knowing which of the constituents is the categorial head. Second, not all languages exhibit gender or inflectional class, and even when they do, the relevant information is often not easily available, so morphological criteria cannot be used. Third, the theoretical framework underlying the present research, cognitive linguistics, gives primacy to meaning, and thus favours the semantic head, or ‘profile determinant’, to use Langacker’s (1987) term. And finally, only the semantic head can be used to determine the nature of the semantic relation (see Chapter 6).

Croft (1996) finds Langacker’s concept of headhood to be correct “as far as it goes” but leads to the “unsatisfactory conclusion” that noun phrases with a determiner and clauses with an auxiliary are two-headed. In order to address this problem, Croft introduces the notion of a ‘primary information-bearing unit’, or PIBU, and proposes that the following definition:

“A (semantic) head is the profile equivalent that is the primary information-bearing unit, that is, the most contentful item that most closely denotes the same kind of thing that the whole constituent denotes” (Croft 2001: 259).
The concept of PIBU comes into play in order to disambiguate cases where a construction contains two elements at different levels of abstraction (e.g. noun and determiner or main verb and auxiliary) that can both be regarded as profile determinants (or equivalents, to use Croft’s preferred term). This is never the case with binominals: most binominals have only one profile determinant, and where there are two (e.g. in some coordinate compounds), they are at the same level of abstraction (as in Scalise and Bisetto’s example poeta-pintor in Figure 6). This means that the same results are obtained in practice with both Langacker’s profile determinant approach and Croft’s combination of profile equivalent and PIBU. (As we shall see in the next section, however, a different situation obtains with binominals that consist of a thing-root and a thing-affix.)

The semantic head is thus determined via the ISA condition. The formulaic statement of this condition, given by Scalise and Fábregas in (33), makes the (unwarranted) assumption that the head is the second (right-hand) constituent.

(33) In a compound [[]x []y]z, Z “IS A” Y

Their more general prose formulation states that “whatever concept the whole compound expresses, it is a subclass of the concept that its head denotes. In other words…the whole compound must be a hyponym of its head” (Scalise & Fábregas 2010: 111). Applying this as a diagnostic to the Polish examples in the shaded cells in Figure 20 (refer to page 101 for the glosses) produces the results in (34):

(34) The head of zorza polarna is zorza because arctic lights ISA dawn, not a pole
 The head of platek ucha is platek because an earlobe ISA lobe, not an ear
 The head of złoty pierścionek is pierścionek because a gold ring ISA ring, not a gold
 ?? The head of pohudnie is pol because midday ISA half, not a day
 The head of droga mleczna is droga because the Milky Way ISA road, not a milk
 The head of kolej żelazna is kolej because a railway ISA course, not an iron
 The head of kamieński most is most because a stone bridge ISA bridge, not a stone
 The head of palec u nogi is palec u nogi because a toe ISA finger, not a leg

1 Croft (to appear) appears to abandon notion of PIBU and instead defines the head as follows: “The head (cxn) of a construction is essentially the most contentful word that most closely denotes the same function as the phrase (or clause) as a whole.”
2 The minor semantic shift of dawn from ‘sunrise’ to ‘brightening of the sky’, in order to construe the arctic lights as a kind of dawn, seems to be acceptable.
3 A toe can be construed (metaphorically) as a finger. In some languages, toe and finger are colexified and have the meaning digit, but the word might still be glossed as ‘finger’.
Most of these results are uncontroversial, but *pol. u. dnje* [half. LE. day] MIDDAY requires comment. In the database, almost all analysable words meaning MIDDAY have a constituent glossed as ‘day’ (or ‘sun’, which often co-lexifies with ‘day’, cf. Urban 2012: 703). When this is the case, the other constituent is always ‘middle’ (or occasionally – and metaphorically – ‘heart’) or ‘half’. The first of these clearly denotes a superclass (or hypernym) of MIDDAY (the middle of the day ISA middle, not a day). As to the second, it seems reasonable to interpret ‘half’ in this context as denoting the ‘halfway point of a day’ rather than ‘half of a day’ (the latter would apply if the meaning denoted by the construction were something like ‘before noon’ and/or ‘afternoon’); clearly, the middle of the day ISA halfway point, not a day, and also not a half.

As these Polish examples show, in most cases, determining the head of a binomial is rather straightforward, notwithstanding the three situations identified by Scalise and Fábregas in which compounds do not follow the ISA rule (2010: 111ff). In the first place, coordinate constructions occur only very rarely in the data, for the reason cited above; when they do, the constituents are synonyms, as in Mandarin Chinese 火焰 *huo3.yan4* [fire/flame. flame/fire] FLAME.

Secondly, the two types of compound that Scalise and Fábregas call “exocentric” either do not occur, or else are given alternative interpretations. Compounds of the Romance V+N type (e.g. It. *portalettere* [carry. letters] POSTMAN, cf. Eng. *pickpocket*) are not considered to be binominals because they contain an actional element. As for constructions such as Eng. *skin head* and It. *testa rasata* [head shaven] ‘skin head’, where the referent is not a direct hypernym of either constituent, these are regarded in the constructionist framework adopted here as metonymical head-modifier structures. The English example would be regarded as a binominal, since it consists of two thing-roots, whereas the Italian counterpart would not, since it contains the action-root *rasare*.

The third situation identified by Scalise and Fábregas as being problematic for the ISA rule concerns words in which the meaning cannot be derived from the meanings of their constituents, for example Sp. *pati-difuso* [leg-distributed] ‘puzzled’. This can be because the origin is lost in the mists of time, or due to unfamiliar cultural traditions. An example of the latter is Nizaa *táá gůr* [father leg] YOUNGEST CHILD. According to Rolf Theil (p.c.), in Nizaa culture it is traditional for the youngest child to act as his father’s metaphorical ‘leg’ and to support him physically in his old age. Thus, in this word, *gůr* ‘leg’ is clearly the head. A further example is Takia *tamol sos* [man Derris_root] WIDOWER. While the motivation for this word
cannot be determined, a widower is far more likely to be conceived as a kind of man than as a kind of root. Cases such as these are, however, extremely rare in my data.

4.2.2 Binominals consisting of a thing-root and a thing-affix

Turning now to binominals that consist of a thing-root and a thing-affix, while the notion of head is relatively uncontroversial in the case of noun-noun compounds, and other, more “phrasal” binominals consisting of two thing-roots, there is much more contention when it comes to derivation and inflection. Some idea of this disagreement can be gleaned from Bauer (1990), who cites a number of major contributions to the discussion (including Marchand 1969; Williams 1981; and Zwicky 1985), reviews the criteria used to determine the head in syntax, and then attempts to apply the latter to English morphology. He concludes:

The obvious, though not necessarily the correct, conclusion to draw is that heads have no place in morphology. Certainly, if they have a role to play, this role needs to be defined much more carefully than has been the case up until now… Given the things that ‘head’ is supposed to do at the moment, we would not be much worse off without our heads (p. 29-39).

Bauer thus hedges his overall conclusion, but he is considerably more categorical in his discussion of derivational affixes:

Processes such as nominalization or adjectivalization, it is suggested, have only grammatical meaning: that is, something like ‘turn the base into a noun’ is the meaning of nominalization affixes. Other affixes, such as the prefix un- have only lexical meaning: something like ‘negative’. Others, such as -er, it is suggested, have both: the lexical meaning is something like ‘person or object which is typically the subject of the verb used as the base’, while the grammatical meaning is ‘noun’. [This suggests] that nominalization and adjectivalization markers have no meaning. If that is the case, they cannot take part in any hyponymous relationship (p. 5).

Štekauer (2000) takes up the discussion and starts by briefly sketching the views of Marchand, Williams, Anderson, Lieber, Selkirk and Zwicky before presenting his own proposal, which he then proceeds to test against Bauer’s list of criteria. Štekauer’s proposal is to identify the head with the onomasiological base of the naming unit:

Rather than identifying head either positionally or morphologically […] the proposed approach shifts the criterion of headedness to the extralinguistic level, in particular, to the conceptual level of generation of naming units. By implication, [the] head can be a suffix, a prefix, or a word-formation base (p. 341).
Štekauer tests six of Bauer’s criteria for each of Onomasiological Types 1 to 4. The first, and most important, criterion is that of hyponymy. All four types pass this test without any difficulties, “which follows naturally from the [...] definition of the [onomasiological base] as that constituent of the [onomasiological structure] which stands for the most general concept”. Štekauer’s examples are given in (35) with labels that will be more familiar than those used in the original (the onomasiological base (i.e. the head) is emphasised).

(35) OT1: truckdriver
OT2: writer
OT3: honeybee
OT4: restart

Štekauer assumes that the first three examples are uncontroversial (Bauer allows that the agentive -er suffix can have lexical as well as grammatical meaning, as seen in the quote given above), but he recognizes that the OT4 example might raise objections:

Nonetheless, I believe that the reader will agree that the meaning of affixes is more general than any lexical meaning. Thus, the meaning of re- (REPETITION of an Action) is more general than the specified Action. In other words, any particular Action can be repeated or returned to the original state. Analogically, Bauer's ambiguous disinter is disambiguated in this way: dis- (OPPOSITE) is head and inter is the [onomasiological mark].

Bauer’s counterexamples are explained as follows:

the [base] of dialectal is -al because its meaning (RELATED TO) is superordinate to the more specific meanings of what is “related to” (dialect, education, continent). In the same way, -ish in greenish is the [base] because its meaning is much more general (APPROXIMATION) than that of green. Similar considerations apply to diminutives, such as duckling. -ling (DIMINUTIVE) is more general than duck.

Štekauer does not explicitly mention nominalization and adjectivization, which Bauer suggested have only grammatical meaning, as general processes, but it is quite clear from the more specific instances discussed that affixes having these functions would also be regarded as constituting the onomasiological base. This means that every derivational affix found in binominals (words with the code NN in Figure 20 on page 101) would be regarded as the onomasiological base, with the

1 It will be recalled from §1.2.3 that OT5 represents the absence of onomasiological structure since the mark is not expressed. This type therefore “does not admit discussion of headedness,” according to Štekauer. It covers instances of conversion, as in timeVerb < TIMENOUN.
exception of affixes glossed ADJZ, which only occur in words where there is another, more likely candidate for the role of onomasiological base (e.g. kolej in kolej żelaz. na [course iron.ADIZ] RAILWAY).

The onomasiological position accords with that of Cognitive Grammar. Langacker has not specifically addressed the issue of derivational morphemes as profile determinants in a general way, but simply taken this for granted (p.c.) based on particular sorts of examples prevalent in the early CG literature. Cases include, for instance, the Cora nominalizer -'a in ne.wes.'a [my.plant.NMLZ] 'my plant/what I planted’, which is “both dependent (being elaborated by another component [i.e. wes-]) and the profile determinant” (Langacker 1988: 118), and the English agentive suffix -er, which is considered to be the profile determinant in the construction [V. er] (Langacker 2002: 129).

Langacker sums up the position of Cognitive Grammar as follows:

From the outset, derivational morphemes that change grammatical category have been analyzed in Cognitive Grammar as profile determinants (heads) in the constructions effecting their combination with a stem. They are conceptually dependent on the stem, making schematic reference to it, and this functions as the construction’s elaboration site. The derivational affix imposes its conceptual organization on the content provided by the stem. In particular, it imposes its profile, and since an expression’s profile determines its grammatical category, the derived form undergoes a “change” in category, becoming a specific instance of the one represented by the affix (p.c.).

Haspelmath (1992) invokes grammaticalization theory and the origin of derivational affixes in earlier free lexical items to support Williams’ (1981) affixal head theory, but excludes evaluative affixes on the grounds that they typically originate as sound-symbolic extensions of the stem, rather than independent lexemes.

Croft’s position is different; he questions the role of the head in morphology:

The head-dependent distinction, to the extent that it is applicable to morphemes, does not account for the root-affix structure; and that is because PIBU status, not profile equivalence, is the most relevant semantic property for this structure. The properties of profile equivalence and PIBU part with each other in morphology in many derivational forms. For example, in agent nominalizations, the root (verbal or nominal) is the PIBU, but the agent-nominalizing affix is the profile determinant (2001: 269).

1 In fact, the position extends beyond category-changing derivational morphemes to include inflectional morphemes, such as the plural -s in pins: “Thus, [PL] functions as the profile determinant in the [[PIN]-[PL]] construction, and the composite structure [PIN-PL] has the profile of a mass object instead of a discrete object” (Langacker 2002: 123).
The theoretical frameworks that the present research builds on thus diverge in some important respects, but provided one equates head with onomasiological base and profile determinant/equivalent, they lead to the same results – except in the case of evaluative morphology, where I choose to follow Štekauer rather than Haspelmath. This has the advantage of consistency, which is reflected in the codes given in Figure 20; as can be seen, all the Polish derivational binominals use suffixes and are therefore deemed to be right-headed.

4.3 Defining the construction

Once the head of each binominal had been determined, it was a simple matter to infer the underlying schemas (i.e. constructions) by generalizing each primary constituent (thing-morph) to either Head or Mod. Any additional constituents were retained in approximately the same form as the original gloss, except for certain simplifications; the latter consisted of removing some of the details from certain glosses, where these were considered unnecessary for the purpose of the present study and in order to improve readability. Thus, for example, the original gloss for Archi mučlin klan NOSTRIL was simplified from its form in WOLD – muč-li-n klan [nose(III)-OBL.SG-GEN hole(IV)SG.NOM] – to the form used in the database – muč.li.n klan [nose.OBL.GEN hole] – on the assumption that the inflection class would not be relevant for this study. Then, in defining the type of construction, information about the presence of an oblique suffix was omitted on the same grounds and the construction was defined as Mod.GEN Head.

Binominals consisting of a thing-root and a thing-affix (i.e. derivations) were treated differently, for the following reason. If every affix were to be replaced by Head and its base by Mod, every derivation would end up having exactly the same schema (Mod Head for suffixation and Head Mod for prefixation). This would result in the loss of potentially interesting information regarding the amount of variety exhibited by different languages in the domain of derivation. For binominals of this kind the construction was generalized by representing the non-head as Base and retaining the gloss for the affix, as in (36).

(36) Base.AGT garnc.arz [pot.AGT] POTTER
 Base.DIM źółt.ko [yellow.DIM] YOLK
 Base.F pającz.yna [spider.F] SPIDER WEB
 Base.NMLZ wiatr.ak [wind.INS] WINDMILL
 Base.ADJZ.DIM poczt.ów.ka [post.ADJZ.DIM] POSTCARD
<table>
<thead>
<tr>
<th>id</th>
<th>word</th>
<th>gloss</th>
<th>meaning</th>
<th>str</th>
<th>c1</th>
<th>c2</th>
<th>pos</th>
<th>construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5882</td>
<td>poł.u.dnie</td>
<td>[half.LE.day]</td>
<td>midday</td>
<td>NN</td>
<td>half</td>
<td>day</td>
<td>R</td>
<td>Mod.LE.Head</td>
</tr>
<tr>
<td>5865</td>
<td>złot.y pierścionek</td>
<td>[gold.ADJZ ring]</td>
<td>gold ring</td>
<td>NN</td>
<td>gold</td>
<td>ring</td>
<td>R</td>
<td>Mod.ADJZ Head</td>
</tr>
<tr>
<td>5910</td>
<td>kamień.ny most</td>
<td>[stone.ADJZ bridge]</td>
<td>stone bridge</td>
<td>NN</td>
<td>stone</td>
<td>bridge</td>
<td>R</td>
<td>Mod.ADJZ Head</td>
</tr>
<tr>
<td>5917</td>
<td>palec u nogi</td>
<td>finger PREP leg</td>
<td>toe</td>
<td>NN</td>
<td>finger</td>
<td>leg</td>
<td>L</td>
<td>Head PREP Mod</td>
</tr>
<tr>
<td>5849</td>
<td>płatek uch.a</td>
<td>[lobe ear.GEN]</td>
<td>earlobe</td>
<td>NN</td>
<td>lobe</td>
<td>ear</td>
<td>L</td>
<td>Head Mod.GEN</td>
</tr>
<tr>
<td>5830</td>
<td>zorza polar.na</td>
<td>[dawn pole.ADJZ]</td>
<td>arctic lights</td>
<td>NN</td>
<td>dawn</td>
<td>pole</td>
<td>L</td>
<td>Head Mod.ADJZ</td>
</tr>
<tr>
<td>5883</td>
<td>droga mlecz.na</td>
<td>[road milk.ADJZ]</td>
<td>milky way</td>
<td>NN</td>
<td>road</td>
<td>milk</td>
<td>L</td>
<td>Head Mod.ADJZ</td>
</tr>
<tr>
<td>5897</td>
<td>kolej żelaz.na</td>
<td>[course iron.ADJZ]</td>
<td>railway</td>
<td>NN</td>
<td>course</td>
<td>iron</td>
<td>L</td>
<td>Head Mod.ADJZ</td>
</tr>
<tr>
<td>5851</td>
<td>wosk.o.wina</td>
<td>[wax.LE.NMLZ]</td>
<td>earwax</td>
<td>NN</td>
<td>wax</td>
<td>NMLZ</td>
<td>R</td>
<td>Base.NMLZ</td>
</tr>
<tr>
<td>5930</td>
<td>wiatr.ak</td>
<td>[wind.NMLZ]</td>
<td>windmill</td>
<td>NN</td>
<td>wind</td>
<td>NMLZ</td>
<td>R</td>
<td>Base.NMLZ</td>
</tr>
<tr>
<td>5896</td>
<td>król.owa</td>
<td>[king.F]</td>
<td>queen</td>
<td>NN</td>
<td>king</td>
<td>F</td>
<td>R</td>
<td>Base.F</td>
</tr>
<tr>
<td>5863</td>
<td>dziewczyn.ka</td>
<td>[girl.DIM]</td>
<td>girl</td>
<td>NN</td>
<td>girl</td>
<td>DIM</td>
<td>R</td>
<td>Base.DIM</td>
</tr>
<tr>
<td>5932</td>
<td>żółt.ko</td>
<td>[yellow.DIM]</td>
<td>yolk</td>
<td>NN</td>
<td>yellow</td>
<td>DIM</td>
<td>R</td>
<td>Base.DIM</td>
</tr>
<tr>
<td>5857</td>
<td>ryb.ak</td>
<td>[fish.AGT]</td>
<td>fisherman</td>
<td>NN</td>
<td>fish</td>
<td>AGT</td>
<td>R</td>
<td>Base.AGT</td>
</tr>
<tr>
<td>5895</td>
<td>garnc.arz</td>
<td>[pot.AGT]</td>
<td>potter</td>
<td>NN</td>
<td>pot</td>
<td>AGT</td>
<td>R</td>
<td>Base.AGT</td>
</tr>
<tr>
<td>5894</td>
<td>poczt.ów.ka</td>
<td>[post.ADJZ.DIM]</td>
<td>postcard</td>
<td>NN</td>
<td>post</td>
<td>DIM</td>
<td>R</td>
<td>Base.ADJZ.DIM</td>
</tr>
</tbody>
</table>

Figure 22: Subset of the Polish binominal data showing constructions
The typology and semantics of binominal lexemes

The result of this analysis is illustrated in Figure 22, which shows the binominals (and only the binominals) from the Polish data in Figure 20, together with their constructions. Rows in this table are ordered by construction, with right-headed constructions (Mod.LE.Head and Mod.ADJZ Head) appearing first, followed by left-headed constructions (Head PREP Mod, Head Mod.GEN and Head Mod.ADJZ), and finally derivations (Base.NMLZ, Base.F, Base.DIM, Base.AGT and Base.ADJZ.DIM). Recall that this is just a subset of the Polish binominal data. The full set consists of 57 binominals spread across 10 constructions. A brief summary of those constructions, along with the number of instances and an example of each can be found for Polish – and every other language in the sample – in Appendix D. The complete data set can be found in Appendix E.

4.4 Data analytics

This section provides a general description of the data based on the coding performed during the first phase of the study, that is, before developing the typological and semantic classifications. As described in the preceding sections, that annotation, includes the following properties:

1. morphemic gloss (analysable words only)
2. structural type (binominals vs. non-binominals)
3. head position (L or R, binominals only)
4. construction type

Table 23 gives the overall database statistics and Figure 23 shows the distribution by language and meaning.

<table>
<thead>
<tr>
<th></th>
<th>By language (n=106)</th>
<th>By meaning (n=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>sd</td>
</tr>
<tr>
<td>Words (S)</td>
<td>8,899</td>
<td>25.02</td>
</tr>
<tr>
<td>Analysable words (A)</td>
<td>5,346</td>
<td>21.93</td>
</tr>
<tr>
<td>Binominals (NN)</td>
<td>3,738</td>
<td>17.97</td>
</tr>
</tbody>
</table>

Table 23: Overall database statistics

The codes S, A and NN are used below in simple formulae that denote ratios or percentages. For example, A/S denotes the number of Analysable words as a percentage of the total number of words (or vocabulary Size) for any given language or meaning and thus serves as a rough indicator of the degree of morphological complexity in that context. Similarly, NN/S denotes the number of binominals as a percentage of the total vocabulary and gives an indication of the degree of “binominality”, i.e. the degree to which meanings are expressed as binominals within or across languages.
In the following sections, these numbers are broken down, first by language (§4.4.1) and thereafter by meaning (§4.4.2).

4.4.1 Data analytics by language

Figure 24, in which a single, very long bar chart has been chopped into three pieces, gives a breakdown of the numbers in Table 23 by language. For each language the green column shows the number of words in the sub-database (S); the blue column shows the number of analysable words (A), which is always less than or equal to S; and the orange column shows the number of binominals (NN), which is always less than or equal to A. The languages are arranged in ascending order of vocabulary size (S) for readability.

1 Here and elsewhere the use of colours in a plot has no significance if there is no legend.
Figure 24: Basic data summary (by language)
A number of observations can be made on the basis of this diagram. The first is that the vocabulary size (S), varies considerably across languages. Furthermore, there is substantial variation in the proportion of analysable words, A/S (compare the heights of the green and blue columns). Thus, around half of the words in Tuwari and Wawa are analysable, almost all of those in Datooga are, and the great majority of those in Murui Huitoto are. Moreover, the number of binominals as a proportion of either the total number of words (NN/S), or the number of analysable words (NN/A), also exhibits great variety (compare the height of the orange column with the other two columns). Thus, almost all of the analysable words in Wawa, Ceq Wong and Srenge are binominals, whereas almost none of those in Datooga are. Each of these observations is discussed in more detail in the following sections.

Vocabulary size

The size of each sub-database (i.e. the number of words in the database for a given language) varies considerably, from 21 (Tuwari), at the left-hand edge of Figure 24, to 144 (Korean) at the right-hand edge. This variation can be accounted for by four factors. Firstly, some contributors provided multiple translation equivalents for the same meaning, whereas others provided only the most common or precise translation equivalent. With the benefit of hindsight, it can be seen that more careful instructions should have been given in this regard. Secondly, loanwords were included by some contributors but not by others. Again, more precise instructions could have been given; however, this would not have solved the problem completely, since it is often difficult to draw the line between loanwords that have been absorbed into the language (and should therefore be included, for commensurability with the WOLD data), and instances of single-word code-switching, which should not (cf. the discussion in Haspelmath & Tadmor 2009: 12). Thirdly, as discussed in §3.1.5, the meaning list used as the basis for data collection has a certain bias towards languages spoken in technologically advanced societies. As a result, certain meanings tend to lack translation equivalents in some languages. Finally, the data sources available for some languages were incomplete. (It was noted in §3.3.1 that some of the original WOLD contributors did not respond to requests for additional data for the 18 meanings that are not found in WOLD.) The combined effect of the last two factors is that minority and extinct languages tend to appear towards the (top) left-hand end of Figure 24, whereas national languages of large and developed states tend to appear towards the (bottom) right-hand end. (Exceptions to this tendency are mostly due to the effects of the first two factors.)

1 Viz. Akkadian and Old High German.
The typology and semantics of binominal lexemes

Morphological complexity
Saussure (1983: 132 [183]) suggested that languages can be divided into *langues lexicologiques*, which are characterized by a low degree of motivation, and *langues grammaticales*, with a much higher degree of motivation. According to Ullmann (1966: 222), words can be motivated in three different ways: phonetically (e.g. *swish*, *sizzle*), morphologically (e.g. *arm-chair*, *thinker*) and semantically (e.g. ‘the bonnet of a car’, ‘the pivot on which a question turns’). Based on the present data, a rough measure of morphological motivation in the nominal lexicon can be adduced from the ratio of analysable (i.e. motivated) to unanalysable (unmotivated) items in each sub-vocabulary.

A rough measure can be found by simply dividing the number of analysable words (A) by the total number of words (S). However, certain caveats are in order. The first is that words denoting technologically advanced concepts, which have a higher tendency to be complex, are less likely to occur in certain languages, such as those of hunter-gatherer communities; as a result, languages of this type will appear to have a lower degree of morphological motivation. In addition, some contributors may have interpreted analysability as synchronically analysable for linguists as opposed to for lay speakers;\(^1\) this will tend to inflate the figure for morphological motivation. It should also be noted that the actual figures obtained using the present data will be much higher than those for each language as a whole, because the set of meanings from which the database is constructed was chosen in order to maximise the yield of analysable items (cf. §3.1).

\(^1\) This is the case with the English vocabulary; cf. the discussion of the gloss provided for NOSTRIL on page 97.
For the database as a whole the degree of morphological complexity is roughly 60%, but the figure varies considerably across languages, from a high of 98% for Baa to a low of 16% for Selice Romani. Figure 25 lists languages at the extreme ends of the spectrum. Mandarin is a special case, often regarded as a language of compound words (Arcodia 2007), but the results for Baa call for further investigation. The position of Swahili and Murui Huitoto at the high end is due to the presence of noun classes and noun classifiers in these languages. Also, the high value obtained for Datooga is not indicative of morphological motivation, since it is mainly due to purely grammatical suffixes (the primary suffix -óó/-ée(n), the singulative suffix -(C)éan, and/or the singular suffix -tal/-da). On the other hand, the languages at the other end of the spectrum do seem to be genuine langues lexicologiques.

Binominal frequency

The languages in the sample can also be compared in terms of the extent to which they use binominals as a word-formation strategy. One measure of this is the number of binominals as a proportion of the total vocabulary size (NN/S), a figure that varies from a high of 77% (Mandarin) to a low of 3% (Datooga), with an average value of 40.8%. Figure 26 shows the ten languages at each extreme of the scale.

![Figure 26: Binominal frequency (NN/S) by language](image)

The case of Mandarin and the compound-rich structure of its lexicon was noted above, and the same trait accounts in large part for the high ranking of Japanese and Vietnamese. Explanations for the other languages at the high end of the scale await further research which is beyond the scope of the present project. At the other end of the scale, both Datooga and Puyuma are rather sparsely represented in the database (with 29 and 54 words, respectively). The data for Datooga are mostly monomorphic (if one disregards the grammatical affixes mentioned above), while complex words in Puyuma are more likely to contain an action-root than a thing-
root: for example, the words denoting SPECTACLES/ GLASSES, GLOVE and BRACELET all contain the verbal prefix pu- ‘put’, combined with words meaning ‘eyes’, ‘hand’ and ‘arm’, respectively.

4.4.2 Data analytics by meaning

The same data can be described in terms of meanings, as shown in Figure 27. As in Figure 24, the green column shows the total number of words in the database for each meaning (S); the blue column shows the number of these that are analysable (A); and the orange column shows the number of binominals (NN). Meanings are arranged in ascending order of vocabulary size (S). Similar observations can be made of this diagram: the size of the sub-vocabularies (S) varies considerably across meanings; there is great variation in the proportion of analysable words (A/S); and the number of binominals as a proportion of either the total number of words (NN/S) or the number of analysable words (NN/A) also exhibits great variety. Each of these observations is discussed further below.

Vocabulary size

The size of each sub-database (i.e. the number of words in the database for a given meaning) also varies considerably, from 35 (PADDLE WHEEL), at the left-hand edge of Figure 27, to 126 (BEE) at the right-hand edge.

Figure 28 shows how the size of the meaning vocabularies varies across different semantic fields (see §3.1.5). The best coverage is found for meanings belonging to field of Religion and belief. There are two of these, MAGIC and SORCERER OR WITCH, represented by 101 and 121 words respectively (on average, 111). Other meanings with extensive coverage include Kinship (six meanings: BOY, GIRL, MARRIED WOMAN, MOTHER-IN-LAW (OF A MAN), NIECE, WIDOWER), The body (19 meanings) and Emotions and values (one meaning: TEAR). At the other end of the scale are the semantic domains of Motion (one meaning: STONE BRIDGE), Modern world (19 meanings), and Time (three meanings: WEDNESDAY, SUNDAY, MID-DAY), where the coverage averages 80 words or fewer.
Figure 27: Basic data summary (by meaning)
The typology and semantics of binominal lexemes

Figure 28: Vocabulary sizes across semantic fields

Note that these figures represent the total number of words for each meaning in the database, not the number of languages that have one or more words for that meaning. Thus, one reason why SORCERER OR WITCH has such a high score is because some contributors provided translation equivalents for both SORCERER and WITCH (e.g. Mandarin Chinese wūshī and wūpó). Moreover, some languages have many words for this particular meaning (the database contains five each from Querétaro Otomi and Seychelles Creole, and four from Zinacantán Tzotzil). Thus, SORCERER OR WITCH is actually only found in 94 of the 106 languages, despite being represented by 114 words in the database.

Morphological complexity

The same procedure that was used above to measure and compare the degree of morphological complexity in languages (i.e. the number of analysable words as a proportion of the total number of words) can be used – with the same caveats – to measure and compare the degree of morphological complexity associated with individual meanings. For the database as a whole, the average measure is roughly 62.5%, but as before, the figure varies considerably, from a high of 97% for GOLD RING to a low of 27% for BEE. Figure 29 shows meanings that are at the extreme ends of the scale. It is perhaps not surprising that GOLD RING and STONE BRIDGE are the meanings that are most frequently represented by analysable words; both are subtypes of basic level concepts (RING and BRIDGE) that are differentiated by the material they are made of. A natural way of naming such entities is to combine the name of the parent concept with the name of the material, which results in an analysable form. The few instances in the database of non-analysable words associated with these meanings, such as Mamara Senoufo pɔ (< Fr. pont), actually denote the parent concept. The extent to which items denoting concepts like STONE
BRIDGE and GOLD RING are lexicalised is difficult to determine, especially across a large number of languages, but these two are clearly at the less lexicalized end of the continuum of nonanchoring possessives. The issue of lexicalisation, and how to distinguish lexical items from phrases, was avoided in the present study by the selection of meanings that tend to be found in dictionaries. With the benefit of hindsight, we might conclude that STONE BRIDGE and GOLD RING should not have been on the meaning list; however, their inclusion does not appear to have skewed the results of the study in any major way.

Otherwise, it is striking that almost all the other eight meanings to the left in Figure 29 (WINDMILL, KEYWORD, TOOLBOX, etc.) all belong to the semantic field Modern world. This confirms the intuition that the recency and inherent complexity of technologically advanced concepts tend to be reflected in the complexity and degree of motivation of the names that are coined for them.

![Figure 29: Morphological complexity (A/S) by meaning](image)

At the other extreme, to the right in Figure 29, are the ten meanings that are least often denoted by analysable words. The case of BEE is worth commenting on, since it was not among the 159 meanings originally extracted from WOLD (see §3.1.1). This was because it is represented by an analysable form in only 11 of WOLD’s 41 languages. It was added to the set of meanings on the strength of Fr. *abeille à miel* in order to increase the representation of **Head à Mod** constructions (see §3.1.2). This was clearly a mistake, since *abeille à miel* has the more specific meaning HONEY BEE; BEE itself is simply *abeille*. Of the other meanings that tend to be expressed by unanalysable words, some have a tendency to be borrowings of what might originally have been an analysable form (e.g. Kanuri *báskūr* < Eng. *bicycle*, Central Yupik *nuusnik* TOILET < Rus. *nüžnik* ‘latrine’), while others are more-or-less basic level concepts.
Binominal frequency

The degree to which the 100 meanings are expressed by binominals as opposed to other kinds of lexeme ranges from 86% in the case of STONE BRIDGE to 11% in the case of MAGIC, with an average of 44.6%. Figure 30 shows the ten meanings at each end of the scale; they are identical to those in Figure 29, except that RAILWAY appears instead of KEYWORD. At the other end of the scale, borrowing and basic level concepts are once again factors, but in addition the concept in question often involves an action. This is the case with HERDSMAN, which is often denoted by a word containing an actional element, be it Onomasiological Type 1, e.g. Assamese go.rokh ia [cow.watch.AGT], or Onomasiological Type 2, e.g. Malagasy mpi.àndry [AGT.watch], rather than a binominal.

Another useful measure of the frequency of binominals by meaning is shown in Figure 31, in which the number of binominals (NN) is divided by the number of analysable words (A) rather than by the total number of words (S). Essentially the diagram addresses the question, if a meaning is expressed by an analysable word, how likely is that word to be a binominal? The meanings to the left all score very highly in this regard (91% or more); their modifying concepts tend to be materials, body parts, and the like. Those to the right all tend to involve an action (e.g. MAKE, COOK, CATCH) or a property (e.g. SICK) and are thus expressed by OT1 and OT2 forms to an even higher degree.
Chapter 4. Data annotation

4.5 Chapter summary

This chapter described the coding of the data in some detail, in order to highlight certain theoretical and practical issues relating to three major tasks: distinguishing binominals from other words, determining the head of the construction, and defining the schematic construction instantiated by each binominal. In order to identify binominals roots must be distinguished from affixes, and thing-morphs must be distinguished from action- and property-morphs. In general, two things-morphs are required, and the presence of an action-root, a property-root or an action-affix is usually sufficient to disqualify a form from binominalhood. However, the case of ‘yellow’ in combination with ‘egg’ to denote YOLK drew attention to the fact that the border between property-roots and thing-roots can be gradient. The particular status of properties was further underlined by the differential treatment accorded to property-affixes as opposed to (most) property-roots.

Determining the head of the construction turned out to be rather straightforward in the case of binominals consisting of two thing-roots but required an analytical choice to be made in the case of binominals consisting of a thing-root and a thing-affix. For consistency, evaluative morphology was treated in the same way as derivational morphology in general with the affix accorded the status of head.

I also provided a detailed description of the binominal data by language and by meaning, focusing on vocabulary size, morphological complexity and binominal frequency. This showed considerable variation across all three parameters and revealed a number of issues that call for further investigation. The next chapter discusses the typological classification that was developed on the basis of the annotated data.
Chapter 5. Typological classification

5 Typological classification

Chapters 1 and 2 of this work covered the first stage of Song’s recipe for “doing typology” (see page 18), namely identification of a phenomenon to be investigated. Chapters 3 and 4 then described the second stage, generation of a language sample. The third stage is the creation of a typological classification, and that is the focus of both this chapter and the next. Stassen (2002: 766) makes the point that it is quite possible for one and the same database to give rise to several different typologies, none of which has to be intrinsically “better” than the others. This is because classifications are simply tools for answering research questions and can vary depending on the kind of criteria on which they are based. In this chapter I present a two-level typological classification based on the morphosyntactic features of binominals. In the next chapter I develop another two-level classification based on the semantic relation between the two major constituents of a binominal.

In §5.1 I review two classifications that serve as points of departure for developing a typological classification of binominals: Koptjevskaja-Tamm’s (2002) classification of possessive noun phrases (PNPs) in Europe (§5.1.1), and Croft’s (2003) use of possessive constructions to illustrate a “cross-linguistically valid description of morphosyntactic structures” (§5.1.2). This section also highlights the problems inherent in representing a classification as a hierarchy.

In §5.2 a two-level classification of binominals is developed, together with an alternative, non-hierarchical representation that avoids the problems highlighted in the preceding section. The nine-way classification is based primarily on the degree of marking and the locus of marking; the more detailed, 18-way classification adds constituent order to these parameters. A detailed description of each of the nine basic types follows in §5.3, along with numerous examples from the data set to illustrate the range of constructions that they each cover.

Two “gaps” in the classification, revealed by the non-hierarchical representation, are discussed in §5.4 and explanations are put forward to account for them. §5.5 then exemplifies the kinds of gradient phenomena found in the data and shows how they are handled by the proposed representation; §5.6 presents some data analytics; and §5.7 provides a conclusion.
5.1 Theoretical prerequisites

5.1.1 Koptjevskaja-Tamm (2002; 2003)

The classification that stands out in the literature as providing a possible starting point for the present study is Koptjevskaja-Tamm’s (2002) study of possessive noun phrases (PNP) in Europe (Figure 32). The typology defines three major types: synthetic, juxtaposition and analytic. In the juxtaposition type, the possessor and possessum are simply placed next to each other, in either head-initial or head-final order, with no additional grammatical material. In the synthetic type, affixes are attached to either the possessum (head), the possessor (dependent), or both; and in the analytic type, the possessor and possessum are supplemented by an additional free morpheme, which may be either a preposition or a linking pronoun. The types are organized in a hierarchy with the leaf nodes labelled juxtaposition, dependent-marking, double-marking, head-marking, prepositions and linking pronouns. A seventh type, possessive compounding, is not included in the typology since it is “mainly restricted to Northern Swedish”.

![Figure 32: Major structural types of PNPs in Europe (after Koptjevskaja-Tamm 2002: 144)](image-url)

The classification accommodates most of Koptjevskaja-Tamm’s data, but as she points out, it is only a “rough and simplified approximation to the great structural diversity within European PNPs”. This highlights one of the disadvantages of hierarchical models: they tend to imply the existence of discrete, non-overlapping categories, and to obscure the existence of gradient phenomena that do not fit neatly into one or another category. Another disadvantage of such models is that they force the analyst to give precedence to one way of grouping categories over another, which may be equally valid. Thus, the principal subgrouping in Figure 32 is based on degree of fusion, with an opposition between synthetic and analytic and with juxtaposition in between. The subdivisions of synthetic and analytic are based on
locus of marking and functional criteria, respectively. This is not only inconsistent, it also obscures important facts about relationships between types, such as that prepositions (also) mark the dependent, and that case affixes arise from adpositions that become attached to the noun (Croft 1990: 34). This, however, is a criticism of the visual organization, not the substance of Koptjevskaja-Tamm’s classification, which provides a useful starting point for the present project. Consider the four examples presented on page 1:

(37) a. Ger.

b. Fr.

c. Tur.

d. Rus.

In addition, one other PNP type is to be found in the list of binominals on page 14:

(38) e. Takia

Clearly, there is significant commonality between PNPs and binominals. Only the linking pronoun type is not encountered amongst binominals. However, the latter exhibits a variety that goes beyond that of Koptjevskaja-Tamm’s set of six types. To start with, some languages outside Europe (the area investigated by Koptjevskaja-Tamm) employ postpositions instead of prepositions, a classic example being the Japanese no construction in

We need therefore to generalize the category prepositions to adpositions. We also need to subdivide juxtaposition in order to cover several significantly different types of binominal. Two types stand out:

- derivations, such as the Czech form
 in which the concept can be regarded as having been generalized to and expressed by a nominalizing affix (cf. the discussion of ‘head replacement’ on page 165);
- classifier constructions, as in Murui Huitoto
 in which the constituent that carries the meaning is neither an affix nor an independent lexeme, but rather belongs to a special class of nominal called a noun classifier.

A further difference between possessive noun phrases and binominals is that the category (synthetic) dependent-marking covers two distinct types of binominal: those with an adjectival suffix, e.g. Rus. , and those with a genitive suffix, e.g. Bezh , RAILWAY. Distinguishing these as adjectival and genitival introduces a functional element into
an otherwise formal typology, based on locus of marking and degree of fusion, but this can be justified on two grounds. Firstly, the two types involve different morphological processes: the one, transpositional (word-class changing) derivation, the other non-transpositional (word-class preserving) inflection. Secondly, these two types can be encountered as competing strategies in one and the same language, as in Lithuanian *gelež.in.kelis* [iron.ADIZ.way] RAILWAY and *aus.ų vaškas* [ear.GEN wax] EARWAX: the data therefore require us to make this distinction.

The preceding discussion suggests that a classification of binominals will consist of the eight strategies (or types) listed in Table 24. Five of Koptjevskaja-Tamm’s six PNP types are retained, but with the following modifications: her juxtaposition is subdivided into compounding, derivation and classifier (constructions), and her dependent-marking into genitival and adjectival. In addition, prepositions becomes adpositions and head-marking is renamed construct, following Creissels (2017).

<table>
<thead>
<tr>
<th>PNP types</th>
<th>binominal types</th>
</tr>
</thead>
<tbody>
<tr>
<td>juxtaposition</td>
<td>compound</td>
</tr>
<tr>
<td></td>
<td>classifier</td>
</tr>
<tr>
<td></td>
<td>derivation</td>
</tr>
<tr>
<td>dependent-marking</td>
<td>genitival</td>
</tr>
<tr>
<td></td>
<td>adjectival</td>
</tr>
<tr>
<td>double-marking</td>
<td>double</td>
</tr>
<tr>
<td>head-marking</td>
<td>construct</td>
</tr>
<tr>
<td>prepositions</td>
<td>adpositions</td>
</tr>
<tr>
<td>linking pronouns</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table 24: Types of PNP and binominal

Having identified a set of core classes, the question arises how best to arrange them into a system. Because of the shortcomings described above, I would like to avoid hierarchical representations. Inspiration for an alternative representation comes from Croft, who uses adnominal possession in order to illustrate the classification of cross-linguistic structural types, and whose approach emphasises the function of marking rather than its locus.
5.1.2 Croft (2003)

The development of Croft’s classification over a period of thirty years is described in Croft (to appear). An initial enumeration of types in Croft (1990) lists fusion, special form, affixation or compounding, juxtaposition, case, adposition, agreement, indexation, classification and linker, followed by the comment that

A more thorough analysis of the genitive construction types would involve the following morphosyntactic features:

1. **Word order of G and N**: GN, NG
2. **Degree of morphological fusion of G and N**: none (juxtaposition), compounding/affixation, fusion
3. **Additional morpheme**:
 a. **Existence**: absent, present
 b. **Type**: case/adposition, agreement, index, classifier, linker, combinations thereof
 c. **Constituent of**: G, N, neither (i.e. ternary branching structure)
 d. **Word order**: precedes, follows, between (if not a constituent of either)
 e. **Degree of morphological fusion to G or N**: juxtaposition, affixation, supplementation (p.37).

The same classification (but with the term concord instead of agreement) is found in Croft (1995), along with examples and a diagram showing diachronic relations between the different strategies. A major overhaul is then presented in Croft (2003) with the introduction of a three-way grouping into simple, relational and indexical strategies, the distinction between the latter two harking back to a contrast between relational and ‘deictic’ in Croft (1988).

The defining property of simple strategies is that they “do not involve an additional morpheme, beyond those used to express the possessor and the possessum.” They are of three types: juxtaposition, concatenation and fusion. The last of these is not relevant in the present context, since once two nominals have fused, they cease to constitute a binominal in the sense used in this study; to cite a classic example, English *lord*, though originally a compound consisting of Old Eng. *hlāf* (‘bread, loaf’) and *weard* (‘ward, guardian, keeper’), is not a binominal because it is no longer analysable for present-day lay speakers.

The distinction between juxtaposition and concatenation is essentially that between juxtaposition and possessive compounding in Koptjevskaja-Tamm’s typology, except that Croft’s concatenation covers both affixation and compounding. As I already indicated in Table 24, I intend to keep the latter two separate. The border
between juxtaposition and compounding, however, as Koptjevskaja-Tamm (2004) points out,

is notoriously difficult to draw, and much more research is needed for determining to what degree this distinction makes sense cross-linguistically. Until then in many cases we have to rely on the local tradition (p. 175).

Croft himself notes that “affixation and compounding are historical developments from juxtaposition: the juxtaposed elements become morphologically bound.” But morphological boundness is a matter of degree, as a result of which we find various phenomena that fall in between the prototypical cases of juxtaposition (at one end of the gradient) and concatenation (at the other). The boundary between juxtaposition and compounding is particularly hard to maintain in the domain of binominals, since the criteria for determining the boundary between the two vary from one language to another:

In English, some compounds are distinguished from syntactic phrases by stress (contrast a 'black 'board and a 'blackboard, for instance). In other languages there may be special morphophonemic processes which apply between the elements of compounds, there may be tone sandhi patterns or particular tonal patterns which apply to compounds, there may be some phonological merger between the elements of the compound (Dakota, Hebrew, see section 7), and so on (Bauer 2001: 695).

Even within a single language, such criteria may not be applied consistently, as demonstrated by the English pair 'apple cake and apple 'pie, neither of which seems to be more or less deserving of the appellation ‘compound’ than the other, despite their differing stress patterns. Nor are orthographic criteria to be trusted, as witness the variable spelling of a word like flowerpot ~ flower-pot ~ flower pot and the various ways of transliterating a Japanese binominal like 蛛巣の巣 SPIDER WEB (as either kumo no su or kumonosu).

Given the absence of clear, cross-linguistic criteria for distinguishing juxtaposition from compounding it would be reasonable to combine them into a single type, but there are several compelling reasons for keeping them separate. Firstly, it would be inconsistent to ignore word boundaries in simple strategies and to respect them in, say, relational strategies. As we know, affixal case markers develop historically from adpositions; here, too, the juxtaposed elements become morphologically bound and here, too, the border can be difficult to draw (cf. the case of Indic languages on pages 165 and 176). But some languages, such as Polish (cf. Figure 22), exhibit both types, and so we want to keep adpositions and case affixes distinct. Consistency requires us to do the same with juxtaposition and compounding.
Secondly, it will turn out that a combined juxtaposition/compounding category will be almost an order of magnitude larger than all the others and render any statistical comparisons less robust. More importantly, there is reason to believe that the two strategies might have different properties and, if so, we want to capture these. For the purpose of the present study, I therefore choose to maintain the distinction and, like Koptjevskaja-Tamm, to rely on the local tradition. The proof of the pudding will be in the eating, as we will see in §7.1.1, *Constituent order*. As a result of this decision, juxtaposition is to be added to the eight types in the right-hand column of Table 24.

The boundary between juxtaposition and affixation, on the other hand, is easier to maintain: juxtaposition involves two thing-roots, whereas affixation involves a thing-root and a thing-affix; in order to be able to maintain a boundary between the two we need to be able to distinguish roots from affixes. While tricky (cf. §4.1), this can usually be done, provided we are willing to accept occasional in between phenomena such as affixoids. Croft’s juxtaposition and affixation thus correspond to the compound and derivation types already found among our eight binominal types. The key property that compounding and derivation have in common, as Croft’s analysis makes clear, is that they “do not involve an additional morpheme, beyond those used to express the possessor [modifier] and the possessum [head]” (p. 32). This insight will form the basis of the alternative, non-hierarchical system presented in the next section.

In contrast to simple strategies, the relational and indexical strategies identified by Croft do involve additional morphemes, the purpose of which is to “encode the relation between the possessor and the possessum”. Relational morphemes are case markers (case affixes or adpositions), whereas indexes are agreement markers. Croft points out that “a cross-linguistic definition of case/adposition and indexation on a structural basis is difficult” and he therefore provides a semantic definition:

A more suitable definition would be that a case marker/adposition is relational, that is, a morpheme that denotes the semantic relation that holds between the noun phrase and the verb, while agreement is indexical, that is, a morpheme that denotes the argument itself (Croft 1988; §2.1). This definition is essentially a semantic one (p. 16–17).

This definition is framed in terms of the relations between a verb and its arguments, but it is clearly intended to be more generally applicable and I therefore propose to reformulate it more succinctly as follows:

(39) A relational morpheme (or relator) denotes a semantic relation, whereas an indexical morpheme (or index) refers to a participant in such a relation.
Croft’s distinction between relational and indexical strategies corresponds fairly closely to that between flags and person indexes made by Haspelmath (to appear):¹

flag
A flag is a bound form that occurs on a nominal and that indicates the semantic or syntactic role of the nominal with respect to a verb (in a clause) or with respect to a possessed noun (in a complex nominal).

person index
A person index is a bound form denoting a speech role or a highly accessible third person referent that occurs on a verb (or in second position) to indicate a verb’s argument, or on a noun to indicate its possessor.

Both dichotomies were developed as alternatives to the head/dependent-marking distinction proposed by Nichols (1986; 1992) and adopted by Koptjevskaja-Tamm in her classification of PNPs. In both cases a primary motivation was to avoid problematic issues with the broad notions of head and dependent (see Croft 2001 Ch. 7; Haspelmath 2019a §6). More importantly, from a theoretical perspective, Croft’s concepts are based solely on the function of marking rather than the locus of marking; Haspelmath’s are based on both; and Nichols’ are based solely on the latter. Logically, these parameters are orthogonal to one another: in theory, a relator could appear on either the head or the dependent, and so could an index, and this is indeed the case in predicate-argument relations; however, in referent-modifier relations, which is what are involved in binominals, “it seems to be true that … case markers (relators) occur on the modifier and [person] indexes on the head” (Croft, p.c. 2018-12-14). As a consequence, the three approaches lead to almost exactly the same results: indexes occur on heads (in Haspelmath by definition, and in Croft by default), while flags/relators occur on the possessor, i.e. the dependent. Croft (2007: 360) suggests that the tendency for indexation to correlate with head-marking is because it “primarily functions to particularize a relational concept type [and is thus] most useful when it is grammatically more closely associated with the relational concept”, i.e., in this case, the head. Conversely, head-marking consists of indexes (and linkers, discussed below), while dependent-marking consists (almost exclusively) of flags or relators. In practice, therefore, it makes little difference whether one uses function or locus as a parameter.² This might be one reason to adopt the more widely used head/dependent distinction, especially as the terms

¹ At least for the paradigm cases (see Croft to appear for a detailed comparison).
² That is not to say that there is no difference at all. Croft suggests (p.c.) that non-person indexes may occur on dependents, but no clear-cut examples of this have been found in the data.
head and dependent are relatively uncontroversial in the context of binominals. Another reason, as we will see, is that it is easier to apply consistently in practice.

In addition to simple, relational and indexical strategies, Croft’s system includes ‘more grammaticalized strategies’: linkers and special forms (Figure 33). Linkers are found in contexts where the grammaticalization process has proceeded “to the point that it makes progressively less sense to classify a marker as indexical or relational, because there is just one invariant morpheme that is used to code the dependency” (p. 38); they are

overt forms that encode a relation but do not form a paradigmatic contrast with other forms. Hence one cannot define a linker as either indexical (since it does not contrast with other forms in person, number and/or gender) or relational (since it does not contrast with other forms to distinguish semantic relations) (Croft 2019).

The first point to note about this is that it is often unclear how to apply this concept to binominals. For example, in a binominal the dependent is never pronominal, its referent is always a third person, so there cannot be a contrast of person. As a result, a morpheme that would be regarded as a person index in a possessive construction, such as the 2/3SG prefix t- in (40), which contrasts with 1SG n- , 1PL q- and 2/3PL ky- in Mam, would presumably have to be regarded as a linker in the domain of binominals. Or would it be a nonperson index, if it (very occasionally) contrasts in number with ky-?

 t.kamb' meeb'a [3SG.prize orphan] ‘[the] orphan’s prize’
A similar issue arises with relators. Take the case of French *de* and Japanese *no*, which both occur (frequently and less frequently, respectively) in the binominal data (see Appendix E for examples). Both of these participate contrastively in the adpositional systems of their respective languages, but the situation with respect to binominals is different: Fr. *de* contrasts with *à* (and to a lesser extent with other prepositions) whereas Jap. *no* does not. Is the latter then a linker rather than a relator, or are they both relators? The argument could go either way (which of course is not surprising given the diachronic relationship between adpositions, case affixes and linkers). The question is whether or not it is useful to treat the two differently.

The other point to note is that such issues do not arise if the classification is based on the locus of marking. Provided it can be ascertained whether the marker attaches to the head or the dependent, there is no need for an additional category such as linker. The example usually cited by Croft is the Persian *ezāfe*, which arose from a relative pronoun. This is generally deemed to be a constituent of the head, as in *zanbur.e asal* [bee.EZ honey] HONEY BEE (Tehranisa 1987: 56), and therefore falls fairly uncontroversially into Koptjevskaja-Tamm’s head-marking type. For these reasons I have chosen not to include linker as a separate binominal type.

The category ‘special forms’ includes segmental morphemes and base modification. The most well-known case of the latter is the Semitic construct state, illustrated by the Hebrew example *mesila.t barzel* [track.STC iron] RAILWAY (5f). Here, the base modification clearly applies to the head. In Berber languages, on the other hand, it is the dependent that is modified in constructions that involve what some Berber linguists call the construct state, as seen in the Tarifit example *ŧisi u.fus* [bottom STC. hand] PALM OF HAND (60j). While it might make “progressively less sense” to classify these as relational or indexical, there is no problem determining the locus of marking. Once again, adopting locus as a parameter in the classification obviates the need for the additional category ‘special form’.

Finally, Croft also discusses the “somewhat problematic” case of classifiers, but comes to the conclusion, on the basis of diachronic evidence (i.e. their nominal origins) that they are fundamentally indexical in nature (p. 38). In Croft (to appear), on the other hand, classifiers are “split as to whether they functioned indexically – referring to the modified referent – or relationally – denoting the semantic relation between the two concepts”. But neither of these approaches cover the kind of binominals that involve classifiers. A case in point is Murui Huitoto *ui.tiraĩ* [eye.CL(hair)] EYELASH, where the classifier with the meaning HAIR has the same function as the head constituent of a compound such as Thai *khôn.taa* [hair.eye].
For this reason – and because they are clearly separate from compounds and derivations – I choose to treat them as a fourth type of simple strategy (i.e., one that involves no additional morpheme).

The great advantage of Croft’s approach is that the various strategies are embedded in a theoretically motivated framework based on the grammaticalization paths that link them together. The principal disadvantage is that it is hard to apply in practice, at least in the domain of binominals, especially in a large cross-linguistic study, given the lack of detail available in most grammars. Another disadvantage is that it results in even more types than the locus approach. It is, of course, an empirical question which approach is most fruitful – the proof of the pudding is in the eating – and ideally one should apply both approaches and compare the results. However, that is beyond the scope of the present study. I have therefore opted to take the more practical route and focus on the locus of marking. The degree to which this bears fruit, and whether the alternative would prove more productive, will be the topic of Chapter 7, Typological generalizations.

5.2 A non-hierarchical alternative

Croft (2003: 40) summarizes the basic properties for describing morphosyntactic structures as follows:

(i) additional morpheme: none, relational, indexical, linker, (special form);
(ii) degree of fusion of elements: none, concatenation, fusion;
(iii) order of elements.

The first two properties, modified in accordance with the preceding discussion, suggest an alternative way of representing the eight types of binominals arrived at in Table 24. (The third property is discussed on page 142 below.) We start by adding juxtaposition and reordering the contents of Table 24 as Table 25, supplemented with data regarding the number of additional morphs (over and above the two required thing-morphs), examples of each type, and three-letter mnemonic labels. These labels are used extensively in the remainder of the present work, so it is important that they be internalized by the reader. Even more important, though, is to understand that these labels are simply mnemonics intended to evoke prototypical exemplars of each type: they are not descriptive labels! Thus, for example, \texttt{prp} labels the analytic dependent-marking type that includes not just prepositional constructions (e.g. Fr. \textit{chemin de fer}), but also postpositional constructions (e.g. Jap. \textit{kumo no su}). Similarly, \texttt{gen} labels a synthetic dependent-marking type that allows
for any kind of case affix, not just the genitive. More precise descriptions of each type, along with many more examples, will follow in the next section (§5.3).

<table>
<thead>
<tr>
<th>markers</th>
<th>strategy</th>
<th>code</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>juxtaposition</td>
<td>jxt</td>
<td>VIE dương sätt [road iron] RAILWAY</td>
</tr>
<tr>
<td></td>
<td>compounding</td>
<td>cmp</td>
<td>DEU eisen.bahn [iron.way] RAILWAY</td>
</tr>
<tr>
<td></td>
<td>classifier</td>
<td>cls</td>
<td>HUU ui.tĩraї [eye.CL(HAIR)] EYELASH</td>
</tr>
<tr>
<td></td>
<td>derivational</td>
<td>der</td>
<td>CES pavuč.īna [spider.NMLZ] SPIDER WEB</td>
</tr>
<tr>
<td>1</td>
<td>adjectival</td>
<td>adj</td>
<td>RUS želez.naja doroga [iron. ADJZ.NMLZ] RAILWAY</td>
</tr>
<tr>
<td></td>
<td>genitival</td>
<td>gen</td>
<td>KAP kil.os hino [iron.GEN road] RAILWAY</td>
</tr>
<tr>
<td></td>
<td>prepositional</td>
<td>prp</td>
<td>FRA chemin de fer [way PREP iron] RAILWAY</td>
</tr>
<tr>
<td></td>
<td>construct</td>
<td>con</td>
<td>PLT lala.m.by [road.PER.iron] RAILWAY</td>
</tr>
<tr>
<td>2</td>
<td>double</td>
<td>dbl</td>
<td>TBC -emo.li sakila.li [nose.POSS aperture.POSS] NOSTRIL</td>
</tr>
</tbody>
</table>

Table 25: Reordered binominal types

So as not to complicate the typology unnecessarily, two or more consecutive morphs attached to either the modifier or the head count as a single morph. For example Bezhta kil.os hino [iron.OBL.GEN way] RAILWAY is simplified to kil.os hino [iron.GEN way] and treated as having just one additional morph. In this I follow Nichols (1992), who found such a simplification necessary “because the precise amount of multiple case marking in the constructions I am surveying is generally not made clear in grammars, so no consistent count could be made” (p. 62). An additional reason is that there are not enough examples of this phenomenon in my data to justify defining separate types to cater for them.

It is possible to arrange these nine binominal types (or strategies) hierarchically, but to do so would require choosing between a grouping based on degree of fusion (i.e. analytical vs. synthetic, as in Figure 32), or one based on locus of marking (i.e. head, dependent, both or none), both of which would obscure important facts. Instead, I have chosen to arrange the types on a two-dimensional semantic map (Figure 34) which incorporates three different parameters (number of markers, locus of marking and degree of fusion), and allows for the addition of a third dimension that captures the order of elements.

The vertical axis represents the number of markers (levels 0, 1 and 2, respectively); it caters for binominals consisting of
• (level 0): two elements (i.e. with no additional morpheme beyond the head and the modifier),
• (level 1): three elements (i.e. with one additional morpheme attached to either the head or the modifier), and
• (level 2): four elements (i.e. with additional morphemes attached to both the head and the modifier).

Figure 34: Typological classification of binominal lexemes

The types jxt (juxtaposed nouns), cmp (noun-noun compounds), der (derivations consisting of a base and a nominalizing affix) and cls (noun-classifier constructions) are situated on level 0; adj (constructions involving relational adjectives), gen (constructions with an affix on the modifier), prp (constructions involving adpositions) and con (constructions with an affix on the head) are situated on level 1; and dbl (constructions in which both the head and the modifier are marked) are situated on level 2.

The horizontal axis on level 1 represents the degree of fusion. The latter, illustrated in Figure 35, is a continuum that ranges, in Bybee’s (1985: 12) words from “the most highly fused means of expression, lexical expression”, to “the most loosely joined means of expression, syntactic or periphrastic expression”. The “derivational-inflectional-free grammatical” section of Bybee’s scale is replicated in the left-hand (dependent-marking) side of level 1. Degree of fusion is also relevant to the vertical organisation of level 0, since compounds often evolve from juxtaposition, which in turn are the source of classifier constructions and derivations, but it is clearly not relevant to level 2, which only contains a single type.
The typology and semantics of binominal lexemes

Level 1 has been partitioned in order to capture the *locus of marking*. To the left are various forms of dependent-marking (i.e., where some kind of marker attaches to the modifier) and to the right, the one attested form of head-marking. The types gen and con both involve non-transpositional affixes and are therefore situated opposite each other on level 1. (The parallel between these two types is underscored by the fact that the term ‘genitive’ is sometimes applied to possessive markers that attach to the head, cf. the discussion of the Malagasy data on page 97.) Dixon (2010b) has advocated using the term ‘pertensive’ when the morphological marking is on the possessum in order to avoid confusion, but I have chosen to follow Creissels (2017) and I use the term construct form as the basis for the mnemonic con.

Since no binominals have been found representing types that mirror adj and prp, gaps are shown in those positions. These lacunae, labelled (prn) and (nnl), represent the potential existence of two further types, as yet unattested: an analytic form of head-marking (which would correspond to prp), and a type in which the head bears a transpositional affix (which would correspond to adj). These “missing types” are discussed in §5.4.

The use of ovals with gradient fill rather than the boxes with sharp outlines found in more traditional representations (including Koptjevskaja-Tamm’s) is intended to convey the fact that the types are not clearly defined categories but rather points within a multidimensional space at which phenomena tend to cluster. This enables the representation of grammaticalization paths and various “in between” or gradient phenomena, as will be seen in §5.5.

One parameter not shown in the diagram is Croft’s (2003: 40) third grammatical property: the order of elements or, as it is usually called in studies of compounding such as Scalise & Fábregas (2010), the position of the head. Such a parameter is required in order to cater for situations in which a language exhibits both left- and right-headed binominals of one and the same type, such as Mod Head and Head Mod (both jxt) in Vietnamese (41a); and Mod.ADJZ Head and Head Mod.ADJZ (both adj) in Polish (41b).
5.3 Binominal types

The classification of binominals developed in the preceding section consists of nine types (jxt, cmp, der, cls; prp, gen, adj; con; dbl). These are arranged on a grid that captures the degree of marking, the locus of marking and the degree of fusion. An additional parameter, head position, can be represented by adding a second plane (or third dimension). The resulting model reveals two “gaps”, points in the two-dimensional space at which one might expect to find binominals but where none are attested in the data. The latter are discussed below in §5.4 but first, definitions are provided for the nine attested types, along with examples and more detailed discussion. Intermediate types are alluded to where applicable in this section and discussed more fully in §5.5 under the rubric Gradience.

5.3.1 No additional marker: jxt, cmp, der and cls

Level 0 of the model contains four types, jxt, cmp, der and cls, each of which has exactly two components – the two thing-morphs that are the primary constituents of a binominal – and there is no additional grammatical material.

jxt

The prototype of jxt (“juxtaposition”) is comprised of a head and a modifier, both of which are independent lexemes, or thing-roots. There is no additional grammatical material and little or no fusion between the two constituents, which are treated as separate words.

As noted above (page 134), there is no accepted cross-linguistic definition of the notion of word. Nevertheless, every language has such a notion. For the reasons
given above, I follow Croft in making a distinction between juxtaposition and compounding. In the absence of more robust criteria, I adopt Koptjevskaja-Tamm’s policy (cited above) of relying on the local tradition. Given the nature of my data I employ the orthographic heuristic that a word space or hyphen signals juxtaposition (\textit{jxt}), whereas the lack of either signals compounding (\textit{cmp}). We will see in §7.1 that this is in fact sufficiently robust to reveal at least one interesting universal. Examples of the \textit{jxt} strategy (all with the meaning \textsc{railway}) are given in (42):

\begin{itemize}
 \item Vietnamese đường sá[t] [road iron]
 \item Saramaccan talán fútu [train foot]
 \item Western Farsi rāh āhan [way iron]
 \item Cabécar kóbākâ ŋg̃l̃ [train road]
\end{itemize}

The \textit{jxt} type is found in 22\% of the binominals in the database (§5.6.1). It occurs in 76 of the 106 languages and is a significant word-formation type (accounting for at least 10\% of binominals) in 53 of these. It accounts for the majority of binominals in 22 languages and is the only binominal word-formation strategy in Ceq Wong, Datooga, Imbabura Quechua, Seychelles Creole, Vietnamese and Walman.

\textbf{cmp}

The prototype of \textit{cmp} (“compound”)\footnote{Recall that the labels used for types are not intended to be taken literally. They are mnemonics whose purpose is to bring to mind prototypical instances of the type.} is comprised of a head and a modifier, both of which are independent lexemes, or thing-roots. There is no additional grammatical material, but a high level of fusion between the two constituents, such that the binominal constitutes a single word.

The paradigm case of this type is the noun-noun compound, in which two nouns are simply concatenated. The \textit{cmp} type is the most frequent type in the data set of this study, accounting for almost 30\% of all the binominals in the database. It occurs in 67 languages and is a significant word-formation type (accounting for at least 10\% of binominals) in 48 of these (§5.6.1). Furthermore, it accounts for the majority of binominals in 24 languages, and is the only binominal word-formation strategy in Caijia and Tuwari (cf. Figure 41 on page 171). Examples of the \textit{cmp} type (again, all with the meaning \textsc{railway}) are given in (43):

\begin{itemize}
 \item Kildin Sami rūvv’t čuekas [iron road]
 \item Ho-Chunk maqs qaqqgu [metal road]
 \item Yakut timir suol [iron path]
 \item Western Mari kőrtni kornō [iron road]
\end{itemize}
Baa krà.kisà [road.train] Bambara teren.sira [train.road]
Hawaiian ala.hao [path.iron] Hungarian vas.út [iron.road]
Irish iarn.róid [iron.road] Japanese tetsu.dō [iron.road]
Korean chel.kil [iron.road] Mapudungun tren.rüpü [train.way]
Thai thaay.rótfay [way.train] Welsh rheil.ffordd [rail.road]

Less prototypical examples of the cmp type are compounds that contain a linking element; these are discussed on page 163.

der

The prototype of der (“derivation”) comprises a nominal base (thing-root) and a nominalizing affix (thing-affix). Less prototypically, and not attested in the present database, a neoclassical compound may be considered to consist of two thing-affixes and thus belongs to this type (see §6.1.2 on neoclassical compounds). Some typical examples of the der type are listed in (44).1

(44) a. Polish wiatr.ak [wind.NMLZ] WINDMILL
b. Mapudungun kütral.we [fire.LOC] FIREPLACE
c. Malagasy mpam.intana [AGT.fishhook] FISHERMAN
d. Czech kůz.le [goat.DIM] KID
e. French brac.elet [arm.DIM] BRACELET
f. Hausa sàráu.niyáa [king.F] QUEEN
g. Gawwada kaank.itte [horse.SG:F] MARE
h. Gawwada sint.itte [nose.SG:F] NOSTRIL
i. Sidamo lukk.ifʃʃo [hen.SGLT_M] COCK/ROOSTER

Only affixes that contribute some tangible semantic content are considered in scope. The meaning contribution may be very general (THING, 44a) or it may be more specific (INSTRUMENT 44a, LOCATION 44b, AGENT 44c, etc.). Note that the gloss provides only a rough indication of the meaning contribution of the affix and is not claimed to be consistent, for two reasons: firstly, the exact meaning of many derivational affixes is hard to pin down and may exhibit considerable variation; and secondly, some contributors have taken pains to provide specific glosses while others have supplied more general glosses. As a case in point, Nagórko (2016) highlights the instrumental nature of the Polish suffix -ak, whereas it is glossed more generally as NMLZ in the database (44a).

1 The glosses given here and elsewhere are based on those of the original contributors and reflect not only functional diversity but also terminological variety across different traditions of linguistics.
Diminutives are deemed to bear the meaning contribution SMALL THING (cf. the discussion in §4.2.2). They can denote a small version of the entity denoted by the base (44d) or something small that is in some way related to the base entity (44e). Gender-denoting affixes are included only when they mark a clear semantic alternation. In (44f–h) QUEEN alternates with KING, MARE with HORSE and NOSTRIL with NOSE. On the other hand, and to judge by the gloss provided by the contributor, Gawwada xarrap.atte [spider_web.SG:F] SPIDER WEB cannot be regarded as a binominal of any kind since the suffix appears not to derive a new meaning through gender alternation.

In §4.2 the position was advanced that the affix should be regarded as the head of derivational binominals on semantic grounds (see the discussion on page 111 ff). The affix usually has a very general meaning and thus represents a hypernym of the referent. Thus a windmill (44a) is a kind of thing (or instrument), a fireplace is a location (44b), a fisherman is an agent (44c), etc. Furthermore, the affix often takes the place of what would have been the head element in a parallel construction of type cmp. This is again illustrated by (44a): the Polish suffix -ak combines with the word meaning WIND to denote the same concept as the combination of WIND and MILL in the German equivalent, wind.mühle [wind.mill]. If a Windmühle is a Mühle (mill) that is powered by Wind, then a wiatrak must be some THING (or INSTRUMENT) that is powered by wiatr (wind). Similarly, the concept FIREPLACE is often denoted by a combination of forms meaning FIRE and PLACE (as in English, and also in Welsh lle tân [place fire]. In Mapudungun, it is denoted by suffixing the word for FIRE with a locative, which can therefore be regarded as the semantic head of the construction, just as lle ‘place’ is in the Welsh word. The same applies to French bracelet, in which the diminutive suffix denotes a SMALL THING that is located on the bras (arm), cf. Japanese ude.wa [arm.ring].

cls

The prototype of cls (“classifier”) is comprised solely of a nominal base and a noun classifier, where the denotatum of the binominal is different from that of the base, such that the classifier is used to derive a new meaning rather than for classification.

This is the least satisfying of the types in the classification, not least because it is the only type that is not defined solely in terms of structural criteria. Its inclusion in the typology is motivated by the existence of forms such those in (45) and (46) (examples from Urban 2012: 126–127), which clearly qualify as binominals.
Chapter 5. Typological classification

(45) Arabela
 a. *quitia.aca* [breast.teat.CL(liquid)] MILK
 b. *namiji.aca* [eye.CL(liquid)] TEAR

(46) Bora
 a. *íñu.héju* [earth.CL(hole)] CAVE
 b. *túú.heju* [nose.CL(hole)] NOSTRIL

The classifier morphemes in these examples (-aca and -héju) have exactly the same function as the corresponding head constituents of, say, Thai, *náam.taa* [water.eye] TEAR and *ruu.camìuk* [hole.nose] NOSTRIL. However, they cannot be used in isolation, so they are not thing-roots, and thus these binominals do not belong in the cmp type described above. The classifiers also constitute a closed class, which sets them off from the typical nominal constituents of the cmp type. In both respects they are more like thing-affixes, so these binominals could be classified under der. But classifiers differ markedly from affixes in having very precise semantics. This does not, in and of itself, constitute sufficient reason to separate them off from the der type, but the matter does not end there, as we shall see.

Aikhenvald (2000; 2017), citing criteria articulated earlier by Allan (1977), defines classifiers as “morphemes which occur in surface structures under specifiable conditions, denoting some salient semantic characteristics of the entity to which an associated noun refers”. The examples from Arabela and Bora belong to one of seven subtypes, which Aikhenvald calls noun classifiers,\(^1\) characterized by the fact that they “occur with a noun independently of any other constituent of a noun phrase or a clause”. They can be affixes to nouns, as above, but they are also often “independent words with generic semantics”, as in (47).

(47) Minangkabau (Aikhenvald 2000)
 a. *batang limau* [CL(tree) lemon] LEMON-TREE
 b. *buah limau* [CL(fruit) lemon] LEMON-FRUIT

If the Arabela and Bora examples are classified as binominals of type der, then these must be classified as binominals of type jxt, and noun classifiers as a group would then be split across two binominal types. That is not necessarily a problem, but it suggests that a better solution, one that would make it possible to investigate the classifier phenomenon more closely, is to define a separate subtype, cls.

\(^1\) The seven subtypes identified by Aikhenvald are: (i) genders and noun classes, (ii) noun classifiers, (iii) numeral classifiers, (iv) classifiers in possessive constructions, (v) verbal classifiers, (vi) locative classifiers and (vii) deictic classifiers.
However, the matter does not end there either. Examples to parallel those from Minangkabau are also found in Atlantic-Congo languages. In (48) pairs of singular and plural noun class prefixes, m-/mi- and Ø-/ma-, distinguish trees from fruits, in just the same way as the Minangkabau classifiers batang and buah. If the Minangkabau words qualify as binominals, so too should the Swahili forms.

(48) Swahili (Russell 2003)

a. m.limau / mi.limau [CL3.lemon / CL4.lemon] LEMON TREE(S)
b. limau / ma.limau [CL5:lemon / CL6.lemon] LEMON FRUIT(S)

And so should the Bandial examples in (49), where the noun class prefixes serve, among much else, to distinguish between animals and their offspring (cf. the Czech diminutive suffix in 44d, above).

(49) Bandial (Watson 2015)

a. ji.jamen [CL(ji).goat] KID
b. e.jamen [CL(e).goat] GOAT

Such noun class prefixes are not noun classifiers in Aikhenvald’s typology, instead they are classified under subtype (i) ‘genders and noun classes’. One of the major differences between these two subtypes, according to Aikhenvald, is that in noun class languages every noun belongs to a noun class, whereas in noun classifier languages, every noun does not have to take a classifier. Consequently, there would be a very substantial cost to admitting words like (49a, b): almost every word in the Swahili and Bandial sub-vocabularies would qualify as a binominal of type cls and, as a result, the data from noun class languages would swamp those from noun classifier languages and give a distorted overall impression of the cls type. That problem may not be insurmountable provided we remain aware of it, but unfortunately the matter does not end here either. Consider (50).

(50) Gawwada

a. piʔ.atte [kid.SG:F] KID
b. xarrap.atte [spider_web.SG:F] SPIDER WEB

If the Bandial examples are regarded as binominals, why not also the Gawwada? The only real difference between a two- or three-gender system and a noun class system of the Atlantic-Congo type is the size of the system; Aikhenvald groups them under the same subtype. And yet, the Gawwada examples cannot by any means be classified as binominals.

1 In addition, agreement is a necessary feature of noun class/gender systems but not of noun classifier systems. However, this does not impinge on the present discussion.
stretch of the imagination be regarded as the functional equivalents of noun-noun compounds. Moreover, admitting them into the pantheon of binominals would lead to the kinds of construction we are interested in being completely drowned out. Somewhere on this slippery slope a line has to be drawn.

That line could be drawn between Aikhenvald’s two subtypes; this would amount to defining noun classifiers, but not noun class markers, as thing-morphs. (45)–(47) would then be categorized as binominals, while (48)–(50) would not. This would have the unfortunate result that (47) and (48), which really are parallel in every way, would be accorded different treatments. The line could also be drawn by contriving a distinction between noun class languages and gender languages based on the size of the system: say, more than three for noun class languages and two to three for gender languages. The line would then go between (49) and (50). Not only would this be somewhat arbitrary, it would also result in the aforementioned imbalance between noun class languages and noun classifier languages.

The solution adopted here is to draw the line instead between (49a) and (49b). The basis for making such a distinction is that in (49a) the denotatum of the whole (KID) is different from that of the base (GOAT), whereas in (49b) they are the same (GOAT and GOAT). In (49a) the noun classifier contributes a meaning component that changes the denotatum, i.e. its function is derivational. In (49b) this is not the case; nor is it in the two examples from Gawwada (50). This analytical choice results in a much smaller harvest of cls binominals in the data set than the second solution outlined above: only 37 out of the total of 3,738 binominals in the database are of this type, and they are distributed across just six languages: Äiwoo, Bandial, Harakmbut, Murui Huitoto, Swahili and Trinitario with 3, 3, 4, 11, 4 and 12 examples respectively. This is few enough that every one can be presented and discussed here.

(51) Äiwoo

 kio mi.sigiläi [hen BN:GNL.male] COCK/ROOSTER
 dâbu mi.polee [day BN:GNL.seven] SUNDAY
 dâbu mi.eve [day BN:GNL.three] WEDNESDAY

The three general bound nouns in the Äiwoo examples (51) are borderline thing-morphs since two of them denote numbers and the third denotes a concept that is somewhat property-like. However, since they are classed as (bound) nouns, the words containing them are admitted here as binominals, albeit non-prototypical.
The typology and semantics of binominal lexemes

(52) Bandial
 ji.jamen [CL(ji).goat] KID
 ji.piliŋ [CL(ji).horse] FOAL OR COLT
 a.say [CL(a).sorcery] SORCERER OR WITCH

Given the definition arrived at above, only three words in the Bandial vocabulary qualify as binominals and they share a single construction, **CL.Base** (52). The same construction is found in over 30 other words in the data set, but these are excluded on the grounds that the denotatum of the whole is the same as the denotatum of the base. Examples include *e uyat* [CL(e).beehive] BEEHIVE, *sa mbul* [CL(sa).flame] FLAME and *mu fu* [CL(mu).tear] TEAR. In the first two examples in (52) a base that would normally belong in the *e/si-* paradigm,¹ where many animals are to be found, is placed in the *ji/mu-* paradigm which carries the semantics of diminutiveness (Watson 2015). This process parallels that of other word-formation processes in which the meaning GOAT is combined with the meaning DIMINUTIVENESS to denote the meaning KID (53).

(53) der Czech kůz.le [goat.DIM]
 cmp Hawaiian kao keiki [goat child]
 con Hausa yá r àkwiýà [daughter.LK goat]
 prp Tagalog bata ng kambing [child.LK goat]

In the third example of (52), the root denoting SORCERY is transferred to the *a/lu-* paradigm where the majority of nouns denoting humans are formed in order to denote a person who practices sorcery – a SORCERER OR WITCH. In short, what distinguishes the three Bandial words admitted as binominals is that they have been formed through a process of noun class *alternation*. The same can be said of the Swahili examples in (54). For example, in *uchawi* [CL14:witch] MAGIC the root has been transferred from the person noun class 1/2, where *mchawi* denotes WITCH, to noun class 14, which is typically used for abstract concepts, in order to denote the meaning MAGIC.

(54) Swahili
 u.chawi [CL14.witch] MAGIC
 funo [CL9:spear] CHIEFTAIN
 m zabibu [CL3.grape] VINE

¹ According to Watson, the defining function of this paradigm is “to form nouns denoting entities that are bounded and individuated” (p. 275). In addition to animals it contains nouns denoting body parts and artefacts and is the default paradigm for loanwords.
The 11 Murui Huitoto binominals listed in (55) differ from the Swahili binominals in (54) in two respects: firstly, the classifying morphemes are suffixed rather than prefixed, and secondly, their semantics are much more specific. Whereas a typical Bantu language has between 10 and 20 noun classes, Murui Huitoto has more than 100 classifiers, the meanings of which, as the examples show, can be as specific as ‘cover’, ‘hair’, ‘cavity’ and ‘stem’.

(55) Murui Huitoto

- *taizї.ko.ño* [heel.CL(cover).CL(fem)] ANKLE
- *ui.tїrї[eye.CL(hair)] EYELASH
- *jїtїaї.ño* [adolescent.CL(fem)] GIRL
- *jїfїaї.ño* [in_law.CL(fem)] MOTHER-IN-LAW (OF A MAN)
- *enaize.ño* [grandson/nephew.CL(fem)] NIECE
- *defo* [nose:CL(cavity)] NOSTRIL
- *moo.rui* [father.CL(day)] SUNDAY
- *rїño.kї* [woman.CL(stem)] THUMB
- *eї.kї* [foot.CL(stem)] TOE
- *ra.o* [thing.CL(flex)] VINE
- *onoyї.kї* [hand.CL(cluster)] WRIST

Once again, each of the examples in (55) consists of a stem whose denotation is quite distinct from that of the word as a whole, the difference being attributable to the meaning contribution of the classifier. By contrast, the Murui Huitoto words in (56) all denote the same concept as the stem to which they are attached, and are therefore not classified as binominals.

(56) Murui Huitoto

- *eniї.e* [land.CL(gen)] NATIVE COUNTRY
- *fekї.ma* [widower.CL(masc)] WIDOWER

The examples from Harakmbut (57) and Trinitario (58) exhibit similar patterns to those from Murui Huitoto but also greater complexity, sometimes involving additional morphemes over and above those denoting the base concept and the classifier. Due to the paucity of the data, it is not possible here to disentangle the various subtypes of strategy being employed here.
The typology and semantics of binominal lexemes

(57) Harakmbut

aymörö.po [honey.CLF(round)] BEE
sërä.po [honey.CLF(round)] BEE
wa.kmbere.ku.to.pa [NPOS.forehead.CLF(edge?).SPAT(down). CLF(rod)] EYEBROW
wa.kpo.ku.ti.mba [NPOS.eye.CLF(edge?).SPAT(on).CLF(hand)] EYELID

(58) Trinitario

mopo.si [bee_related.CLF(round)] BEE
mopo.ji [bee_related.CLF(shapeless)] BEESWAX
-ugi.mo [eye.CLF(fabric)] EYELID
(es)an(e).ti.m(o)re [field.npos.CLF(fan)] FARMER
ta.pu.gi [3NH.point(?).CLF(trunk)] FLAME
-mut.pewo’u [clothes.CLF(hand)] GLOVE
-je(k).pew’u [interior.CLF(hand)] PALM OF HAND
-mits. gi [?.CLF(trunk)] SPINE
-it(i).ne.re.pi [blood.PSD.NZR?.CLF(snake)] VEIN OR ARTERY
tapaj.ro.gi [door.DER.CLF(trunk)] DOORPOST
-iypé.re.ku [foot.DER.CLF(inside)] FOOTPRINT
-pow.ro.cho [wing.DER.CLF(board)] SHOULDERBLADE

5.3.2 One additional marker: prp, gen, adj and con

Level 1 of the taxonomy contains four types. In three of these (prp, gen and adj) the additional marker forms a constituent with the modifier, and in the fourth (con) it forms a constituent with the head. What they all have in common is that they contain an additional (grammatical) morpheme, over and above the two basic constituents, the head and the modifier, both of which are lexical items.

prp
The prototype for prp (“prepositional”) consists of a head and a modifier, both of them independent lexemes, and another independent lexeme that forms a constituent with the modifier.

In the most common case (59a–e), the additional lexeme is a preposition (hence the choice of mnemonic for this type), but it may also be a postposition (59f) or a particle named according to a language-specific descriptive category, such as a connector (59g), linker (59h), relator (59i), possessive classifier (59j), article (59k) or determiner (59l).
(59) a. French chemin de fer [road of iron] RAILWAY
 b. French moulin à vent [mill to wind] WINDMILL
 d. Lower Sorbian lapka na woku [flap on eye] EYELID
 e. Welsh papur lle chwech [paper for toilet] TOILET PAPER
 f. Hindi dāṃt kā braś [tooth POSTP brush] TOOTHBRUSH
 g. Swahili tundu la pua [hole CON nose] NOSTRIL
 h. Tagalog daa.ng-bakal [road.LK-iron] RAILWAY
 i. Kupsabiny loleet nyēē cēēkāsēnē [bag REL:SG back] BACKPACK
 j. Takia graian sa.n anay [evening POSS.3SG food] SUPPER
 k. Maltese xatt il-bahar [shore DEF-sea] SHORE
 l. Welsh asgwrn y cefn [bone DET back] SPINE
 m. Barain assi ge ŋ kee [bone REL:3SG:M PREP head] SKULL

(59m) is remarkable in that the “additional morpheme” actually consists of two items: a relator (ge) and a preposition (ŋ), both of which are associated with the modifier. Following the convention established earlier, these are counted as a single marker.

While prepositions are fairly common, postpositions are rare and can be problematic, in that they can often be analysed as case affixes rather than adpositions. The Hindi (59f) example is a case in point. It is glossed by the contributor using the abbreviation GEN, but ka is also commonly regarded as a postposition. In this study the Hindi construction has been classified as prp. The issue is discussed in more detail under the rubric Gradience on page 164ff.

The most commonly used adpositions are those whose function includes marking possession, such as the French de (59a) and the Hindi ka (59f), but some languages permit other prepositions to be used as well, as illustrated by the various locatives (59b-d) and the purposive (59e). In other languages, the particle has a more general, associative meaning that is used for a wide variety of relations and not solely for possession. Examples include the Swahili connective -a (59g), the Tagalog linker ng (59h) and the Kupsabiny relational marker nyēē (59i).

gen

The prototype for gen (“genitival”) consists of a head and a modifier, both of them independent lexemes, with an additional, non-transpositional affix or segmental marker attached to the modifier.
The typology and semantics of binominal lexemes

Typically the marking indicates the genitive case (60a–c) or possessive function (60d), but other cases occur as well, including dative (60e), locative (60f), lative (60g) and proprietive (60h). Case-marking may be indicated segmentally, as in (60a) Irish gaoithe [wind:GEN] < gaot [wind:NOM] and (60b) Kildin Sami tōl [fire:GEN] < tōll [fire:NOM].

(60)
 a. Irish muileann gaoithe [mill wind:GEN] WINDMILL
 b. Kildin Sami tōl.nūxxčem’ [fire:GEN tongue] FLAME
 c. Sidamo sano.te giddo [nose:GEN inside] NOSTRIL
 d. Takia graje.n tatu [side.3SG bone] RIB
 e. Gurinji yawarta.wu marru [horse:DAT house] STABLE OR STALL
 f. Manange tonko.ri kʰeta [basement.LOC cattle] STABLE OR STALL
 g. Western Mari šand.eš pumaga [toilet.LAT paper] TOILET PAPER
 h. Yakut saχar.daχ trostnik [sugar:PROP cane] SUGAR CANE
 i. Bezhta kil.o.s hino [iron.OBL.2GEN way] RAILWAY
 j. Tarifit tisi u.fus [bottom STC hand] PALM OF HAND
 k. Kalamang sontum war.ten [person sorcery.REL] SORCERER OR WITCH

The Tarifit example (60j) exemplifies the kind of confusion that can arise if one assumes that descriptive categories are the same across languages. Here the modifier, ‘hand’, normally fus, is in what some Berber linguists call the “construct state” (hence the gloss).¹ This term is used in Semitic linguistics to describe a special form of the head in possessive constructions. Consequently, Berber words glossed with STC belong to the type gen (dependent-marked, relational) whereas Semitic words glossed with STC belong to the type con (head-marked, indexical), cf. (65c) on page 157.

adj

The prototype for adj (“adjectival”) consists of a head and a modifier (both of them independent lexemes), with an additional, transpositional morpheme attached to the modifier.

(61)
 a. Greek petr.ini γefira [stone.ADIZ bridge] STONE BRIDGE
 b. Italian aurora bore.ale [light north.ADIZ] ARCTIC LIGHTS
 c. Lithuanian gelež.in.kelis [iron.ADIZ way] RAILWAY
 d. Lower Sorbian nos.owa žěrka [nose.ADIZ hole] NOSTRIL

¹ Other terms used are annexed state (‘état d’annexion’, Kossmann 2000) and dependent form (‘avhengig form’, Endresen 1990).
Chapter 5. Typological classification

The database contains 197 instances of this type, the great majority from European languages, either Indo-European or Uralic (61). The six Slavic languages (Croatian, Czech, Lower Sorbian, Polish, Russian and Slovak) account for 130 of them alone. The most common descriptive category for the additional morpheme is adjectivizer, but the terms attributivizer and proprietive are also found. Polish and Hungarian are notable for having two distinct constructions of this type. In Polish the same construction can be either head initial (61f) or head-final (61g). In Hungarian there are two different adjectival suffixes: -i (labelled ADJZ) and -s (labelled PROP), both of which can be attached to a wide variety of nouns (Kiefer 2009).

The remaining instances (67 in all) are found scattered across the globe in Africa (62a-b), the Caucasus (62c-g), Asia (62h-i), Papua/New Guinea (62j-k) and Central America (62l). The examples from Archi (62c-d) are borderline binominals since the modifying element in both cases is more adverbial than nominal. They are included in the database in order to exemplify the use of relational adjectives, which can also be derived from nouns (Kibrik 1994).

(62)
 a. Kanuri kámú nyiyá.à [woman marriage.ADIZ] MARRIED WOMAN
 b. Sidamo k’ar.aame k’ale [sharp_blade.ADIZ wheel] PADDLE WHEEL
 c. Archi a’rba.tu:t iq [on_wednesday.ADIZ day] WEDNESDAY
 e. Bezhta k.a.l’a.ko tormoz [hand.OBL.SUP.ATTR brake] HAND BRAKE
 f. Bezhta xidalaƛ.ko čür [snot.ATTR scarf] HANDKERCHIEF OR RAG
 g. Bezhta nucodaq t’ot’ [honey:ADIZ fly] BEE
 h. Ket sol.tu təq.ól [gold.ADIZ finger.covering] GOLD RING
 i. Yakut tualet.nay kuma:yi [toilet.ADIZ paper] TOILET PAPER
 l. Kekchí k’im.al kab’l [straw.ADIZ house] THATCH
con

The prototype for **con** (“construct”) consists of a head and a modifier (both of them independent lexemes), with an additional, non-transpositional affix or segmental marker morpheme attached to the head.

The term construct is traditionally used in Semitic linguistics but is extended by Creissels (2017) to cover any obligatory marking on a noun that fulfills the role of head in noun-modifier constructions, provided that it does not cross-reference features of the modifier that condition its use. Without that proviso (the reasons for which are not stated), Creissel’s term ‘construct’ would cover every instance of the type **con**. Binominals of this type are glossed in a variety of ways (63-65). Labels used in traditions other than Semitic include linker, possessive, genitive and pertensive.1 The latter term, proposed by Dixon (2010b), is restricted to possessive constructions (unlike Creissels’ construct), but does permit cross-referencing.

The type **con** corresponds in practice to Croft’s (2003: 34) indexical strategies, just as **prp** and **gen** correspond to his two types of relational strategy. But while Croft subdivides the latter on the basis of the root/affix distinction, the subdivision of indexical strategies is on the basis of whether they encode the category of person, which Crofts calls **person indexation** and **nonperson indexation** respectively.

Koptjevskaja-Tamm (2003: 645) makes what appears to be a similar distinction, albeit using different terminology, between two subtypes:

1. **relators**, whereby the form of the head signals the presence of the dependent in the same NP, without, however, specifying its features;
2. **indexers**, whereby the form of the head varies according to the properties of the dependent.

However, Koptjevskaja-Tamm’s term ‘indexer’ is broader than Croft’s ‘person indexation’, in that any property of the dependent can cause the marker to vary, whereas Croft’s term only admits of the category of person doing so. There is evidence of both types of distinction in the database of binominals. For example, the form of the marker used in Barain varies between -ji and -(g)eti depending on the gender of the dependent (63a-b), as does that of the Hausa linker -rl-n (63c-d). These would thus be ‘indexers’ but not cases of ‘person indexation’.

1 In addition, Haspelmath (2009) proposes the term “anti-genitive”.
 b. Barain nokuno non.ji [goat child.POSS:3SG:M] KID
 c. Hausa kàfá.r háncìi [orifice.LK nose] NOSTRIL
 d. Hausa dóokì.n kárfèe [horse.LK metal] BICYCLE

On the other hand, the glossing of (64a-d), all of which make reference to the third person, suggests that these are both indexers and cases of person indexation.

(64) a. Kalamang kanggir pul.un [eye skin.3POSS] EYELID
 b. Kekchí x.na’aj xam [3ERG.place fire] FIREPLACE
 c. Takia su mala.n [breast eye.3SG] NIPPLE OR TEAT
 d. Yakut χaraχ uː.ta [eye water.3SG] TEAR

Finally, the invariant possessive affixes in Kupsabiny (65a), Malagasy (65b) and Hebrew (65c), would be ‘relators’ and examples of ‘nonperson indexation’.

(65) a. Kupsabiny kariit.aap maata [car.POSS fire] TRAIN
 b. Malagasy lala.m.by [road.PER.iron] RAILWAY
 c. Hebrew mesila.t barzel [track.CON iron] RAILWAY
 d. Galibi Carib manati poti.li [breast tip.POSS] NIPPLE OR TEAT
 e. Galibi Carib upupo kuwai.y [head calabash.POSS] SKULL

So too would the Galibi Carib possessive suffix -li and its allomorph -yi (65d-e), whose distributions are phonological and thus not conditioned by features of the head.

5.3.3 Two additional markers: dbl

Level 2 of the model comprises a single type, dbl, which consists of a head and a modifier (both of them independent lexemes), with additional morphemes attached to both.

 b. Takia patu.n kdaob.an [egg.3SG yellow.3SG] YOLK
 c. Seri i.to i.naail [3:POSS.eye 3:POSS.skin] EYELID
 d. Oroqen dalay.ŋi ŋ :kə:n [seaGEN bank.3SG:POSS] SHORE
 e. Central Yupik imarpi.im ceŋ.ii [sea.REL shore.POSS:ABS] SHORE
 f. Somali bam.ka biyo.ha [pump.DEF water.DEF] WATER PUMP
 g. Maltese l-isfar tal-bajda [DEF-yellow of:DEF-egg] YOLK
 h. Akkadian bît habûb.āti [house:STC bees.OBL] BEEHIVE
The examples demonstrate considerable variation in terms of the kinds of markers (case, definiteness, possession, construct, etc.) and the ways in which they are combined. Sometimes it is the same affix that attaches to both major constituents (66a-c). In some languages the markers appear to cross-reference each other (66b-c), in others the affix on the head cross-references the modifier (66d-e). Somali exhibits two definiteness markers (66f) and Maltese a combination of definite marker and definite preposition (66g). Finally, Akkadian (66h) exhibits an older form of the Semitic construct state with the modifier in the oblique case.

The variety encountered here suggests that a more fine-grained classification might be possible. However, the database contains only 71 instances of dbl, spread over 14 languages, which is deemed too few for this to be feasible on the basis of the present data. With more data these could be analysed in terms of Croft’s distinction between relators, indexes and linkers.

5.4 Unattested strategies

The nine types of binominal discussed in the preceding section were situated on a two-dimensional grid in Figure 34 (page 141). It will be recalled that the three levels on the vertical axis represent the number of components: level 0 contains four types (jxt, cmp, der and cls); level 1, four types (prp, gen, adj and con); and level 2, one type (dbl). There is no significance to the horizontal positioning on levels 0 and 2 other than aesthetic, but the positioning on level 1 does have import. Firstly, level 1 is divided into two sections, with dependent-marking strategies to the left and head-marking strategies to the right. The three dependent-marking strategies (prp, gen and adj) are situated from right to left, in that order, such as to reflect Bybee’s (1985) scale based on degree of fusion: prp approximates to Bybee’s ‘free grammatical’ stage, gen to her ‘inflectional’ stage, and adj to her ‘derivational’ stage (see Figure 35 on page 142). The single head-marking strategy (con) is situated in the middle of the right-hand section, not for aesthetic reasons, but in order to highlight its symmetrical relation to gen: whereas gen is a non-transpositional affixing strategy with the marking on the dependent, con is a non-transpositional affixing strategy with the marking on the head. Once the nine types are laid out in

1 Note, once again, that the definitions of adj and gen are not based on the notions of derivation and inflection, but rather on the distinction between transpositional and non-transpositional affixation. However, the two dichotomies do tend to correlate with one another: Inflection is often (but not always) non-transpositional, while derivation is often (but not always) transpositional, especially in the context of binominals.
this manner, two apparent gaps are revealed, labelled (prn) and (nml) in Figure 34. These are the head-marking correlates of **prp** and **adj**, respectively. In this section I discuss possible explanations for these lacunae.

5.4.1 Head-marking correlate of prp (prn)

The first missing type is the head-marking correlate of **prp**, which I have labelled **prn** for reasons that will become apparent. If such a type exists, it must consist of a head, a modifier and another independent lexeme that forms a co-constituent with the head, e.g. **Mod**{**X** **Head**}. So what kind of item might be a candidate for the role of X? One way to approach this question is to look for a relation **prn** ↔ **con** that is isomorphic with the relation **prp** ↔ **gen**. It is well-established that adpositions (prp) are a common source of case markers (gen): “Diachronically, case affixes arise from adpositions that become affixed to the noun” (Croft 1990: 34). The missing type **prn** could thus be whatever is the source of **con**.

According to Croft, such “bound indexation markers” develop out of pronouns (in the case of person indexation) and articles (in the case of nonperson indexation). An example of the former is the Hausa suffix -n (singular masculine or plural) or -r (singular feminine), which attaches to the head in possessive constructions (67a, c). This suffix also occurs in the **Head.LK Mod** construction responsible for 40 of the 43 Hausa binominals in the database used in the present study (cf. example 63c on page 157). According to Creissels (2009) this suffix results from the cliticization of a pronoun *nalta* that is co-referent with the head noun in the synonymous construction illustrated by (67b, d).

(67) Hausa (cf. kàree ‘dog’, saaniyyaa ‘cow’)
 a. kàrê.n Daudà [dog.CSTR.SG.M Dauda] ‘Dauda’s dog’
 b. kàree na Daudà [dog that one (SG.M) of Dauda] ‘Dauda’s dog’
 c. saaniya.r Daudà [cow.CSTR.SG.F Dauda] ‘Dauda’s cow’
 d. saaniyyaa ta Daudà [cow that one (SG.F) of Dauda] ‘Dauda’s cow’

In other words, the source of **Head.LK Mod** (pace Creissels) is **Head PRON Mod**. The latter construction would be considered an instance of the missing type **prn** if the pronoun forms a constituent with the head (**(Head PRON) Mod**), but that is not the case. Instead, the pronoun forms a constituent with the modifier (**Head (PRON Mod)**), which means that (67b) and (67d) – if they were binominals (which they are not, because they do not have a naming function) – would be instances of **prp**, not **prn**. This is

1 Newman (2000: 300) calls na / ta a (free) (genitive) linker. It can combine with personal pronouns, but is not itself a pronoun, according to him.
an example of reanalysis, in which an element preposed to the modifier in a head-initial construction is reinterpreted as a postposed marker on the head (68a). The converse of this process, whereby an element preposed to the head in a head-final construction is reinterpreted as a postposed marker on the modifier, is the case of Germanic constructions involving linking pronouns, discussed by Koptjevskaja-Tamm (2003: 670–676) and exemplified by Norwegian (68b).

(68)
 a. Hausa kàree {na Daudà} ➔ {kàre.n} Daudà ‘Dauda’s dog’
 b. Norwegian Per {sitt hus} ➔ {Per sitt} hus [Per his house] ‘Per’s house’

Given the strong preference for suffixing rather than prefixing cross-linguistically (Dryer 2013a), these processes can be expected to occur fairly regularly when the marker occupies medial position, but it is not inevitable. Koptjevskaja-Tamm (2003: 671) cites Givón’s (1979: 90–91) example from the English-based creole Krio,¹ in which “the fully grammaticalized head-marked PNP Jón hin-ós ‘John his-house’ has developed from John, his house” (p. 671).

From the preceding discussion it is clear that constituency must be taken into consideration when looking for examples of the missing type prn. There are six logical possibilities (69). The component X might be a pronoun or an article, but it must form a constituent with the head. This means that constructions (69c) and (69d) are highly unlikely: they could only occur in a non-configurational language.

(69)
 a. {X Head} Mod b. {Head X} Mod c. Head {Mod} X
 d. X {Mod} Head e. Mod {X Head} f. Mod {Head X}

Perhaps the most likely candidate is (69e), represented with a form that might be glossed as, say, [nose 3SG hole]. Were this type of binominal to be found, it would correspond to Koptjevskaja-Tamm’s “linking pronoun”, the one type in her PNP classification (see Figure 32 on page 130) that I did not found among the binominal data. While the linking pronoun type of PNP is rare in European languages, its status across the world’s language is unclear and it seems eminently possible that the binominal type prn could exist somewhere. Finding it, however, must remain a topic for further research.

5.4.2 Head-marking correlate of adj (nml)

The second missing type is the head-marking correlate of adj, labelled nml. If such a type exists, it must consist of a head, a modifier and a transpositional (word class

¹ Givón does not identify the language. It may be the West-African Krio (KRI).
changing) morpheme attached to the head, just as adj consists of a head, a modifier and a transpositional morpheme attached to the modifier, cf. the Russian example želez.naja doroga [iron.ADJZ road] RAILWAY. There are two logical possibilities: either the additional morpheme is a nominalizer, as in Mod Head.NMLZ, in which case the “head” element would not be a thing-root; or it derives some other word class, as in Mod Head.ADJZ, in which case the resulting construction would not denote an entity.¹ In neither case would the form in question be regarded as a binominal. In other words, nml as a type of binominal is a logical impossibility, at least as long as one thinks in terms of major word classes;² it is not found in the data for a good reason.

5.5 Gradience

The two-dimensional representation of the typology of binominal lexemes was developed in order to account for gradient phenomena. This section discusses instances of constructions that fall in between the nine major types. It is based primarily on the data collected but includes some examples from other sources. Each subsection refers to one of the numbered items in Figure 36.

Figure 36: Formal classification showing gradient phenomena

0 Univerbation cmp ➔ simplex

Univerbation is the term given to the historical process by which an (analysable) item consisting of two or more morphemes develops into an (unanalysable) item

¹ The word eisenbahnisch has actually been recorded
² Marie-Elaine Van Egmond (p.c.) has suggested a candidate for the nml type in Anindilyakwa, but it appears to involve a change of noun class rather than a change of word class.
consisting of a single morpheme. Examples of such simplex forms would belong below level 0 in Figure 36, but since by definition they would not be binominals, such a level is not required for the classification. However, since univerbation is a gradual process, it is only to be expected that there will be partially analysable items that are intermediate between the types on level 0 (der, jxt, cmp, cls) and that lower level. Strictly speaking, no such items should be present in the database of this study, since in order to qualify as analysable in WOLD, words had to be so for lay speakers (Haspelmath and Tadmor 2009: 12) and the same criterion was applied for data collected specifically for this project. Inevitably, however, some intermediate forms did make their way in and were retained on the grounds that it would not be possible to remove them all. A prime example is (70a), which was originally a compound but which is no longer identifiable as such, despite the first constituent still being recognisable as ‘nose’. In (70b), on the other hand, the process of univerbation has reached its end-point: What started out as a prototypical binominal of type cmp is today completely opaque to lay speakers.

(70)
 a. Eng. nostril < nose + thirl ('hole')
 b. Ger. messer ‘knife’ < Proto-Ger. *matiz ‘food’ + *sahsq ‘knife, dagger’

2. Affixoids cmp ➔ der

The difference between cmp and der is that the former consists of two thing-roots whereas the latter consists of a thing-root and a thing-affix. But the distinction between root and affix is not clear-cut; the two exist as end-points on a continuum that can be defined in terms of autonomy versus dependence (Tuggy 1992). Between these two end-points one finds phenomena, called affixoids, that are neither fully autonomous nor fully dependent. Booij (2010) gives a number of examples from Dutch in which a noun acquires a specialized meaning when used as the head of a compound (71).

(71)
 baron ‘baron’ > rich dealer: afval-baron [trash-baron] ‘rich dealer in trash’
 boer ‘farmer’ > seller: sigaren-boer [cigar-farmer] ‘cigar seller’
 man ‘man’ > seller: bladen-man [magazine-man] ‘magazine seller’
 marathon ‘marathon’ > long-session: jazz-marathon ‘jazz marathon’

In the absence of more detailed information from the contributors it is not clear how often this kind of phenomenon occurs in the database, but one fairly clear example is Eng. herd.s.man [herd.POSS.man], in which phonological reduction of the second element -man from /mæn/ to /mən/ indicates a status intermediate between root and affix, even though it may not have “broken away from MAN, becoming a lexical formative on its own” (Matthews 1991: 94).
Bound nouns $cmp \rightarrow cls$

As was pointed out in §5.3.1, the type cls (“classifier”) is the least well-defined and the most poorly represented in the database. If terminology is anything to go by, it consists of a number of somewhat disparate phenomena, as witnessed by the “six way for nouns to meet nouns” in Áiwoo (Næss 2017). One of the types found in this language is called a “bound noun” (see 51a on page 149), a term suggestive of something intermediate between a noun and a classifier, which would in turn give rise to binominals mid-way between cmp and cls. The same term is used by Van linden (2016) in describing Harakmbut, a language in which common nouns “divide into two morphologically defined classes: potentially free vs. obligatorily bound nouns.” An example of the latter is the bound root -mba in (72). Again, this suggests the possibility of an intermediate type, but further research is required.

(72)
Harakmbut $tare’.mba’$ [manioc.hand] MANIOC LEAF

Linking elements $gen \rightarrow cmp$

In many languages noun-noun compounds involve linking elements. Almost all the examples in the database are from Indo-European languages (73a-d), the only exceptions being from Korean (73e) and occurring in what Yeon & Brown (2011) describe as “compounds in which the two elements are linked together by the addition of the so-called ‘genitive s’ (p. 31). The latter, which causes tensing (or reinforcement) on the following plain consonant, is best regarded as a linking element in the modern language. Further afield, Bauer (2001) cites an example from Cambodian (73f) and mentions Yoruba as having a “purely phonological” linking element that involves prolongation of the final vowel, and W. Bauer (1993) mentions a type of compounding involving a linking element -aa- “which is being increasingly used at present” in Maori (73g).

Many elements of this kind have their origin in case and/or number suffixes that have become semantically bleached and now often conflict with the grammar. For example, in the German $regierung.s.chef$ [government.i.e.head] ‘head of government’ the linking element -s-, a reflex of the masculine genitive, is here attached to a feminine noun. The Greek linking element -o- (73b) originates in an ancient thematic vowel but today functions solely as a compounding marker (Ralli 2013). Binominals such as these can be said to occupy the space between the types cmp and gen but are arguably closer to the former than the latter. Other linking elements, like those in Yoruba and Cambodian, may only ever have had a phonological role. Binominals with linking elements thus present a challenge when coding the data:
The typology and semantics of binominal lexemes
classifying them consistently as either cmp or gen could obscure important
distinctions in Germanic and Greek respectively. A solution would be to adopt Croft’s
notion of linkers, but this alternative was rejected for the reasons given in §5.1.2.
A decision was therefore taken to classify them in such a way as to bring out any
contrasts that might be relevant in each individual language. Thus, for example,
binominals with linking elements are coded as gen in Germanic (to contrast with the
cmp strategy otherwise found in those languages) and as cmp in Greek (to
contrast with the “true” gen strategy).

(73) a. German nase.n.loch [nose.LE.hole] NOSTRIL
b. Greek siòir.o.ðromos [iron.LE.road] RAILWAY
c. Lithuanian vor.a.tinklis [spider.LE.web] SPIDER WEB
d. Russian golen.o.stop [shank.LE.foot] ANKLE
e. Korean kho.s.kwumeng [nose.GEN.hole] NOSTRIL
f. Cambodian yian.ǝ.thaan [vehicle.LK.place] GARAGE
g. Maori waiata-aa-rianga [song.LK.hand] ACTION SONG

Adpositions or case affixes? prp ➔ gen
As noted above (§5.4.1), case affixes arise from adpositions that become affixed
to the noun. As a result, the status of some binominals as either prp or gen can be
hard to determine. A classic example is the Japanese no construction which some
linguists analyse as a genitive suffix (74a) and others as a postposition (74b). The
orthography offers no clue since the particle no is written in Hiragana (の) while
the other words are written in Kanji (蜘蛛の巣). In order to facilitate comparison
with Korean, in which the equivalent possessive particle 의 (-uy) is always written
as a suffix, a decision was taken to classify the Japanese forms as gen rather than
prp. In the event, however, none of the Korean binominals used this construction.

(74) Japanese
 a. kumo.no.su [spider.GEN.web] SPIDER WEB
 b. kumo no su [spider POSTP web] SPIDER WEB
 Maltese
c. mithna tar-rih [mill OF:DEF-wind] WINDMILL

The orthography used in Maltese, on the other hand (74c), suggests that the combina-
tion of the preposition ta’ and the definite article il-, which occurs commonly in
binominals, is neither a separate word nor a prefix, but rather a clitic. This, again,
lies somewhere between prp and gen.
Sometimes grammatical descriptions analyse equivalent constructions in closely related languages in rather different ways. This applies to possessive constructions in Hindi and Nepali. Whereas in Hindi (75a) the possessive morpheme is written, transliterated and referred to as a postposition, in Nepali (75b) it is treated as a suffix. In the present work, these differences are reflected in the assignment of the binominals in question to different types (prp and gen, respectively), which results in different ‘binominal fingerprints’ (cf. §5.6.3). This underscores the importance of the gradient approach to classification adopted in §5.2.

(75)
a. Hindi
मकड़ी का जाला *makṛī kā jālā* [spider POSTP web] SPIDER WEB
b. Nepali
माकुरा को जालो *mākurā. ko jālo* [spider.GEN web] SPIDER WEB

Inflection or derivation? gen ~ adj

It was noted above (footnote 1 on page 158) that the definitions of gen and adj do not make reference to the notions of inflection and derivation, but rather to the distinction between transpositional (word-class changing) and non-transpositional affixation. The reason for this is that the traditional distinction between inflection and derivation found in the morphological literature, whereby derivational affixes change the word-class of their base, while inflectional affixes do not, has been shown by to be wrong. Haspelmath (1996) uses the example of Slavic possessive adjectives to show that the difference between inflection and derivation is one of degree, with Upper Sorbian being at the inflectional end of the scale and Russian more towards the derivational end. Defining gen and adj in terms of inflection and derivation would thus result in intermediate forms. Defining them in terms of transposition, on the other hand, results in a more clear-cut distinction.

Head replacement adj ➔ der

The type adj belongs to level 1 in the classification whereas der belongs on level 0; the former has three components whereas the latter has just two. An intermediate between these two is represented by the Slovak word železnica (76a). The structure of this word parallels that of the Russian železnaja doroga (76b) precisely, except for the use of the nominalizing suffix -ica instead of a lexical head.

(76)
a. Slovak želez.n.ica [iron.ADJZ.NMLZ] RAILWAY
b. Russian želez.naja doroga [iron.ADJZ road] RAILWAY

Thus, in one sense the word belongs on level 3 under adj. On the other hand, as a derived word it has more in common with other derivations and, indeed, Slovak
linguists recognize an alternative synchronic analysis, železnica [iron.NMLZ], an undoubted instance of the der type:

There are two possible starting points for the analysis of the word železnica:
1. It is derived from železo (iron) and can be paraphrased as follows: “the object which is related to iron” (which moves on iron)
2. It is derived from železný (iron ADJ) as univerbization from železná dráha (“railway”) (Martina Ivanova, p.c. via Lívia Körtvélyessy).

This form can thus be seen as intermediate between adj and der and represents a type that occurs rather often in certain Slavic languages, in which the head element of an adjectival binominal is replaced by a more general nominalizing suffix.

Morpheme loss dbl ➔ con

The final example of intermediate (gradient) phenomena is that of morpheme loss. Citing data from Hungarian, Kirmandji, Arbore and Maltese, Koptjevskaja-Tamm (2003) shows that “the step between double-marking and head-marking [in PNPs] is not necessarily big”:

Head-marked PNPs in Maltese, similarly to head-marked PNPs in Kirmandji, have developed from earlier double-marked PNPs, partly due to the breakdown of the case system of modern Arabic dialects compared to Classical Arabic, in which the possessor regularly appeared in the genitive case (p. 647).

The same appears to be the case with binominals, and not just between dbl and con (the example shown in Figure 36), but also between dbl and gen, between prp and gen, and between gen and con on the one hand and cmp on the other. Or more generally, between any strategy involving n additional morphemes and one including n-1 morphemes. One particularly striking example is Welsh, in which the dominant type at an earlier stage of the language was gen (as it still is in Irish), but following the loss of case marking is today jxt and cmp. Elsewhere in the database there are indications that this process is at work in Galibi Carib, Tarifit and Swahili.

In the case of Galibi Carib (77a-c) are dbl, gen and con, respectively. The double-marked pattern (a) may represent an earlier construction from which the others have developed.

(77) Galibi Carib
 a. emo.li sakila.li [nose.POSS aperture.poss] NOSTRIL
 b. pana.li weti [ear.POSS dirtiness] EARWAX
 c. manati poti.li [breast tip.POSS] NIPPLE OR TEAT
(78) is one of three words in which the preposition \(n \) is given as optional. With the preposition the construction is considered an instance of prp; without it, it is an instance of gen; but both are dependent-marked since the modifier is in the (Berber) construct state (cf. page 154).

(78) Tarifit \(tisi \ (n) \ ufus \) [bottom (of) hand:STC] PALM OF HAND

There is also an example in Swahili (79) of a construction in which the associative marker is given as optional. Since it is the only occurrence, it is classified as prp along with other words that exhibit this marker, but it may also indicate gradience.

(79) Swahili \(gari \ (la) \ moshi \) [car (CON) smoke] TRAIN

5.6 Data analytics

In §4.4 the binominal data were described in terms of very basic properties, viz. vocabulary size, analysability and frequency, by language and by meaning. In this section the data are presented in terms of the morphosyntactic strategy they exhibit, in other words, binominal type. In the next section I describe the distribution of binominals by type, raise the issue of compounding as a universal, and introduce the notion of binominal preference. I then discuss intralingual competition (§5.6.2) before returning to the universality of compounding (§5.6.3). Finally, in §5.6.4, I discuss “binominal fingerprints” in the context of genetic and areal patterning.

5.6.1 Distribution of binominals by type

Overall frequencies

Figure 37 shows the number of binominals by type, which gives the following overall ranking:

(80) Overall ranking: \(\text{cmp} >> \text{jxt} >> \text{gen} > \text{der} > \text{con} > \text{prp} > \text{adj} > \text{dbl} > \text{cls} \)

The relative frequency of the cmpt and jxt types (1,922 out of 3,738, or 51.4%) is striking and confirms the widely-held belief that compounding (defined here as the use of either the jxt or cmpt strategy) is the most common method of word formation in the world’s languages.
Lest it be thought that this overwhelming bias in favour of compounding is due to areal bias in the language sample (cf. §3.2.3), Figure 38 provides a breakdown by geographical area in terms of percentages. It shows that the areas that are most widely represented in the sample (Africa and Eurasia, with 24 and 37 languages, respectively) actually have lower than average proportions of the jxt and cmp types combined (25.9% and 44.1% respectively); this suggests that Figure 37, if anything, underestimates the predominance of these types across the world. But is compounding a universal, as many have suggested? I return to that question in §5.6.3, following a discussion of intralingual competition.
Further insights to be gleaned from the two figures include the fact that \textit{gen}, the next most common strategy after \textit{jxt} and \textit{cmp}, is especially frequent in Africa and Eurasia, and almost unknown in Oceania/SE Asia. The \textit{prp} type is found mainly in Africa and Eurasia, but also in Oceania/SE Asia, whereas the \textit{adj} type is mostly limited to Eurasia. The \textit{der} strategy is found everywhere (but particularly in Eurasia and North America), as is the \textit{con} strategy (except among pidgins and creoles). Finally, \textit{dbl} and \textit{cls} occur too infrequently in the data for any reliable conclusions to be drawn.

\textbf{Language preferences}

Almost every language in the sample shows a preference for one or another type of binominal: 37 of the 47 binominals in Amharic are of type \textit{gen}, 15 out of 22 in Iraqw are \textit{con}, 26 of 43 in Lower Sorbian are \textit{adj}, etc. Sometimes the preference is very marked; for example, all 51 binominals in Vietnamese are \textit{jxt}. Sometimes it is less so: of the 47 binominals in Baa, 26 are \textit{cmp} and 20 are \textit{gen}. Applying Dryer’s (2013) relative frequency criterion for dominance, whereby a dominant form should be at least twice as frequent as any other, 70 out of the 106 languages in the sample can be said to have a dominant binominal type. In a few languages there is no one type that occurs more frequently than the others: five of the 14 Āiwoo binominals are \textit{jxt} and five are \textit{prp}, Galibi Carib has six each of \textit{con} and \textit{jxt} out of a total of 20, and of Selice Romani’s eight, four are \textit{gen} and four are \textit{der}; such languages are described as ‘mixed’.

Table 26 shows preferences for each language, and Figure 39 summarizes the data in the form of a bar chart, in order to enable comparison with the overall distribution of binominal types shown in Figure 37 (see page 168).

While the shape of the two diagrams is fairly similar, we observe that the rankings differ in one crucial respect: the overall ranking of \textit{der} is higher than its ranking in terms of preference:

(81) Overall ranking: \textit{cmp} >> \textit{jxt} >> \textit{gen} \textit{[der]} \textit{[con]} \textit{prp} \textit{adj} \textit{dbl} \textit{cls}

Preference ranking: \textit{cmp} >> \textit{jxt} >> \textit{gen} \textit{con} \textit{prp} \textit{[der]} \textit{dbl} \textit{adj} \textit{cls}

This indicates that while derivational word-formation is rather widespread, it is seldom the principal word-formation strategy, at least in the language sample of this study: it is the preferred type in seven of the 106 languages (cf. Table 26) and the dominant type in just two: Central Yupik and Puyuma.
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>type</th>
<th>count</th>
<th>languages (n=106)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmp</td>
<td>28</td>
<td>Baa, Bambara, Basque, Caijia, Chakali, Dutch, English, Finnish, German, Harakmbut, Hindi, Hungarian, Japanese, Kam, Ket, Korean, Malagasy, Malayalam, Mamara Senoufo, Mandarin Chinese, Navajo, Norwegian, Old High German, Querétaro Otomi, Saramaccan, Thai, Ticuna, Tuwari</td>
</tr>
<tr>
<td>jxt</td>
<td>26</td>
<td>Bandial, Cabécar, Ceq Wong, Datooga, Gurindji, Hawaiian, Hmong Daw, Ho-Chunk, Hupđe, Imbabura Quechua, Indonesian, Kalamang, Kildin Sami, Manange, Mapudungun, Mbyá Guarani, Seychelles Creole, Srengge, Vietnamese, Walman, Warta Thundai, Welsh, Western Mari, Wichi, Wik-Mungkan, Yaqui</td>
</tr>
<tr>
<td>gen</td>
<td>15</td>
<td>Amharic, Archi, Assamese, Bezhta, Estonian, Gawwada, Greek, Irish, Kambaata, Kanuri, Latvian, Nepali, Sidamo, Wawa, Zinacantán Tzotzil</td>
</tr>
<tr>
<td>con</td>
<td>10</td>
<td>Anindilyakwa, Hausa, Hebrew, Iraqw, Kekchi, Kupsabiny, Turkish, Western Farsi, Wolof, Yakut</td>
</tr>
<tr>
<td>prp</td>
<td>8</td>
<td>Barain, French, Italian, Maltese, Romanian, Swahili, Tagalog, Tarifit</td>
</tr>
<tr>
<td>der</td>
<td>7</td>
<td>Central Yupik, Croatian, Lithuanian, Oroqen, Polish, Puyuma, Slovak</td>
</tr>
<tr>
<td>dbl</td>
<td>4</td>
<td>Akkadian, Seri, Somali, Takia</td>
</tr>
<tr>
<td>adj</td>
<td>3</td>
<td>Czech, Lower Sorbian, Russian</td>
</tr>
<tr>
<td>cls</td>
<td>2</td>
<td>Murui Huitoto, Trinitario</td>
</tr>
<tr>
<td>mixed</td>
<td>3</td>
<td>Äiwoo, Galibi Carib, Selice Romani</td>
</tr>
</tbody>
</table>

Table 26: Preferred binominal types by language

Figure 39: Preferred binominal types by number of languages

The geographical distribution of preferred binominal types is shown in Figure 40.
5.6.2 Intralingual competition

One striking difference between the sampled languages is the number of binominal strategies employed. Some, like Caijia use only one while others use as many as six different strategies. This is illustrated in Figure 41, which gives the number and ISO codes of every language grouped by the number of strategies it exhibits, based on the nine-way classification which does not take constituent order into account. As a result, facts about languages such as Vietnamese and Polish, which exhibit mixed order within one and the same type (cf. page 259), are not captured. Thus, Polish (POL) exhibits five different binominal types (cmp, prp, gen, adj, and der), of which two (cmp and adj) can occur as either left-headed or right-headed.
As the figure shows, there are nine languages in the sample that only employ a single morphosyntactic strategy: Akkadian, Caijia, Ceq Wong, Datooga, Imbabura Quechua, Seychelles Creole, Tuwari, Vietnamese and Walman. When a language only exhibits a single type, it is almost invariably either \textit{jxt} or \textit{cmp} (in other words, one of the two compounding strategies); the only exception in the present data is Akkadian, which only exhibits the \textit{dbl} type. This underlines the flexibility of compounding cross-linguistically. However, as the figure shows, users of most languages have at least three different strategies to choose between when forming a new binominal. Understanding the various factors that mediate between competing strategies in such cases may prove to be a fruitful area of further research.

As a first step, we can investigate the correlations between different binominal types using the R function \texttt{cor}, and plot the result using a function from the library \texttt{corrplot} (Figure 42). Positive and negative correlations are denoted by colour (blue and red, respectively), and the strength of the correlation by both the size of the circle in the upper right triangular field and the value in the lower left field. An explanation for the relatively strong positive correlation between \textit{der} and \textit{adj} (with a value of 0.46) awaits further investigation. The strongest negative correlations suggest that \textit{cmp} tends to be incompatible with \textit{dbl} (and to some extent \textit{con}), \textit{gen} with \textit{con}, and \textit{jxt} with both \textit{der} and \textit{gen}. However, none of these correlations are particularly strong and they will therefore not be pursued here.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{correlations.png}
\caption{Correlations between binominal types}
\end{figure}

\subsection{Compounding as a universal}

Having introduced the notion of intralingual competition and noted that the overwhelming majority of languages have multiple strategies to choose between when
forming binominals, we can now consider the question of compounding as a universal from a new and more profitable perspective. Before doing so, however, we should reiterate the point made earlier about the paucity of cross-linguistic studies of compounding: Greenberg does not mention the topic and it is completely absent from the Konstanz Universals Archive. Bauer (2001), in what is still the only study of compounding based on a genealogically and areally balanced sample, states that “it is not clear to what extent compounding can be regarded as a universal”.

Despite this, the literature abounds with statements such as “compounding might be considered to be the universally fundamental word formation process” (Libben 2006), “compounding is a common word formation process in all languages” (Gagné & Spalding 2006) and “compounds are present in all languages of the world (as far as described in grammars)” (Dressler 2006).

There are a number of problems with this mainstream view. The first, as Bauer (2017) points out, is that “there is no overall agreement on such basic issues as the definition of a compound.” Definitions vary from one language to another; the term is (at best) a language-specific descriptive category based on formal criteria and is thus not suitable for cross-linguistic comparison. Secondly, even within a single language, different types of compound exhibit very different properties: English Determinative Compounds involve an unstated semantic relation that allows for relatively free interpretation, whereas Synthetic Compounds contain an actional element that invokes the argument structure of the verb and puts great constraints on the interpretation; Mandarin Nominal Compounds are right-headed whereas Verbal Compounds are left-headed; etc. As a result, the very notion of compound invites us to compare apples and oranges. Thirdly, there is the question of what counts as evidence for the claim that a particular language “has” compounds: are the “few sporadic forms that can be considered compounds” in West Greenlandic (Sadock 2003) sufficient to justify an affirmative answer? Finally, one might ask whether the question of compounding as a universal is even particularly interesting. If the answer is yes, so what? And if no, again, so what?

A more profitable approach may be to start with a comparative concept rather than a descriptive category; to limit the question to a single type or function; and to frame it in terms of tendencies and degrees of preference rather than absolutes. The comparative concept chosen for the present study – binominal lexemes – does not allow us to address the question of compounds in general, since it restricts the field of enquiry to noun-noun compounds and their functional equivalents, or more precisely, lexical items formed through the information packaging function of object
modification (Croft forthc.). However, since noun-noun compounds are generally believed to be the most widespread form of compounding (cf. Figure 7 on page 40), they constitute the best available proxy for compounding in general. The fact that the comparative concept of binominal lexeme covers multiple – and sometimes competing – strategies, in addition to compounding, then allows us to approach the matter in terms of preferences for one strategy over and above another. Thus, instead of asking ‘is compounding a universal’, I will reframe the question as:

- To what extent are simple strategies the preferred way to combine two thing-roots to create a new lexical item?

The use of the term ‘thing-root’ restricts the strategies to jxt and cmp, and excludes der and cls, the other two strategies that do not involve an additional morpheme.

Ideally, the notion of extent should be defined not only in terms of frequency but also degree of productivity. Productivity cannot be addressed on the basis of the present data, but frequency can.

For the purpose of this discussion I define ‘attested’ to mean that there is at least one example of the type in the data, ‘common’ to mean that at least 10% of the binominals are of the given type, and ‘dominant’ to mean that 50% or more of the binominals are of this type. Figure 43 shows how widespread the various strategies are across the languages in the database. The green column shows the number of languages in which the type is attested (even if only by a single binominal); the blue column shows the number of languages in which the type is common; and the orange column shows the number of languages in which it constitutes over half of the total. Thus, jxt is attested in 76 of 106 languages, common in 53 and dominant in 22; cmp is attested in 68, common in 49 and dominant in 24; etc.

![Figure 43: Attested, common and dominant binominal types](image-url)
The corresponding numbers for languages in which *either jxt or cmp* (or both) are attested, common and dominant are 98, 80 and 53, respectively. In other words, compounding, as defined here, is attested (in our data) in 98 of 106 languages and thus unattested in eight (Akkadian, Czech, Central Yupik, Kupsabiny, Puyuma, Selice Romani and Slovak); it is common in 80 and dominant in 53. Of course, one cannot claim on the basis of evidence from just 100 meanings that compounds never occur in the languages in question, but such occurrences are either exceptions that “prove the rule” that these languages do not have noun-noun compounds (just as left-headed English compounds like *attorney-general* are the exceptions that prove the “rule” that English compounds are right-headed), or else represent a relatively marginal strategy. The numbers also show that noun-noun compounding is uncommon in 28 languages, in which they account for fewer than 10% of binominals, and that they are only the dominant strategy in 53 languages.

The following conclusions can be drawn regarding noun-noun compounds on the basis of the present data:

- **NN compounding** (at least) is **NOT** an absolute universal. It is non-existent or marginal in 7.5% of languages, uncommon in 24.5% of languages, and dominant in just 50%.
- However, **NN compounding** is by far the most widespread form of binominal word-formation, accounting for roughly half of all binominals.
- Moreover, if a language exhibits just one binominal strategy, that strategy is overwhelmingly likely to be one of compounding (i.e. **cmp** or **jxt**).

To the extent that NN compounding is considered a valid proxy for compounding in general, the same conclusions can be extended to the latter.

5.6.4 Genealogical and areal patterning

Building further on the notion of intralingual competition, every language can be said to have a “binominal fingerprint”, which captures its preferences for various types of binominal. Thus, languages like Imbabura Quechua and Vietnamese have a simple fingerprint that can be expressed as \([100\text{,} jxt]\). At the other end of the scale, Polish has a complex fingerprint consisting of a mixture of five different types in varying proportions, viz. \([4\text{,} cmp\text{,} 7\text{,} prp\text{,} 5\text{,} gen\text{,} 34\text{,} adj\text{,} 50\text{,} der]\). The question arises whether these fingerprints show any kind of genealogical or areal patterning. In other words, can the binominal fingerprint tell us what family a language belongs to, or where in the world it is spoken? Here I focus on genealogical affiliation. A prerequisite for determining whether the binominal fingerprint is a good indicator of genus is that the
The typology and semantics of binominal lexemes

database contains data from multiple languages from the same genus.¹ When such data exist, genera can be compared genetically (within the same language family) or areally (within the same geographical area).

![Figure 44: The Indo-European spectrogram](image)

Figure 44 shows the situation in Indo-European, for which the data covers multiple languages in six genera. A visual inspection of the chart suggests that Germanic, Romance and Slavic exhibit quite distinctive and rather consistent patterns, that the patterns are less consistent across Baltic and Indo-Aryan, and not at all consistent in Celtic. Not surprisingly, the exception in Indo-Aryan is Selice Romani, which like all varieties of Romani has adopted the derivational word-formation strategy (der) of the Greek, Romance and Slavic languages it has been in contact with since separating from its Indo-Aryan siblings. The difference between Hindi on the one hand and Assamese and Nepali on the other is less dramatic than might appear; the typically Indic inflecting postpositions still found in Hindi (prp) have simply been reduced (through grammaticalization) to case-marking suffixes (gen) in Assamese and Nepali. As for Celtic, it is noticeable that Welsh patterns more closely with English than with Irish, a result, no doubt, of both language contact and the loss of the case system in Welsh.

A more robust way of exploring genetic patterning is to use a statistical clustering method such as Principal Components Analysis (PCA), in which data distributed

¹ Note that this is an example of the kind of question that cannot be addressed using a “balanced” sample.
across a multi-dimensional space is reduced to fewer dimensions. The binominal data occupies an nine-dimensional space (i.e., one for each type of binominal), which is impossible to visualize. In Figure 45 each language is instead represented as a point in a three-dimensional space, the axes of which are the three principal components, PC1, PC2 and PC3.\footnote{The following biplots provide keys to the three top left quadrants (R2C1, R1C1 and R1C2) of Figure 45, respectively. They are best read by zooming in the electronic version.}

![Figure 45: The Indo-European scatter plot](image)

The six quadrants containing points provide views onto the data as if through the six faces of a cube. The quadrant in the first column of the second row (R2C1), with the axes PC1 and PC2, provides the clearest view of the data, since these two principal components account for almost 80% of the variance in the data. We observe that the Germanic languages tend to cluster to the left of this quadrant (the partial exception is GOH, Old High German), while Slavic clusters to the bottom right. Romance and Indo-Aryan appear to cluster with each other, but here the two-dimensional view onto the three-dimensional space misleads us. Although the two groups both occupy the same top-right corner, they are actually situated at different
depths: their X and Y values are similar, as it were, but their Z values are different. Viewing the data through another face of the cube, either R1C1 (PC1×PC3) or R1C2 (PC2×PC3), reveals that there is actually quite a clear separation between these two genera. The difference within Celtic is very clear in R2C1: the Celtic language that clusters with Germanic is Welsh (CYM), while Irish (GLE) is much closer to Greek, Indo-Aryan and Latvian (LAV). R1C1 has Irish close to both Baltic languages, but R1C2 confirms that it most closely resembles Latvian rather than Lithuanian.

Taken together these results indicate that the binominal fingerprint can often be a rather good indicator of genus, at least in the case of Indo-European, the only family for which sufficient data is available at present.

5.7 Chapter summary

In this chapter, I developed a typological classification of binominals based on the morphosyntactic strategies they employ and highlighted some issues inherent in traditional, hierarchical representations. Nine binominal types were identified, each of which can occur as a head-initial or head-final construction. These were presented in a two-dimensional grid in which the primary parameters were number of markers and the locus of marking, and each type was described in detail together with examples.

The non-hierarchical grid representation revealed two apparent “gaps” in the data for which explanations were offered: whereas the type **prn** can be expected to occur, albeit relatively seldom, the type **nml** appears to be a logical impossibility. I also discussed a number of gradient phenomena, many of which can be explained in terms of grammaticalization.

The analysis of the distribution of binominals by type, revealed the predominance of the **jxt** and **cmp** strategies, both overall and in terms of the preferences shown by individual languages. This also showed how the degree of intralingual competition between different strategies varies considerably from one language to another. While I could confirm the prevalence of compounding, its status as a universal was disconfirmed.

Finally, I proposed the novel concept of a language’s binominal fingerprint which I investigated for Indo-European, the only language family for which the database contains enough data across sufficient genera. This result indicates the potential of
binominal fingerprints to contribute interesting insights into both genetic affiliation and the history of language contact.

Other aspects of binominal typology will be examined in Chapter 7; these include constituent order, the relationship between binominals and possessives (or more precisely, anchoring nominal modifier constructions), and the interaction between morphosyntactic strategies and semantics. Before that, however, we must shift our attention from morphosyntax to the nature of the semantic relation that is one of the defining features of binominal lexemes.
6 Semantic relations

In the previous chapter I developed a classification of binominals based on the morphosyntactic strategy employed. Here I develop a second classification, this time based on the kind of semantic relation that pertains between the two major constituents of a binominal. This unstated (or underspecified) semantic relation is a defining feature of both binominal lexemes and the canonical subtype, noun-noun compounds. Guevara & Scalise (2009) suggest that the “inner essence” of a compound can be captured (in the prototypical case) with a “rough schema” (82), where X, Y and Z represent “major lexical categories” (in the case of binominals, these are, of course, nouns or other thing-morphs), and \(\mathfrak{R} \) “represents an implicit relationship between the constituents (a relationship not spelled out by any lexical item)” (p. 107).

\[(82) \quad [X_N \mathfrak{R} Y_N] Z_N\]

Jackendoff (2016) provides a nice set of examples (83) to show that the kind of semantic relation can be “hugely varied”, even across compounds that share a common hypernym, such as cake.

\[(83) \quad \begin{array}{rl}
\text{chocolate cake} & \text{‘a cake made with chocolate in it’} \\
\text{birthday cake} & \text{‘a cake to be eaten as part of celebrating a birthday’} \\
\text{coffee cake} & \text{‘a cake made to be eaten along with coffee and the like’} \\
\text{marble cake} & \text{‘a cake that resembles marble’} \\
\text{layer cake} & \text{‘a cake formed in multiple layers’} \\
\text{cupcake} & \text{‘a little cake made in a cup’} \\
\text{urinal cake} & \text{‘a (nonedible) cake to be placed in a urinal’}
\end{array}\]

In N+N compounds (i.e. binominals of type jxt or cmp) there is no indication of the nature of the semantic relation, and the same applies to the types der and cls that also belong to Level 0 in the formal typology. In types that belong to Levels 1 and 2 the semantic relation is underspecified rather than unstated: the presence of one or more additional morphemes indicates the presence of some kind of relation. However, the meaning inherent in those relational morphemes is extremely schematic. The fact that \(\mathfrak{R} \) is not stated explicitly gives rise to at least two questions (Bauer 2017):
The typology and semantics of binominal lexemes

1. How can these semantic relationships best be classified?
2. What mechanism allows compounds to be generated (and understood) when the semantics is so variable?

The second of these questions is the focus of Hacken (2016), in which the process of compounding is examined in the context of three theoretical frameworks, viz. Jackendoff’s Parallel Architecture, Lieber’s Lexical Semantics and Štekauer’s Onomasiological theory.¹ The present chapter concentrates on the first of the questions posed above and investigates the kinds of semantic relation found in binominals. To that end, §6.1 provides a brief overview of previous work on this topic: while most of this relates to noun-noun compounds, there is reason to believe that the same approach can be applied to other types of binominal (§6.1.2), including denominal derivations (§6.1.3). This overview is followed in §6.2 and §6.2.2 by detailed descriptions of the two classification schemes on which the present study is based: the one, rather granular, developed by Yves Bourque, the other, more schematic, by Anna Hatcher. The topic of §6.2.3 is Pierre Arnaud’s innovative mapping of his low-level classification to Hatcher’s high-level classification. The actual process of classifying binominals in the present study is discussed in §6.3. This is followed by data analytics in §6.4 and a summary in §6.5.

6.1 Theoretical prerequisites

The history of research into semantic relations² in compounding tends to be rehearsed by every researcher entering the field (e.g. Ryder 1994; Pepper 2010b; Szubert 2012; Bourque 2014; Eiesland 2016; Toquero 2018). The reader is referred to these and similar works for more historical details. The aim of the present section is simply to present a brief overview and prepare the ground for a more detailed survey of work that is particularly relevant to my own work.

6.1.1 Background

Interest in semantic relations can be traced at least as far back as Grimm (1826) on compounding in German, and Mätzner (1860) on English, but the starting point for

¹ The cognitive approach (or more precisely, that of Cognitive Grammar) to word-formation is described by Tuggy (2005), and psycholinguistic aspects are explored by Libben & Jarema (2006).
² Use of the term ‘semantic’ (or ‘conceptual’) ‘relations’ (or ‘associations’) is not restricted to the domain of compounding, or even to the field of linguistics, but is encountered much more broadly in philosophy, psychology, knowledge representation and elsewhere. While relevant to the long-term goals of this research project, such uses are beyond the scope of the present work. Henceforth the term ‘semantic relations’ should be taken as referring only to the domain of binominals.
modern studies of the topic is usually taken to be Jespersen’s (1942) treatment in Volume 6 of his *Modern English Grammar on Historical Principles*. This was followed by a large number of influential and widely cited studies, notably Hatcher (1960), Lees (1960; 1970), Marchand (1960; 1969), Brekle (1970), Li (1971), Adams (1973), Downing (1977), Allen (1978), Bauer (1978), Levi (1978), Warren (1978), Ryder (1994) and Jackendoff (2010). A useful way to gain an overview of the various approaches taken in these and other works is the classification of compounding theories suggested by Søgaard (2005), who distinguishes between transformational, slot-filler, reductionist, and pragmatic theories.

Transformational approaches attempt to derive semantic relations from underlying syntactic structures such as relative clauses; Søgaard cites Rhyne’s (1976) example *ignition key*, which is claimed to come from *key which causes ignition*. The most well-known studies of this type are Lees (1960; 1970) and Levi (1978), which are situated within the frameworks of early generative theory and Generative Semantics, respectively. This line of research was abandoned after the 1970s (Hacken 2009), but while the underlying theories are no longer regarded as viable, the actual results achieved, especially by Levi, have had a lasting effect (see below). Furthermore, Levi’s insight that the kinds of semantic relation found in compounds tend also to appear at the clause level is worth retaining; I will return to it in Chapter 8.

In **slot-filler** theories of compounding constituents are seen as bundles of features with the modifying constituent supplying a value to one of the features of the head. Søgaard refers in particular to Johnston & Busa’s (1999) work within the framework of the Generative Lexicon (Pustejovsky 1995), but the slot-filler approach applies equally to Allen’s (1978) work in the lexicalist framework and that of Rochelle Lieber in lexical semantic analysis (Lieber 2009; 2016). It also applies (in some degree) to the Cognitive Grammar approach exemplified by Tuggy (2005), in which “elaboration sites” equate to slots.

Most work on semantic relations, however, has followed what Søgaard calls the **reductionist** approach, in which the researcher attempts to enumerate a limited number of “primitive relationships”. These vary in number from four (in the case of Hatcher 1960) to well over 100, depending on whether one includes subtypes, i.e. the degree of granularity of the analysis. Bourque (2014: 167) provides a table

1 Other early work worthy of mention includes Bergsten (1911) and Carr (1939).

2 For example, Langacker (2008) describes *lid in jar lid* as having an elaboration site that is elaborated (specified in finer detail) by *jar*, and points out that “a serious analysis of this or any other construction requires that each structure and each relationship be described in explicit detail” (p. 162).
listing 16 studies of this type and the number of relations that they posit. The following list offers a representative selection of such studies within a variety of theoretical frameworks:

- **Jespersen (1942):** Jespersen (p. 142ff) identifies eight types of NN compound AB in which B is modified by A: Subject and Object (sunrise, sun-worship); Place, including source and goal (headache, land-breeze, side-glance); Time, including duration (nightmare, day-fly); Purpose (beehive); Means (handwriting); Characterizing Feature (sandpaper); Similarity (needle-fish) and Material (gold ring).\(^1\) He then asserts that the number of possible logical relations between the two elements is “endless” and lists several examples from “the large residue of compounds which do not fit in anywhere”, including sunflower, sun-dial, weathercock and rainbow.

- **Hatcher (1960)** (logic-based): Hatcher reduces seven of Jespersen’s types and two of Mätzner’s to four “logical” types: “A is contained in B” (seed orange); “B is contained in A” (orange seed); “A is the source of B” (cane sugar); and “A is the destination of B” (sugar cane). See the discussion in §6.2.2.

- **Levi (1978)** (Generative Semantics): Levi defines nine “recoverably deletable predicates” (RDPs), of which the first three are reversible: CAUSE (tear gas, drug deaths); HAVE (picture book, lemon peel); MAKE (honeybee, daisy chains); USE (steam iron); BE (soldier ant); IN (field mouse); FOR (horse doctor); FROM (test-tube baby); ABOUT (tax law). In addition, she defines four “nominalization types”: Act (parental refusal); Product (clerical errors); Agent (city planner); and Patient (student inventions) (see also §2.3.1.).

- **Warren (1978)** (functionalism): Warren delineates 12 “semantic classes”, most of them named according to the role played by the constituents in the relation: Source-Result (student group); Whole-Part (spoon handle); Part-Whole (armchair); Size-Whole (3-day affair); Goal-OBJ (moon rocket); Place-OBJ (sea port); Time-OBJ (Sunday paper); Origin-OBJ (hay fever); Activity-Actor (cowboy); Copula (girlfriend); Resemblance (clubfoot); and Purpose (ball bat) (cf. Warren’s summary, p. 229).

- **Ryder (1994)** (Cognitive Grammar): Ryder identifies 50 templates representing compound schemas that emerged from her psycholinguistic experiment. These are listed in her Appendix II and include CON [X contains Y] (bag lunch); its

\(^1\) The labels given here are mine. Jespersen employs descriptive phrases.
inverse, CONIN [X is contained in Y] (teapot); SELL [Y sells/delivers X] (fish-wife); and TEND [Y tends/raises/trains X] (horseman).1

- **Jackendoff (2016)** (Conceptual Semantics): Jackendoff presents a list of 13 “basic functions”,2 six of them reversible: CLASSIFY (beta cell); BE (boy king); SIMILAR (piggy bank); KIND (puppy dog, bear cub); BE AT/IN/ON (sunspot); COMP (tinfoil, sheet metal); MADE FROM (apple juice, sugar beet); PART (apple core, cheesecake), CAUSE (sunburn), MAKE (anthill, honey bee); SERVERS AS (guard dog); HAVE (AIDS baby, writer’s cramp); PROTECT FROM (lifeboat; mothball).

When Jespersen declared the set of possible semantic relations to be open-ended, he was echoing sentiments expressed earlier by Carr:

> Although an attempt may be made to classify the compounds from a semantic point of view, it would be impossible to state all the relationships which do occur, and to assign each compound to a particular class (Carr 1939: 319–320).

At the other end of the spectrum we find the fourth kind of theory of compounding identified by Søgaard, which he calls **pragmatic** theories. These claim that there is really only one, very general relationship between the constituents of a compound, and that the compound’s meaning is derived solely from pragmatic knowledge about the world. This position was advanced by Bauer (1979), couched in terms of the predicate deletion approach then current (cf. Levi 1978):

> I suggest that only one ‘verb’ (or more accurately ‘pro-verb’ since it is an abstract unit) should be deleted in the generation of compounds. If only one verb is to account for the range of semantic relations that exist between the two elements of compounds it will have to be very abstract and have a vague meaning. I suggest a gloss something like ‘there is a connection between’.

Bauer never entirely abandons this position. 35 years later he and Tarasova write: “We might prefer to say that rather than there being a set of adnominal relationships, there is just one, the adnominal nominal relationship itself. Such a relationship would have to be described in semantically very imprecise terms, since it covers such a wide range of territory…” (Bauer & Tarasova 2013).

1 The latter two appear to be incorrectly paraphrased by Ryder in Appendix II as [X VERBS Y].

2 These are the “most prominent” basic functions. Note that the number and/or labels of functions differ slightly from those in Jackendoff (2009; 2010). Also, the labels used here are slightly simplified.
All of the above-mentioned works focus exclusively on compounding in English, with a couple of exceptions that investigate German (or early Germanic) and Chinese. In recent years, however, the topic of semantic relations has been explored in other languages, including Nizaa (Pepper 2010b), Danish (Szubert 2012), French (Arnaud 2003; 2016; Bourque 2014), Norwegian (Eiesland 2016) and Spanish (Toquero 2018). It has also received a lot of attention in computational and corpus linguistics (e.g. Vanderwende 1994; Moldovan et al. 2004; Girju et al. 2005; Ó Séaghdha 2008; Tratz & Hovy 2010; Nakov 2013; Schäfer 2018) and was even the focus of an NAACL-HLT Workshop on Semantic Evaluations task on “the interpretation of noun compounds using paraphrasing verbs and prepositions” (Butnariu et al. 2009).

The position taken in the present study is that the number of relations one identifies will be a function of the degree of granularity one requires them to express. It can therefore be anything the researcher desires, from one (as suggested by Bauer) to unlimited (as opined by Carr and Jespersen). Furthermore, even if the total number turns out to be unbounded, “the vast majority”, as Tratz & Hovy (2010) point out, will fit within “a relatively small set of categories.” As we shall see, in the present study I actually apply two classifications: the one fairly granular, consisting of 25 relations, the other much more abstract and consisting of just four relations.

What the studies mentioned in this section have in common is that they all focus on NN compounds, i.e. binominals of type cmp (§5.3.1), or in Levi’s case, cmp and adj (her “noun phrases with non-predicating adjectives”). However, Jackendoff does note (2016: 30) that the meanings of the compound construction overlap to an extent with those of N of NP and continues: “This suggests that we are dealing with a common stock of rather primitive semantic relations that can be expressed through various (morpho)syntactic frames, compounding among them.” We will return to this important point in §8.3, but for now the task before us is to examine evidence that the same kinds of semantic relation can be applied not just to NN compounds, but to binominals in general.

6.1.2 Nominal modification (Bauer & Tarasova 2013)

The work of Bauer and Tarasova was introduced in §2.3.3. The focus there was on the fact that their study of adnominal nominal modification in English covers six different constructions in which one noun modifies another, and thus prefigures the concept of binominal lexemes. The focus here is on their investigation of the semantic relation (what they call the “meaning link” or “meaning relationship”). I
first demonstrate (84) and comment on how those six constructions relate to the formal classification developed in the previous chapter (cf. (7) on page 50).

(84)
(a) **cmp** noun-noun compounds (*steam iron*)
(b) **adj** associative (i.e. relational) adjective plus noun (*manual labour*)
(c) **gen** prenominal possessives (*car’s driver*)
(d) **prp** postnominal possessives (*driver of the car*)
(e) **der** neoclassical compounds (*hydromancy* < water + divination)
(f) **cmp** blends (*paratroops* < parachute + troops)

(a) *steam iron* is formally parallel to *eisen.bahn* [iron.way] and thus an instance of **cmp**. (Recall that the classification does not distinguish between juxtaposition and concatenation.)

(b) *manual labour* is clearly an instance of **adj**, parallel to Rus. *želez.naja doroga* [iron.ADIZ road]. The source of the derivation (Lat. *manus* ‘hand’) is not quite so transparent, but the connection between *manual* and the hand is fairly clear to most native speakers.

(c) Although *car’s driver* is not a binominal, the examples given in §2.3.3 (*dog’s breakfast*, *ladies’ man* and *wolf’s bane*) are all parallel to Bezhta *kilo.s hino* [iron.GEN way] and thus of type **gen**.

(d) Again, while *driver of car* is not a binominal (see §2.3.3), *man-of-war* most surely is; it parallels Fr. *chemin de fer* [way **PREP** iron] and is thus of type **prp**.

(e) Neoclassical compounds like *hydro.mancy* present a more interesting case. Despite the traditional term for such constructions, they do not fit the category **cmp** since *hydro-* and *-mancy* are thing-affixes, not thing-roots.\(^1\) Such forms can be regarded as a non-prototypical subtype of **der** and closer to the two morpheme analysis of Slovak *želez.nica* [iron.NMLZ] (page 166) than to **cmp**.

(f) Finally, *paratroops* is best regarded as a non-prototypical subtype of **cmp**, as it consists of two thing-roots, one of them a truncation (of *parachute*). To the extent that *para-* (with this etymology) is established as a prefix\(^2\), *paratroops*

\(^1\) Wiktionary lists 349 English words containing the prefix *hydro-* and 98 words containing the suffix *-mancy* (accessed 2018-05-30).

\(^2\) Wiktionary lists 17 such words, including *paraglider* and *parajump*. Words formed from Ancient Grk. *παρά* (‘beside; next to, near, from; against, contrary to’) or from Fr. or It. *para-*, (< Lat. *parā* ‘I prepare’) do not count in this context, even though *parachute* itself belongs to the latter type.
constitutes another gradient, affixoid-like phenomenon between cmp and der (see page 162).

In conclusion, each of the six constructions considered by Bauer and Tarasova in their investigation of adnominal nominal modification in English fits very neatly into the formal classification of binominals.

I turn now to Bauer and Tarasova’s principal research question, which concerns the “meaning link” between the nominal constituents in each of their constructions. They present ample evidence for the fact that “the meaning relationships which can be found in [endocentric noun-noun] compounds … can also be found in a range of other constructions in which a noun modifies another noun.” As noted earlier (§2.3.3), they opt to use Levi’s set of nine recoverably deletable predicates (listed on page 184), explaining their choice as follows:

We adopt Levi’s list because it is relatively well-known, because it has been shown to provide good coverage of the data (see, for instance, the evaluation in Kunter 2011: 153), and because it provides an independent list of semantic relationships for us to work with. We should emphasize, however, that our use of this set of categories does not indicate any commitment on our part to the particular set that Levi provides; Levi’s set of categories is merely a convenient list and our decision to use this classification over the others is dictated by operational needs (p. 4).

A number of drawbacks are identified in Levi’s scheme, but these need not concern us here. The important point is that Bauer and Tarasova are able to find examples of every one of Levi’s 12 relations for each of their six constructions. Table 27 provides a complete listing.1

The important conclusion to be drawn from Bauer and Tarasova’s work is that the kinds of relation that occur in noun-noun compounds also occur in other types of binominal, at least in English. Four of the eight types of binominal described in §5.3 (cmp, adj, gen and prp) are covered by their work, which also provides evidence concerning a subtype of der (neoclassical compounds).

1 Notes on Table 27: Labels in parentheses and SMALL CAPS in the Relation column are alternative names for Levi’s relations based on the role played by the modifier (N1 in the case of English compounds). POSSESSOR-POSSESSUM is treated by Levi as a subtype of the PART-WHOLE (HAVE) relation. See Tarasova (2013: 43) for a naming scheme that uses the numbers 1 and 2 to indicate the direction of the relation (e.g. cause1 and cause2 for my cause and result); her terms are cause1, cause2, possession1, possession2, composition1, composition2, instrument2, essive2, location2, purpose2, source1 and topic2.
<table>
<thead>
<tr>
<th>Relation</th>
<th>N N</th>
<th>A REL N</th>
<th>N’s N</th>
<th>N of N</th>
<th>Neo-classical</th>
<th>Blend</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1 CAUSE N2</td>
<td>sex scandal, withdrawal symptom</td>
<td>viral infection</td>
<td>nature’s bounty</td>
<td>smell of bourbon</td>
<td>hydathrosis, necrophobia</td>
<td>contrail, parascending</td>
</tr>
<tr>
<td>N2 CAUSE N1</td>
<td>tear gas, shock news</td>
<td>malarial mosquitoes</td>
<td>Israel’s creation</td>
<td>creation of Israel</td>
<td>cinematograph, oncogene</td>
<td>slimnastics</td>
</tr>
<tr>
<td>N1 HAVE N2</td>
<td>lemon peel, school gate</td>
<td>feminine intuition</td>
<td>dog’s breakfast</td>
<td>cost of the flight</td>
<td>neurogia, ophtalmia</td>
<td>chunnel, paraving</td>
</tr>
<tr>
<td>N2 HAVE N1</td>
<td>camera phone, picture book,</td>
<td>industrial area</td>
<td>ladies’ man</td>
<td>owner of the cafe</td>
<td>liriodendron, odontocete</td>
<td>cineplex, dinoseum</td>
</tr>
<tr>
<td>N1 MAKE N2</td>
<td>court order, snowball</td>
<td>molecular chain</td>
<td>Kellogg’s cornflakes</td>
<td>Odyssey of Homer</td>
<td>electromagnetism</td>
<td>cremains, glassphalt</td>
</tr>
<tr>
<td>N2 MAKE N1</td>
<td>computer industry, silk worm</td>
<td>musical clock</td>
<td>letter’s author</td>
<td>writer of thrillers</td>
<td>phonorganon</td>
<td>Motown</td>
</tr>
<tr>
<td>N2 USE N1</td>
<td>steam iron, wind farm</td>
<td>manual labour</td>
<td>car’s driver</td>
<td>driver of the car</td>
<td>electrocardiograph, hydromancy</td>
<td>jazzercise, paratroops</td>
</tr>
<tr>
<td>N2 BE N1</td>
<td>island state, soldier ant</td>
<td>professorial friends</td>
<td>Dublin’s fair city</td>
<td>sign of the cross</td>
<td>cryptonym</td>
<td>thugon, foolsopher</td>
</tr>
<tr>
<td>N2 IN N1</td>
<td>field mouse, letter bomb</td>
<td>autumnal rain</td>
<td>Thursday’s lunch</td>
<td>people of the forest</td>
<td>nephralgia</td>
<td>Californication, airmada</td>
</tr>
<tr>
<td>N2 FOR N1</td>
<td>arms budget, steak knife</td>
<td>avian sanctuary</td>
<td>wolf’s bane</td>
<td>day of rest</td>
<td>speedometer</td>
<td>Identikit, palimony</td>
</tr>
<tr>
<td>N2 FROM N1</td>
<td>business profit, olive oil</td>
<td>solar energy</td>
<td>New Zealand’s wines</td>
<td>heat of the sun</td>
<td>otorrhoea</td>
<td>Chicagorilla, anedata</td>
</tr>
<tr>
<td>N2 ABOUT N1</td>
<td>tax law, love letter</td>
<td>criminal policy</td>
<td>university’s statutes</td>
<td>Book of British Birds</td>
<td>ethnography, hydrograph</td>
<td>exploitation, snoblem</td>
</tr>
</tbody>
</table>

Table 27: Levi’s (1978) classification applied to six binominal types
The other three types (con, dbl and cls) are not covered, but there is other evidence to suggest that these, too, exhibit the same kinds of semantic relation. We have already encountered (in the discussion of binominal types in §5.3) examples of these types that parallel binominals of type cmp (and others), both in terms of the meanings of the constituents and the meaning of the whole. This is shown in (85)-(87), where the (a) is an instance of one of these three types, and (b) is an instance of cmp. In each pair of examples the same two meanings combine to produce the same target meaning. This strongly suggests that the same cognitive process, involving the same semantic relation, is at play in each pair. In terms of Levi’s classification, (85) would be instances of N₁ MAKE N₂ (cf. snowball in Table 27) while (86) and (87) would be instances of N₂ HAVE N₁ (cf. camera phone).

(85) IRON + TRACK = RAILWAY
 (a) con Hebrew mesila.t barzel [track.CON iron] RAILWAY
 (b) cmp German eisen.bahn [iron.track] RAILWAY

(86) EGG + YELLOW = YOLK
 (a) dbl Takia patu.n kdabog.an [egg.3SG yellow.3SG] YOLK
 (b) cmp Welsh melyn.wy [yellow.egg] YOLK

(87) EYE + HAIR = EYELASH
 (a) cls Murui Huitoto ui.tїraї [eye.CL(hair)] EYELASH
 (b) cmp Thai khїn.taa [hair.eye] EYELASH

Evidence such as this suggests that an exploration of semantic relations across the whole 100 language sample might bear fruit. Similar encouragement is to be drawn from the affirmative answer reached by Rainer (2013) to the question posed in his paper: Can relational adjectives express any relation? (see §2.3.2). As for whether the same applies to binominals of type der, which Bauer and Tarasova did not explore: should the reader feel that the argument advanced above on the basis of neoclassical compounds is too tenuous, more evidence of the type just put forward in (85)-(87) can be found in (88).

(88) WIND + MILL or INSTRUMENT = WINDMILL
 (a) der Polish wiatr.ak [wind.inst] WINDMILL
 (b) cmp Finnish tuuli.myly [wind.mill] WINDMILL

In this case the meanings of the two head constituents is not identical, but there exists a hypernymy relation between them: a mill is a kind of instrument. It therefore seems reasonable to assume that the semantic relation is the same in each case: a tuulimyly is a mill that is POWERED BY wind, while a waitrak is an instrument.
that is powered by wind. In Levi’s terms these are both instances of N₂ USE N₁ (cf. steam iron). Further, and perhaps even more compelling, evidence that der binominals entail the same kinds of relation, is provided by Janda (2011), to which we now turn.

6.1.3 Metonymy and derivation (Janda 2011)

On the face of it, Janda is not concerned with semantic relations at all, but rather the role of metonymy in word-formation (or more precisely, derivational word-formation, since she does not deal with inflection). However, as Janda points out (p. 363), citing Jakobson & Halle (1956) and Peirsman & Geeraerts (2006), one of the three main strategies for classifying metonymy is the Aristotelian concept of contiguity¹ and, furthermore, the approach adopted by Peirsman and Geeraerts’ is compatible with both of the other two strategies: Frames / ICMs and Domains / Dominions. Contiguity, characterized by Blank (2003) as relations that are based on “spatial, temporal and logical” connections between concepts, is thus fundamental to all modern accounts of metonymy.

Janda frames her argument primarily in terms of metonymy rather than contiguity and is taken severely to task for this by Brdar & Brdar-Szabó (2014). However, the latter’s objections, stripped of ad hominem attacks and false attribution of positions which Janda does not hold, boil down to a terminological disagreement. Essentially, Janda extends the definition of metonymy to cover contiguity relations in general, while her critics, as “metonymy-people”, are concerned to keep their turf pure. None of this, however, detracts from the insightful observations Janda makes about what we will call contiguity relations in derivation, starting with her very first examples (89), (90).

(89) PART FOR WHOLE
 a. We need a good head for this project.
 b. Russian brjuxan (lit. ‘belly’-an) ‘person with a large belly’
 c. Czech břicháč (lit. ‘belly’-áč) ‘person with a large belly’

(90) CONTAINED FOR CONTAINER
 a. The milk tipped over. (cf. Peirsman and Geeraerts 2006: 281)
 b. Russian saxarnica (lit. ‘sugar’-nica) ‘sugar-bowl’
 c. Czech květináč (lit. ‘flower’-áč) ‘flower-pot’

¹ Aristotle defines three types of associative relation: contiguity, similarity and contrast. We will return to these later in a number of contexts. For an excellent account of the relationship between metonymy, contiguity, frames, domains, prototypes and gestalts, see Koch (1999).
Janda’s claim is that the English examples (a) illustrate lexical metonymy, while the Russian (b) and Czech (c) examples illustrate parallel examples of metonymy in word-formation. If we reformulate this to state that the same \textit{contiguity relations} are exhibited in (89a-c) and in (90a-c), there can be no doubt that Janda is correct: in (89) it is the \textsc{part-whole} relation and in (90) it is the \textsc{container-contents} relation. Now, these are exactly the kinds of semantic relation that one finds in binominals. This is immediately obvious in the glosses of (90b) and (90c), i.e. Eng. sugar bowl and flower-pot, both of which are binominals of type \textbf{cmp} (and instances of Levi’s N\textsubscript{2} HAVE N\textsubscript{1} relation, cf. \textit{picture book} in Table 27).

Exact parallels for the Russian and Czech words in (89) are harder to find, for the simple reason that belly tends to default to the human belly, so there is little need for a binominal lexeme that combines the concepts of \textsc{person} and \textsc{belly}. But the same semantic relation is evident in words denoting the bellies of other animates, such as Ger. \textit{schwein.e.bauch} [pig.LE.belly] ‘pork belly’. \textsc{part-whole} is in fact by far the most common semantic relation in our data, as we shall see in the next chapter, and the database is replete with body-part binominals based on that very relation. The examples in (91) are just the tip of a very large iceberg.

\begin{itemize}
 \item[(91)]
 \begin{itemize}
 \item[a.] \textbf{gen} Navajo ’a.ké.ts'iin [3SG.foot.bone] ANKLE
 \item[b.] \textbf{dbl} Hebrew tenux ha.'ozen [lobe:STC DEF.ear] EARLOBE
 \item[c.] \textbf{cls} Trinitario ugi-mo [eye-CL(fabric)] EYELID
 \item[d.] \textbf{con} Hausa bàakì.n màamá [mouth.LK breast] NIPPLE OR TEAT
 \item[e.] \textbf{cmp} Querétaro Otomi oky.xíńu [hole.nose] NOSTRIL
 \item[f.] \textbf{der} Central Yupik cu.araq [person.AR(AQ)] TOE1
 \item[g.] \textbf{adj} Lower Sorbian ruc.ne zgibk [hand.ADJZ joint] WRIST
 \end{itemize}
\end{itemize}

All of these exhibit the \textsc{part-whole} relation which, like \textsc{container-contents}, is another subtype of the N\textsubscript{2} HAVE N\textsubscript{1} relation in Levi’s scheme. Thus, the two contiguity relations underlying Janda’s initial examples of derivation are seen to be present in binominals of all types. Janda provides a plethora of other examples, not only in her paper but also in the data set that she has made publicly available (Janda 2014). I return to her work when considering metonymy in the larger context of associative relations in §8.3.

\begin{footnote}
1 The postbase (suffix) -\textit{araq} is described as a “little piece of N”, where N refers to the base, here \textit{cu}- ‘person’ (Jacobson 1995: 741). A toe in Central Yupik is thus literally a little piece of a person.
\end{footnote}
6.2 An integrated approach to classification

6.2.1 A low-level classification

It is striking how researchers working in the field of semantic relations tend to avoid reusing existing schemes. I am as guilty of this as anyone (Pepper 2010b). This urge to reinvent the wheel could be due to the *not-invented-here* syndrome, but it could also relate to the slippery nature of semantic relations: they are notoriously hard to pin down and sometimes quite subjective. As a result it can be difficult to adopt a system developed by someone else. Sometimes it is just easier to start from scratch than struggle to put oneself into the mind of the other person. Be that as it may, for this study I decided that I would not reinvent the wheel. I would select a pre-existing classification, apply it to my own data and then make up my mind about its suitability and need for extension or revision. In the event I ended up selecting two pre-existing classifications, those of Bourque (2014) and Hatcher (1960), which contrast nicely with one another, Bourque’s being rather granular and Hatcher’s extremely schematic. In this section I describe and justify the selection of Bourque’s system, and in the next I do the same for Hatcher.

Bourque’s dissertation is entitled *Toward a typology of semantic transparency: The case of French compounds*. The core of it is an examination of the semantic relations found in 1,048 compounds of the type **NN** and **N â N**, based on a classification developed by Bourque himself. There were a number of reasons for selecting this classification for the present study:

1. The work is based on a detailed and comprehensive *survey* covering some 20 earlier schemes from which he rather explicitly synthesizes his own, referring to them as “retained relations”. Bourque thus stands on the shoulders of giants, instead of simply starting from scratch, as I did in Pepper (2010b).

2. Unlike some other researchers, Bourque recognizes that some relations work in two directions, e.g. part-whole (*wheelchair*) and whole-part (*table leg*); these are termed *reversible*.

3. The scheme consists of a moderate number of classes (15 + 10 inverse = 25), a *size* which was deemed appropriate for the present study. It is more granular than the 12-14 relations of Levi, Warren and Downing (not to mention Hatcher’s four); this is important, because it is much more challenging to classify the data correctly and consistently using a very abstract system. On the other hand, it is not as fine-grained as Ryder’s system of 50 relations; applying the latter to over 3,000 binominals would have been prohibitive.
4. Each relation is accompanied by a full **description**, the presentation extending over 40 pages. This makes it easier for another researcher to understand just what is intended by each relation.

5. The metalanguage is English while the object language is French. As a result, the **terminology** Bourque employs is less anglocentric than that encountered in studies based only on English. For example, it makes no sense to use the names of English verbs and prepositions (cf. Levi’s HAVE, BE and FROM) to describe relations in French. This is also reflected in Bourque’s use of NON-HEAD (or modifier) and HEAD instead of N₁ and N₂ (cf. Levi, Jackendoff and many others), or A and B (Hatcher), which imply head-final order.

6. English and French **examples** are provided for each relation. This makes the dissertation accessible to researchers who are not fluent in French.

7. Each relation is accompanied by a **test frame** or “template” consisting of both an English and a French paraphrase. The ensures much greater accuracy in the assignment of relation types to individual binominals (cf. §6.3.1).

8. Bourque includes discussion of **overlaps** between different relations. This is important because semantic relations, at least at Bourque’s level of granularity, are prototypical rather than Aristotelian categories. Because of the gradience they exhibit, some binominals could be seen as instances of multiple relations. While this is in the nature of the phenomenon, it is helpful to receive a third party’s confirmation that certain cases will be slightly ambiguous.

9. Finally, Bourque has made his data available on his website (Bourque 2016), thus facilitating further exploration of his classification.

In sum, these nine aspects of Bourque’s work provide a compelling argument for adopting his classification scheme.

Table 28 lists Bourque’s 15 semantic relations, 10 of which are reversible, for a total of 25 types. Each type is accompanied by its paraphrase (template) and the English example given by Bourque (with the minor corrections noted in footnotes), and each relation is supplied with linking material, some of which is used in the template and some of which is offered as a supplement.
<table>
<thead>
<tr>
<th>Label</th>
<th>Type</th>
<th>Template</th>
<th>Linking material</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernymy</td>
<td>Basic</td>
<td>an H of kind M</td>
<td>kind of, type of</td>
<td>oak tree</td>
</tr>
<tr>
<td></td>
<td>Rev.</td>
<td>an H that M is a kind of</td>
<td></td>
<td>bear cub</td>
</tr>
<tr>
<td>Coordination</td>
<td></td>
<td>a C is an H and an M</td>
<td>is also, is both / and</td>
<td>boy king</td>
</tr>
<tr>
<td>Similarity</td>
<td></td>
<td>an H that is similar to M</td>
<td>similar to, like</td>
<td>ant lion</td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td>an H that serves as M</td>
<td>functions, serves as</td>
<td>buffer state</td>
</tr>
<tr>
<td>Possession</td>
<td>Basic</td>
<td>an H that possesses M</td>
<td>possess (have / of)</td>
<td>career girl</td>
</tr>
<tr>
<td></td>
<td>Rev.</td>
<td>an H that M possesses</td>
<td></td>
<td>family estate</td>
</tr>
<tr>
<td>Part</td>
<td>Basic</td>
<td>an H that is part of M</td>
<td>part of (have / of)</td>
<td>table leg</td>
</tr>
<tr>
<td></td>
<td>Rev.</td>
<td>an H that M is part of</td>
<td></td>
<td>wheelchair</td>
</tr>
<tr>
<td>Location</td>
<td>Basic</td>
<td>an H located at/near/in M</td>
<td>at, near, in, etc.</td>
<td>window seat</td>
</tr>
<tr>
<td></td>
<td>Rev.</td>
<td>an H that M is located at/near/in</td>
<td></td>
<td>bedroom</td>
</tr>
<tr>
<td>Composition</td>
<td>Basic</td>
<td>an H made of M</td>
<td>composed/made of</td>
<td>sugar cube</td>
</tr>
<tr>
<td></td>
<td>Rev.</td>
<td>an H that M is made of</td>
<td></td>
<td>sheet metal</td>
</tr>
<tr>
<td>Source</td>
<td>Basic</td>
<td>an H (made) from M</td>
<td>(made) from</td>
<td>cane sugar</td>
</tr>
<tr>
<td></td>
<td>Rev.</td>
<td>an H that M is (made) from</td>
<td></td>
<td>sugar cane</td>
</tr>
<tr>
<td>Cause</td>
<td>Basic</td>
<td>an H that causes M</td>
<td>causes</td>
<td>sunburn</td>
</tr>
<tr>
<td></td>
<td>Rev.</td>
<td>an H that M causes</td>
<td></td>
<td>motion sickness</td>
</tr>
<tr>
<td>Production</td>
<td>Basic</td>
<td>an H that makes M</td>
<td>makes, produces</td>
<td>honey bee</td>
</tr>
<tr>
<td></td>
<td>Rev.</td>
<td>an H that M makes</td>
<td></td>
<td>beeswax</td>
</tr>
<tr>
<td>Topic</td>
<td></td>
<td>an H about M</td>
<td>about</td>
<td>history conference</td>
</tr>
<tr>
<td>Time</td>
<td>Basic</td>
<td>an H that occurs at/during M</td>
<td>during, at, in, before, etc.</td>
<td>summer job</td>
</tr>
<tr>
<td></td>
<td>Rev.</td>
<td>an H at/during which M occurs</td>
<td></td>
<td>golf season</td>
</tr>
<tr>
<td>Use</td>
<td>Basic</td>
<td>an H that uses M</td>
<td>use / with, by</td>
<td>steamboat</td>
</tr>
<tr>
<td></td>
<td>Rev.</td>
<td>an H that M uses</td>
<td></td>
<td>hand brake</td>
</tr>
<tr>
<td>Purpose and Proper Function</td>
<td></td>
<td>an H intended for M</td>
<td>for</td>
<td>animal doctor</td>
</tr>
</tbody>
</table>

Table 28: Bourque's semantic relations
(cf. revised Hatcher-Bourque classification, page 236)
We observe that Bourque’s classification is not fundamentally different from those sketched briefly on pages 184ff and indeed, the same kinds of relations recur again and again in the literature. In his Appendix B, Bourque provides a very helpful comparison table showing how 29 of these relations are named and used across 13 different schemes (in addition to his own). From this we can read that Levi’s FOR is termed ‘Purpose’ by most researchers (but ‘What for?’ by Vanderwende); that Jackendoff is alone with his PROTECT (FROM) function, apart from Adams, who has a subtype of Instrumental (B1, B2), and Arnaud, whose cryptic types AJ and AK cover exactly the same two relations;¹ and that Levi’s HAVE covers both part-whole and possession. Taken as a whole, Bourque’s work is the most comprehensive, systematic and useful study of semantic relations that I have encountered, and it is a pity that it is not more widely known. Much more could be said about it, but the foregoing will suffice for present purposes. We will return to it later.

I turn now to another impressive and undervalued piece of research, one which occupies the other end of the granularity scale from Bourque, namely Hatcher’s (1960) development of a four-way classification of determinative, non-appositional noun-noun compounds in English.

6.2.2 A high-level classification

The starting point for Hatcher’s paper is a trenchant critique of Jespersen’s (1942) attempt to classify semantic relations, mentioned above on page 184. As noted earlier, Jespersen admitted that his analysis was incomplete and that there were many compounds which “do not fit in anywhere”. He claims that his failure is due simply to the inherent unclassifiability of his material: “the number of possible logical relations between the two elements is endless”; “the analysis of the possible sense-relations can never be exhaustive”. But, says Hatcher:

it all too often happens that scholars in linguistics proclaim a given problem to be insoluble, when they themselves have not worked out the categories necessary for its solution; we should, then, examine the outline offered by Jespersen to see if some of the difficulty he encountered may not be explained by his method of classification. For example, was his set of categories constructed with logical rigor: and, before surrendering to the “difficult” types that he mentions, had he been able, at least, to account for all the “easy” compounds, subdividing these as carefully as his patience and his talent permitted? The subdivision of the obvious may lead to greater understanding of the less obvious, if one is guided by logically consistent criteria (p. 356).

¹ aj: “N2 est ce contre quoi N1 est fait, conçu, mis sur pied (alarme incendie)”; ak: “N2 est ce contre l’effet de quoi N1 est fait, conçu, mis sur pied (minimum vieillesse)” (Arnaud 2003: 74).
Thereupon, Hatcher sets about tearing Jespersen’s system to pieces (her words, see p. 365). She starts by listing seven major divisions (92), omitting one of Jespersen’s original eight (Similarity *needle-fish*) on the grounds that it more properly belongs to “apposition”, which she wants to keep separate.¹

(92) a. Subject (*sunrise*) or Object (*sun-worship*)
 b. Location in/from/to (*headache, land-breeze, side-glance*)
 c. Time at/duration (*nightmare, day-fly*)
 d. Purpose (*beehive*)
 e. Means (*handwriting*)
 f. Characterizing Feature (*sandpaper*)
 g. Material (*gold ring*)

Examining each of these in turn, Hatcher notes a lack of careful subdivisions, an absence of any principle of symmetry, and mixing of two basic criteria, Reference and Relation, exclaiming:

Little wonder that to Jespersen the difficulty of classifying our compounds was insuperable. But how could he fail to see the inadequacy of his categories? How could any linguist today construct a system of classification based on two (or three) kinds of main criteria? (p. 361).

Jespersen’s blindness to the flaws of his outline is put down to his “consummate lack of interest in the problem”; as to the second question, the answer is that what Jespersen actually offers is no more than a simplification of the classification suggested by Mätzner in 1860. “It is sad,” writes Hatcher, “that a linguist of today cannot go beyond a linguist of the nineteenth century; it is sadder still if his work is inferior to his predecessor’s. And this is the case, here”.

Hatcher now sets about rearranging Jespersen’s scheme as depicted in Figure 46. For consistency she chooses to base her new scheme on Relation only and to avoid Reference, so she starts by separating the first three of Jespersen’s types (1)-(3),² all of which are either based on reference or mixed, from the rest (4)-(7), which are all relational. The former are set to one side, and to the latter she adds the two relational types that Jespersen for some reason failed to adopt from Mätzner (a *broomstick* and b *castor oil*). She then proceeds to reorganize these six relational types as follows:

¹ See the discussion of appositional compounds on pages 206ff. I will reinstate Similarity later since, unlike Hatcher in her 1960 paper, I am also interested in determinative appositional binominals.

² Numbers (and Greek letters) in bold refer to the nine divisions in Figure 46.
The typology and semantics of binominal lexemes

Figure 46: Hatcher’s reworking of Jespersen’s classification

<table>
<thead>
<tr>
<th>Subject</th>
<th>Object</th>
<th>Place</th>
<th>Time</th>
<th>Purpose</th>
<th>Means</th>
<th>Characterizing Feature</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B is a part of A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>broomstick</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B obtained from A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>castor oil</td>
</tr>
</tbody>
</table>

Hatcher’s four logical-relational types

- Subject
- Object
- Place
- Time
- Purpose
- Means
- Characterizing Feature
- Material

Key:
- Jespersen’s referential and mixed types
- Jespersen’s and Mätzner’s relational types
- Hatcher’s four logical-relational types

Example:

- A → B sunshine
 - “Surely the subject is the ‘source’ of its own activity” (365)
 - “The sun is that toward which the worship is directed.” (365)

- A ← B sun worship
 - A = Place to which...
 - A = Place in which B is found
 - A = Place from which...
 - A = Time in which B is found
 - A = Time from which...

- A ⊆ B side glance
 - “If Jespersen had looked for a Time-to-which, he probably would not have found it…” (358)

- A ⊈ B seagull
 - A = Place in which B is found
 - A = Place from which...

- A ⊄ B seagull
 - A = Place to which...
 - A = Place in which B is found

- A ⊂ B land breeze
 - A = Place from which...
 - A = Time in which B is found

- A ⊃ B life annuity
 - A = Time from which...

- A ⊆ B spring frost
 - A = Time in which B is found

- A ⊈ B Ming bronze
 - A = Time from which...

- A ⊄ B Ming bronze
 - A = Time in which B is found

- A ⊂ B “A is somehow, to some extent, contained, comprehended in B” (363)

- A ⊃ B “A is somehow, to some extent, contained, comprehended in B” (363)

- A → B sun worship
 - A = Subject
 - B = Object

- A ← B sun worship
 - A = Object
 - B = Subject

- A ⊆ B “All the various compounds of Purpose present A as the destination, end of B” (364)

- A ⊈ B “A is somehow the source of B... Source, thus expanded, spiritualized, will comprehend ‘means’” (364)

- A ⊄ B “This represents the reverse of our first new category; now we have a pair of opposites” (364)
The first step is to combine (6) Characterizing Feature sandpaper and (7) Material gold ring into a more general category “A is somehow, to some extent, contained, comprehended in B”. In the second step, (5) Means handwriting and (β) B-obtained-from-A castor oil are combined into the category “A is somehow the source of B”, the concept of source being “expanded, spiritualized”, such as to “transcend concrete limitations”. In the third step, (α) B-is-a-part-of-A broomstick is used to establish a category “B is contained in A”, which is the inverse of the first new category (“A is contained in B”). Hatcher symbolizes these two “mutually exclusive” categories by ☐ (A is contained in B) and ☐ (B is contained in A); I will, however, henceforth symbolize them as A ⊆ B and A ⊃ B, respectively.1 Finally, in the fourth step, Hatcher establishes that “all the various compounds” of (4) Purpose beehive “present A as the destination, end of B”, which is the opposite of the second type, Source. In contrast to the “static contrast” of A ⊆ B and A ⊃ B, this pair exhibit a “dynamic contrast”, which she indicates using the symbols A→B (“A is the source”) and A←B (“A is the destination”).

(93) (a) A ⊆ B “A is contained in B”
(b) A ⊃ B “B is contained in A”
(c) A→ B “A is the source of B”
(d) A← B “A is the destination of B”

Having reduced the six relational categories of Jespersen/Mätzner to two pairs of mutually exclusive concepts (93), Hatcher now turns her attention to the referential types in order to see how they might be accommodated in her new scheme. She starts with Place (2), Time (3) and their subdivisions. The subtype “A=Place in which B is found” (seagull), labelled in/at in Figure 46, fits clearly into A ⊃ B, i.e. “A contains B, as a place ‘contains’”. Similarly, in “A=Time in which B is found” (spring frost), also labelled in/at, A contains B “in the mysterious way in which Time contains”. Continuing:

As for “A= Place from which .. . “ (land breeze; cf. also spring water; kitchen fats; store clothes), we have to do with A→ B; here also belongs the less frequent type I have added: “A=Time from which...”: Ming bronze, 18th-century snuffbox. The third division of Place (“A= Place to which...”) belongs obviously to A←B: not only side glance but New York express, Tokyo flight (as well as the type knee-pants discussed earlier) (p. 365).

1 I do so based on three considerations: precision (⊆ means subset of, a form of containment); æsthetics (A ⊆ B nicely balances A→ B); and convenience (⊆ is available in more fonts).
This caters for both of the to and from subtypes of Place and Time, except for the fact that neither Jespersen nor Hatcher had any examples of Time-to. Regarding the latter, Hatcher notes: “If Jespersen had looked for a Time-to-which as a parallel to Place-to-which, he probably would not have found it. This may be partly explained by the fact that Place-to-which itself is not very frequent (and Time has the habit of imitating Place)” (p. 358). All that remains of (2) Place and (3) Time is extent, which falls neatly into place into the fourth type not yet tapped: A ⊂ B, which subsumes Jespersen’s (6) Characterizing Feature. Hatcher advises us to forget about Jespersen’s example life annuity, which belongs rather to Purpose, and to consider 2-hour discussion and 3-foot pole, entities characterized by their extent, which they “contain”.

Finally, the two verbal types (1) Subject and (2) Object are “easy”:

Sunshine and sun worship, these perfect opposites, fall under A→B and A←B, respectively. Surely the subject is the “source” of its own activity (in putting sunshine under A→B, we are merely adding Agent to Agency); and in sun-worship (A←B), the sun is that toward which the worship is directed.

Thus we see that both the referential and the relational types of Matzner-Jespersen can be included in our two pairs of relational criteria: the static ⑥ and ⑦, and the dynamic A→B and A←B (p. 365).

Hatcher concludes this part of her analysis by pointing out that the scheme she has developed has two advantages over the one she has just “torn to pieces”. Firstly, it is logically conceived, and therefore neater and more pleasing aesthetically; and secondly, it is far more comprehensive, and thus may “be able to account for all possibilities of determinative, non-appositional compounding in the English language,” which she suggests are surely not “endless”. At the same time she expresses the hope that her work represents not a “result”, but rather a beginning, and that it will offer “a more spacious framework” within which research dedicated to the proposition that “all compounds are endowed by their creators with the right to belong somewhere” may proceed more profitably and hopefully than before.

But Hatcher isn’t done yet. She recognizes that her framework leaves much to be desired: the four main categories are “comfortably vague and elastic”, but there is also a need for a more fine-grained set of sub-categories. Hatcher herself does not develop these, but she does suggest a way forward, this time based on Reference rather than Relation. To that end, she suggests a scheme based upon conventional criteria, utilizing a sevenfold classification of the noun (94). I will not pursue her idea here, fascinating though it is, because it is beyond the scope of my study.
Hatcher’s work is often cited (Citeseer, accessed 2018-05-30, counts 328 citations), but usually dismissed, often on less than scientific grounds. For example, Søgaard writes:

such an account is by definition both arbitrary (Bauer 1978; van Santen 1979) and incomplete because of the infinite set of compounding relationships. For illustration, try to place a compound such as *car thief* in [Hatcher’s] four-way typology. Is a car thief a ‘car in a thief’, a ‘thief in a car’, a ‘thief as the goal of a car’ or a ‘thief as the source of a car’? (Søgaard 2005: 320).

Unfortunately for Søgaard the last two paraphrases are incorrect: He has muddled up the order of A and B. The head of the construction (B) is *thief*, not *car*, so these two paraphrases should read: a ‘car as the goal of a thief’ and a ‘car as the source of the thief’. With the correct paraphrase, it is obvious that the car is indeed the goal of the thief (i.e. A  B). Søgaard’s objection must therefore be rejected.¹

Two authors that have taken Hatcher seriously are Noailly (1990) and Arnaud (2016). Noailly is interested in French “substantifs épithètes” (attributive nouns), i.e. nouns which occupy the position of N₂ in a noun phrase of the type *Art N₁ N₂*, where the two nouns N₁ and N₂ follow one another directly without an intervening preposition or pause (although they may be hyphenated). Since French binominals of this type (*cmp*) are left-headed, N₂ refers to the modifier, not the head: a *oiseau-mouche* [bird-fly] ‘hummingbird’ is a kind of bird, not a kind of fly. Noailly groups such nouns into four types based on the function they perform, viz. Qualification, Coordination, Complementation and Identification.

The type Qualification (e.g. *homme-grenouille* [man-frog] ‘frogman’) is defined as an N₁ “qui est un N₂”, and is thus an appositional compound in Hatcher’s terms. In Coordination (e.g. *moules-frites* [mussel-fries] “a popular main dish of mussels and fries originating in Belgium”) the two nouns are “ordonnés au même rang” and thus constitute a coordinate compound. Regarding Complementation, Noailly

¹ His objection is, alas, quoted uncritically by Eiesland (2016) and used by her to dismiss Hatcher.
suggests that it covers most determinative compounds (e.g. *oiseau-mouche*), except those that are grouped separately under Identification. This is the case when the modifier is a proper noun (e.g. *le président Pompidou*), and when the modifier (e.g. *chien*) denotes a subclass of the head (e.g. *espèce*), as in *l’espèce chien* [DET species dog] ‘*Canis familiaris*’. I won’t pursue this point here since our interest is in the category of Complementation, which Noailly subdivides by the four types of relation elaborated by Hatcher. No new insights emerge, but the very fact that Noailly, contra Søgaard, does not appear to encounter any problems in applying Hatcher’s scheme to her data is very encouraging for the present work. I am indebted to Arnaud (2016) for bringing Noailly’s work to my attention. But my debt to him goes far beyond that, to the extent that he deserves a section of his own.

6.2.3 Extending Hatcher’s classification

Arnaud’s paper on categorizing the modification relations in French relational subordinative **NN** compounds is full of interesting observations, examples and discussion, and I cannot do it justice here. The interested reader is encouraged to consult it directly. In the present context it is mainly noteworthy for the fact that Arnaud first develops his own highly granular classification, and then maps it onto Hatcher’s scheme, which is what I will do with Bourque’s classification (§6.3.3).

Arnaud’s classification is based on a database of 949 French binominals of type **cmp**, which he dubs “les composés timbre-poste” (‘postage stamp compounds’, Arnaud 2003). As none of the then-existing taxonomies of semantic relations seemed satisfactory, he decided to start from the data up, applying the principles of cognitive linguistics, “in particular the idea that relations are emergent phenomena which gain psychological existence” (p. 71). After the first stage of work based on 809 compounds, he ended up with 54 categories, each with a definition of the type shown in (95).

(95) a. **NON-HEAD** (concrete, discrete) is one of the parts of **HEAD**
 tailleur pantalon [suit trouser] ‘trouser suit’
 b. **NON-HEAD** is the container of **HEAD**
 bière bouteille [beer bottle] ‘bottled beer’
 c. **NON-HEAD** is the origin (general) of **HEAD**
 arrêt maladie [stop sickness] ‘sick leave’
 d. **NON-HEAD** is the goal/the purpose/the object (general) of **HEAD**
 carte réponse [card answer] ‘answer (post)card’
In the second stage, in which he analysed a further 140 compounds, Arnaud was obliged to adapt some of his categories slightly and to add four new ones, which confirmed for him “the frequently expressed opinion that a categorization of compounds cannot be exhaustive” (p. 82). However, he also notes that we are “clearly in a situation of diminishing returns, since most of the units in the second dataset were accounted for by already identified relations.”

Next Arnaud applies his taxonomy to a random sample of 200 compounds drawn from a dataset of 3000 lexicalized English NN compounds. Once more he was obliged to modify a few categories and add some new ones, but no more than six. This is remarkably few considering that compounds are considerably less numerous in French than in English, and that French has an entrenched competing N PREP N construction that is preferred for some types of relation (for example, habitat and part-whole), as Arnaud himself points out (p. 89). Again, this suggests that the number of relations required at any given level of granularity will tend to flatten out and not increase indefinitely.

Of most interest to us is that Arnaud now proceeds to map his set of 58 empirically derived (low-level) relations to Hatcher’s set of four logically derived (high-level) relations. For the most part, this is plain sailing, as seen in (96). In each of the four examples the first line gives Arnaud’s label for his low-level relation, the second provides an illustration, and the third shows the mapping to Hatcher’s high-level relation. At this point the reader is advised to recalibrate her brain and think of A and B as denoting, not the first and second constituent, but the Attribute (modifier) and the Base (head). This is because Arnaud’s (French) examples are all head-initial, whereas Hatcher worked with head-final (English) data. While A and B work well for modifier and head in English, the order can be confusing in French. Alternatively, the reader can continue to think in Hatcher’s terms and focus on the English translation rather than the French word or gloss.

1. Two responses come to mind: first, a situation of diminishing returns might suggest something like a cumulative Pareto curve (left), which flattens out at some point; second, as noted above on page 186, the number of relations one posits will always be a function of the degree of granularity one aspires to and can range anywhere from one (IS RELATED TO) to however many one has the patience to enumerate.

2. He also examines how Jackendoff’s model (see page 185) can be applied to French compounds.
(96) a. NON-HEAD (concrete, discrete) is one of the parts of HEAD
tailleur pantalon [suit trouser] ‘trouser suit’

\[A \subseteq B \quad \text{(trouser } \subseteq \text{ suit)} \]

b. NON-HEAD is the container of HEAD
bière bouteille [beer bottle] ‘bottled beer’

\[A \supseteq B \quad \text{(bottle } \supseteq \text{ beer)} \]

c. NON-HEAD is the origin (general) of HEAD
arrêt maladie [stop sickness] ‘sick leave’

\[A \rightarrow B \quad \text{(sickness } \rightarrow \text{ leave)} \]

d. NON-HEAD is the goal/the purpose/the object (general) of HEAD
carte réponse [card answer] ‘answer (post)card’

\[A \leftarrow B \quad \text{(answer } \leftarrow \text{ card)} \]

We see that Arnaud’s bottom-up deduction melds neatly with Hatcher’s top-down induction. Or at least, it almost does. Arnaud did have problems with some units that he feels do not correspond to one of the four abstract categories. One example is régime jockey [diet jockey] ‘jockey diet’, which denotes a diet that is typical of jockeys. To cater for these cases, Arnaud feels obliged to create a fifth category, ANALOG (not to be confused, he insists, with the attributive relation). In all, four “supplementary abstract categories” were necessary (97).

(97) a. ANALOG (denotes analogy in an aspect of the head)

b. BE (denotes a state of the head)

c. NON-HEAD SYMBOLIZES HEAD

d. NON-HEAD SYMBOLIZED BY HEAD

Arnaud himself notes that all four of these categories are “marginal” compared with Hatcher’s initial four, but all the same, they show, in his opinion, that Noailly and Hatcher “erred on the side of abstraction”. But what does it mean to err on the side of abstraction? If anything, surely Hatcher’s categories were not abstract enough to accommodate his difficiliora. But is it true that they cannot do so? In order to find out, it will be very much worth our while to examine in turn each of the 12 low-level relations that seemed to Arnaud to justify the creation of his four new high-level relations.

ANALOG

Arnaud’s first new high-level category, ANALOG (97a), is exemplified, as we have seen, by régime jockey (98a), a diet that is typical of jockeys. But when A typifies B, does it not characterize B? And did not Hatcher subsume Characterizing Feature under A \subseteq B? If so, that is where régime jockey properly belongs; no new high-
level category is required in order to accommodate it. In Arnaud’s low-level scheme it is classified under “NON-HEAD has or includes HEAD (of a kind that is specific to it) / ‘NON-HEAD type HEAD’”, along with 36 other examples which he does not list here.¹ It seems likely that most, if not all, examples of this particular subtype of ANALOG can be placed with régime jockey under A ⊆ B, such that this subtype, at least, does not demand the creation of the new high-level category.

Three other low-level relations are used to justify the creation of ANALOG (98b-d). Let us examine each of them to see if they really do. (It will turn out that one of them does.)

(98) ANALOG (four subtypes, 62 instances)
 a. NON-HEAD has or includes HEAD (of a kind that is specific to it) /
 ‘NON-HEAD type HEAD’
 régime jockey [diet jockey] ‘jockey’s diet’
 b. NON-HEAD is an entity which analogically identifies HEAD (abstract, discrete)
 style nouille [style noodle] ‘noodle style’
 c. NON-HEAD is that on which HEAD was identified
 facteur rhesus [factor rhesus] ‘rhesus factor’
 d. NON-HEAD names analogically a perceptual characteristic of HEAD
 brasse papillon [breast_stroke butterfly] ‘butterfly stroke’

Turning to (98b), Arnaud has 11 instances of this low-level relation in his database. If they are all of the same nature as style nouille (the example he gives), they will all fit nicely under A ⊆ B (together with régime jockey), for what are noodles in this context but an (A)ttribute that characterizes a style, the (B)ase?

The low-level relation in (98c) has but one exemplar in the database. I consider it a little overzealous to define a whole low-level category for the “X identified on Y” relation, but it is not forbidden: as noted above, the researcher gets to decide the level of granularity she requires for the purpose of her investigation. But how this category is mapped to Hatcher’s scheme is not subjective; it has to be rigorous. Now, is it or is it not a Characterizing Feature of the rhesus factor that it was identified on rhesus monkeys? If so, A ⊆ B is once again the appropriate home.

The fourth low-level relation used to justify ANALOG (98d) presents a different and more interesting case. Here there can be no doubt that some kind of analogy is at

¹ Most of them can be found in his earlier work (Arnaud 2003). Due to time constraints I have not been able to examine all of them.
work. But is *brasse papillon* really a non-appositional compound? If, instead, it is appositional, then it falls outside Hatcher’s scope (recall that she restricts herself to non-appositional compounds). This, of course, raises the question of what we mean by appositional, and who better to turn to than Hatcher herself and her (1952) paper on *Modern appositional compounds of inanimate reference*. Here, again, I must quote at length. According to Hatcher,

With any appositional compound AB we are offered two names for the same object, the first name, obviously, representing a modification, a further classification, of the second. There are, basically, only two types of modification possible: an object belonging to class B (*stone*) may be assigned to a subdivision of that class (*pumice*), in which case we have to do with the relationship between the species and genus (*pumice stone*); or again, an object seen as belonging primarily to class B (*oil*) may also be assigned to a different, but complementary, class A (*fuel*): with *fuel oil* we might speak of ‘cross-classification’. In both cases alike, the creation of the compound AB suggests the predication: ‘B is (also) A’. With pumice stone, however, this is a necessary relationship, valid for all examples of A and B: A is, by definition, a [subdivision of the class] B. This is not true of *fuel oil*, which rests on no generic assumption, but suggests only the possibility that a certain type of fuel and a certain type of oil might coincide (p. 4).

On the face of it, this definition would seem to exclude Arnaud’s *brasse papillon* (98d) from the category of appositional compounds, since the butterfly stroke is not a kind of butterfly; it is only a kind of (breast) stroke. Therefore it cannot, by this definition, be an instance of either the species-genus subtype or the cross-classification subtype of appositional compounds. However, Hatcher goes on to subdivide the latter subtype as follows:

By means of the device of cross-classification, it is possible to apply to a given entity a second name denoting: (1) the function thereof; (2) the status; (3) a characteristic descriptive feature (p. 4).

For (1) she gives the example *fighter plane*\(^2\) (which she incidentally makes a point of distinguishing from *fighter-bomber*, considering the latter to be a copulative compound, since the two classes to which it is assigned are mutually exclusive). Among

1 The distinction between species-genus and cross-classification is related to two of Jackendoff’s functions, BE and KIND, about which he comments nicely: “Note the distinction between [witch doctor, BE] and [puppy dog, KIND]. A witch doctor is both a witch and a doctor, and a puppy is both a puppy and a dog. But a puppy is, more specifically, a kind of dog, whereas a witch is not a kind of doctor” (p. 27-28).

2 A disconcerting number of Hatcher’s examples are military, reflecting the sad state of the post-war world at the time she was writing.
Hatcher’s examples of type (2) are *mother country*, “in which we find a reference to status (‘B is [has the rank, value of] A’)”, and *biography sensation*. Hatcher then observes that

in all the examples of the type *biography sensation*, and in many single examples of the other types, we have had to do with hyperbole or metaphor. When we come to the third type of compound of cross-classification, in which an object is defined according to its most picturesque feature, a metaphor will always be involved” (p. 7, emphasis added).

Clearly, *mother country* is an example of exactly this, for it is a subclass of mother only in a metaphorical sense. When we turn to type (3), in which an entity is given a second name that denotes a characteristic descriptive feature, we find amongst the examples the word *butterfly table*, about which Hatcher has this to say:

The fact is that when the object of comparison is a material entity, the whole simile is apt to rest upon only one detail: in a *butterfly table* shape alone is involved and none of the iridescent, airy, fragile essence of the butterfly is suggested (p. 8).

The parallel with *brasse papillon* is plain to see. The definition originally offered for the cross-classifying type of appositional compound (“an object seen as belonging primarily to class B may also be assigned to a different, but complementary, class A”) is not as Aristotelian as one might have thought: it permits metaphorical extension of the prototype. The conclusion must therefore be that *brasse papillon* is to be regarded as an appositional compound, parallel to *butterfly table*, at least in Hatcher’s scheme, which of course is the one Arnaud is applying. Consequently it should come as no surprise to Arnaud that the four-way classification she devised for non-apppositional compounds does not cover this (appositional) case.

But acquitting Hatcher for “err[ing] on the side of abstraction” does not allow us to disregard the case of *brasse papillon*: we still need to account for it somehow, as Arnaud does by introducing the category ANALOG (which I have reduced from 62 to 13 exemplars, having reassigned three of his four subtypes (98a-c) elsewhere). We clearly need a new high-level category for appositional compounds like *brasse papillon*; the only question is whether ‘analog’ is the best label for it. Compared to Hatcher’s logically defined pair of reversible relations, both of them based on Contiguity, ‘analog’ seems less than satisfactory. It is time to return to Aristotle.

In my discussion of Janda’s work on “metonymy” in word-formation (§6.1.3) I made the point that the concept underlying both metonymy and the phenomenon discussed by Janda in derivation is Contiguity. I noted (fn. 1 on page 191) that Contiguity is one of three associative relations identified by Aristotle, the others
being Similarity and Contrast. Here I suggest that the associative relation underlying both types of appositional compound (species-genus and cross-classification), as well as Arnaud’s brasse papillon (and incidentally also coordinative compounds), is Similarity. Similarity is, of course, gradient: one thing can be more or less similar to another, the limiting case being that of Identity, when two things are so similar that we deem them to be identical.\(^1\) When we perceive things as being similar, we tend to group them into categories. Conversely, when we perceive them as being slightly dissimilar, we form subcategories – of the species-genus kind: a beech tree and an oak tree are sufficiently similar that we group them both under the more general concept of tree, but sufficiently dissimilar that biologists assign them to their own genera (Fagus and Quercus, respectively) under the family Fagaceae within the Plant kingdom.\(^2\)

The notion of Similarity thus accounts for both species-genus compounds of the type fuel oil and cross-classification compounds of the type pumice stone. Moreover, Similarity is what underlies analogy: we make analogies between things when we perceive them as being in some sense similar. In other words, just as Contiguity accounts for Hatcher’s four relations and for metonymy (as well as much else, as I shall claim in Chapter 8), Similarity accounts for both analogy and metaphor. It is important to note that the term Similarity is used here in a rather abstract sense, one that includes both identity and the taxonomic (species-genus) relation as well as similarity proper. Clearly it can be subdivided (I have just done so), but so can Hatcher’s high-level relations: Arnaud’s almost successful attempt to reduce his 58 relations to Hatcher’s four is simply the inverse of subdividing Hatcher’s four into his 58, or Bourque’s 25. Thus it seems that Similarity as a high-level category is at about the right level of generality or abstraction as those of Hatcher.

I conclude, therefore, that Hatcher’s scheme was not incomplete, since it was never intended to cover appositional compounds. However, it can easily be extended to do so by adding a third basic relation, Similarity, to supplement Hatcher’s two pairs, Containment (\(A \subset B, A \supset B\)) and Source/goal (\(A \rightarrow B, A \leftarrow B\)). The new relation is symbolized by the mathematical operator for “almost equal or equal to”, \(A \cong B\).

\(^1\) An example of (near-)identity would be Mandarin 毛发 mào.fà [hair,hair] ‘hair on human body’ (Ceccagno & Scalise 2006).

\(^2\) Compounds of the species-genus kind, sometimes called pleonastic, epexegetic or subsumptive compounds, are somewhat peculiar in that the head is essentially redundant. Is tree in oak tree a kind of classifier and, if so, what purpose does it serve? Vennemann (1996: 118; 2003: 318) offers the following explanation: “The addition of a clarifying generic head noun to an old name usually shows that the old name standing by itself was becoming obfuscate to the language users.”
For the limiting case of **Identity**, we may use $A \equiv B$; for the subtype **Similarity** (**proper**), $A \simeq B$ (“almost equal to”); and for the species-genus subtype involving **Taxonomy** I suggest the “Up Tack” $A \perp B$.\(^1\) This relation is reversible (cf. Bourque’s hypernymy relation in Table 28, with the basic example *oak tree* and the reversed example *bear cub*, and also the discussion of the latter in §6.3.2); we will therefore also need a genus-species subtype: ATB.

BE

Having now replaced Arnaud’s ANALOG with Similarity ($A \equiv B$), let us briefly apply ourselves to the other **difficiliora** that led him to define new categories, viz. **BE**; NON-HEAD SYMB HEAD; and HEAD SYMB NON-HEAD (99)–(101).

(99) **BE** (six subtypes, 23 instances)

a. NON-HEAD is the degree of quality of HEAD
 kirsch fantaisie [cherry(-brandy) fantasy] ‘fancy kirschwasser’

b. NON-HEAD is the style of HEAD
 opéra rock [opera rock] ‘rock opera’

c. NON-HEAD is the physical state of HEAD
 morphine base [morphine base] ‘morphine base’

d. NON-HEAD is the duration of the action/preparation of HEAD
 pulsar millisecond [pulsar millisecond] ‘millisecond pulsar’

e. NON-HEAD is the status (time) of HEAD
 match retard [match delay] ‘late match’

f. NON-HEAD is the status (space) of HEAD
 match retour [match return] ‘return match’

Arnaud groups six of his low-level relations into the new high-level category **BE** (99a-f). Like *brasse papillon, kirsch fantasie* (99a) is an instance of Hatcher’s third (characteristic descriptive) subtype of (appositional) cross-classification: that in which an object is defined according to its most picturesque feature, and therefore $A \equiv B$. In *opéra rock* (99b), rock denotes, as Arnaud says, the style of opera and is thus a Characterizing Feature, which, as we recall, Hatcher has under $A \subset B$.

The example in (99c), *morphine base*, is slightly more tricky and therefore worth examining in detail. Base refers to the form of the morphine, so *morphine base* is,

\(^1\) This symbol, also known as the falsum, is sometimes used to denote the “bottom type” in type theory, i.e. the type that has no values. While this has nothing to do with species-genus, the symbol is suggestive of *oak* and *beech* pointing up towards their co-hypernym, *tree* (right).
in a sense, both a type of base and a type of morphine: a fairly clear example of cross-classification, it might seem, perhaps of type 2, in which the modifier denotes the status of the head. But Hatcher (1952) has no parallel examples; instead, she has an extended discussion in her 1960 paper of the “great” type exemplified by *mountain range*. This is worth quoting in full, because it touches on the difficulty (“in a few cases”) of distinguishing between the four main relational categories:

Can one always recognize ₡, ₢, A→B and A←B? I should say that if we understand the meaning of our compounds and if we have a decent corpus of examples, we will, mainly, not have to hesitate. And in the few cases where choice appears difficult, we may find that the difficult types come in great blocks. Consider mountain-range, and the many other compounds in which B refers to shape, mass, extension: land mass, sand dune; sandpile (ragpile etc.), haystack; shell mound, dung hill; melon balls, snowball, snowflake (soap-flakes), snowdrop, tear drop, chocolate drop, butter pat, sugar-loaf and many, many others (a type never before isolated, to my knowledge). Shall we assign these to ₡, as representing subtle variants of Material? Compare smoke ring and gold ring; snowball and rubber ball; sand bar and iron bars. Or perhaps they belong under ₣; perhaps in snowball the real entity is snow, and ball refers only to an aspect of this entity, to its shape; must not an entity contain its own shape and not the reverse? And if sugarloaf, for example, is placed under ₡, it will offer a perfect contrast to loaf sugar (print butter, etc.), which can only be interpreted as ₡.

But is it really true that in snowball the second element represents only an aspect of the first? Is it not more natural to think of ‘a “ball” containing snow’ than of the reverse? Perhaps, after all, snowball and sugarloaf belong under ₡. This would mean, of course, that ₡ must then accommodate both sugarloaf and loaf sugar – an apparent absurdity. How, how, shall we classify sugarloaf and snowball, these reminders of the philosophical problem of Entity and Aspect? Whatever the answer, I know at least that we can find hundreds of examples of the easily recognizable, snowball type: it is a “great” type. Thus we should not worry overmuch; the great types abide our classification; our first task is to isolate them (footnote 22, p. 372).

It is not my intention to adjudicate on this matter here. The point is that, whatever the difficulties involved in analysing mountain range, snowball – and morphine base, which I claim is of the same type – these all clearly belong to one of Hatcher’s four categories (either A ⊂ B or A ⊃ B), and therefore do not justify the creation of Arnaud’s new category, ANALOG.

As for the other subtypes of BE, in (99d) millisecond is the period of the pulsar, an extent (in time), and thus belongs in A ⊂ B (cf. Figure 46 on page 198); in (99e) the delay characterizes the match, hence also A ⊂ B, and the same applies to return in
Consequently I contend that all six subtypes of BE belong elsewhere and that BE can be dispensed with altogether.

SYMB

I turn now to Arnaud’s last two innovations, NON-HEAD SYMB HEAD (101) and HEAD SYMB NON-HEAD (100), each of which has just one subtype, with five and 24 exemplars, respectively. I will deal with the second of these first.

(100) **HEAD SYMB NON-HEAD** (one subtype, 5 instances)

NON-HEAD is represented/symbolized by HEAD

franc or [franc gold] ‘gold franc’

According to Wikipedia (accessed 2018-05-24) franc or received its original name because it contained a certain amount of gold (290.034 mg, to be precise), and not because it symbolized gold in any way. It is therefore exactly parallel to gold ring, the paradigm example of Jespersen’s Material type, which Hatcher merged with Characterizing Feature to constitute her $A \subset B$ (cf. Figure 46). That the franc or later came to symbolize gold is hardly relevant to the relation between its constituents at the time it was coined (excuse the pun). Since this is the only subtype of HEAD SYMB NON-HEAD, and since it fits neatly into a pre-existing Hatcher category, there is no need for a new one.

(101) **NON-HEAD SYMB HEAD** (one subtype, 24 instances)

NON-HEAD represents/symbolizes HEAD

pierre papier [stone paper] ‘shares in real estate’

The exemplar given for the last new category, pierre papier (101), is something of an oddity. We have first to ask, what is the head? Is a share in real estate a kind of stone or a kind of paper? The latter seems far more plausible to me, given that paper is often used to “symbolize” an abstract value metaphorically. But in that case, pierre papier, unlike every other (French) compound that we have so far discussed, is right-headed, not left-headed. This is indeed strange! The fact that this new category is the inverse of the previous one also alerts us to the strangeness of this form, for it is easy to imagine how B (the head) might symbolize A, but how can A (the non-head) symbolize B? Why would B need to be symbolized if it is the head? I have come to the provisional conclusion that this must be a word-formational

1 In fact, it started out in 1803 as the Franc germinal (named after the month Germinal in the French revolutionary calendar). I have been unable to ascertain when the name changed to franc or (or franc- or).

2 Recall the ISA condition (page 109).
rarum and that the explanation must be sought in diachrony. According to the French Wikipedia (accessed 2018-05-24):

It is difficult to say exactly when this neologism appeared; presumably, it had to be born in the 1970s before being used more regularly in the 80s and 90s. Its author or authors were inspired by the concept of gold-paper [d’or-papier] used to designate all the forms of investments in gold other than the purchase of physical gold (gold mines, certificates, trackers, etc.) [my translation].

The word d’or papier corresponds very closely to the English gold certificate, a well-behaved Germanic right-headed compound. The French word, on the other hand, is decidedly unruly. A well-behaved French prepositional compound is an instantiation of the construction Head PREP Mod, like our old friend, chemin de fer. Here, however, we seem to have PREP Mod Head, indicating that papier is the head. (The alternative, PREP Head Mod is simply too weird to countenance.) This would appear to indicate that d’or papier was calqued from gold certificate, copying the very un-French head-final word order, but without abandoning the traditional French prepositional word-formation strategy altogether. Later on, perhaps in the 1970s, an age of greatly increased English influence, pierre papier was coined on analogy with d’or papier (*stone paper does not exist in English), but streamlined and anglicized by the removal of the preposition. Much of this is speculation, but it is the most plausible explanation that I have come up with. If it is correct, then papier ‘paper’ is the head and pierre ‘stone’ is yet again a feature which characterizes the head, used metonymically to denote land, or real estate. Consequently, the word belongs in A \(\subseteq B\). This becomes even more clear if we consider a further comment Hatcher makes regarding this category:

\[\text{\(\subseteq\)}\text{ means “A is somehow comprehended in B; B somehow comprehends A, involves A, concerns A, is ‘about’ A” (p. 366, emphasis added).}\]

What does the paper in pierre papier concern? What is it ‘about’? Answer: stone, i.e. real estate.\(^1\) Given that the only exemplar of the only subtype of the new high-level category NON-HEAD SYMB HEAD belongs elsewhere, this category, too, can be dispensed with.

Summary

I have now shown that all but one of the 12 low-level categories used to support the creation of Arnaud’s four new high-level categories can be accommodated

\(^1\) Incidentally, Hatcher (1960:366, fn. 16) has an nice comment regarding the etymology of ‘about’: “Note that OE abutan < on butan meant ‘on the outside of’, i.e. ‘containing’.”
elsewhere. This indicates that Hatcher’s system holds even better than Arnaud himself believes: in point of fact, it is 100% water-tight, provided appositional compounds are not brought into the equation. And when they are, a single new high-level category suffices to cater for them, that of Similarity, $A \equiv B$.

To summarize: While there is much to admire in Arnaud’s paper, and while I am indebted to him for the idea of mapping from a low- to a high-level classification (an idea which I adopt myself in §6.3.3), I strongly dispute his contention that Hatcher’s four types do not cover all of his non-appositional compounds. I do recognize the need for a new high-level category to accommodate one of his low-level types, but I propose we name it Similarity rather than analog, in order not to deviate unnecessarily from Aristotle, and to employ the notation $A \equiv B$. In taking this measure, Arnaud and I, between us, have upgraded Hatcher to version 2.0; we have catered for appositional compounds while staying loyal to the spirit of her enterprise. The new system is summarized in (102) and (103), in which I have taken the further step of replacing Hatcher’s A and B with M (for modifier) and H (for head), in order to make it more suitable for cross-linguistic comparison. Hatcher drew attention to the fact that her four relations comprised two pairs, which she characterized as “static” and “dynamic” (see page 199). I have recast them in terms of two superordinate relations, CONTAINMENT and CAUSATION (or source/goal). The four-letter codes in italics are the codes used in the database.

(102) **Contiguity-based**

CONTAINMENT

(a) $M \sqsubset H$ $HinM$ “H is contained in M” (*orange seed*)

(b) $M \subset H$ $MinH$ “M is contained in H” (*seed orange*)

CAUSATION (source/goal)

(c) $M \leftarrow H$ $HtoM$ “M is the destination of H” (*sugar cane*)

(d) $M \rightarrow H$ $MtoH$ “M is the source of H” (*cane sugar*)

(103) **Similarity-based**

SIMILARITY

(e) $M \equiv H$ $MisH$ “H is similar or identical to M”

Similarity has three subtypes (104), one of which is reversible:

(104) Subtypes of Similarity

(i) $M \approx H$ “H is similar to M” (*butterfly table*) cf. Bourque’s SIMILARITY

(ii) $M \equiv H$ “H is also an M” (*fighter-bomber*) cf. COORDINATION

(iii) $M \perp H$ “M is a subtype of H” (*oak tree*) cf. HYPERNYMY (Basic)

$M \uparrow H$ “H is a subtype of M” (*bear cub*) cf. HYPERNYMY (Reversed)
In addition we might posit a third high-level category (105), based on the third of Aristotle’s associative relations, Contrast, which could be regarded as the opposite of Similarity, just as A \supset B is the opposite of A \subset B, and A \leftarrow B is the opposite of A \rightarrow B. The relation of Contrast is not required for the categorization of binominals in my data, but it belongs here in order to complete the picture, since we know that the combination of two thing-roots denoting opposites does occur, as in the case of Chinese 东西 dōnxī [east.west] THING (Ceccagno & Scalise 2006: 238).1

(105) **Contrast-based**

CONTRAST

(f) M<>H \textit{MnotH} “H is the opposite of M”

(Chinese 东西 dōnxī [east.west] ‘thing’)

Hatcher’s system of two pairs of relations is thereby turned into a system of three pairs of relations. It is still, in Hatcher’s words, “logically conceived, and therefore neater and more pleasing aesthetically” (I would claim) than Arnaud’s extension. It is also “far more comprehensive”, in that it now also includes appositional and co-ordinative compounds, in addition to non-appositional.

6.3 Classifying binominals

In preceding section I provided a brief overview of previous studies on semantic relations in compounding; showed how the work of Bauer/Tarasova and Janda provides grounds for optimism that the same kinds of relations apply to binominal lexemes in general; described in some detail the systems developed by Bourque and Hatcher that I have harnessed in my own work; and, with the help of Arnaud, shown how Hatcher’s system can be extended to cater for coordinate compounds and both types of determinative compound: appositional and non-appositional. In this section I describe the application of both Arnaud’s and Hatcher’s systems to the binominals in my database. But before doing so, I need to rant a bit.

<rant>

Researchers working on semantic relations have a tendency to reinvent the wheel by developing their own systems of classification.2 As far as I am aware, none of the work mentioned earlier in this chapter was conducted exclusively on the basis

1 The phenomenon is more common when two property-roots are combined: 高矮 gāoǎi [high.low] HEIGHT, 大小 dàxiǎo [large.small] SIZE and 长短 cháng.duǎn [long.short] LENGTH.

2 I did the same in my study of nominal compounding in Nizaa (Pepper 2010b), so I am as guilty as anyone.
of another researcher’s system, with the single exception of Bauer and Tarasova (2013), who were not concerned with the actual set of relations, but only whether the same relations are found across different types of English Adnominal Modification constructions. (They chose Levi’s system simply because it is widely known and of a manageable size.)

This is extremely unfortunate, for how is science to advance if we are always going back to square one? It would be preferable if the community of researchers were to build on each other’s work, making minor improvements along the way, with the goal of progressing towards consensus on a small number of well-tested and interlocking classifications, suitable for a variety of purposes. Apart from Bourque, only Ryder and Arnaud are excused: Bourque because his system was one of relations retained from previous ones; Ryder, because her work was based around a psycholinguistic experiment in which the whole point was to allow the relations to emerge from users’ responses; and Arnaud because he tested, reused and developed Hatcher’s system (albeit after developing his own classification).

What is the reason for this unwillingness to build on the work of other researchers? (Of course, everyone reviews previous work, because that is what we are supposed to do, and no doubt some insights get reused when studying the kinds of relations that others have identified; in that sense one is building on the work of one’s predecessors. But that is not the same as working towards the common goal of a robust, flexible solution that has been tested against different kinds of data from a large range of languages.) The first reason is that the material we are dealing with is notoriously slippery; semantics is hard to pin down because the only place it exists is in our minds: getting inside someone else’s head is not easy, and it is made more difficult by the fact that many systems are rather poorly documented. How, then, are we supposed to know what the researcher intended? The second reason, I think, is that judgements regarding the nature of a semantic relation are subjective and dependent on the level of granularity one needs: some might regard Levi as being too vague and high-level, others (Hatcher, no doubt) would find her too low-level (and too unsystematic). The third reason is that no system is perfect (with the exception of Hatcher’s), and it is easy to spot inconsistencies and errors in other people’s work; we see them and think: This is no good, I can do better!

At least, that is what I did in 2010. I rejected Levi, for her use of schematic English verbs and prepositions (HAVE, BE, FOR), as too anglocentric for my French translation equivalents, and likewise Jackendoff’s seemingly eclectic mix of the schematic (CLASSIFY) and the specific (PROTECT (FROM)). I very nearly adopted
Warren’s scheme, which appealed to me for its intuitive role-based naming system (e.g. \textit{WHOLE-PART} vs. \textit{PART-WHOLE}),\footnote{I discuss the notion of roles in more detail in \S\ 8.3 and \S\ 9.3.} but in the end I opted to “let the data speak for themselves” and to let the relations “emerge” during the analysis. In other words, I started from square one. In my defence, I was somewhat brain-damaged at the time, having spent the last ten years of my life constructing topic maps, for fun and for clients. Each time this involved getting acquainted with – and analysing – a new domain, which could be anything from Italian opera to pharmaceuticals to Pokemon to WALS. The analysis mainly involved identifying topic types and association types (\S\ 1.1.1) for the domain in question; the latter express semantic relations, albeit often of a more specific nature (e.g. \textit{COMPOSED-BY}) than the rather more general relations (e.g. \textit{PRODUCED-BY}) found in most classification schemes. So I thought I was an expert and could do better…

\textit{</rant>}

This time my approach is more in keeping with the spirit of reuse fostered by international standards such as SGML and Topic Maps, to each of which I devoted ten years of my life. And this time I am reusing not just one, but two pre-existing classifications: those of Bourque and Hatcher.

6.3.1 The Bourquifier

The reasons for adopting Bourque’s scheme were detailed above on pages 193ff, so I won’t rehearse them here. Instead, I begin by showing the presentation format Bourque uses for each of his 15 basic relations, illustrated for \textit{POSSESSION} in Figure 47. Each such summary is followed by up to four pages of detailed description. Note the test frames (templates), in both English and French; the examples in both languages; and the use of terminology (\textit{Head} and \textit{Modifier}) in the templates that is independent of constituent order.

<table>
<thead>
<tr>
<th>Relation Type</th>
<th>Structure Template</th>
<th>Examples</th>
<th>Linking Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>an H that possesses M \textit{un T qui possède M}</td>
<td>career girl \textit{punk à chien}</td>
<td>possess (have / of) \textit{possède (a / de)}</td>
</tr>
<tr>
<td>Reversed</td>
<td>an H that M possesses \textit{un T que M possède}</td>
<td>family estate \textit{droit d’auteur}</td>
<td></td>
</tr>
</tbody>
</table>

\textit{Figure 47: Bourque’s template for POSSESSION}
Once the head and the modifier of the compound have been identified, it is a simple matter to plug in them in to the templates to see whether the relations hold or not (106).

(106) (a) career girl
 Basic: a girl that possesses (a) career ✓
 Reversed: a girl that (a) career possesses ✗

(b) family estate
 Basic: an estate that possesses (a) family ✗
 Reversed: an estate that (a) family possesses ✓

But while it helps immensely to have such test frames, it takes some time to run through 25 of them for every one of over 3,700 binominals, and this increases the risk of errors creeping in. In order to alleviate this problem, I created an application in Excel, which I call the Bourquifier; shown in Figure 48 in its original version. To use it, one simply types in the binominal, modifier and head in the appropriate cells and all the paraphrases are automatically populated at the same time. I have illustrated this with Bourque’s example, family estate. The two POSSESSION relations (Basic and Reversed) can be found via the left-hand column and are labelled using the codes I originally devised for my database (POSS and POSS2). The latter is highlighted because it is the one I selected, after examining all 25 in the course of a few seconds, as being the most appropriate.¹

<table>
<thead>
<tr>
<th>The Bourquifier</th>
<th>Binominal (B)</th>
<th>Modifier (M)</th>
<th>Head (H)</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>family estate</td>
<td>family</td>
<td>estate</td>
<td>POSS2</td>
</tr>
<tr>
<td>Relation Code</td>
<td>Basic template</td>
<td>Reversed template</td>
<td>Example</td>
<td>Example</td>
</tr>
<tr>
<td>HYPERNYMY</td>
<td>a family is a kind of estate*</td>
<td>a estate is a kind of family*</td>
<td>oak tree</td>
<td>bear cub</td>
</tr>
<tr>
<td>COORDINATION</td>
<td>a family estate is a estate and a family</td>
<td>an estate that possesses a family</td>
<td>boy king</td>
<td>ant lion</td>
</tr>
<tr>
<td>SIMILARITY</td>
<td>a estate that is similar to family</td>
<td>a estate that possesses a family</td>
<td>ant lion</td>
<td>ant lion</td>
</tr>
<tr>
<td>FUNCTION</td>
<td>a estate that serves as a family</td>
<td>a estate that serves as a family</td>
<td>buffer state</td>
<td>buffer state</td>
</tr>
<tr>
<td>POSSSESSION</td>
<td>a estate that possesses a family</td>
<td>a estate that possesses a family</td>
<td>career girl</td>
<td>family estate</td>
</tr>
<tr>
<td>PART</td>
<td>a estate that is part of a family</td>
<td>a estate that is part of a family</td>
<td>table leg</td>
<td>wheelchair</td>
</tr>
<tr>
<td>LOCATION</td>
<td>a estate located at/near/in a family</td>
<td>a estate that is located at/near/in a family</td>
<td>window seat</td>
<td>bedroom</td>
</tr>
<tr>
<td>COMPOSITION</td>
<td>a estate made of family</td>
<td>a estate made of family</td>
<td>sugar cube</td>
<td>sheet metal</td>
</tr>
<tr>
<td>SOURCE</td>
<td>a estate (made) from family</td>
<td>a estate (made) from family</td>
<td>cane sugar</td>
<td>sugar cane</td>
</tr>
<tr>
<td>CAUSE</td>
<td>a estate that causes family</td>
<td>a estate that causes family</td>
<td>tear gas</td>
<td>motion sickness</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>a estate that makes family</td>
<td>a estate that makes family</td>
<td>honey bee</td>
<td>beeswax</td>
</tr>
<tr>
<td>TOPIC</td>
<td>a estate that is about family</td>
<td>a estate that is about family</td>
<td>history conference</td>
<td>history conference</td>
</tr>
<tr>
<td>TIME</td>
<td>a estate that occurs at/during family</td>
<td>a estate that occurs at/during family</td>
<td>summer job</td>
<td>golf season</td>
</tr>
<tr>
<td>USE</td>
<td>a estate that uses family</td>
<td>a estate that uses family</td>
<td>steamboat</td>
<td>hand brake</td>
</tr>
<tr>
<td>PURPOSE</td>
<td>a estate intended for family</td>
<td>a estate intended for family</td>
<td>animal doctor</td>
<td>animal doctor</td>
</tr>
</tbody>
</table>

¹ Of course, this does not happen automatically. The Bourquifier is not that smart. Yet.
A few more comments regarding the Bourquifier are in order. Blank areas on the right-hand side obviously indicate that the relation (e.g. COORDINATION) is not reversible. Also, the user has to figure out which articles to use: the Bourquifier is not able to figure out the count/mass noun status of the head and modifier, and in the version shown it here does not check for words beginning with a vowel. The templates for HYPERNYMY are marked with an asterisk because I felt a need to revise Bourque’s original (cf. Table 28 on page 195), for reasons that will be explained shortly. The Bourquifier was extremely easy to create, so everyone can have their own: all that is required is a fairly simple formula in each of the template cells, illustrated for the basic (a) and reversed (b) possession templates in (107).

\[(107) \quad \text{(a)} = \text{CONCATENATE}("a ";J2;" that possesses a ";I2) \]
\[(b) = \text{CONCATENATE}("a ";J2;" that ";I2;" possesses") \]

Thanks to the Bourquifier the task of assigning semantic relations to individual binominals became much faster and, I like to think, much more reliable. If the reader has any doubt on this matter, I invite her to turn back to the set of relations listed on page 195 and consider how she would handle the word beeswax; glance over the relations and decide which exact one (Basic or Reversed) is most appropriate. Think about the length of time the operation is taking, and consider having to repeat this for over 3,500 binominals. The correct solution is shown, along with all 24 incorrect ones, in Figure 49.

<table>
<thead>
<tr>
<th>The Bourquifier</th>
<th>Binominal (B)</th>
<th>Modifier (M)</th>
<th>Head (H)</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>beeswax bees</td>
<td>wax</td>
<td>PROD2</td>
<td>POSS2</td>
<td></td>
</tr>
<tr>
<td>Relation Code</td>
<td>Basic template</td>
<td>Example</td>
<td>Code</td>
<td>Reversed template</td>
</tr>
<tr>
<td>HYPERNYMY</td>
<td>HYP</td>
<td>a bees is a kind of wax*</td>
<td>wax is a kind of bees*</td>
<td></td>
</tr>
<tr>
<td>COORDINATION</td>
<td>COOR</td>
<td>a beeswax is a wax and a bees</td>
<td>boy king</td>
<td></td>
</tr>
<tr>
<td>SIMILARITY</td>
<td>SIM</td>
<td>a wax that is similar to bees</td>
<td>ant lion</td>
<td></td>
</tr>
<tr>
<td>FUNCTION</td>
<td>FUNC</td>
<td>a wax that serves as a bees</td>
<td>buffer state</td>
<td></td>
</tr>
<tr>
<td>POSSESSION</td>
<td>POSS</td>
<td>a wax that possesses a bees</td>
<td>career girl</td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>PART</td>
<td>a wax that is part of a bees</td>
<td>table leg</td>
<td></td>
</tr>
<tr>
<td>LOCATION</td>
<td>LOC</td>
<td>a wax located at/near/in a bees</td>
<td>window seat</td>
<td></td>
</tr>
<tr>
<td>COMPOSITION</td>
<td>COMP</td>
<td>a wax made of bees</td>
<td>sugar cube</td>
<td></td>
</tr>
<tr>
<td>SOURCE</td>
<td>SRC</td>
<td>a wax (made) from bees</td>
<td>cane sugar</td>
<td></td>
</tr>
<tr>
<td>CAUSE</td>
<td>CAUS</td>
<td>a wax that causes bees</td>
<td>tear gas</td>
<td></td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>PROD</td>
<td>a wax that makes bees</td>
<td>honey bee</td>
<td></td>
</tr>
<tr>
<td>TOPIC</td>
<td>TOP</td>
<td>a wax that is about bees</td>
<td>history conference</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>TIME</td>
<td>a wax that occurs at/during bees</td>
<td>summer job</td>
<td></td>
</tr>
<tr>
<td>USE</td>
<td>USE</td>
<td>a wax that uses bees</td>
<td>steamboat</td>
<td></td>
</tr>
<tr>
<td>PURPOSE</td>
<td>PURP</td>
<td>a wax intended for bees</td>
<td>animal doctor</td>
<td></td>
</tr>
</tbody>
</table>
Of course, it is not always plain sailing, as the quote from Hatcher on page 210 indicates; there are a few cases in which “the choice appears difficult”, but mainly, as she says, “we will not have to hesitate”. And even when we do have cause to hesitate, the difficulty is usually less extreme than in the example used by Hatcher. Mostly, the choice is between two, or possibly three, relations, all of which tend to be subtypes of one and the same high-level relation. For example, PROD2, Bourque’s PRODUCTION (Reversed), overlaps to some extent with CAUS2; many researchers (including Downing 1977, Warren 1978 and Vanderwende 1994) have reduced them to a single relation, as Bourque points out in his discussion of the matter (pp. 204-205). Jackendoff (2010) keeps them separate, as CAUSE(X, Y) and MAKE(X, Y), both of which are reversible, and notes that it is “sometimes hard to distinguish MAKE from CAUSE. Perhaps MAKE (X,Y) decomposes as CAUSE (X, (COME INTO EXISTENCE (Y))” (p. 441). He then proceeds to classify suntan under the one and sunburn under the other, which hardly seems consistent. In the case of beeswax, the paraphrases shown in Figure 49 make it rather clear that PROD2 is to be preferred to CAUS2. However, we should not be overly worried about such cases: gradience, as we know, permeates the whole of language, and this is just another example. Where we should be watchful is when the two alternative solutions are subtypes of different high-level types, but that is not the case here: both PROD2 and CAUS2 fit neatly into Hatcher’s A→B, as we shall see in §6.3.3.

It proved to be surprisingly easy to accommodate my 3,738 binominals within the Bourque scheme, but around 100 resisted classification. For the most part this was because the original motivation underlying the combination of concepts could not be ascertained without further information. In some cases this was simply due to the presence of a cranberry morpheme, as in Bezhta hâš c’ic’ [eye:GEN?] EYELASH. While this is undoubtedly a binominal that conforms to the Bezhta Mod.GEN Head schema, the semantic relation cannot be determined, for obvious reasons. In other cases the difficulty can be ascribed to unfamiliar beliefs or cultural practices, as may be the case with Takia tamol sos [man Derris_root] WIDOWER (mentioned earlier on page 110). All such situations were labelled opaque.

1 For the remainder of this section I will use codes like PROD, PROD2 (in both text and screenshots) for reasons of space, instead of labels like Production (Reversed). In the next section (§6.3.2) I present a revised version of Bourque’s classification, along with a revised set of codes. It is the latter that are used in the database and in the remainder of this work.

2 “Here, surely, Jackendoff is napping,” if I may be permitted to borrow Hatcher’s comment on Jespersen (1960: 357, footnote 3). Perhaps Jackendoff didn’t have a Bourquifier to help him! Kudos to Bourque (p. 205) for spotting this inconsistency.
The typology and semantics of binominal lexemes

For a handful of binominals (four in number), the motivation was clear, but the relation did not seem to fit any of the existing categories. All such cases involved words containing numerals used to denote days of the week, such as Iraqw *deelór tám* [day:OF three] WEDNESDAY and Áiwoo *dâbu mi.polee* [day BN:GNL seven]. It could be argued that such words do not belong in the database; they are, at best, extremely peripheral instances of binominal lexemes. Rather than introduce a new type of semantic relation to cater for them, they were assigned the code xrel1 and disregarded in the semantic analysis.

The code error was used to indicate data points where the word supplied by the contributor did not seem to denote the intended meaning. Examples include Yaqui *muumu jo’ara* [bee house] and Japanese *kaji.ya* [smith.shop], which purport to denote BEESWAX and BLACKSMITH, respectively. Since it combines the concepts ‘bee’ and ‘house’, the Yaqui word can be assumed to denote BEEHIVE, not BEESWAX; the likelihood that it colexifies BEEHIVE and BEESWAX is low, since the language has another word denoting the latter concept (*sito’ori*). As for Japanese *kajiya*, it denotes a place (the smithy) where the profession is carried out, not the profession itself. So, while both of these words qualify as binominals, encoding their semantic relations as POSS2 and LOC2, respectively, would muddle the later analysis.

Two sets of binominals initially posed a challenge. The first was a group of words that combine ‘man’ with a concept like ‘death’, ‘funeral’ or ‘misery’ in order to denote WIDOWER. None of Bourque’s paraphrases seemed satisfactory. However, upon reflection it became clear that these were covered by Jespersen’s Characterizing Feature which corresponds most closely to Bourque’s TOPIC.

The other set of meanings that at first seemed to indicate a gap in Bourque’s system is the professions: BLACKSMITH, CARPENTER, FARMER, FISHERMAN, HERDSMAN, POTTER and SHOEMAKER. These are not always denoted by binominals; in fact they exhibit a range of word-formation types, including OT 1–4, exocentric constructions and monomorphemic forms (Table 29).
<table>
<thead>
<tr>
<th>Type</th>
<th>English</th>
<th>BLACKSMITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomorphemic</td>
<td>carpenter</td>
<td>Finnish seppä</td>
</tr>
<tr>
<td>Onomasiological Type 1</td>
<td>shoe.make.r</td>
<td>Ket ē.ted.s [iron.hit.NMLZ]</td>
</tr>
<tr>
<td>Onomasiological Type 2</td>
<td>farm.er</td>
<td>Navajo 'atsid.ii [he_pounds.NFE]</td>
</tr>
<tr>
<td>Onomasiological Type 3</td>
<td>pott.er</td>
<td>Mandarin Chinese duan4.gong1 [forge.worker]</td>
</tr>
<tr>
<td>Onomasiological Type 4</td>
<td>black.smith</td>
<td>black.smith</td>
</tr>
<tr>
<td>Exocentric</td>
<td>NA</td>
<td>Hawaiian ku`i hao [strike iron]</td>
</tr>
</tbody>
</table>

Table 29: Variety of word-formation types – professions

In most binominals denoting professions, the head is either a thing-root denoting a person (usually glossed as man, artisan, professional, doer, worker or guard), or an agentive affix, like the English -er. The modifier denotes entities such as hoof, iron, hammer, anvil or forge (BLACKSMITH); wood, table or house (CARPENTER); earth, field, garden, farm, land or plough (FARMER); fish, bait or fishhook (FISHERMAN); animal, livestock, cattle, cow or pasture (HERDSMAN); pot, clay or ceramics (POTTER); and boot, shoe or embroidery (SHOEMAKER). These appear to involve a vast range of relations, some of which fit nicely into Bourque’s scheme: USE for a blacksmith with her hammer and anvil, and also her iron (albeit as a material rather than a tool); PROD for a carpenter making a table, a potter making ceramics or a shoemaker making shoes. But then, a fisherman catches fish, a farmer cultivates her field or garden, and a herdsman tends her animals; they neither use nor produce them. Where do they fit into the scheme? What is the relation between a blacksmith and a hoof? And is there not a sense in which we would like all of these to fall under a single relation: “has as profession or occupation”, or simply “occupied with”? Let us see how some previous researchers addressed the problem.

In her corpus of novel compounds in Norwegian Eiesland (2016) has a number of words in which the second constituent mann ‘man’ is typical of compounds that denote professions: bensin.mann [petrol.man] “man who prefers petrol-driven cars to electric”, stigemann [ladder.man] “man seen climbing a ladder at the site of a fire”, and ekspedisjon.s.mann [expedition.LE.man] “expeditioner, man who goes on expeditions.”¹ The first two are classified under her relation “characteristic part”

¹ None of these are found in dictionaries, so I have inferred the meanings from their use on websites: expedisjonsmann: https://www.dagbladet.no/nyheter/vennene-minnes-arne/65939753; bensinmann: http://www.agderposten.no/kjop-tilgang?ald=1.1575557; stigemann: https://www.adressa.no/nyheter/trondheim/bybrannene/prinsen_brannen/article69130.ece (all accessed 2018-05-31).
and the last under “part of a whole”. None of them have much to do with profession, with the possible exception of the latter; but while “part of a whole” (Bourque’s PART: “a man that is part of an expedition”) is a reasonable reading, this example serves primarily to add yet another possible relation to the mix of professions.

Jackendoff has violinist and street singer among his examples. To handle the former (as profession, rather than occasional activity or ability), he employs the function OCC (occupation) which appears as if out of a hat (108a), combining it with PLAY (also not a basic function). Two non-basic functions are thus required to cater for this particular profession. For street singer, three functions are employed: OCC (or CHAR), SING and BE (108b). Jackendoff’s functionally based system is much more powerful than the usual fixed set of categories, but in this study I have committed to the latter, so Jackendoff is not of much help, apart from the fact that he recognizes profession (or occupation) as a significant relation.

\[
\begin{align*}
(108) &\quad (a) \quad \text{violinist} = \text{PERSON}_2^\alpha; \quad \text{[OCC (PLAY (\alpha, \text{VIOLIN}_1))]} \\
&\quad (b) \quad \text{street singer} = \text{PERSON}_2^\alpha; \quad \text{[OCC/CHAR ([SING}_3^\beta(\alpha); \text{[BE (\beta, IN STREET}_1)]})]
\end{align*}
\]

Once again Hatcher comes to the rescue, pointing out that Mätzner’s fifth type, “A=that with which a Person B concerns himself or works” (ale-wife, blacksmith etc.) “is superfluous, being a subdivision of Purpose” (fn. 12, p. 362). Jespersen’s Purpose, as we recall, was subsumed by Hatcher under A←B (see Figure 46 on page 198). She is followed by Arnaud, who assigns his low-level relation ‘NON-HEAD is the object of the typical activity of HEAD’, systems engineer to the same high-level category. Thus, the answer to the problem of profession is clear: it belongs under PURP, which I will map to A←B in §6.3.3.

To sum up, the task of classifying my 3,500+ binominals according to Bourque’s system was surprisingly unproblematic, thus testifying to the comprehensiveness of the system and the quality of the documentation, as well as the usefulness of the Bourquifier. However, the system could be further improved with a few tweaks. These are discussed in the next section.

6.3.2 Bourque2

There were some minor errors in Bourque’s classification (as is only to be expected given its complexity), and also room for improvement in a few areas. Here I deal in turn with relations, reversibility, codes, templates and examples.
Relations

Most of the names used by Bourque denote conceptual relations (or one of the roles of a conceptual relation) with one exception: HYPERNYMY denotes a lexical relation. For consistency I propose to use TAXONOMY instead.

For clarity it is also desirable to avoid using the same name for a relation and one of its roles, especially when there is a need to distinguish between the relation in general and one of its directions (Basic or Reversed). I therefore propose to rename the relation PART, one of whose roles is itself ‘part’ (the other being ‘whole’); the label PART-WHOLE would do, but there exists a widely established term for this kind of relation, namely MERONOMY, which I prefer.\(^1\) For the same reason I opt to use CAUSATION instead of Bourque’s CAUSE; TEMPORALITY instead of TIME; and USAGE instead of USE. In some cases it is difficult to find a suitable alternative; this applies to FUNCTION, PURPOSE and TOPIC. However, all of these are non-reversible and so the problem of distinguishing between the general relation and one of its directions does not arise. One such issue remains unsolved and that is the SOURCE relation, where the roles are ‘source’ and ‘result’. Finding no suitable alternative, and deeming SOURCE-RESULT to be too unwieldy, I leave the name of this relation unchanged.

In addition I propose to shorten Bourque’s PURPOSE AND PROPER FUNCTION to just PURPOSE, since the element of intentionality expressed by ‘proper function’ seems to be inherent in the latter. This also avoids confusion with another relation called simply FUNCTION, which does not involve intentionality.

One might question whether one needs both relations. Could they not be subsumed under something more general? The answer, is yes, they could, and later on I will claim that any two relations can be combined into a more general relation, and that any relation can be subdivided into more specific relations. The crucial question is not whether categories can be lumped together or split apart, but what purpose this serves and what costs are involved. One cost of lumping is that paraphrases become much more vague and harder to apply; a cost of splitting is that the boundaries between different categories become much more fuzzy and more data is required in order to populate each category with sufficient data for statistical analysis. My experience applying Bourque’s system is that the level of granularity he has chosen achieves the right balance for the practical purpose of classification, and I therefore opt not to tinker with it more than necessary. It will turn out later that Bourque’s

\(^1\) This term is more general than meronymy, which is specific to linguistics.
system is in some respects too fine-grained for the purpose of statistical analysis, but the problems this presents are overcome by the mapping to Hatcher’s high-level system.

Similar considerations apply to the decision not to combine PURPOSE and USAGE, as might seem reasonable. To take Bourque’s example, it is true that a *hand brake* (“(a) brake that (a) hand uses” = USE2) is also “(a) brake intended for (a) hand” (= PURP). However, the inverse does not work: an *animal doctor* (“(a) doctor intended for (an) animal” = PURP) can hardly be described as “(a) doctor that (an) animal uses” (= USE2). Thus combining the two would require a fundamental rephrasing of the templates.

The Hawaiian binominal *pahu meli* [box honey] BEEHIVE raises another issue. Is a beehive “(a) box that (a) honey is part of” (PART2) or that “honey is located at/near/in” (LOC2)? Of course, location is involved, and we could also, at a pinch, say that honey is part of the beehive, but what I, at least, would like to say is that the box contains honey. So how does CONTAINMENT fit into Bourque’s scheme? It is not one of his 25 relations, but Bourque does not ignore the matter. He discusses it in depth in the context of the overlap between PART and LOCATION, using the example of *toolbox*. I quote at some length in order to convey the detail of his discussions in general:

> Another issue to consider is that some compounds might be analysed as either PART or LOCATION. This dual analysis is related to the fact that LOCATION may subsume PART: if something is a part of something else, then it is located at/on/in that thing (cf. Baron and Herslund 2001). One possible solution is to reserve location for only those compounds that actually involve a locative noun, as does Adams (1973). The problem, of course, is that one must treat combinations such as *toolbox* or *treehouse* using some other relation, as they do not, in the strictest sense, involve places. The key distinction that will be used here is one that views the PART relation as a reference to an integral component of the whole, without which it would either be incomplete, defective, or non-functional. Thus, a negation test may be used to determine whether the modifier denotes an essential part of the compound. The formulation in (105) below shows how such a test might apply to compounds in which the head denotes the whole (cf. 104 above):

> (105) a. a C without an M is still a C
> b. un C sans M est toujours un C

A positive response to the above sentence would indicate that the modifying noun is not an essential component of the object denoted by the compound, but instead a distinguishing feature. Thus, a toolbox without tools is still a toolbox, which indicates
that tools is connected to box via some other relationship (i.e. container-contained). This result is the same for the French boîte à outils (i.e. une boîte à outils sans outils est toujours une boîte à outils). When applied to compounds that denote a part-whole association, the test produces defective or incomplete readings (pp. 196–197, emphasis added).

The case of “honey box” (beehive) is parallel to toolbox: a beehive without honey is indubitably still a beehive. The distinction Bourque makes is useful, but I beg to differ regarding his conclusion to treat toolbox (and thus also “honey box”) as (mere) location. I suggest that it might be better to bite the bullet and add the relation CONTAINMENT (which even Bourque recognizes as “some other relationship”) to his system, on the grounds that the ability to perceive containment is a fundamental part of our cognitive endowment. Such a relation would be reversible (109), and it would constitute the prototypical (low-level) subtype of Hatcher’s high-level \(A \subseteq B \) and \(A \supseteq B \). As examples, I will adopt Hatcher’s orange seed and seed orange.

(109) CONTAINMENT

(a) CONT: “(an) H that is contained in (an) M” orange seed \(A \supseteq B \)

(b) CONT-R: “(an) H that contains (an) M” seed orange \(A \subseteq B \)

The other addition made to Bourque’s set of relations was motivated not by any of the binominals in my database, but by one of Jespersen’s examples: sun worship (see page 184). Strictly speaking this is not a binominal since worship denotes an action, not an object. However, the scope of Bourque’s classification is broader than adnominal modification and therefore it should be able to accommodate sun worship. Since the French equivalent, adoration du soleil, is not in Bourque’s database, we are obliged to try and classify it ourselves, and it turns out that none of Bourque’s relations are appropriate. Clearly the notion of the sun as some kind of goal is involved, so one might think that Bourque’s SOURCE would do the job, but no amount of tweaking of either the basic or the reversed template produces a paraphrase that is acceptable for both sun worship and cane sugar (or sun worship and sugar cane). This seems to be because goal as a complement of source is not compatible with result. It seems that a new relation is unavoidable, but what to call it, and how to make it sufficiently distinct from SOURCE? The answer was provided by Hatcher, who included sun worship in her category \(A \leftarrow B \), pointing out that “the sun is that toward which the worship is directed” (see Figure 46, emphasis added). Now, it is frequently the case that the verb used to express the paraphrase can serve in nominalized form as the name of the relation itself (as in the case of ‘possess’ > POSSESSION). The solution to the problem of how to name the new relation is thus
The typology and semantics of binominal lexemes

given: ‘direct’ > DIRECTION, understood as a relation which relates a starting point or origin and an endpoint or goal (110):

(110) DIRECTION
 (a) DIR: “(an) H whose goal is (an) M” sun worship A←B
 (b) DIR-R: “(an) H that is the goal of (an) M” sales target A→B

Adding such a relation to Bourque’s scheme can be justified on two grounds (over and above the desire to accommodate sun worship): firstly, it is very general and thus in a different league from Jackendoff’s PROTECT (FROM); and secondly, we can assume that the ability to conceptualize direction is an important part of the human cognitive endowment. Further research may show that DIRECTION is rarely encountered in binominals, but it may turn out to be more important when action-roots are admitted (as in sun worship). Thus, whether or not the relation is frequent enough in word-formation to justify its inclusion remains an empirical question. And in any case, my plans for the Hatcher-Bourque classification are much broader than the domain of binominals,¹ and that in itself is reason to include the relation, now that its existence has been recognized.

Reversibility

The second set of changes to Bourque’s scheme is motivated by a desire to remove a certain arbitrariness in his choice of which form of a reversible relation to regard as basic and which to regard as reversed. Recall from Table 28 that Bourque has career girl as an example of the Basic Possession relation and family estate as an example of the Reversed Possession relation. No reason is given for regarding “an H that possesses M” as being more basic than “an H that M possesses”; the decision appears to be arbitrary. Similarly, table leg exemplifies the Basic Part relation and wheelchair the Revised Part relation; again the choice of “an H that is part of M” as basic and “an H that M is part of” appears to be arbitrary.

Recall now, as stated in §6.2.3, that I intend to map Bourque’s classification to Hatcher’s to create a two-tier classification. If I do so on the basis of the original Bourque classification, career girl (basic) will map to Hatcher’s Ⓚ (A is contained in B) and family estate (reversed) will map to Ⓛ (B is contained in A). On the other hand, table leg (basic) will map to Ⓛ and wheelchair (reversed) will map to Ⓚ. This will be confusing; it would be more consistent for every low-level relation that maps to one of Hatcher’s two “static” relations (which I recast as CONTAINMENT, cf. page 213) to be either “basic” or “reversed”. For this reason, I propose to invert Bourque’s

¹ This is the topic of Chapter 9, A model of associative relations.
POSSSESSION relation such that the direction regarded as basic is the one in which the head element (B) is “somehow, to some extent, contained, comprehended in” the modifying element (A); career girl and its like will then map to Ⓐ instead of Ⓑ and the overall model will be consistent. The same problem applies to Bourque’s COMPOSITION, where sugar cube (“an H made of M”), which is regarded as basic, maps to Ⓑ while the reverse, sheet metal (“H that M is made of”), maps to Ⓒ. This relation, too, will be inverted.

Similar considerations apply to those of Bourque’s relations that map to Hatcher’s two “dynamic” relations (recast above as CAUSATION). In this case honey bee (Basic PRODUCTION) maps to A←B (the bee is the “source” of the honey), but cane sugar (Basic SOURCE) maps to Hatcher’s A→B (the cane is the source of the sugar); for consistency it is preferable that the Basic Source relation also maps to A←B, and this is achieved by inverting Bourque’s model. The same is done to the USE relation: hand brake (“an H that M uses”) will be regarded as basic and steamboat (“an H that uses M”) as reversed. As a result all of the “dynamic” Basic relations map to A←B and all the “dynamic” Reversed relations map to A→B.

It is important to understand that the labels Basic and Reversed are still arbitrary, in the sense that they do not indicate any kind of psychological reality, but they are now used in a consistent manner. Having said that, when the data is analysed in §6.4.2, it will transpire that Hatcher’s Ⓑ (our HinM) is far more common than her Ⓐ (MinH), and that her A←B (HtoM) is far more common than her A→B (MtoH); in others words “basic” and “reversed” will turn out to correspond to “frequent” and “infrequent”.

Codes

Bourque did not publish codes for his 25 relations, although he presumably uses them in his database. I therefore devised my own and I document them in this dissertation so that they can be reused by other researchers and used as labels in the discussion to follow. The initial set of codes used abbreviations of the name of the basic relation, with the number 2 appended for reversed relations (e.g. PROD and PROD2, cf. footnote 1 on page 219); examples can be found in the previous section, both in the Bourquifier screenshots and in the text. After revising Bourque’s system (as described in the present section), and in particular after inverting Basic and Reversed for Bourque’s POSSESSION, COMPOSITION, SOURCE and USE, I revised the codes, appending -R instead of the number 2 for reversed relations (thus PROD2 became PROD-R). These new codes are used in the remainder of this dissertation, in
the database, and in the R source code used for statistical analysis. Note that screen-
shots will henceforth be from a version of the Bourquifier that has been updated
accordingly.

Templates

In addition to the templates introduced along with the new relations CONTAINMENT
and DIRECTION, I propose certain other changes to templates. One is to the template
for COORDINATION and is motivated by the desire to bring it in line with the other
templates. Thus instead of Bourque’s “a C is an H and an M” I opt for “(an) H that
is also (an) M”.

Changes to the templates for SOURCE are prompted by the Caijia word for queen
(111).

(111) Caijia

\[k^\eta \ ipa\text{-}ja^{21} \ \text{[sky.old_woman]} \ \text{QUEEN} \]

In trying to figure out the motivation behind this word, I recalled how the emperor
of China is addressed by both The Unknown Prince (Calàf) and Turandot as Figlio
del cielo ‘Son of the sky’ in Puccini’s opera Turandot. I assume (but do not know
for sure) that royalty were in those days believed to have descended from heaven. If
so, the sky must be the point of origin of Caijia’s queen, which means that SRC-R is
the most appropriate relation. But the paraphrase leaves somewhat to be desired:
“an old woman (made) from sky”. This is so jarring that I was tempted to create a
new relation, ORIGIN, with the template “(an) H that originates in (an) M”, and of
course, there is nothing in principle to prevent me from doing so: as the analyst, I
got to decide my own level of granularity, as pointed out earlier. But this would
cause confusion, since ORIGIN and SOURCE mean pretty much the same thing.

A better solution is to reformulate the template. If we avoid the verb ‘to make’ in
doing so, we also solve the problem that the same verb is used in the templates of
two other relations, and that can be confusing. My proposal is therefore to use the
following templates, which also work for Bourque’s examples:

- **SRC**: “(an) H that is a source of (an) M” (e.g. sugar cane)
- **SRC-R**: “(an) H whose source is (an) M” (e.g. cane sugar)

The paraphrase for \[k^\eta \ ipa\text{-}ja^{21} \] thus becomes “(an) old woman whose source is (a)
sky”.

228 Draft. Please do not cite. Comments to: pepper.steve@gmail.com. 2020-04-25
The other two relations whose templates use the verb ‘to make’ are COMPOSITION, which uses ‘made of’, and PRODUCTION, which uses ‘makes’. To avoid confusion I propose reformulating these using the verbs from which the name of the relation is derived:

- **COMPOSITION** (basic and reversed): ‘made of’ → ‘composed of’
- **PRODUCTION** (basic and reversed): ‘makes’ → ‘produces’

The final changes are to the templates for Bourque’s HYPERNYMY relation, which I rechristened TAXONOMY above. The original templates are shown in (112).

(112) **HYPERNYMY**

(a) **HYP:** “an H of kind M” *oak tree*
(b) **HYP2:** “an H that M is a kind of” *bear cub*

These paraphrases confused me no end when considering Bourque’s example *bear cub* (“??a bear cub is a cub that bear is a kind of”), and I fared no better with the corresponding paraphrases provided by Jackendoff (2010) for his reversible KIND (113).

(113) **KIND (X, Y)**

(a) \[Y_2^\alpha; [\text{KIND} (X_1, \alpha)]]\], ‘an \(N_2\) of kind \(N_1\)’
\[\text{puppy dog, ferryboat, pine tree, gemstone, limestone, girl child}\]
(b) \[Y_2^\alpha; [\text{KIND} (\alpha, X_1)]]\], ‘an \(N_2\) that is a kind of \(N_1\)’
\[\text{seal pup, bear cub}\]

Notice that (112a) and (113a) are essentially identical (\(N_2 = H\), and \(N_1 = M\)), but that (112b) is the opposite of (113b). The points here go to Jackendoff: a (seal) pup is a kind of seal and a (bear) cub is a kind of bear, but a bear cub is not a cub that bear is a kind of, as Bourque would have it. The reader’s head may be spinning (I know mine was, and I think it was due to the formulation of all three paraphrases). I propose therefore to amend Bourque’s templates as shown in (114).

(114) **TAXONOMY**

(a) **TAX:** “(an) M is a kind of H” *oak tree*
(b) **TAX-R:** “(an) H is a kind of M” *bear cub*
Figure 50: The Bourquifier – OAK TREE

The new formulations produce the results shown in Figure 50 and Figure 51. The populated templates make it clear that *oak tree* belongs under TAX (“(an) oak is a kind of tree”) and not under TAX-R (**(a) tree is a kind of oak**), and that *bear cub* belongs under TAX-R (**(a) cub is a kind of bear**) and not under TAX (**(a) bear is a kind of cub**).
Chapter 6. Semantic relations

29) defines puppy, quite simply, as “a young dog”, whereas cub is defined as “the young of certain animals, as the bear, lion, or tiger”. So every puppy is a dog, but not every cub is a bear: it may be a lion, a tiger, or even a shark. We are reminded of Hatcher’s two subtypes of apposition: species-genus (*pumice stone*) and cross-classification (*fuel oil*), cf. page 206. Recall that in the former “an object belonging to class B (*stone*) may be assigned to a subdivision of that class (*pumice*), whereas in the latter “an object seen as belonging primarily to class B (*oil*) may also be assigned to a different, but complementary, class A (*fuel*).” While puppy is clearly a subclass of dog (and only dog), cub is a subclass of multiple classes, including bear: a cub need not be a bear. So is *bear cub* an instance of the species-genus type or of the cross-classification type? It could go either way; it depends on whether one admits the possibility of a class (*CUB*) belonging to multiple superclasses. Some systems of logic allow this, others don’t. For the purists, the alternative (and I find it a good one, so perhaps I am a purist) is to classify *bear cub* under Hatcher’s cross-classification, which is essentially the same as Jackendoff’s BE and Bourque’s COORDINATION: “a bear cub is a cub and a bear” (cf. Figure 51). This illustrates, once again, the slipperiness of our enterprise. The good news is that whichever solution we go for, *bear cub* will still end up under the Similarity relation when we map from Bourque to Hatcher; this, I suggest, demonstrates the power and utility of the two-level classification.

Examples

Most of my proposals for changes to examples are motivated by pedagogical (and in a couple of cases, aesthetic) considerations. Only one of Bourque’s 25 examples can actually be said to be erroneous, and that is the use of *sunburn* to exemplify his Basic CAUSE with the paraphrase “an H that causes M”. It is, of course, the sun (M) that causes the burn (H), not the other way round, so this example properly belongs under Reversed CAUSE, with the paraphrase “(a) burn that (a) sun causes”. A better example for Basic CAUSE is *tear gas*: “(a) gas that causes (a) tear”, as the Bourquifier shows (Figure 52).
It is arguable that the example provided by Bourque for SIM is not incorrect, but it is certainly suboptimal. An ant lion (or antlion) is not a lion that is similar to an ant, it is a kind of insect, albeit not exactly an ant. The name appears to be a left-headed calque from Latin *formicaceo*, which means that the paraphrase “an ant that is similar to a lion” does in fact work. However, as a highly exceptional left-headed compound it is unsuitable in an English context for pedagogical reasons (it works fine as Fr. *fourmi-lion*, which may be how Bourque got to choose it as his example). I have replaced it with *kidney bean*, which Hatcher uses to exemplify her third type of cross-classification compound; I do so in preference to *butterfly table* (see page 207) for the simple reason that it takes up less space. Space-saving is also the consideration behind the choice of *history book* instead of *history conference* for TOPIC, and *sunburn* instead of *motion sickness* for CAUS-R; real estate is at a premium not only in the Bourquiifier but also in Table 31, below!

Bourque’s examples for SOURCE, *cane sugar* (SRC) and *sugar cane* (SRC-R), have the pleasing property of consisting of the same two elements in reverse order. They are what David-Antoine Williams has dubbed “boathouse words”; these were the topic of a Language Log blog posting1 by Marc Liberman, inspired in turn by an *xkcd* cartoon (Figure 53). Like the cartoonist, Randall Munroe, I rather like such words and think we should apply the scheme more consistently; in fact, I would like to go one step further and use boathouse words to exemplify every kind of relation in Bourque’s system, and not just the SOURCE relation.

1 https://thelifeofwords.uwaterloo.ca/boathouse-words/; http://languagelog.ldc.upenn.edu/nll/?p=39951
Unfortunately *boathouse* and *houseboat* themselves are not suitable, because they exemplify the same (reversed) form of the CONTAINMENT (or “holds”) relation (CONT-R).\(^1\) For CONTAINMENT I therefore adopt Hatcher’s *orange seed* (CONT) and *seed orange* (CONT-R). For COMPOSITION Bourque already has *sugar cube*, which is complemented nicely by *cube sugar*. For PRODUCTION I go with *song bird* and *bird song* instead of *honey bee* and *beeswax*. *Oil lamp* and *lamp oil* will replace *hand brake* and *steamboat* as examples of USG and USG-R; and *car motor* and *motor car* can do the job of *table leg* (MER) and *wheel chair* (MER-R). Finding a suitable pair for LOCATION is more difficult: the closest I have come is *house music* and *music hall*, and so far I have failed to come up with anything at all for POSSESSION, TEMPORALITY and CAUSATION.\(^2\)

Summary

The changes to Bourque’s scheme, summarized in Table 30, are mostly cosmetic, but since they involve extending the classification from 25 to 29 relations, I will henceforth refer to the revised system as Bourque2.

\(^1\) In point of fact a houseboat is not really a boat that “holds” (or contains) a house: it is a boat that serves as a house, so the relation is actually FUNCTION, but we grant Randall poetic license.

\(^2\) Rolf Theil (p.c.) has suggested Norwegian *skadeflom* [damage flood] ‘flood that causes damage’ (CAUS) and *flomskade* ‘flood damage’ (CAUS-R), but the former doesn’t work in English. There’s a pint going for anyone who can come up with suitable English boathouse pairs for any of the four relations LOCATION, POSSESSION, TEMPORALITY and CAUSATION.
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Added CONTAINMENT, exemplified by orange seed and seed orange</td>
</tr>
<tr>
<td>• Added DIRECTION, exemplified by sun worship and sales target</td>
</tr>
<tr>
<td>• Renamed HYPERNYMY → TAXONOMY</td>
</tr>
<tr>
<td>• Renamed PART → MERONOMY</td>
</tr>
<tr>
<td>• Renamed PURPOSE AND PROPER FUNCTION → PURPOSE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reversibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inverted Basic and Reversed in POSSESSION, COMPOSITION, SOURCE and USAGE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Added 3-4 letter mnemonic codes (with ‘R’ appended for reversed relations)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>• TAXONOMY (née HYPERNYMY), basic and reversed: reformulated</td>
</tr>
<tr>
<td>• COORDINATION: changed to “(an) H that is also (an) M” (e.g. boy king)</td>
</tr>
<tr>
<td>• COMPOSITION (basic and reversed): replaced ‘made of’ with ‘composed of’</td>
</tr>
<tr>
<td>• SOURCE (basic and reversed): replaced ‘(made) from’ with ‘source of’</td>
</tr>
<tr>
<td>• PRODUCTION (basic and reversed): replaced ‘makes’ with ‘produces’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ant lion → kidney bean (SIM)</td>
</tr>
<tr>
<td>• history conference → history book (TOP)</td>
</tr>
<tr>
<td>• table leg → car motor (MER) wheelchair → motor car (MER-R)</td>
</tr>
<tr>
<td>• window seat → house music (LOC); bedroom → music hall (LOC-R)</td>
</tr>
<tr>
<td>• sheet metal → cube sugar (COMP); cf. sugar cube (COMP-R)</td>
</tr>
<tr>
<td>• sunburn → tear gas (CAUS); motion sickness → sunburn (CAUS-R)</td>
</tr>
<tr>
<td>• honey bee → song bird (PROD); beeswax → bird song (PROD-R)</td>
</tr>
<tr>
<td>• steamboat → lamp oil (USG), hand brake → oil lamp (USG-R)</td>
</tr>
</tbody>
</table>

Table 30: Summary of changes to Bourque’s system

6.3.3 The Hatcher-Bourque classification

Once Hatcher’s four-way system covering non-appositional compounds had been extended to a five-way system that also covers appositional compounds, mapping the revised set of 27 relations in Bourque2 was entirely unproblematic, confirming, once again, the robustness of Hatcher’s system. It should be noted that the relations of CONTAINMENT and DIRECTION, added in Bourque2 (page 223), was not used for coding the binominals data. As we will see when the various semantic relations have been arranged in a hierarchy (cf. Figure 80 on page 328), CONTAINMENT turns out to be the supertype for those relations that map to one of Hatcher’s two “static” relations (i.e. POSSESSION, MERONOMY, LOCATION, TEMPORALITY, CONTAINMENT, COMPOSITION and TOPIC). In the database these subtypes (and not the supertype) are used for coding the data. The relation DIRECTION, as noted above, was added on the evidence of a word that was not in my database.
The results of the mapping are shown in Table 31. The information contained in this table differs in detail from that in Bourque’s original 25-way system (cf. Table 28 on page 195) but the two systems are fully commensurate, apart from the addition of the new reversible relations CONTAINMENT and DIRECTION. However, a number of new columns have been added:

- The **B2** column contains database-friendly codes for the Bourque2 relations. These will be used extensively in the discussion in §6.4.1.
- The **Hatcher2** column shows how the 29 Bourque2 relations map to the five-way high-level system (Hatcher2) and the three-way system this gives rise to when Hatcher’s original four relations are viewed as pairs (Similarity-Containment-Causation).
- The **H2** column provides database-friendly codes for the Hatcher2 relations. These too will be used in the discussion in §6.4.2. Note how the words linking H and M – is, in and to – represent Similarity, Containment and Causation, respectively.

The relations have also been reordered in order to permit grouping by the three top-level relations Similarity, Containment and Causation and I have underlined the head constituent in the Template and Example columns, for readability. As noted earlier, the Bourquifier has been upgraded to support the new classification (Figure 54).

```
<table>
<thead>
<tr>
<th>Relation</th>
<th>Roles</th>
<th>B2</th>
<th>H2</th>
<th>H</th>
<th>M</th>
<th>Reversed template</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXONOMY</td>
<td>B2 M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COORDINATION</td>
<td>M H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMILARITY</td>
<td>H H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTAINMENT</td>
<td>M H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSSESSION</td>
<td>M H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MERONOMY</td>
<td>H H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCATION</td>
<td>M H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPORALITY</td>
<td>H M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPOSITION</td>
<td>M H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPIC</td>
<td>H H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRECTION</td>
<td>M H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOURCE</td>
<td>H M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAUSATION</td>
<td>M H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>M H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USAGE</td>
<td>H M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUNCTION</td>
<td>H M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PURPOSE</td>
<td>H M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic template</td>
<td>B2 H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>B2 H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversed template</td>
<td>B2 H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 54: The Bourquifier v 3.0
```
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>Bourque2</th>
<th>B2</th>
<th>Hatcher2</th>
<th>H2</th>
<th>Template</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXONOMY</td>
<td>TAX</td>
<td>M ⊥ H</td>
<td>Mish</td>
<td>an M is a kind of H</td>
<td>oak tree</td>
</tr>
<tr>
<td></td>
<td>TAX-R</td>
<td>M ⊥ H</td>
<td>Mish</td>
<td>an H is a kind of M</td>
<td>bear cub</td>
</tr>
<tr>
<td>COORDINATION</td>
<td>COOR</td>
<td>M = H</td>
<td>Mish</td>
<td>an H that is also an M</td>
<td>boy king</td>
</tr>
<tr>
<td>SIMILARITY</td>
<td>SIM</td>
<td>M ≅ H</td>
<td>Mish</td>
<td>an H that is similar to M</td>
<td>kidney bean</td>
</tr>
<tr>
<td>CONTAINMENT</td>
<td>CONT</td>
<td>M ⊇ H</td>
<td>HinM</td>
<td>an H that is contained in an M</td>
<td>orange seed</td>
</tr>
<tr>
<td></td>
<td>CONT-R</td>
<td>M ⊆ H</td>
<td>MinH</td>
<td>an H that contains an M</td>
<td>seed orange</td>
</tr>
<tr>
<td>POSSESSION</td>
<td>POSS</td>
<td>M ⊇ H</td>
<td>HinM</td>
<td>an H that is possessed by an M</td>
<td>family estate</td>
</tr>
<tr>
<td></td>
<td>POSS-R</td>
<td>M ⊆ H</td>
<td>MinH</td>
<td>an H that possesses an M</td>
<td>career girl</td>
</tr>
<tr>
<td>MERONOMY</td>
<td>MER</td>
<td>M ⊇ H</td>
<td>HinM</td>
<td>an H that is part of an M</td>
<td>car motor</td>
</tr>
<tr>
<td></td>
<td>MER-R</td>
<td>M ⊆ H</td>
<td>MinH</td>
<td>an H that an M is part of</td>
<td>motor car</td>
</tr>
<tr>
<td>LOCATION</td>
<td>LOC</td>
<td>M ⊇ H</td>
<td>HinM</td>
<td>an H located at/near/in an M</td>
<td>house music</td>
</tr>
<tr>
<td></td>
<td>LOC-R</td>
<td>M ⊆ H</td>
<td>MinH</td>
<td>an H that M is located at/near/in</td>
<td>music hall</td>
</tr>
<tr>
<td>TEMPORALITY</td>
<td>TEMP</td>
<td>M ⊇ H</td>
<td>HinM</td>
<td>an H that occurs at/during an M</td>
<td>summer job</td>
</tr>
<tr>
<td></td>
<td>TEMP-R</td>
<td>M ⊆ H</td>
<td>MinH</td>
<td>an H at/during which M occurs</td>
<td>golf season</td>
</tr>
<tr>
<td>COMPOSITION</td>
<td>COMP</td>
<td>M ⊇ H</td>
<td>HinM</td>
<td>an H that an M is composed of</td>
<td>cube sugar</td>
</tr>
<tr>
<td></td>
<td>COMP-R</td>
<td>M ⊆ H</td>
<td>MinH</td>
<td>an H composed of an M</td>
<td>sugar cube</td>
</tr>
<tr>
<td>TOPIC</td>
<td>TOP</td>
<td>M ⊆ H</td>
<td>MinH</td>
<td>an H that is about an M</td>
<td>history book</td>
</tr>
<tr>
<td>DIRECTION</td>
<td>DIR</td>
<td>M ⊆ H</td>
<td>HtoM</td>
<td>an H whose goal is an M</td>
<td>sun worship</td>
</tr>
<tr>
<td></td>
<td>DIR-R</td>
<td>M ⊇ H</td>
<td>HtoM</td>
<td>an H that is the goal of an M</td>
<td>sales target</td>
</tr>
<tr>
<td>SOURCE</td>
<td>SRC</td>
<td>M ⊆ H</td>
<td>HtoM</td>
<td>an H that is a source of an M</td>
<td>sugar cane</td>
</tr>
<tr>
<td></td>
<td>SRC-R</td>
<td>M ⊇ H</td>
<td>HtoM</td>
<td>an H whose source is an M</td>
<td>cane sugar</td>
</tr>
<tr>
<td>CAUSATION</td>
<td>CAUS</td>
<td>M ⊆ H</td>
<td>HtoM</td>
<td>an H that causes an M</td>
<td>tear gas</td>
</tr>
<tr>
<td></td>
<td>CAUS-R</td>
<td>M ⊇ H</td>
<td>HtoM</td>
<td>an H that an M causes</td>
<td>sunburn</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>PROD</td>
<td>M ⊆ H</td>
<td>HtoM</td>
<td>an H that produces an M</td>
<td>song bird</td>
</tr>
<tr>
<td></td>
<td>PROD-R</td>
<td>M ⊇ H</td>
<td>HtoM</td>
<td>an H that an M produces</td>
<td>birdsong</td>
</tr>
<tr>
<td>USAGE</td>
<td>USG</td>
<td>M ⊆ H</td>
<td>HtoM</td>
<td>an H that an M uses</td>
<td>lamp oil</td>
</tr>
<tr>
<td></td>
<td>USG-R</td>
<td>M ⊇ H</td>
<td>HtoM</td>
<td>an H that uses an M</td>
<td>oil lamp</td>
</tr>
<tr>
<td>FUNCTION</td>
<td>FUNC</td>
<td>M ⊆ H</td>
<td>HtoM</td>
<td>an H that serves as an M</td>
<td>buffer state</td>
</tr>
<tr>
<td>PURPOSE</td>
<td>PURP</td>
<td>M ⊆ H</td>
<td>HtoM</td>
<td>an H that is intended for an M</td>
<td>animal doctor</td>
</tr>
</tbody>
</table>

Table 31: Hatcher-Bourque classification
6.4 Data analytics

In §5.6 the binominal data were analysed in terms of the morphosyntactic strategies employed by the languages of the sample, that is, the typology of nine binominal types. In the following sections I analyse the distribution of both low-level and high-level semantic relations, in terms of their overall frequency and their distribution across languages, meanings, morphosyntactic strategies, semantic types and semantic fields. It will become apparent that some relations are far more frequent than others, a fact that has the potential to provide insights into the way in which humans conceptualize the world. This is a topic which has hardly been addressed in the typological literature at all; to my knowledge, the only researcher to even approach the question from a cross-linguistic perspective is Bauer (2001; see §2.1.1), who has the following to say regarding tatpuruṣa (i.e. determinative) compounds:

In a detailed survey of just three languages, Bauer (1978: 147) points out that underlying semantic relationships of location appear to be the most common relationships in those languages. The same is true with the sample discussed here. Compounds in which the head is the location of the entity denoted in the modifier (e.g. English furniture store) or where the head denotes an entity located at the modifier (e.g. English bone cancer) are the types most frequently illustrated or commented on for the languages in my sample across all areas. The next most frequent type to be illustrated is the type where the head is made from the material in the modifier (e.g. English sandcastle). Other meanings are illustrated or commented on far more sporadically. While this does not show that other meanings are not also in common use, it does suggest that compounds may be used prototypically to indicate location or source (especially if ‘made from’, ‘made by’, ‘belonging to’ and ‘coming from’ are all interpreted as sources).

Under the Bourque scheme, Bauer’s three examples (furniture store, bone cancer and sandcastle) would be classified as LOC-R, LOC and COMP-R, respectively (“a store that (a) furniture is located at/near/in”, “a cancer located at/near/in a bone” and “a castle composed of sand”). The present data provide an opportunity to test Bauer’s conjecture. This is done in §6.4.1, which is concerned with the low-level relations of the Bourque scheme (represented in the database by the variable stype). Then, in §6.4.2, I investigate the high-level relations of the Hatcher scheme (represented by the variable htype).

1 All the R scripts used in this dissertation are available from the Tromsø Repository of Language and Linguistics, https://dataverse.no/dataverse/trolling.
6.4.1 Low-level semantic relations

Overall distribution across binominals

The overall frequency of low-level semantic relations in the database is shown in Figure 55 and is summarized in the following scale:

(115) \[\text{MER} \gg \text{PURP} \gg \text{COOR} \gg \text{LOC} \gg \text{COMP-R}, \text{POSS} \gg \text{USG-R} \gg \text{TEMP} \gg \ldots \]

We note that MER (i.e. part-whole), a relation that Bauer does not consider in his discussion, is far and away the most frequent relation in absolute terms, at least in the present data. This is largely due to its extreme frequency in binominals that denote body parts, as we will see below. For this reason, Figure 55 also shows the values when body parts are excluded: apart from the greatly reduced frequency of MER and a slightly reduced frequency for LOC, the differences are minimal, so while it may be the case that method employed for selecting the set of meanings used in this study overstates the overall prevalence of MER, it is clearly among the most important relations and even with body parts excluded it is just as frequent as LOC.

![Figure 55: Overall frequency of low-level semantic relations](image)

Bauer’s suggestion that the second most frequent type is where the head is made from the material in the modifier (e.g. sandcastle) – this equates to the Reversed COMPOSITION relation, COMP-R – is also not supported out by the data, which put it at joint fifth in terms of overall frequency. Instead, the next most frequent relation is PURPOSE (PURP), also not mentioned by Bauer. As we will see below, this relation is especially prevalent in binominals that belong to the domain *Modern*
World and/or denote entities that fall into the semantic type Advanced technology (or concept).

The third most frequent relation is COORDINATION. This might seem surprising, given that the set of meanings was expressly designed to exclude binominals whose constituents are in a coordinate relation (see §4.1). However, this applied only to what Wälchli (2005) terms ‘co-compounds’: “word-like units consisting of two or more parts which express natural coordination”, such as Hmong Daw zaub.mov [vegetable.rice] FOOD and Vietnamese bó mẹ [father mother] PARENTS. The COORDINATION relation inherited from Bourque is broader than this: it is used for binominals that refer to “combinations that, from a semantic perspective, seem to involve both elements equally” (p.180). In our binominals data, the latter type is often encountered with items that denote animates of a certain age (Hawaiian kao keiki [goat child] KID), gender (Mbyá Guaraní kavaju kunha [horse woman] MARE), or both (Ket qīm.diūl [woman.child] GIRL); cases such as these account for over 90% of binominals that exhibit the COORDINATION relation.

The LOCATION relation, in its LOC form as “(an) H located at/near/in (an) M” (e.g. TEAR < ‘eye’ + ‘water’ in several languages), is only the fourth most frequent. Together with its inverse, LOC-R, “(an) H that (an) M is located at/near/in” (e.g. Hupdē yɔ̄ h mɔy [medicine house] HOSPITAL), it is found in 428 binominals, i.e. 12% of the data. Thus Bauer’s suggestion that this is the most common kind of relation appears to be unfounded.

Distribution across languages

We can also look at relations in terms of the number of languages in which each relation is attested (Figure 56).
The typology and semantics of binominal lexemes

Figure 56: Number of languages that exhibit a particular relation

The frequency scale here is:

\[(116) \quad \text{MER} > \text{LOC} > \text{COOR}, \text{POSS}, \text{PURP} > \text{COMP-R} > \text{USG-R}, \text{LOC-R}, \text{PROD} > \ldots \]

The same six relations predominate in both distributions, albeit with slightly different rankings. Note that one relation (COMP, “(an) H that (an) M is composed of”, e.g. cube sugar) is not attested at all in the database, and that a further four (CAUS, SRC-R, TAX-R and TEMP-R) are rare.

Distribution across meanings

The distribution across meanings (Figure 57) shows a generally similar scale, but now with the TAX relation displaying far greater prominence. USG now appears among the top six, with COMP-R and POSS relegated to joint 9th and 11th place:

\[(117) \quad \text{MER} > \text{COOR}, \text{PURP}, \text{TAX}, \text{LOC} > \text{USG}, \text{SIM}, \text{USG-R}, \text{POSS}, \text{LOC-R}, \text{COMP-R} \ldots \]
This suggests that while TAX (“(an) M is a kind of H”, e.g. *oak tree*) is not especially common, it is rather versatile; conversely, while COMP-R and POSS are rather frequent, their scope of application is relatively limited. It is also worth noting that of the 45 binominals that exhibit the TAX relationship, 18 employ the der strategy. In many cases the gloss indicates an (apparently redundant) nominalizer or diminutive affixed to a root whose meaning is the same as that of the derived form, as in Lithuanian *spen.elis* [nipple.DIM] NIPPLE OR TEAT.

Overall, the data indicate that the most frequent low-level semantic relations cross-linguistically, at least as far as binominal lexemes are concerned, are the following:

<table>
<thead>
<tr>
<th>REL</th>
<th>COUNT</th>
<th>MEANING</th>
<th>STRATEGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MER</td>
<td>977</td>
<td>(an) H that is part of (an) M</td>
<td>table leg</td>
</tr>
<tr>
<td>PURP</td>
<td>540</td>
<td>(an) H intended for (an) M</td>
<td>animal doctor</td>
</tr>
<tr>
<td>COOR</td>
<td>358</td>
<td>(an) H that is also (an) M</td>
<td>boy king</td>
</tr>
<tr>
<td>LOC</td>
<td>321</td>
<td>an H that (an) M is located at/near/in</td>
<td>music hall</td>
</tr>
<tr>
<td>COMP-R</td>
<td>216</td>
<td>(an) H composed of (an) M</td>
<td>sugar cube</td>
</tr>
<tr>
<td>POSS</td>
<td>211</td>
<td>(an) H that (an) M possesses</td>
<td>family estate</td>
</tr>
</tbody>
</table>

Table 32: Most frequent low-level semantic relations

Distribution across morphosyntactic strategies

Figure 58 shows how many morphosyntactic strategies are used to express each kind of relation. Comparison with the overall frequency scale extracted from Figure 55 (above) shows that the most frequent relations can be expressed by any one of the nine binominal types; this suggests that – at this level of analysis – there is no
The typology and semantics of binominal lexemes

overall correlation between morphosyntactic strategy and semantic relation. As the data become more sparse, the number of strategies are reduced; thus, at the lower end of the scale, we find TAX-R, TEMP-R and SRC-R, each of which is expressed by just two strategies. However, since each of these three relations is represented in the database by just two or three exemplars, this does not constitute evidence against the lack of overall correlation.

![Graph showing number of binominal types that exhibit each relation.](image)

Figure 58: Number of binominal types that exhibit each relation

But even if there is no overall correlation, there are some interesting tendencies to be observed in terms of which strategies are favoured for the different semantic relations. Figure 59 shows how the six most frequent relations (MER, PURP, COOR, LOC, POSS and COMP-R) – those that account for 5% or more of the data – distribute across the nine binominal types.

The first point to notice is that the fingerprints for five of the nine strategies (jxt, cmp, prp, gen and con) are remarkably similar and generally mirror the overall distribution of the six relations, i.e. MER >> PURP > COOR > LOC > COMP-R, POSS (cf. 115). These five thus appear to be more-or-less equally adept at expressing any relation. On the other hand, the fingerprints for der, adj, cls and dbl show some divergence:

- **der** frequently encodes the COOR relation and rarely encodes MER
- **adj** is less used for MER and more for PURP and COMP-R
- **cls** favours COOR and, in particular, MER, but disprefers PURP
- **dbl** also favours MER and disprefers PURP and COOR

These discrepancies will be discussed further below in the next section.
Distribution across semantic types

The frequency of different relations varies according to the semantic type of the referent. Figure 60 shows the proportional distribution of the six most common relations – MER, PURP, COOR, LOC, COMP-R and POSS – across the seven semantic types (cf. Figure 17b on page 83 and Table 18 on page 77). The results for Animal, Natural phenomenon and Location should be approached with caution, since these semantic types represent only 7, 5 and 12 of the 100 meanings, respectively, but the differences between the other four types are striking.

As noted above, in binominals that denote Body parts the MER relation accounts for 85% of the data; the only significant alternative is LOC, which is the preferred
The typology and semantics of binominal lexemes

relation for naming bodily substances, such as EARWAX and TEAR. On the other hand, MER is rarely used to denote an Advanced technology (or concept), such as BICYCLE PUMP, KEYWORD or RAILWAY; instead, the PURP relation predominates, accounting for over 80% of the data, with COMP-R the most widely used alternative (as in many words for RAILWAY, which is often conceptualised as a road composed of iron). In short, there is a strong tendency to name (secondary) body parts/fluids in terms of the (primary) body parts they are a part of/located at, and to name advanced concepts in terms of either their intended function or the material they are made of.

The semantic type Basic technology (or concept) is more mixed: as with Advanced technology (or concept), PURP and COMP-R are the most widespread relations, but the two are now equally common; however, in contradistinction to the latter type, MER and LOC are also quite frequent. These are also the most widely used relations for Natural phenomena – together with POSS, which expresses the relation between a spider and its web, or bees and their hive, and phenomena viewed as belonging to supernatural beings, such as Ket Albara kāŋ ‘Alba’s hunting trail’ MILKY WAY and Assamese ramdhenu ‘Lord Rama’s bow’ RAINBOW.

Distribution across semantic fields

![Distribution across semantic fields](image-url)

Figure 61: How low-level relations vary across semantic fields
A similar variation is found across semantic fields (see page 76). Figure 61 shows the frequency of the six most common semantic relations across the nine most frequent semantic fields. We note again that MER plays the dominant role in The body, but also in Agriculture and vegetation and Food and drink; and, as expected, Modern world is dominated by the PURP relation. We see also that the patterning in Animals and Kinship is remarkably similar: binominals in these fields have an overwhelming preference for either COOR or POSS. The latter is also widely used in Social and political relations. Finally, the LOC relation that Bauer assumed to be most widespread is in fact largely confined to the fields of The physical world and Clothing and grooming.

6.4.2 High-level semantic relations

We turn now from the low-level semantic relations of the Bourque scheme to the high-level relations of the (revised) Hatcher scheme. For ease of reference, Table 33 provides a summary of the five high-level relations and the 27 low-level relations that map to them (recall that CONT and CONT-R are not used in the database). The terms used in the column ‘role’ will sometimes be used in the following in order to simplify the discussion. The importance of roles will become clear when the discussion of semantic relations is broadened in §9.3.

<table>
<thead>
<tr>
<th>htype</th>
<th>stypes</th>
<th>role</th>
</tr>
</thead>
<tbody>
<tr>
<td>MisH</td>
<td>M ≍ H TAX, TAX-R, COOR, SIM</td>
<td>similarity</td>
</tr>
<tr>
<td>HinM</td>
<td>M ⊃ H CONT, POSS, MER, LOC, TEMP, COMP, TOP</td>
<td>container</td>
</tr>
<tr>
<td>HtoM</td>
<td>M←→ H SRC, CAUS, PROD, USG, FUNC, PURP</td>
<td>source</td>
</tr>
<tr>
<td>MtoH</td>
<td>M → H SRC-R, CAUS-R, PROD-R, USG-R</td>
<td>goal</td>
</tr>
</tbody>
</table>

Table 33: Summary of high- and low-level semantic relations

The first four plots in the previous section showed how the low-level relations distribute across the database as a whole (with and without body parts), and across languages, meanings and morphosyntactic strategies. Figure 62 provides similar information for the high-level relations. Predictably, the amount of information is considerably reduced; on the other hand, the categories are considerably more balanced and therefore more amenable to statistical analysis.
The typology and semantics of binominal lexemes

Plot (a) shows that the high-level relation \(\text{HinM} \) (Hatcher’s “B is contained in A”)\(^1\) accounts for nearly half of the data (a). This comes as no surprise, given that this relation subsumes MER; if body parts are excluded it has approximately the same frequency as \(\text{HtoM} \) (Hatcher’s “A is the destination of B”), which subsumes the PURP relation, among others. With body parts included, the overall scale is

\[
\text{HinM} >> \text{HtoM} > \text{MisH}, \text{MinH} > \text{MtoH}
\]

and with body parts excluded, the scale is

\[
\text{HinM}, \text{HtoM} > \text{MisH}, \text{MinH} > \text{MtoH}
\]

The two most frequent low-level relations (\(\text{HinM} \) and \(\text{HtoM} \)) account for two-thirds of the data and thus suggest a pronounced tendency for a non-basic meaning to be conceptualized in terms of either its container or its goal (i.e. destination) – both of which should be interpreted in Hatcher’s very broad sense.

Plot (b) tells us that \(\text{HinM} \) is ubiquitous, occurring in every language in the sample. However, the other four low-level relations are also widespread across languages and they are probably also ubiquitous. The fact that they are not attested in every language is almost certainly due to the paucity of data for some languages: it would be highly unlikely that a language that is represented by fewer than, say, 10 data

\(^1\) Recall from §6.2.2 that Hatcher uses the letters A and B to denote the first and second constituents of a typical right-headed English compound, so A is the modifier (M) and B is the head (H). To avoid confusion, think of Hatcher’s letters as denoting the Attribute (modifier) and Base (head).
points – of which there are five (Gurindji, Puyuma, Selice Romani, Datooga and Tuwari) – would exhibit all five high-level relations.

The distribution of relations across meanings (Plot c) shows a scale similar to the two preceding ones,

(120) \[HinM > HtoM > MisH > MinH > MtoH \]

but the values more spread out: \(HinM \) is less dominant, while \(MisH \), the similarity-based relation added to Hatcher’s original four (see page 204ff), is higher up the scale (in the sense that it is significantly more widespread across meanings than \(MinH \)). This reflects what was referred to as the versatility of the \(TAX \) relation, shown in (117), above. More worthy of mention, though, is the fact that none of the high-level relations appears suited for conceptualizing anything like the full range of meanings. Even \(HinM \), which is found in every language and accounts for over 45% of all binominals in the database, is used with only just over half of the 100 meanings: in other words, there are limits to the versality of conceptualizations that are based on how an entity is (in the broadest sense) “contained”.

Finally, plot (d) shows that every one of the nine morphosyntactic strategies is attested in the data as expressing each of the five high-level relations; this provides additional evidence that there is no overall, cross-linguistic correlation between morphosyntactic strategies and semantic relations. However, the differing behaviour of \(\text{der}, \text{adj}, \text{cls} \) and \(\text{dbl} \) revealed with respect to low-level relations in Figure 59 is also apparent when viewed from the perspective of the high-level relations (Figure 63).
We observe that cls and der are largely appositional (HisM); this is due to the classificatory nature of the former and to the tendency for derivational affixes to denote a broad class of referents such as males, females, diminutives, etc.

The fact that dbl is used overwhelmingly for HinM seems to be due to two factors. The first is that over 40% of the dbl data comes from Akkadian, a language which is unrepresentative in two senses: (i) the COOR relation (HisM) is hardly found in the data (this seems to be because gender alternations have not been coded by the contributor, e.g. šarratum QUEEN is given as monomorphemic even though it is clearly derived from šarrum KING, cf. Worthington 2010: 31); (ii) similarly, the PURP relation (HtoM), which is overwhelmingly found in words denoting concepts in the domain Modern world, is (unsurprisingly) rare in this ancient language. The second factor is that the other languages in which the dbl strategy is preferred (for example Oroqen, Seri and Takia) tend to borrow such words when they need them.

The last strategy to be considered here is adj, which shows unusually low frequencies for MisH and HinM and correspondingly higher frequencies for MinH and HtoM. This is accounted for by the fact that the adj strategy is always involved in competition with other strategies (usually cmp or gen) and tends to be specialized for contents, source and goal relations rather than similarity and container relations.

Thus, while it is possible to observe some weak tendencies at the cross-linguistic level, the overall picture is one in which there are no strong correlations between morphosyntactic strategy and semantic relations. This does not, however, mean that there are no such correlations at the level of individual languages. That issue will be explored with a more fine-grained analysis in §7.3.

Turning to semantic types, Figure 64 shows clearly that containment is central to the conceptualization of (secondary) Body parts and also important for concepts that express Location or denote Basic technologies (or concepts) or entities in the Natural world. On the other hand, it is marginal to the conceptualization of Persons and of almost no use when it comes to Animals and Advanced technologies (or concepts). With the semantic types Animal and Person (and only those) the similarity-based HisM relation is most important, whereas conceptualizations that are goal-oriented – indicated by the HtoM relation – are most frequent with Advanced technologies (and concepts), but also encountered with other semantic types (albeit only rarely with Body parts and Natural phenomena).
Conceptualization of an entity in terms of its contents ($MinH$) is considerably less common than the inverse and never the dominant form; it is found most often with semantic types that denote Basic and Advanced technologies (and concepts) and Locations, rarely with Body parts and never with Animals. As for source-based conceptualizations, they are mostly found with Persons (in particular, professions), Natural phenomena, and Advanced technologies (and concepts).
Similar patterns emerge with respect to semantic fields (Figure 65, the high-level equivalent of Figure 61). Whereas the low-level plot highlights similarities between Animals and Kinship, the new one reveals additional commonalities, in particular between The body, The physical world and Food and drink. In all of these, Hatcher’s ⊖ predominates: there is a tendency for conceptualizations where (to quote Hatcher) the target concept, B, “is somehow, to some extent, contained, comprehended in” the modifying concept, A.

In sum, and referring back to the notion of roles introduced in Table 33, we see that containment (HinM) is particularly important for The body, Food and drink and The physical world; goal-oriented conceptualization (HtoM) for the Modern world; similarity (MisH) for Kinship and Animals; contents (MinH) for both Clothing and grooming and Social and political relations; and source-orientation (MtoH) for Agriculture and vegetation.

6.5 Chapter summary

In this chapter I started out by providing a brief overview of previous studies on semantic relations in compounding. I then showed how Bauer and Tarasova’s work, together with that of Janda, provides grounds to believe that the same relations apply to binominal lexemes in general.

I described in some detail the systems developed by Bourque and Hatcher that I have harnessed in the present study. Bourque’s classification was revised and extended with two new relations, CONTAINMENT and DIRECTION, for a total of 29 relations, 12 reversible and five unidirectional. Hatcher’s classification was also revised by the addition of a fifth high-level relation, SIMILARITY, in order to cover appositional and coordinate compounds. The two revised classifications were then unified to create the two-tiered Hatcher-Bourque classification, and a tool called the Bourquifier was developed to assist in the slippery task of classifying individual binominals. Both the Hatcher-Bourque classification and the Bourquifier app are offered to the research community in order to promote collaboration in the field of semantic relations.

The analysis of the data provides insights into the ways in which humans tend to conceptualize the world. It suggests, contra Bauer, that MERONOMY and PURPOSE are far more widespread, and thus more important, than the LOCATION relation. Of the two types of MERONOMY – Basic (MER) and Reversed (MER-R) – the former is far more frequent than the latter, which indicates that the conceptualization of a complex meaning is much more likely to involve modification by the whole (or,
more generally, the container) than modification by the parts (or, more generally, the contents). The Basic MERONYM relation (MER) occurs most frequently with body parts and in the semantic field of agriculture and vegetation. It can express about one third of the 100 meanings used in this survey; it is found in all 106 languages of the sample; and it can be expressed using any one of the nine nominal modification strategies.

Bauer’s suggestion that the next most frequent type is where the head is made from the material in the modifier is also not supported out by the data: both PURPOSE and COORDINATION are much more common than COMPOSITION. PURPOSE is most often encountered in the semantic field Modern world to denote advanced technological concepts; it only occurs in 89 of the 106 languages, no doubt because some of the languages in the sample do not have words for concepts of that kind; significantly, the only morphosyntactic strategy that does not occur with this relation is the classifier strategy, cls, but this also the most sparsely populated of all strategies. COORDINATION is used primarily to denote animates of a certain age, gender or both; it is therefore not surprising that it occurs mostly in the domains of kinship, animals, agriculture and vegetation. Cases such as these account for over 90% of binominals that exhibit this relation, and once again, every morphosyntactic strategy is attested in the data.

The Basic LOCATION relation is the fourth most frequent type overall and occurs three times as often as the Reversed relation; in other words, it is more usual to conceptualize an object in terms of where it is located than what is located at, near or in it. It is found in almost all of the languages of the sample (97 out of 106) and can be expressed by any of the nine strategies. It is most often encountered in the fields of the natural world and basic technologies and concepts.

The other frequent relations are Basic POSSESSION and Reversed COMPOSITION, but the Reversed form of POSSESSION is uncommon, and the Basic form of COMPOSITION does not occur in the data at all. The range of meanings theses relations can express is limited: only 12% in each case. Nevertheless, they can be expressed by any morphosyntactic strategy.

Apart from COMP, every one of the 25 relations was found in the data, but some were very rare, in particular CAUS, SRC-R, TEMP-R, TAX-R. While these are clearly peripheral in noun-noun compounds and their functional equivalents, they may be more common in other types of compounds, for example those in which the head or the modifier is an action-morph rather than a thing-morph.
The data for the low-level relations suggests that there is no overall correlation between morphosyntactic strategy and semantic relation: many relations can be expressed by every strategy, most are expressed by almost every strategy, and those that are expressed by just a few strategies are those where the data is sparse. This impression is confirmed by the analysis of high-level relations: every one of the five relations of Hatcher2 are attested with every one of the nine strategies, so we can state quite categorically that there is no such overall correlation. It is thus not the case that some strategies are used to express some relations, while other strategies are used for other relations.

However, while this applies cross-linguistically, it does not mean that there are no such correlations within individual languages. In fact, the opposite is the case: As I showed in Pepper (2010), the Cameroonian language Nizaa (ISO 639: sgi) uses left-headed and right-headed compounds for two distinct sets of relations. Zúñiga (2014) reports something similar for Mapudungun (ISO 639: arn), as does Atoyebi (2010) for Oko (ISO 639: oks). Bourque himself (p. 253) compares N N and N à N binominals in French and shows that the two constructions have very different profiles (for example, PURPOSE and USE account for 47.5% of all French N à N binominals in his database, but only 12.7% of his N N binominals). This would be a fruitful topic for further research. I return to Nizaa and Mapudungun repeatedly in the next two chapters, which discuss typological and conceptual generalizations, respectively.
Chapter 7. Typological generalizations

7 Typological generalizations

The analyses presented in the preceding two chapters resulted in a number of cross-linguistic generalizations concerning morphosyntactic strategies and semantic relations. In this chapter I investigate three typological issues in more detail. §7.1 concerns word order typology; §7.2 looks at the relationship between binominals and possessive constructions (or more precisely, nominal modifier constructions); and in §7.3 I explore possible interactions between morphosyntactic strategies and semantic relations.

7.1 Word order typology

Word order – or more properly, constituent order – has been a staple of modern typological research ever since the foundational work of Greenberg. Clearly, it is also important in the study of binominals, given that the latter consist of a head and a modifier and can thus exhibit either head-initial or head-final order. In the following I discuss constituent order in general terms (§7.1.1) and then in terms of consistency across binominal types (§7.1.2). Finally I look in more detail at some languages that do not exhibit any basic order (§7.1.3).

7.1.1 Constituent order

The order of constituents in compounds was first studied by Bauer (2001), who found “a slight preference” for head-final structures across compounds in general. Bauer does not present the actual numbers in his paper; however, his Table 51.2 (reproduced as Table 3 on page 25), in which head-modifier order in compounds is compared to the order of noun and adjective, allows us to glean that at least 20 of the 36 languages in his study were judged to be right-headed and at least 11 left-headed. For the remaining five languages there was “insufficient data”, but it is not clear whether the lack of data applies to compounds or adjectives. In my replication of Bauer’s study (see page 25), in which I only considered noun-noun compounds, I found a 20-10 split; three languages exhibited mixed order (Cantonese, Kanuri and Tzutujil), and a further three (Mara, Hixkaryana and West Greenlandic) did not have appear to have compounds.
Quite different results are reported from the Morbo/Comp project (cf. §2.1.3 and §2.1.5), which like Bauer’s study covered the whole gamut of compounding, not just noun-noun compounds. The two principal sources give somewhat different sets of numbers (Table 34), but they agree in reporting much higher frequencies (roughly 6:1 and 10:1) for right-headed compounds than the 2:1 ratio found by Bauer and myself.

<table>
<thead>
<tr>
<th>Source</th>
<th>RH</th>
<th>LH</th>
<th>none</th>
<th>both</th>
<th>RH:LH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guevara & Scalise (2009)</td>
<td>55.89</td>
<td>9.72</td>
<td>22.05</td>
<td>6.26</td>
<td>5.75</td>
</tr>
<tr>
<td>Scalise & Fábregas (2010)</td>
<td>66.7</td>
<td>6.8</td>
<td>16.3</td>
<td>5.9</td>
<td>9.81</td>
</tr>
</tbody>
</table>

Table 34: Constituent order pace Morbo/Comp

Turning to the binominal data of the present study, 2,426 of the 3,738 binominals are right-headed and 1,312 are left-headed. These data are, of course, not strictly comparable with those of Bauer and Morbo/Comp since, on the one hand, they only include compounds consisting of two nouns and, on the other hand, they also include functional equivalents of the latter. That being said, it is striking that the ratio of right-headed to left-headed binominals across the database as a whole (1.9:1) is very close to the 2:1 figure obtained by Bauer and myself.

It might seem appropriate to compare this ratio to that between the order of object and verb. In the WALS data (Dryer 2013c) the ratio of OV to VO is almost exactly 1:1; the object preceding the verb in 713 languages (OV) and following it in 705 languages (VO). There is thus a discrepancy between the almost 2:1 ratio obtained for binominals and Dryer’s 1:1 ratio. However this should not be accorded too much weight, for two reasons. The first is that Dryer does not claim that his sample of 1,519 languages is balanced, and nor is my own of 106. In my sample there are 56 VO languages and 40 OV languages (in addition to seven languages with no dominant order and three for which no information is available), giving a ratio of 7:5 in favour of VO. The higher frequency of the latter in my sample as compared to Dryer’s is mostly due to the number of Indo-European languages, of which there are 24: 17 VO and 5 OV (plus one each for no dominant order and no available information). Secondly, the data points on which the 2:1 ratio is based represent binominals, not languages, so we are in any case comparing apples and oranges (in addition to which the distribution of binominals across the languages of the sample is very uneven (see the discussion of Binominal frequency on page 121). In order to compare like with like we would need to have a single data point that expresses the basic constituent order in binominals for each language (with a value of either
left, right, mixed or NA). However, as we noted in §5.6.2, most languages – in fact, all but nine of the 106 in our sample – employ more than one binominal strategy (cf. Figure 41). For example, the two principal strategies in Greek are gen and cmp; the former is consistently left-headed (e.g. *istos araxni.s* [web spider.GEN] SPIDER WEB) and the latter is equally consistently right-headed (e.g. *siðir.o.ðromos* [iron.LE.road] RAILWAY). As a result, it is impossible to determine a basic order for many languages and consequently the exercise of comparing constituent order in binominals with that of object and verb has little point.

More interesting facts are revealed by breaking the numbers for constituent order down by morphosyntactic strategy, as shown in Figure 66. We start by observing that 81% of cmp binominals are right-headed, while 19% are left-headed, a ratio of more than 4:1. Again, these figures cannot strictly be comparable to those of Bauer and Morbo/Comp, for two reasons: first of all, they do not include compounds of types other than N+N (e.g., N+A, synthetic, verbal, coordinate, etc.); secondly, ‘compounds’ consisting of two words are excluded (e.g. *handbag* is included but *hand brake* is not). The second issue can be remedied by combining the two compounding strategies, cmp and jxt. The latter, as the plot shows, are almost equally divided in terms of head position. The difference between cmp and jxt is quite striking in this regard, and justifies analytical decision to separate them, even though there is no clear cross-linguistic of wordhood (see §5.1.2); it would seem that two nouns have a greater tendency to fuse when the head is on the right.
Combining cmp and jxt reduces the ratio of right- to left-headed compounds to slightly over 2:1 (69% vs. 31%). The new numbers tend to support Bauer as against Morbo/Comp, and suggest that the latter’s inflated view of the prevalence of right-headedness is probably due to areal and genetic bias (recall from page 34 that 21 of the 25 languages in Morbo/Comp’s sample are spoken in Europe, 17 are Indo-European and all but one, Mandarin, belong to the same large linguistic area, Eurasia). This is confirmed in the breakdown by geographical area (Figure 67) which shows right-headed compounding to be more frequent in Eurasia than in other parts of the world. Lest it be thought that the preponderance of right-headed compounds in Eurasia is due to the large number of Indo-European languages in the sample (cf. Table 20, page 90), it turns out that excluding IE languages results in an increase of the percentage of right-headed compounds in Eurasia, from 90% to 99%.

The other numbers in Figure 66 should be viewed with caution because of the relatively low proportion of types other than cmp and jxt in the database. In particular, the preponderance of right-headed cls binominals is based on evidence from just three Amazonian languages (Harakmbut, Murui Huitoto and Trinitario); these account for 27 of the 37 instances of cls, while the 10 (left-headed) instances of cls are from Äiwoo, Bandial and Swahili; clearly the sample is too unbalanced and the data too sparse to make any useful generalizations. The values for der demonstrate the overwhelming preponderance of suffixation as opposed to prefixation in the binominal lexicon. Prefixes that denote things are few and far between: ten of the 23 binominals containing preposed thing-affixes are found in Malagasy, and most of these consist of the agentive prefix mpaN-, as in mpan. jòno [AGT.bait] FISHERMAN.
The preference for right-headedness in gen and adj constructions, both of which involve dependent-marking, approaches that of cmp; on the other hand there is a slight preference for left-headedness in con and dbl, both of which involve head-marking (the latter in addition to dependent-marking, of course).

The figures for prp are as striking as those for der: 93% are left-headed and only 7% right-headed. As is well-known, prepositions correlate very highly with head-initial word order and postpositions with head-final word order, so the figures reflect an imbalance between prepositional and postpositional constructions in the data. That imbalance is partly due to the lack of balance in the sample; the three Romance languages, French, Italian and Romanian, together yield almost 30% of all prp binominals and these are, of course, all left-headed (as in chemin de fer).

However, that is not the whole story. A closer inspection of the data shows that the only language with more than one or two right-headed prp binominals is Hindi; an example is given in (74a) on page 165. On the other hand, Nepali, a very close relative of Hindi, has no binominals of this type at all; instead it has 6 instances of gen (cf. 74b). The explanation is diachronic: the postposition found in the common ancestor of the two languages has stayed as such in Hindi but developed through grammaticalization into a case marker in Nepali. This leads to an explanation for the paucity of right-headed prp binominals as follows:

Adpositions usually occupy the position between the head and the modifier, so the two basic patterns are left-headed Head [PREP Mod] and right-headed [Mod POSTP] Head. Now, it is much more common for a particle that follows its co-constituent (as POSTP follows Mod) to fuse with the latter than for one that precedes it (as PREP precedes Mod); a postposition therefore develops much more easily into a postposed case affix than does a preposition into a preposed case affix. As a result there are many more left-headed binominals of type prp\(^1\) than there are left-headed.

An argument could be made for combining prp and gen into a single type (which could be labelled flg on the basis of Haspelmath’s flag/index terminology, or rel on the basis of Croft’s relational/indexical dichotomy, cf. §5.1.2), but this would obscure the oppositions found in languages like Polish (§5.6.2). It would also give Irish a binominal fingerprint very similar to that of the Romance languages (§5.6.3).

\(^1\) Recall from §5.3.2 that the prp type, its label notwithstanding, represents adpositional strategies in general, not just the prepositional strategy.
Figure 68: Distribution of right-headed and left-headed binominals.
7.1.2 Consistency

The degree to which languages are consistent with respect to constituent order can be gauged from Figure 68. Here each language is represented by one or two vertical bars that indicate the percentage of left- and right-headed binominals respectively. At the left-hand edge of the plot are languages that are consistently left-headed, and at the right-hand edge those that are consistently right-headed. Languages at the two extremes are represented by a single bar. Languages in the middle, where the colours overlap, exhibit both right- and left-headed binominals; I will use the term ‘inconsistent’ for these.\(^1\)

Generally speaking, in languages that have both right- and left-headed binominals there is more than one kind of binominal construction, and each such construction is consistently either left-headed or right-headed. For example, the most common types of binominal in Modern Greek are \textit{cmp} and \textit{gen}; the former are consistently right-headed (\textit{cmpR}), as in \textit{sîôir.o.ôromos} [iron.LE.road] RAILWAY, and the latter are consistently left-headed (\textit{genL}), as in \textit{istos araixni.s} [web spider.GEN] SPIDER WEB. However, there are a few rare cases of languages in which the same strategy results in both head-initial and head-final order. This is the case with both Vietnamese Compounds (121) and Polish Adjectival constructions (122). In the case of Vietnamese, this is the result of borrowing: native compounds are left-headed, whereas loans from Chinese are right-headed (Nguyên 1997: 72, 77). The situation in Polish has traditionally been explained by the difference between qualifying and classifying adjectives (Cetnarowska 2014).

(121) Vietnamese
\begin{itemize}
\item a. \textit{cmpL} \textbf{Head Mod} xe liûa [vehicle fire] TRAIN
\item b. \textit{cmpR} \textbf{Mod Head} hoû xa [fire vehicle] TRAIN (from Chinese)
\end{itemize}

(122) Polish
\begin{itemize}
\item a. \textit{adjL} \textbf{Head Mod.ADJZ} droga mlez.na [road milk.ADJZ] MILKY WAY
\item b. \textit{adjR} \textbf{Mod.ADJZ Head} kamien.ny most [stone.ADJZ bridge] STONE BRIDGE
\end{itemize}

Some situations in which a language is very nearly but not quite consistent are a result of the analytical decision I took during the annotation of the data to use the ISA test to determine the head of a binominal (§4.2). As a consequence, when

\(^1\) Note that since the purpose of the diagram is to give an impression of the overall trend, the individual language names are not of crucial importance; they are included as a convenience for readers who can zoom using the electronic version of this work.
MIDDAY is denoted through a combination of MIDDLE and DAY, it is the former that must be regarded as the head (cf. the discussion on page 110). In many cases, the result of such an analysis conforms to the patterns otherwise found in the language. For example in Irish, where the dominant pattern is genL, it is meán lae [middle day:GEN]; in Indonesian, where almost all binominals are of type cmpL, the word for MIDDAY is tengah hari [middle day]; and in Yakut, kün orto.to [day middle.3SG] conforms to the majority conR pattern. But in the Germanic and Finnic languages, which are robustly right-headed, it is the first constituent that carries the meaning MIDDLE, as in Dutch mid.dag, and Estonian kesk.päev. In order to maintain analytical consistency, such words forms be classed as left-headed. These anomalies are paralleled in the database by three words with the meaning WEDNESDAY: Ger. mitt.woch, OHG mitta.wehha and Fin. keski.viikko, all glossed as [middle.week]; outside the database we find more such words that denote the midpoint of a time period (e.g. Norwegian midsommer, English midweek, etc.) and occasionally the middle of something else (e.g. English midship). The explanation for these exceptions is likely to be found in diachrony, but that is beyond the scope of the present work. In the present context, the point is that, had it not been for such anomalies, many more languages would have shown complete consistency with respect to constituent order and the right-hand tail of the middle section of Figure 68 would be much less pronounced.

Inconsistent ordering is found in 66 of the 106 languages in the sample, but it is somewhat peripheral in many languages, as witness the size of the tails (especially the right-hand tail) of the middle section of the plot. For languages where it is not peripheral, it can be of interest to explore in more detail the possible causes of inconsistency in case this leads to the discovery of phenomena similar to that in Nizaa, describe in §1.1.2. This requires investigating individual languages, which is not strictly speaking the way of language typology. However, the insights we gain could feed back into a more typologically oriented research project.

In order to investigate what is going on when inconsistency is not peripheral, we can set a threshold for the number of binominals of each type (left-headed and right-headed) that we require in order for a language to qualify for closer inspection. A threshold of seven results in the exclusion of languages in the two tails of Figure 68 and produces a manageable list of 15 languages in which inconsistent ordering is a significant feature. These are listed in Table 35, together with the binominal types that they exhibit (here using the 18-way classification that includes the head position parameter), the latter grouped by head position.
Table 35: Languages with significant degree of mixed order

<table>
<thead>
<tr>
<th>language</th>
<th>left-headed</th>
<th>right-headed</th>
<th>w/o der</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barain</td>
<td>dbIL, jxtL, prpL</td>
<td>conR, prpR</td>
<td>TRUE</td>
</tr>
<tr>
<td>Greek</td>
<td>genL, jxtL</td>
<td>adjR, cmpR, derR</td>
<td>TRUE</td>
</tr>
<tr>
<td>Kalamang</td>
<td>adjL, genL, jxtL, prpL</td>
<td>cmpR, conR, jxtR</td>
<td>TRUE</td>
</tr>
<tr>
<td>Mapudungun</td>
<td>jxtL</td>
<td>cmpR, derR, genR, jxtR</td>
<td>TRUE</td>
</tr>
<tr>
<td>Trinitario</td>
<td>cmpL, conL, jxtL</td>
<td>clsR, cmpR, derR</td>
<td>TRUE</td>
</tr>
<tr>
<td>Vietnamese</td>
<td>jxtL</td>
<td>jxtR</td>
<td>TRUE</td>
</tr>
<tr>
<td>French</td>
<td>adjL, jxtL, prpL</td>
<td>cmpR, derR</td>
<td>FALSE</td>
</tr>
<tr>
<td>Gawwada</td>
<td>genL</td>
<td>derR, jxtR</td>
<td>FALSE</td>
</tr>
<tr>
<td>Irish</td>
<td>genL</td>
<td>cmpR, derR</td>
<td>FALSE</td>
</tr>
<tr>
<td>Italian</td>
<td>adjL, cmpL, jxtL, prpL</td>
<td>cmpR, derR</td>
<td>FALSE</td>
</tr>
<tr>
<td>Kanuri</td>
<td>adjL, cmpL, genL</td>
<td>derR, jxtR</td>
<td>FALSE</td>
</tr>
<tr>
<td>Polish</td>
<td>adjL, cmpL, genL, prpL</td>
<td>adjR, cmpR, derR</td>
<td>FALSE</td>
</tr>
<tr>
<td>Romanian</td>
<td>adjL, dbIL, jxtL, prpL</td>
<td>derR</td>
<td>FALSE</td>
</tr>
<tr>
<td>Welsh</td>
<td>adjL, cmpL, jxtL, prpL</td>
<td>cmpR, derR</td>
<td>FALSE</td>
</tr>
<tr>
<td>Western Farsi</td>
<td>adjL, cmpL, conL, dbIL, jxtL</td>
<td>adjR, cmpR, derR, jxtR</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

For some languages the threshold of seven is only achieved for right-headed items because of the contribution of der binominals. Now, we know from Figure 37 (page 168) that the der type is relatively common; from Figure 38 we see that it is fairly widespread; and Figure 43 shows that it is attested in well over half of the languages in the sample. Moreover, Figure 66 tells us that 95% of such binominals are right-headed. That the derR type should often be the cause of inconsistent ordering should therefore come as no surprise. It is therefore particularly instructive to see which languages are inconsistent if we ignore der, and that is the significance of the Boolean value in the final column. In the top six languages, inconsistency is found even if der is ignored, whereas in the bottom nine it is due to the presence of right-headed der constructions with one or more left-headed, non-derivational types. The latter would seem to be somewhat less interesting, so I will have no more to say about them here.

Of potentially greater interest are the six cases in which derivation does not play a role. Of these, two (Vietnamese and Mapudungun) show an opposition between jxtL and jxtR; in Greek the opposition is mainly between genL and cmpR, as we saw earlier; in Barain it is between prpL and conR. In Kalamang it is between jxtL, cmpR and conR. In Trinitario the opposition is less clear-cut: most right-headed binominals are of type cls, but left-headed binominals are a mix of cmp, con and jxt. In the next section I will briefly discuss the four cases in which the
opposition involves just two types, that is, Vietnamese, Mapudungun, Greek and Barain. The case of Kalamang will be investigated in more depth in §8.1.

7.1.3 Mixed languages

Two of the four languages – Vietnamese and Mapudungun – have both left-headed and right-headed compounds: both exhibit two subtypes of the jxt strategy, jxtL and jxtR. They are thus cases of inconsistency in compounding, a phenomenon that has not been investigated cross-linguistically but appears to be rare. In any given language, compounds tend to be either left-headed or right-headed,¹ but there are exceptions. Examples cited in the literature include Mandarin (Packard 2000; Ceccagno & Scalise 2006; cf. also Table 21 in Scalise & Fábregas 2010), Breton (Ternes 2016), Oko (okoo1245; Atoyebi 2010), Welsh (Awbery 2004) and Western Farsi (Tehranisa 1987), as well as the languages under consideration here (and, of course, Nizaa, to which I will return in §7.3 and §8.1).

The explanations for such inconsistency vary. In some languages different orders are exhibited by different compound types, as is the case with Mandarin, which has left-headed verbal compounds and right-headed nominal compounds. This kind of explanation obviously does not hold in the domain of binominals, since only noun-noun compounds qualify as binominals. A second explanation is diachronic word order change; this is the case with Breton, Welsh and Western Farsi. A third reason can be language contact – more precisely, borrowing – and this, as was noted above, is the case with Vietnamese, in which native compounds are left-headed, and loans from Chinese are right-headed (cf. example 121 on page 259).

As for Mapudungun, we will see in §7.1.3 that the system here is similar to that in Nizaa, and that the position of the head correlates with the type of semantic relation being expressed, which gives us a fourth kind of explanation. In Nizaa, attributive compounds (to use Scalise and Bisetto’s term) are left-headed, whereas subordinate compounds are right-headed. In Mapudungun the situation is the reverse, as shown in the contingency table below (Table 36). Unfortunately, there is too little data from Mapudungun in the current database to provide statistically significant evidence, but the tendency for jxtL to express one kind of relation (HinM) and jxtR (or cmpR) to express others (MinH and HtoM) is clear.²

¹ Here I ignore exceptions that prove the rule, like Eng. attorney-general (cf. page 175).
² The exception that proves the rule in this table is malle ñawe [father’s_brother daughter] NIECE, a right-headed construction (jxtR) that expresses an HinM relation (POSS).
Greek and Barain constitute a different case, since the head ordering opposition is between different morphosyntactic strategies. In Greek, compounds are right-headed while genitival binominals are left-headed (Table 37); the latter, as Ralli (2013: 246) points out, resemble Greek Noun phrases, from which they no doubt develop historically. However, to the best of my knowledge, no-one has investigated why some binominal concepts are expressed by the cmp strategy and others by the gen strategy and the present data is too sparse to offer any hints.

In Barain the competition is between leftheaded prp strategy and the right-headed con strategy (Table 38).

Table 36: Strategies and high-level relations in Mapudungun

Table 37: Strategies and high-level relations in Greek

Table 38: Strategies and high-level relations in Barain
There are no significant correlations to be observed, as witness the high p-values. However, if we restrict the analysis to the conR and prpL strategies and investigate low-level instead of high-level relations, an interesting pattern does emerge (Table 39).

<table>
<thead>
<tr>
<th>10 Barain (0x NN, 2x7)</th>
<th>stype</th>
<th>COOR</th>
<th>POSS</th>
<th>MER</th>
<th>LOC</th>
<th>TEMP</th>
<th>POSS-R</th>
<th>PROD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftype2</td>
<td>conR</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>prpL</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>chi-squared p = 0.0307320697274852</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-squared = 13.9035714285714 df = 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's exact p = 0.00949525237381309</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 39: Strategies and low-level relations in Barain

Of the seven relations exemplified in the (admittedly rather sparse) data, only two are found in the con strategy (COOR and MER) and all the remainder are found only with the prp strategy (POSS, LOC, TEMP, POSS-R and PROD). Examples of each are given in (123a-g).

(123) a. con COOR duma non.ji [sheep child.POSS:3SG:M] LAMB
 b. con MER sinja guma.geti [nose hole.POSS:3SG:F] NOSTRIL
 c. prp POSS gera ge y gargar [home REL:3SG:M ASS spider] SPIDER WEB
 d. prp TEMP tii de y bonte [eat:INF REL:SG:F ASS morning] BREAKFAST
 e. prp POSS-R mee de mer.geti [women REL:SG:F husband.POSS:3SG:F] MARRIED WOMAN
 f. prp LOC looli ta lutta [dirt PURP ear] EARWAX
 g. prp PROD mooosu ta peye [cow PURP milk] DAIRY COW
 h. prp MER assi ge y kee [bone REL:3SG:M ASS head] SKULL

Only one data point disturbs the consistency of this pattern, and that is (123h), in which head + bone has been analysed as a meronomic relation. However, there is an alternative interpretation for this conceptual combination, which is of “a bone that is similar to a head” (SIM). Exactly this case was noted by Pepper (2016: 301–302) in Nizaa, where two words for SKULL were attested in the data source (124).

(124) a. kōw bii ‘skull’ < kōw ‘bone’ + bii ‘head’
 b. bii kōw ‘skull’ < bii ‘head’ + kōw ‘bone’

As I wrote then:

During the first step of the analysis there was uncertainty as to whether the relation between ‘bone’ and ‘head’ should be interpreted as PART-WHOLE or RESEMBLANCE. During Step 2, these compounds (and the remainder of those yet to be resolved) were used to test the hypothesis that had emerged during Step 1, and it turned out that they...
could indeed be accommodated in the system that had emerged. If the two conceptualizations of ‘skull’ (as a bone that resembles a head, or as a bone that is part of the head) are assigned to compounds [124a and b] as LH and RH, respectively, then the sub-regularity is upheld.

If (123h) is given a resemblance interpretation (SIM), a consistent pattern emerges:

\[
\begin{array}{cccccccccc}
& & & & & & & & & \\
10 & Barain & (0x \text{ NN}, & 2x8) & & & & & & \\
& & \text{stype} & \text{COOR} & \text{SIM} & \text{POSS} & \text{MER} & \text{LOC} & \text{TEMP} & \text{POSS-R} & \text{PROD} \\
& & \text{ftype2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & \text{conR} & 4 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\
& & \text{prpL} & 0 & 1 & 1 & 0 & 2 & 4 & 1 & 1 \\
\text{chi-squared} & p = & 0.0173961825691245 & \\
\text{x-squared} & = & 17 & \text{df} = & 7 & \\
\text{Fisher’s exact} & p = & 0.00499750124937531 & \\
\end{array}
\]

\textit{Table 40: Strategies and low-level relations in Barain (rev.)}

This pattern can be summarized as follows: In Barain the \textbf{con} strategy always and only encodes either a MER relation or a COOR relation; all other relations are encoded by the \textbf{prp} strategy. This can be taken one step further by examining the actual data points for the COOR relation. There are four altogether (125) and they all permit of a possessive reading (as well as one of coordination). With such a reading, the generalization becomes: In Barain the \textbf{con} strategy always and only encodes a MER relation; all other relations are encoded by the \textbf{prp} strategy.

(125) a. \textit{peesi non.ji} [horse child.POSS:3SG:M] \textit{FOAL OR COLT}
 b. \textit{nokuno non.ji} [goat child.POSS:3SG:M] \textit{KID}
 c. \textit{duma non.ji} [sheep child.POSS:3SG:M] \textit{LAMB}
 d. \textit{mon mee.ji} [chief woman.POSS:3SG:M] \textit{QUEEN}

Whether this generalization, based on a very limited set of data, holds up across the language as a whole is an empirical question. Lovestrand (2012) discusses the \textbf{con} strategy in the context of adnominal possession, but not as a source of lexical items, and semantic relations are not mentioned. Denominal derivation (\textbf{der}) and noun compounds (\textbf{cmp}) are covered, but as so often, other means of enriching the nominal lexicon seem to fall between the cracks – a consequence, I believe, of the traditional division of grammar into morphology and syntax.\footnote{It should be mentioned that eight of the 10 instances of the \textbf{prp} strategy use the morphosyntax of relative clauses (cf. 123c-e, h). It could be argued that these are not lexical items but simply descriptive phrases, but this seems unlikely given the kind of meanings that they denote: BREAKFAST, DINNER, LUNCH, MARRIED WOMAN, SKULL, SPIDER WEB, SPINE and SUPPER.}
7.2 Binominals and possessives

The mention of adnominal possession in the previous paragraph leads to a topic that has been alluded to throughout this dissertation, but so far not confronted head-on: the relationship between binominals and possessives. Evidence of a significant relationship has been gradually accumulating. The first hint for me personally came during my work on Nizaa (Pepper 2010b), when I discovered that the semantic relations found in right-headed compounds in Nizaa overlap considerably with those typical of possessive constructions (PART-WHOLE, KINSHIP, POSSESSION, etc.). I discussed this finding in terms of Langacker’s (1991) reference point model, and noted that right-headed compounds somehow “correspond to” possessive constructions, but I failed to make the connection in terms of grammaticalization.

For the present project I knew from the start that I wanted to include constructions like French chemin de fer alongside typical Germanic compounds like Eisenbahn, and that the preposition de is used in archetypical French Possessive constructions like la plume de ma tante. As I started compiling the data, I came across more and more examples, like those in (125) above, where the glosses indicate some kind of possessive function. In all, the database contains some 400 instances of binominals whose gloss includes one of the abbreviations 3SG, POSS, AL or INAL (and this by no means exhausts the list of possessive morphemes). This again indicates some kind of connection between the two kinds of construction.

Another hint is to be found in the discussion of the correlation between constituent order in compounds and constituent order in possessives constructions. In §2.1.1, we saw that Bauer’s (2001) data show a tendency toward a biconditional universal of the type Poss-N 😡 Mod-N; in my own replication of Bauer’s study, which was restricted to noun-noun compounds, I found an exceptionless pattern: either the head is on the left in both compounds and possessive constructions, or it is on the right in both (cf. Table 6b on page 27). Even more significant are the similarities between the morphosyntactic strategies found in adnominal possessive constructions and those of binominal lexemes. Six of the seven strategies found by Koptjevskaja-Tamm in her study of possessive noun phrases in Europe (§5.1.1) are identical to six of the nine binominal types, and the absence of her “linking pronouns” (the missing binominal type that I labelled prn in §5.4.1) can be accounted for.

1 Life magazine once called this “the most idiotically useless phrase in a beginner’s French textbook”.
2 The seventh PNP strategy, “possessive compounding”, does not figure in Koptjevskaja-Tamm’s typology (Figure 32) because in her sample it was “mainly restricted to Northern Swedish”.

Note: The page numbers (266, 27) and the date (2020-04-25) indicate that this is a draft version of the dissertation.
All of this evidence suggests the hypothesis that the binominal lexeme construction grammaticalized from the adnominal possession construction. One prediction from this is that there should be a correlation between the strategy used for the binominal lexeme construction and the adnominal possession construction; in other words, that the binominal lexeme construction recruited its strategy from the adnominal possession construction. In this section I investigate that hypothesis. For reasons of time and space the investigation will not be definitive, but it will lead to a number of interesting observations and to some provisional conclusions.

As Rijkhoff (2001: 528) points out, “possessive constructions have been the subject of several typological studies (Chappell & McGregory 1996; Heine 1997; Manzelli 1990; Plank 1991; Seiler 1983; Ultan 1978)”. Since Rijkhoff wrote, this list has grown to include Baron, Herslund & Sørensen (2001), Koptjevskaja-Tamm (2002; 2003; 2004), McGregor (2009), Stassen (2009), Koch (2012), Aikhenvald & Dixon (2013), Carlier & Verstraete (2013) and Johanson, Mazzitelli & Nevskaya (2019), to cite some of the more important contributions. However, the majority of these studies have been concerned with predicative rather than adnominal (or attributive) possession. The latter seemed to Heine “to present a relatively simple structure: it consists essentially of two noun phrases linked to one another in a specific way” (1997: 143). Moreover, even those studies that deal with adnominal possession tend to focus on semantics, for example alienability, or Heine’s set of eight event schemas “that account for the majority of possessive constructions in the languages of the world” (Table 41).

<table>
<thead>
<tr>
<th>Formula</th>
<th>Label of event schema</th>
</tr>
</thead>
<tbody>
<tr>
<td>X takes Y</td>
<td>Action</td>
</tr>
<tr>
<td>Y is located at X</td>
<td>Location</td>
</tr>
<tr>
<td>X is with Y</td>
<td>Companion</td>
</tr>
<tr>
<td>X's Y exists</td>
<td>Genitive</td>
</tr>
<tr>
<td>Y exists for/to X</td>
<td>Goal</td>
</tr>
<tr>
<td>Y exists from X</td>
<td>Source</td>
</tr>
<tr>
<td>As for X, Y exists</td>
<td>Topic</td>
</tr>
<tr>
<td>Y is X's (property)</td>
<td>Equation</td>
</tr>
</tbody>
</table>

Table 41: Heine’s set of eight event schemes
The most substantive work on the morphosyntactic typology of adnominal possession is to be found in Koptjevskaja-Tamm’s series of papers on possessive noun phrases (PNPs) from the early 2000s. These are limited to the languages of Europe, but they will provide our starting point here, as they did in Chapter 6.

7.2.1 Anchoring and typifying nominal modifier constructions

Koptjevskaja-Tamm’s 2002 paper, entitled *Adnominal possession in the European languages*, provides an overview of the structure of PNPs, introduces the distinction between anchoring and non-anchoring relations and discusses animacy/referentiality splits, alienability and nominalizations; the 2003 paper (*Possessive noun phrases in the languages of Europe*) discusses synthetic and analytic constructions in some depth, along with “cross-categorial” uses of construction markers; and the 2004 paper (*Maria’s ring of gold: Adnominal possession and non-anchoring relations in European languages*) focuses on anchoring vs. non-anchoring relations. For the remainder of this section, all references will be to these three papers unless otherwise stated.

In the present context we are primarily concerned with the distinction between anchoring and non-anchoring relations – and with the relation between the latter and binominals. Koptjevskaja-Tamm does not provide explicit definitions, but characterizes anchoring and non-anchoring relations on the basis of two sets of examples from Lithuanian (2004: 155-156):

As is well known, so called “adnominal possessive constructions” are never dedicated to expressing possession stricto sensu (LEGAL OWNERSHIP or DISPOSAL, but are used for various relations by which the head’s referent is identified via the possessor’s referent (e.g. BODY-PART vs. person-relations, or KIN relations).

(1) **Petr-o** namas / **pūrštas** / **brolis**
 Peter-GEN house:NOM finger:NOM brother:NOM
 ‘Peter’s house / finger / brother’

Typical possessors, such as the noun in the genitive in ex. (1) from Lithuanian, act thus as anchors or reference point entities for identification of the head, and the whole construction can be said to denote anchoring relations. In ex. (2), however, genitive nouns serve as MATERIAL (2a) or PURPOSE (2b) modifiers of the head; in other words, the same pattern is used for expressing non-anchoring relations, in which the nominal dependent is to classify, describe or qualify the class of entities denoted by the head.

(2) a. **auks-o** žedas
 gold-GEN ring:NOM
 ‘a golden ring’

 b. **kav-os** puodelis
 coffee-GEN cup:NOM
 ‘a coffee cup’
What anchoring and non-anchoring constructions have in common is that both types of adnominal dependent characterize entities via their relations to other entities. Non-anchoring (or typifying, to use a less apophatic term) adnominals differ, however, in the words of Croft (forthc.), in that

1. the object modifier is only type identifiable;
2. the modifier-head combination refers to a subclass of a broader class and often functions as a classificatory label for it, suggesting that the modifier and the head together correspond to one concept, but
3. the head cannot be identified via its relation to the modifier.

From this it is clear that binominals, as defined in the present study, are essentially typifying nominal modifier constructions, albeit ones in which a diachronic process of lexicalization has proceeded to the point where the binominal is coming to be a unitary lexeme; binominals are basically lexicalized typifying constructions that represent the penultimate stage in a continuum of constructions from anchoring object modification to reference (126):

\[
\text{(126) anchoring construction} \rightarrow \text{typifying construction} \rightarrow \text{binominal lexeme construction} \rightarrow \text{simple noun construction} \rightarrow \text{reference}
\]

The difference between binominals and the general case of typifying constructions is minimal and based on the degree of lexicalization, which is hard to measure. It is therefore more instructive to compare the morphosyntactic strategies between binominals and anchoring constructions. Koptjevskaja-Tamm does more or less this in her 2004 paper, but for typifying (“non-anchoring”) constructions in general and for European languages only. Table 42 reproduces the table from her 2002 and 2004 papers in which Koptjevskaja-Tamm summarizes the results of her investigation.\(^1\)

Five cases are distinguished, one of them with two subtypes, as follows:

1. Identical structures
2. Similar structures
3. Differing complexity on (i) the modifier or (ii) the head
4. Phrase vs. one word
5. NP vs. adjectival modifier

\(^1\) I have modified Koptjevskaja-Tamm’s numbering slightly in order to separate “identical structures” from “similar structures” and used the term typifying instead of non-anchoring. I have also simplified some glosses (without losing any critical information) for reasons of clarity, and corrected a minor error: 3.2 concerns different degrees of H’s (not D’s) morphological complexity.
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>Representative languages</th>
<th>Structural patterns and examples</th>
<th>Anchoring</th>
<th>Non-anchoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lithuanian</td>
<td></td>
<td>D in the genitive case mokytojo namas teacher:GEN name ‘the teacher’s name’</td>
<td>D in the genitive case duonos pelis bread:GEN knife ‘a bread knife’</td>
</tr>
<tr>
<td>Identical structures</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1. Italian		Articles in D la casa di un professore ‘the house of a teacher’	No articles in D la casa di pietra ‘the house of stone’
Similar structures			
(D = de-phrases)			

2.2. Scottish Gaelic		Articles in D; H incompatible with articles *an/Ø cù na caileige *DEF/Ø dog DEF.GEN girl:GEN ‘the girl’s dog’	No articles in D H compatible with articles an/Ø cù fiodha DEF/Ø dog wood:GEN ‘the/a wooden dog’
Similar structures			
(D in the genitive case)			

3.1. Albanian		D = Agreeing preps + genitive buk-a e grur-it bread-DEF ATTR wheat-DEF.GEN ‘the wheat bread’	D in the ablative case bukë grur-i bread wheat-ABL ‘wheat bread’
Different degrees of			
D’s morphological			
complexity			

3.1. Rumanian		D in the genitive case fiul regelui son:DEF king:DEF.GEN ‘the son of the king’	D = de-phrase fiul de rege son:DEF of king ‘the royal son’
Different degrees of			
D’s morphological			
complexity			

Different degrees of			
D’s morphological			
complexity			

Different degrees of			
H’s morphological			
complexity			

4. Swedish:		Dependent-marking student-en-s rum student-DEF.GEN room ‘the student’s room’	Compounding student-rumm-et student-room-DEF ‘the room for students’
Presence v. absence of			
morphological markers;			
phrase v. one word			

5. Russian:		D in the genitive case plat’e ženš’iny dress woman:GEN ‘a/the woman’s dress’	D = derived adjectives žen-sk-o e plat’e woman-ADJ-NEUT dress ‘a/the dress for women’
Dependsents as NPs vs.			
adjectives			

Table 42: Anchoring/non-anchoring comparison table (Koptjevskaja-Tamm 2004; D = dependent)
These five cases can be briefly characterized as follows:

Identical structures. The same morphosyntactic strategy is used for both anchoring and typifying constructions. Exemplified by Lithuanian, Georgian, Daghestanian, Russian and Finnish, which use a genitive modifier and inflect nouns for case but lack articles and a grammaticalized definiteness-indefiniteness opposition.

Similar structures. The same morphosyntactic strategy is used for both anchoring and typifying constructions but articles (markers of definiteness) on the modifier are permitted with the former but not the latter. Exemplified by Italian (prepositional strategy) and Scottish Gaelic (genitival strategy); Maltese is a special case.

Differing morphological complexity. Typifying constructions are morphologically less complex and/or looser than anchoring constructions. Exemplified by Albanian, Rumanian, Turkish and Kirmandji (dependent-marking) and Mordvin and Armenian (head-marking).

Loss of nominal autonomy: compounding. The relational or indexical marker found in anchoring constructions is lost in typifying constructions, leading to a compound or juxtaposition strategy for the latter. Exemplified by the Uralic and Germanic languages.

Loss of nominal autonomy: relational adjectives. Typifying constructions use a derived, adjectival form of the modifying noun instead of case markers (i.e. case affixes or adpositions). Exemplified by Slavic and – to a lesser extent – Romance languages.

7.2.2 Comparing non-binary typologies

Before we can compare binominal constructions with typifying constructions in a quantitative manner, two issues need to be addressed. The first concerns the number of types in the respective typologies. In most studies of the Greenbergian type, the constructions under comparison offer a binary choice: for example, the possessor can either follow (N-Poss) or precede (Poss-N) the possessum, and the modifier of a compound can either follow (N-Mod) or precede (Mod-N) the head. In such a scenario most languages can be assigned a single value for each construction, e.g. GenN and OV. Ignoring the few mixed languages, the comparison can then be represented as a tetrachoric (2x2) table, such as that in Table 43, reproduced from page 27. From this can be deduced either a bidirectional universal (as in this case) or an implicational universal.
The typology and semantics of binominal lexemes

Table 43: Noun-possessor tetrachoric tables (Pepper 2015)

<table>
<thead>
<tr>
<th></th>
<th>N-Mod</th>
<th>Mod-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Poss</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Poss-N</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>

In the case of both anchoring nominal modifier constructions and binominals there is no binary choice: Koptjevskaja-Tamm’s PNP typology contains seven types, and our binominal typology contains nine. Representing this as a 7x9 table would clearly not be very helpful. Moreover, many languages employ multiple strategies in order to represent attributive possession, just as they do to express binominals (see the discussion of intralingual competition in §5.6.2 on page 171 ff). This complicates the comparison even more. A different approach is thus required, one that Koptjevskaja-Tamm has already pioneered. Notice that her comparison table and its five primary categories do not focus on the values assigned to each language on the basis of her PNP typology, but on a characterization of the relation between each language’s primary anchoring and typifying strategy: for each language those are essentially described as “identical”, “similar” and “differing”, with the latter amenable to subcategorization such that it encompasses the two cases of “loss of autonomy” as well as differing morphological complexity. In my analysis I will follow Koptjevskaja-Tamm’s lead, but with a small adjustment to make the set of categories more amenable to statistical analysis.

The five categories listed above may be used as simple nominal variables. However, the adjectives used to describe the first three categories suggest a potential for representation as ordinal variables: identical → similar → different. In the hope that this might provide new insights I have chosen to replace Koptjevskaja-Tamm’s three “orderable” categories with a more fine-grained system of five categories that express the degree of similarity between anchoring and binominal constructions. Not surprisingly, since this is about different grades of a property (similarity), a naming system based on adjectives is less useful. I will therefore adopt one based on adverbs that qualify the adjective ‘identical’ (127).

1 Nominal variables, as Levshina (2015: 16–17) explains are two or more categories that are mutually exclusive. They represent the least precise and informative level of measurement.

2 Levshina uses the five-point Likert scale (‘strongly disagree’ – ‘disagree’ – ‘neither agree nor disagree’ – ‘agree’ – ‘strongly agree’) as an example of an ordinal variable and points out that “the categories thus differ in order, but we do not know yet by how much. We cannot say, for example, that the difference between ‘disagree’ and ‘neither agree nor disagree’ is the same as the difference between ‘strongly disagree’ and ‘disagree’”.
(127) always → mostly → sometimes → rarely → never

Clearly, these categories need to be defined precisely for the task at hand, but before doing so there is second issue that needs to be addressed: that of mixed languages. As we saw in §5.6.2, most languages have more than one binominal strategy available to them; some have as many as six (and some, like Polish, as many as nine if the order of constituents is taken into account); most have at least four; and only seven of the 106 languages in our sample are entirely monogamous (see Figure 41 on page 171). The question thus arises which strategy to select for the comparison with anchoring constructions. Fortunately, almost every language in the sample shows a preference for one type of binominal type or another, and 70 of the 106 can be said to have a dominant type according to Dryer’s criteria for dominance (§5.6.1). My comparison will therefore be based on what I will term the ‘primary binominal strategy’, defined as the type that occurs most frequently; languages that have no clear preference (Äiwoo, Galibi Carib and Selice Romani, see Table 26 on page 170) will be deemed to have such strategy. In addition, I will employ the term ‘secondary binominal strategy’ for any non-primary strategy that is ‘common’ (defined as occurring in at least 10% of the data for any given language, cf. §5.6.3). Having defined these terms, the five grades of ‘identicality’ in (127) can be defined as shown in Table 44.

<table>
<thead>
<tr>
<th>grade</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>always</td>
<td>the primary binominal strategy is identical to the primary anchoring strategy and there are no secondary binominal strategies</td>
</tr>
<tr>
<td>mostly</td>
<td>the primary binominal strategy is identical to the primary anchoring strategy but there also are secondary binominal strategies</td>
</tr>
<tr>
<td>sometimes</td>
<td>a secondary binominal strategy is identical to the primary anchoring strategy, or the primary binominal strategy is identical to a secondary anchoring strategy</td>
</tr>
<tr>
<td>rarely</td>
<td>a secondary binominal strategy is identical to one of the secondary anchoring strategies</td>
</tr>
<tr>
<td>never</td>
<td>binominal strategies and anchoring strategies are quite different</td>
</tr>
</tbody>
</table>

Table 44: Pepper scale for non-binary typological comparison

The definitions themselves are, of course, particular to the actual constructions that we are investigating, but the Pepper scale\(^1\) itself has universal validity and could

\(^{1}\) I venture to name the scale in line with the convention established by psychologist Rensis Likert. The Pepper scale should not be confused with the Scoville scale!
provide an additional tool for typologists, alongside tetrachoric tables and semantic maps, for use when comparing non-binary typologies.

7.2.3 Data analytics

Before proceeding with the quantitative analysis of the data, it should be noted that the Pepper scale loses some of the qualitative detail in Koptjevskaja-Tamm’s model (for example, differences in complexity and morphological tightness), but it is perfectly possible to add that back in, by subdividing the basic categories (I do so below with “never” in order to capture grammaticalization). Table 45 shows the results of applying the scale when comparing anchoring and binominal strategies (labelled A and B). The 106 languages of the sample are grouped according to the grade they exhibit on the scale, in the decreasing order of similarity shown in (127), along with short comment that explains the situation that gives rise to the grading:

always: Hausa, Hebrew, Akkadian, etc. are graded “always” because they use the same primary strategy for both anchoring possessive and binominals and there are no other strategies for the latter.

mostly: Lower Sorbian, Russian, Anindilyakwa, etc. are graded “mostly” because, although they use the same primary strategy for both anchoring possessives and binominal, there are additional strategies for the latter.

sometimes: Here there are two possible scenarios: the primary anchoring strategy is a secondary binominal strategy, or the primary binominal strategy is a secondary anchoring strategy; for example, Galibi Carib’s con primary anchoring strategy is its secondary binominal strategy, whereas in Maltese the situation is the reverse.

rarely: In Croatian, an instance of the “rarely” category, adj is found among the secondary strategies of each language, but the primary strategies (gen and der, respectively) differ.

never: The “never” category has been split, to highlight cases where the principal binominal strategy, though different from the principal anchoring strategy, can be viewed as a “grammaticalized” form of the latter, following one of nine pathways:

(128) \[
\begin{array}{cccccccc}
\text{jxt} & \text{gen} & \text{gen} & \text{con} & \text{con} & \text{prn} & \text{prn} & \text{dbl} & \text{dbl} \\
\text{cmp} & \text{cmp} & \text{jxt} & \text{cmp} & \text{cmp} & \text{jxt} & \text{cmp} & \text{con} & \text{gen}
\end{array}
\]

Each pathway in (128) represents a single step: either fusion, as in the case of jxt \(\rightarrow\) cmp, or loss of a single morpheme (as in gen \(\rightarrow\) cmp). Other pathways are conceivable (e.g. prp \(\rightarrow\) gen), but these are not attested in the data.
<table>
<thead>
<tr>
<th>ALWAYS</th>
<th>MOSTLY</th>
<th>RARELY</th>
<th>GRAMMATICALIZED</th>
<th>NEVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hausa</td>
<td>con</td>
<td>primary both A and B</td>
<td>Malayalam gen (primary A is secondary B)</td>
<td>Aiwoo A con diff. from B NA (+ jxt.cls,prp)</td>
</tr>
<tr>
<td>Hebrew</td>
<td>con</td>
<td>primary both A and B</td>
<td>Selice Romansi gen (primary A is secondary B)</td>
<td>Gawaiwada A con diff. from B gen (+ jxt,der)</td>
</tr>
<tr>
<td>Akkadian</td>
<td>dbl</td>
<td>primary both A and B</td>
<td>Somali gen (primary A is secondary B)</td>
<td>Zin. Tzotzil A con diff. from B gen (+ jxt)</td>
</tr>
<tr>
<td>Bezhta</td>
<td>gen</td>
<td>primary both A and B</td>
<td>Ticuna gen (primary A is secondary B)</td>
<td>Barain A dbl diff. from B prp (+ con)</td>
</tr>
<tr>
<td>Kambaata</td>
<td>gen</td>
<td>primary both A and B</td>
<td>Kam jxt (primary A is secondary B)</td>
<td>Romanian A dbl diff. from B prp (+ der,adj)</td>
</tr>
<tr>
<td>Ceq Wong</td>
<td>jxt</td>
<td>primary both A and B</td>
<td>Murui Huitoto jxt (primary A is secondary B)</td>
<td>Hungarian A dbl diff. from B cmp (+ der,adj)</td>
</tr>
<tr>
<td>Datooga</td>
<td>jxt</td>
<td>primary both A and B</td>
<td>Saramaccan jxt (primary A is secondary B)</td>
<td>Dutch A prp diff. from B cmp (+ gen)</td>
</tr>
<tr>
<td>Hmong Daw</td>
<td>jxt</td>
<td>primary both A and B</td>
<td>Hindi prp (primary A is secondary B)</td>
<td>Mam. Senoufo A prp diff. from B cmp</td>
</tr>
<tr>
<td>Indonesian</td>
<td>jxt</td>
<td>primary both A and B</td>
<td>Maltese prp (secondary A is primary B)</td>
<td>Mandarin A prp diff. from B cmp (+ jxt)</td>
</tr>
<tr>
<td>Seych. Creole</td>
<td>jxt</td>
<td>primary both A and B</td>
<td>Seri dbl (secondary A is primary B)</td>
<td>Ho-Chunk A dbl diff. from B jxt (+ cmp,der)</td>
</tr>
<tr>
<td>Srengi</td>
<td>jxt</td>
<td>primary both A and B</td>
<td>Czech adj (secondary A is primary B)</td>
<td>Western Mari A dbl diff. from B jxt (+ cmp)</td>
</tr>
<tr>
<td>Walman</td>
<td>jxt</td>
<td>primary both A and B</td>
<td>Yaqi jxt (secondary A is primary B)</td>
<td>Hawaiian A prp diff. from B jxt (+ cmp)</td>
</tr>
</tbody>
</table>

Malagasy gen (primary A is secondary B) | Malayalam gen (primary A is secondary B) | Somali gen (primary A is secondary B) | Ticuna gen (primary A is secondary B) | Cuban adj (secondary A is primary B) |

Table 45: Comparing anchoring and binominal strategies

2020-04-25 Draft. Please do not cite. Comments to: pepper.steve@gmail.com.
Finally, the “never” category contains languages in which no anchoring strategy is the same as any of the binominal strategies. In Table 45 this category is divided into two parts by a dotted line. Above the dotted line there is no discernible pattern. Below it, the primary binominal strategy is either cmp or jxt, i.e. compounding.

In all four categories except “never”, binominal constructions can be said to recruit one of the anchoring strategies, sometimes across the board (“always”), sometimes to a lesser degree (“mostly”, “sometimes”, “rarely”), and sometimes in a more “grammaticalized” form. When the anchoring strategy is not recruited, more often than not, it is compounding that fills the void.

Figure 69 plots the six categories used in Table 45. We see that all but 12 of the 105 languages for which data was available (almost 90%) recruit an anchoring strategy for use in the formation of binominals. Of the twelve languages in the sample that do not, the majority (58%) use a compounding strategy.

In conclusion, I posit the following universals on the basis of the present data:

(129) With overwhelmingly greater than chance frequency, languages recruit at least one of their binominal strategies from anchoring nominal modifier constructions.

1 Äiwoo is one of the three languages for which there is no primary binominal strategy (cf. Table 26 on page 170). The other two “mixed” languages, Galibi Carib and Selice Romani, fall into the “sometimes” category, since their primary anchoring strategies are secondary binominal strategies.

2 Collection of the data regarding anchoring strategies was somewhat cursory, due to time constraints, and there may be errors. However, it seems unlikely that these will have influenced the overall picture in a major way. The typology of adnominal possession deserves a research project of its own.
If a language does not recruit at least one of its binominal strategies from an anchoring nominal modifier constructions, there is a strong tendency for it to use compounding for this purpose.

7.3 Strategies and semantics

In Chapter 6 we saw that there is no overall correlation, as we might have expected, between morphosyntactic strategies and semantic relations. In this section I delve more deeply into the question. I start by explaining why we should not expect such a correlation after all and then suggest alternative ways in which the question might be approached.

The category of ‘compound’ was abandoned in Chapter 1 on the grounds that it is a formal, language-specific descriptive category and therefore unsuitable for cross-linguistic comparison. The comparative concept binominal lexeme, on the other hand, is based on function, was easy to apply across languages and resulted in a nine-way typology of morphosyntactic strategies. But while we can identify these nine strategies across languages, we cannot assume that they always carry the same functional load; the case of Nizaa and Mapudungun is instructive in this respect.

Recall from §1.1.2 that Nizaa exhibits two types of nominal compound, which we denote as \(\text{jxtL}\) and \(\text{jxtR}\), and furthermore that these comprise two disjunct sets of semantic relations. Left-headed compounds involve relations such as LOCATION, PURPOSE, ACTIVITY and APPEARANCE that can be characterized as attributive, whereas right-headed compounds involve relations such as PART, KIN, POSSESSION and CONTAINER, that can be similarly characterized as subordinative. In terms of the high-level taxonomy of semantic relations, this equates to the following:

\[
\begin{align*}
\text{jxtL} & : \text{attributive} \Rightarrow \text{MinH, MisH, HtoM} \\
\text{jxtR} & : \text{subordinative} \Rightarrow \text{HinM, MtoH}
\end{align*}
\]

Now, Mapudungun is similar to Nizaa in that it exhibits both left- and right-headed nominal compounds, as reported by Harmelink (1996) and summarized by Zúñiga (2014):

complex expressions consisting of at least two nouns are either head-final […] or head-initial […]. While in the former group the first element characterizes the second in an unspecified way, the latter group is more restricted in semantic terms, viz. it consists of part-whole relationships or of those in which “the former noun is an element of the latter.”
However, from the description given it is clear that the functions of \texttt{jxtR} (head-final) and \texttt{jxtL} (head-initial) are the exact opposite of those in Nizaa: the former encode attributive relations, whereas the latter encode subordinative relations.

Two observations can be made on the basis of these facts: First of all, constituent order cannot be disregarded when examining patterns in individual languages: left- and right-headed variants should not be lumped together under one morphosyntactic category. Secondly, care must be taken when doing cross-linguistic comparisons: if one tries to generalize across Nizaa and Mapudungun, the interesting patterns will cancel each other out, and those found when observing each language alone will be lost.

There are two ways to address this problem. One is to look for correlations between morphosyntactic strategies and semantic relations within individual languages rather than across languages, i.e. intralinguistically. Such an approach is admittedly not typological, but it can be justified on the grounds that it has the potential to reveal insights that may form the basis of later typological investigations. The other way to address the problem is to leverage the known facts of morphosyntactic structure differently, in a way that is cross-linguistically valid. In the following two sections I explore these two approaches.

7.3.1 Intralinguistic patterns

This investigation into possible associations between morphosyntactic strategies and semantic relations was inspired by Koch’s (2001) use of a two-dimensional grid to investigate lexical motivation (see also Koch & Marzo 2007a). The grid, reproduced in Table 46, operationalizes an insight that led Koch to refine Ullmann’s motivational typology, which I referred to briefly on page 120, namely:

Ullmann’s distinction between ‘morphological’ and ‘semantic’ motivation turns out to correspond not to a clear-cut opposition between disjunct motivational devices, but to \textit{two cross-classified dimensions} of the motivation problem in general: vertical axis = formal ‘morphological’ dimension and horizontal axis = cognitive ‘semantic’ dimension (Koch 2001: 1158; emphasis added).
The vertical dimension of this grid consists of an open set of formal devices that includes affixation, composition and lexical syntagm, all of which are employed in binominal word-formation, as well as formal identity, reduplication, alternation, idiom and more. The horizontal dimension constitutes “a closed set of universal cognitive relations”, viz: conceptual identity, contiguity, metaphorical similarity, cotaxonomic similarity, taxonomic superordination, taxonomic subordination and co-taxonomic contrast, which Koch arrived at by differentiating and combining the Aristotelian relations of contiguity, similarity and contrast. Aristotle’s “three principles of remembering” were mentioned in Chapter 6 and I will have occasion to return to them again in Chapter 9. “The numbers 00, 01, 02, etc., 10, 11, 12, etc. etc.”, writes Koch, “are purely arbitrary and only serve as means for identifying the different squares.”

Table 46: Koch’s motivational grid
Koch’s goal was to study lexical motivation in its full generality; the present study, on the other hand, is concerned only with binominals. Consequently, the categories Koch uses for his formal (vertical) and semantic (horizontal) axes are too coarse-grained for our purposes. I will therefore use the set of 9x2 binominal types (i.e. those that take account of constituent order) in place of his list of formal devices, and the set of five high-level semantic relations in place of his set of universal cognitive relations.

To illustrate this approach, consider the contingency table generated from the Polish data (Table 47). We encountered such tables earlier (§7.1.3) and can now appreciate that they are essentially “motivational grids” in which each row represents a morphosyntactic strategy (Koch’s formal relation) and each column a semantic relation (Koch’s cognitive relation). The numbers inside the grid show how many binominals are found in the data for each combination of strategy (ftype2) and high-level semantic relation (htype).

<table>
<thead>
<tr>
<th>Polish (52x NN, 7x5)</th>
<th>htype</th>
<th>MisH</th>
<th>HinM</th>
<th>MinH</th>
<th>HtoM</th>
<th>MtoH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftype2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adjL</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>adjR</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>cmpL</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>cmpR</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>derR</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>genL</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>prpL</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chi-squared p = 0.000125218006240017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-squared = 57.9106150793651</td>
<td>df = 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's exact p = 0.000499750124937531</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 47: Strategies and high-level relations in Polish

Polish is represented in the database by 54 binominals (NN), distributed across seven strategies (adjL, adjR, etc.), that express all five semantic relations (MisH, HinM, etc.). This gives us a 7x5 “motivational grid” (Table 47). Looking at the first row of the grid we observe that, of the 16 Polish binominals of type adjL, three express the HinM relation, three the MinH relation, eight the HtoM relation and two the MtoH relation: From the second row we see that all three binominals of type adjR express in MinH relation, and so forth. Having constructed this grid from the data, we can now apply statistical methods to test whether the formal type (ftype2) and the semantic relation (htype) are independent of one another. The null hypothesis (H_0) is that there is no association between the two; in other words, that the kind of semantic relation has no influence on the choice of construction.
A chi-squared test of independence conducted using R gives a highly significant p-value with 24 degrees of freedom and an χ^2 value of 57.9, which would mean that the null hypothesis must be rejected. However, R issues a warning that the chi-squared approximation “may be incorrect”. This is because the chi-squared test has certain limitations, as explained by Agresti:

The X^2 and G^2 chi-squared tests also have limitations in the types of data sets for which they are applicable. For instance, they require large samples. The sampling distributions of X^2 and G^2 get closer to chi-squared as the sample size n increases, relative to the number of cells IJ. The convergence is quicker for X^2 than G^2. The chi-squared approximation is often poor for G^2 when some expected frequencies are less than about 5. When I or J is large, it can be decent for X^2 when some expected frequencies are as small as 1. To play safe, you can instead use a small-sample procedure whenever at least one expected frequency is less than 5 (Agresti 2005: 40).

With a sample size n of 54, an IJ value of 35 (i.e. 7×5) and many cells where the frequency is zero, the Polish data is clearly too small and too sparse for the chi-squared test to be used reliably. We turn therefore to a small-sample procedure, as recommended by Agresti: Fisher’s Exact Test. Because of the size of the Polish contingency table (7×5), this is performed using a Monte Carlo simulation, which requires less computational power. The resulting p-value of 0.0005, is again highly significant and confirms that there is, indeed, structure to be found in the Polish data: the kind of semantic relation being expressed $does$ influence the choice of construction to a significant extent. To understand how, we can tentatively examine the residuals (that is, the differences between expected and observed values), which are shown in Figure 70. The larger the residual (in either positive or negative direction), the stronger the effect of the association.

The largest residual is that between adjR and MinH, with a value of 3.74, which indicates a strong tendency for right-headed adjectival constructions to be used to express relations in which the modifier “somehow, to some extent” denotes the contents of the head. Compare this with the residual between adjL and HtoM (1.78). The contrast appears to confirm the traditional Polish distinction between

<table>
<thead>
<tr>
<th>htype</th>
<th>ftype2</th>
<th>MISH</th>
<th>HINM</th>
<th>MINH</th>
<th>HTOM</th>
<th>MTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjL</td>
<td>-2.0754981</td>
<td>-0.0438529</td>
<td>0.3432032</td>
<td>1.7789984</td>
<td>0.1132277</td>
<td></td>
</tr>
<tr>
<td>adjR</td>
<td>-0.8987170</td>
<td>-0.7595545</td>
<td>3.7365142</td>
<td>-0.8987170</td>
<td>-0.5883484</td>
<td></td>
</tr>
<tr>
<td>cmpL</td>
<td>-0.5188745</td>
<td>1.8418218</td>
<td>-0.3922323</td>
<td>-0.5188745</td>
<td>-0.3396831</td>
<td></td>
</tr>
<tr>
<td>cmpR</td>
<td>-0.5188745</td>
<td>1.8418218</td>
<td>-0.3922323</td>
<td>-0.5188745</td>
<td>-0.3396831</td>
<td></td>
</tr>
<tr>
<td>derR</td>
<td>2.9656149</td>
<td>-1.2173953</td>
<td>-0.8807048</td>
<td>-1.3617619</td>
<td>0.1386750</td>
<td></td>
</tr>
<tr>
<td>genL</td>
<td>-0.8987170</td>
<td>1.8735678</td>
<td>-0.6793662</td>
<td>-0.8987170</td>
<td>1.1113248</td>
<td></td>
</tr>
<tr>
<td>prpl</td>
<td>-1.0377490</td>
<td>0.2631174</td>
<td>-0.7844645</td>
<td>1.8531233</td>
<td>-0.6793662</td>
<td></td>
</tr>
</tbody>
</table>

Figure 70: Residuals for cells in the Polish contingency table
(right-headed) classificatory adjectives (132a) and (left-headed) qualifying relational adjectives (132b).

(132) a. złoty pierścionek [gold.ADJZ ring] GOLD RING (COMP-R = MinH) adjR
 b. pompa wodna [pump water.ADJZ] WATER PUMP (PURP = HtoM) adjL

The next largest residual is that between derR and MisH, with a value of 2.99, which indicates a strong tendency for suffixation to be used to express coordinate and taxonomic (i.e. appositional) relations. Another residual of note is that between genL and HinM (1.94), which shows that genitives tend to express relations in which the modifier denotes some kind of container (or possessor, whole, place, etc.), in other words: MER, LOC, etc.

Since residuals are produced by the chi-squared test, they cannot be taken at face value; they can, however, form the basis of new hypotheses that could be tested using larger samples. To that end, Table 48 shows the results of applying the same tests to every language in the database. It lists all 22 languages for which the chi-squared test returned a p-value of less than 0.01, and gives the sample and table sizes, the ratio between these two (n/IJ), the chi-squared p-value, the number of degrees of freedom (df), the value of the χ^2 statistic and the Fisher statistic. The three languages that failed Fisher’s Exact test despite passing the chi-squared test are marked by an asterisk.

These results indicate that there may be a significant association between the kind of semantic relation expressed by a binominal and the morphosyntactic strategy in at least 19 of the 106 languages in the sample. A one-by-one investigation of these languages is beyond the scope of the present work, but could lead to insights into the various ways in which languages divide the cake of semantic relations which may then feed back into broader typological research.
7.3.2 Cross-linguistic patterns

Having investigated how intralinguistic patterns can be investigated using the grid approach, we turn now to cross-linguistic comparison. We noted earlier that it is not possible to simply compare strategies across languages because patterns found in one language may cancel out those found in another. However, cross-linguistic comparisons based on a formal criterion can be made by abstracting away from binominal types and considering only the amount of grammatical marking used. Recall that each structural type is located on one of three “tiers” depending on the number of additional morphs over and above the two obligatory thing-morphs (cf. Figure 34 on page 141). Each binominal can therefore be assigned one of three values (0, 1 or 2) for a variable called markers, as shown in Table 49.

<table>
<thead>
<tr>
<th>Language</th>
<th>ftypes</th>
<th>htypes</th>
<th>n/IJ</th>
<th>p (χ²)</th>
<th>df</th>
<th>X²</th>
<th>p (Fisher)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anindilyakwa</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>0.60</td>
<td>16</td>
<td>45.00</td>
<td>0.000</td>
</tr>
<tr>
<td>Chakali</td>
<td>24</td>
<td>3</td>
<td>4</td>
<td>2.00</td>
<td>6</td>
<td>25.60</td>
<td>0.000</td>
</tr>
<tr>
<td>*Dutch</td>
<td>54</td>
<td>5</td>
<td>5</td>
<td>2.16</td>
<td>16</td>
<td>45.40</td>
<td>0.014</td>
</tr>
<tr>
<td>German</td>
<td>75</td>
<td>6</td>
<td>5</td>
<td>2.50</td>
<td>20</td>
<td>50.59</td>
<td>0.000</td>
</tr>
<tr>
<td>Hebrew</td>
<td>44</td>
<td>5</td>
<td>5</td>
<td>1.76</td>
<td>16</td>
<td>49.52</td>
<td>0.001</td>
</tr>
<tr>
<td>*Iraqw</td>
<td>21</td>
<td>3</td>
<td>4</td>
<td>1.75</td>
<td>6</td>
<td>17.10</td>
<td>0.012</td>
</tr>
<tr>
<td>Kalamang</td>
<td>56</td>
<td>7</td>
<td>5</td>
<td>1.60</td>
<td>24</td>
<td>52.63</td>
<td>0.000</td>
</tr>
<tr>
<td>Kanuri</td>
<td>39</td>
<td>5</td>
<td>5</td>
<td>1.56</td>
<td>16</td>
<td>42.85</td>
<td>0.000</td>
</tr>
<tr>
<td>Ket</td>
<td>29</td>
<td>4</td>
<td>5</td>
<td>1.45</td>
<td>12</td>
<td>29.90</td>
<td>0.002</td>
</tr>
<tr>
<td>Malagasy</td>
<td>58</td>
<td>5</td>
<td>5</td>
<td>2.32</td>
<td>16</td>
<td>41.22</td>
<td>0.001</td>
</tr>
<tr>
<td>Mandarin Chinese</td>
<td>105</td>
<td>3</td>
<td>5</td>
<td>7.00</td>
<td>8</td>
<td>39.66</td>
<td>0.000</td>
</tr>
<tr>
<td>Polish</td>
<td>52</td>
<td>7</td>
<td>5</td>
<td>1.49</td>
<td>24</td>
<td>57.91</td>
<td>0.000</td>
</tr>
<tr>
<td>Russian</td>
<td>43</td>
<td>6</td>
<td>5</td>
<td>1.43</td>
<td>20</td>
<td>54.93</td>
<td>0.000</td>
</tr>
<tr>
<td>Saramaccan</td>
<td>31</td>
<td>4</td>
<td>5</td>
<td>1.55</td>
<td>12</td>
<td>36.18</td>
<td>0.003</td>
</tr>
<tr>
<td>Seri</td>
<td>16</td>
<td>5</td>
<td>3</td>
<td>1.07</td>
<td>8</td>
<td>29.60</td>
<td>0.000</td>
</tr>
<tr>
<td>Sidamo</td>
<td>29</td>
<td>4</td>
<td>4</td>
<td>1.81</td>
<td>9</td>
<td>24.59</td>
<td>0.000</td>
</tr>
<tr>
<td>Turkish</td>
<td>64</td>
<td>4</td>
<td>5</td>
<td>3.20</td>
<td>12</td>
<td>38.17</td>
<td>0.000</td>
</tr>
<tr>
<td>Western Farsi</td>
<td>47</td>
<td>9</td>
<td>5</td>
<td>1.04</td>
<td>32</td>
<td>67.39</td>
<td>0.005</td>
</tr>
<tr>
<td>Wik-Mungkan</td>
<td>24</td>
<td>3</td>
<td>4</td>
<td>2.00</td>
<td>6</td>
<td>23.43</td>
<td>0.003</td>
</tr>
<tr>
<td>Wolof</td>
<td>21</td>
<td>2</td>
<td>5</td>
<td>2.10</td>
<td>4</td>
<td>21.00</td>
<td>0.000</td>
</tr>
<tr>
<td>Yakut</td>
<td>41</td>
<td>5</td>
<td>5</td>
<td>1.64</td>
<td>16</td>
<td>47.01</td>
<td>0.000</td>
</tr>
<tr>
<td>*Yaqui</td>
<td>17</td>
<td>4</td>
<td>4</td>
<td>1.06</td>
<td>9</td>
<td>28.90</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Table 48: χ²-squared and Fisher tests for 22 languages
The typology and semantics of binominal lexemes

Every binominal belonging to level 0, where there is no additional marking, (i.e. whose type is jxt, cmp, der and cls) is given the value 0; those on level 1 (adj, gen, prp and con) get the value 1; and those of type dbl (the only type on level 2) are assigned the value 2. The examples shown in Table 50 all have the meaning NOSTRIL.

<table>
<thead>
<tr>
<th>language</th>
<th>word [gloss]</th>
<th>construction</th>
<th>ftype</th>
<th>markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2219 Murui Huitoto</td>
<td>defo [nose:CLF(cavity)]</td>
<td>Base.CLF</td>
<td>cls</td>
<td>0</td>
</tr>
<tr>
<td>2226 Mapudungun</td>
<td>wechoz yu [hole nose]</td>
<td>Head Mod</td>
<td>jxt</td>
<td>0</td>
</tr>
<tr>
<td>2232 Central Yupik</td>
<td>pacig.uaq [gills.UAQ]</td>
<td>Base.UAQ</td>
<td>der</td>
<td>0</td>
</tr>
<tr>
<td>2237 Basque</td>
<td>sudur.tzulo [nose.hole]</td>
<td>Mod.Head</td>
<td>jxt</td>
<td>0</td>
</tr>
<tr>
<td>2208 Wolof</td>
<td>pax.u bakkan [hole.PER nose]</td>
<td>Head.PER Mod</td>
<td>con</td>
<td>1</td>
</tr>
<tr>
<td>2215 Czech</td>
<td>nos.nl dirka [nose.ADJ hole]</td>
<td>Mod.ADJ Head</td>
<td>adj</td>
<td>1</td>
</tr>
<tr>
<td>2224 Sidamo</td>
<td>sano.te giddo [nose.GEN inside]</td>
<td>Mod.GEN Head</td>
<td>gen</td>
<td>1</td>
</tr>
<tr>
<td>2228 Tagalog</td>
<td>butas ng ilong [hole.LK nose]</td>
<td>Head.LK Mod</td>
<td>prp</td>
<td>1</td>
</tr>
<tr>
<td>2173 Western Farsi</td>
<td>surax.e bin.i [hole.EZ nose.ADJ]</td>
<td>Head.EZ Mod.ADJ</td>
<td>dbl</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 50: Coding of binominals for number of markers

Having given every binominal a value for markers, weighted averages can now be calculated for each language (Table 51). Languages like Akkadian, which only have dbl binominals, receive the maximum value, 2; those like Caijia, which only has cmp, receive the minimum value, 0. All other languages receive a value somewhere in between.

<table>
<thead>
<tr>
<th>area</th>
<th>family</th>
<th>genus</th>
<th>markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aiwoo</td>
<td>O Austronesian</td>
<td>Oceanic</td>
<td>0.3571429</td>
</tr>
<tr>
<td>Akkadian</td>
<td>A Afro-Asiatic</td>
<td>Semitic</td>
<td>2.0000000</td>
</tr>
<tr>
<td>Amharic</td>
<td>A Afro-Asiatic</td>
<td>Semitic</td>
<td>0.8723400</td>
</tr>
<tr>
<td>Anindilyakwa</td>
<td>G Gunwinyguan</td>
<td>Gunwinyguan</td>
<td>0.6250000</td>
</tr>
<tr>
<td>Archi</td>
<td>E Nakh-Daghestanian</td>
<td>Lezgic</td>
<td>0.7857143</td>
</tr>
<tr>
<td>Assamese</td>
<td>E Indo-European</td>
<td>Indo-Aryan</td>
<td>0.5000000</td>
</tr>
<tr>
<td>Baa</td>
<td>A Atlantic-Congo</td>
<td>Gur</td>
<td>0.4255319</td>
</tr>
<tr>
<td>Bambara</td>
<td>A Atlantic-Congo</td>
<td>Mande</td>
<td>0.2820513</td>
</tr>
<tr>
<td>Bandial</td>
<td>A Atlantic-Congo North-Central Atlantic</td>
<td>0.2500000</td>
<td></td>
</tr>
<tr>
<td>Barain</td>
<td>A Afro-Asiatic</td>
<td>Chadic</td>
<td>1.0476190</td>
</tr>
<tr>
<td>Basque</td>
<td>E Basque</td>
<td>Basque</td>
<td>0.1090909</td>
</tr>
<tr>
<td>Bezhta</td>
<td>E Nakh-Daghestanian</td>
<td>Avar-Andic-Tsezic</td>
<td>0.8285714</td>
</tr>
<tr>
<td>Cabécar</td>
<td>S Chibchan</td>
<td>Chibchan</td>
<td>0.2121212</td>
</tr>
<tr>
<td>Cajjia</td>
<td>O Sino-Tibetan</td>
<td>Macro-Bai</td>
<td>0.0000000</td>
</tr>
</tbody>
</table>

Table 51: Coding of languages for weighted average of markers (excerpt)

Weighted averages can also be calculated for each meaning:

<table>
<thead>
<tr>
<th>semField</th>
<th>semType</th>
<th>markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ankle</td>
<td>The body</td>
<td>0.2978234</td>
</tr>
<tr>
<td>arctic lights</td>
<td>The physical world</td>
<td>0.8053556</td>
</tr>
<tr>
<td>backpack</td>
<td>Modern world</td>
<td>0.5000000</td>
</tr>
<tr>
<td>bee</td>
<td>Animals</td>
<td>0.1200000</td>
</tr>
<tr>
<td>beehive</td>
<td>Animals</td>
<td>0.46428571</td>
</tr>
<tr>
<td>beeswax</td>
<td>Animals</td>
<td>0.4200000</td>
</tr>
<tr>
<td>bicycle</td>
<td>Modern world</td>
<td>0.07692308</td>
</tr>
<tr>
<td>bicycle pump</td>
<td>Modern world</td>
<td>0.73809524</td>
</tr>
</tbody>
</table>

Table 52: Coding of meanings for weighted average of markers (excerpt)

Now it is possible to look for structure in groupings of languages and meanings.
Number of markers by language

In the case of languages, the only relevant grouping is geographical area; the sample of languages is spread too thinly and unevenly across the 42 families and 72 genera for any useful analysis on the basis of genetic affiliation. There are six geographical areas (we exclude Pidgins and creoles since the grouping is non-areal and only contains two languages), and we start by investigating the distribution of the variable markers across languages:

$$\text{> summary(markers)}$$

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000</td>
<td>0.04625</td>
<td>0.38033</td>
<td>0.40454</td>
<td>0.67500</td>
<td>2.00000</td>
</tr>
</tbody>
</table>

$$\text{> sd(markers)}$$

[1] 0.3746556

Values range from 0 to 2 with a median of 0.39, and the first 25% of the data fall between 0 and 0.046, so they are clearly not normally distributed. This is confirmed by the plots in Figure 71, which show nothing like a bell-shaped curve, and by the Shapiro-Wilks test, where a p-value of 4.063e-07 indicates that the null hypothesis of normally distributed data must be rejected, so we cannot use parametric methods on this data.

Figure 71: Non-normal distribution of marking across languages

We therefore use the non-parametric Kruskal-Wallis test to find out whether there are any significant areal differences in the degree of marking across areas:

$$\text{> kruskal.test(markers ~ area, data=l)} \# p < 0.05 \# H0 cannot be rejected$$

Kruskal-wallis rank sum test

data: markers by area
kruskal-wallis chi-squared = 26.904, df = 5, p-value = 5.955e-05

The p-value provides only weak evidence for rejecting the null hypothesis that the medians of all groups are equal, and this is confirmed by the pair-wise Wilcoxon rank sums test, which finds no significant differences between any of the groups:
The typology and semantics of binominal lexemes

```r
> pairwise.wilcox.test(jitter(markers), area2, p.adjust.method = "BH")

Pairwise comparisons using Wilcoxon rank sum test
data:  jitter(markers) and area2

          Africa Eurasia Oceania/SE Asia PNG/Australia North America
Africa     -     -       -          -          -            -
Eurasia    0.017 -     -       -          -            -
Oceania/SE Asia 0.012 0.016 -       -          -            -
PNG/Australia 0.012 0.011 0.764 -       -            -
North America 0.147 0.438 0.461 0.364 -            -
South America 0.011 0.011 0.764 0.471 0.364

P value adjustment method: BH
```

In conclusion, the present data do not provide evidence of significant differences in the number of markers across the five main geographical areas.

Number of markers by meanings

The situation with respect to the distribution of markers across meanings is quite different. Values range from 0 to 0.81 with a median of 0.36, which is very near the centre of the range, and the first 25% of the data fall between 0 and 0.181. Also, the Shapiro-Wilks test returns a p-value of 0.1 indicates that the null hypothesis of normally distributed data cannot be rejected.

```r
> summary(markers)
     Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
0.0000  0.1814  0.3549  0.3500  0.4837  0.8056
> sd(markers)
[1] 0.188504
> # test for normality using Shapiro-wilks
> shapiro.test(markers)

  Shapiro-Wilk normality test
data:  markers
  W = 0.97866, p-value = 0.1044
```

The first two plots in Figure 72 show a very slightly bimodal distribution and the QQ-plot has a whiff of an S shape, nut the Shapiro-Wilks test returns a p-value of 0.09, which means, again, that the null hypothesis cannot be rejected. Moreover, the box plot of markers by semantic type indicates considerable separation between the groups. Parametric tests are thus permissible and we proceed to fit a linear model and carry out an analysis of variance:

```r
> lm1 <- lm(markers ~ semType, data=m)
> anova(lm1)

Analysis of Variance Table

Response: markers
     Df  Sum Sq Mean Sq  F value       Pr(>F)
semType   6 1.0484 0.174734 6.5806 8.069e-06 ***
Residuals 93 2.4694 0.026553
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```
Figure 72: Normal distribution of marking across meanings

The ANOVA shows highly significant differences in the value of markers across the various semantic types ($p < 0.001$). A summary of the linear model shows where those differences mainly lie: the groups Body part, Natural, Basic and Advanced all show significantly more marking than Person (the intercept).

```
> summary(lm1)
Call:
  lm(formula = markers ~ semType, data = m)

Residuals:
            Min          1Q       Median          3Q         Max
-0.375730 -0.118250 -0.006120  0.116150  0.413660

Coefficients:         Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.17338 0.03841   4.514  1.86e-05 ***
semTypeanimal 0.07963 0.07258   1.097    0.275457
semTypelocation 0.08693 0.08238   1.055    0.294015
semTypebody part 0.21075 0.05294   3.981    0.000136 ***
semTypenatural 0.29218 0.06073   4.811    5.77e-06 ***
semTypebasic 0.19613 0.05294   3.705    0.000359 ***
semTypeadvanced 0.27927 0.05432   5.141    1.50e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.163 on 93 degrees of freedom
Multiple R-squared: 0.298,  Adjusted R-squared: 0.2527
F-statistic: 6.581 on 6 and 93 DF,  p-value: 8.069e-06
```
The typology and semantics of binominal lexemes

An alternative to using the function `anova()` on a linear model is to use `aov()`:

```r
> a1 <- aov(markers ~ semType)
> summary(a1)

     Df Sum Sq Mean Sq F value   Pr(>F)
semType   6  1.048  0.17473  6.5813 8.07e-06 ***
Residuals 93  2.469  0.02655
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

This confirms that the effects are significant ($p < 0.001$), so we can perform post-hoc pairwise comparisons (using the conservative Bonferroni correction) to find out which pairs of groups are significantly different from each other:

```r
> pairwise.t.test(markers, semType, p.adjust = "bonf")

Pairwise comparisons using t tests with pooled SD

data:  markers and semType

         person animal location body part natural basic advanced
person          -        -        -       -        -        -        -      0.00754
animal           -        -        -       -        -        -        -      0.15019
location         -        -        -       -        -        -        -      0.45575
body part       1.00000       -        -       -        -        -        -      0.00012
natural         0.00012 0.15352 0.42082  1.00000        -        -        -      0.00754
basic           0.00754 0.15019 0.45575  1.00000  1.00000        -        -      3.2e-05
advanced   3.2e-05 0.15019 0.45575  1.00000  1.00000  1.00000        -      0.15019

P value adjustment method: bonferroni
```

These comparisons confirm the previous results: the semantic types Body part, Natural phenomenon, Basic technology (or concept) and Advanced technology (or concept) all give significant results when compared to Person, which suggest the following basic scale for degree of marking:

(133) Person < Concrete (Body part, Natural, Basic, Advanced)

Further confirmation is provided using Tukey’s Honest Significant Difference test. But since there is some uncertainty as to whether the data are normally distributed, we double-check the result using the Kruskal-Wallis test. This confirms that there are significant differences between the groups ($p < 0.001$):

```r
> kruskal.test(markers ~ semType, data=m)

Kruskal-Wallis rank sum test

data:  markers by semType
Kruskal-Wallis chi-squared = 30.454, df = 6, p-value = 3.221e-05
```

Finally, we perform further multiple pairwise comparisons between groups (with correction for multiple testing and jittering to avoid warnings due to ties) using the Wilcoxon rank sum test:
Chapter 7. Typological generalizations

> pairwise.wilcox.test(jitter(markers), semType, p.adjust.method = "BH")

Pairwise comparisons using Wilcoxon rank sum test
data: jitter(markers) and semType

<table>
<thead>
<tr>
<th></th>
<th>person</th>
<th>animal</th>
<th>location</th>
<th>body part</th>
<th>natural</th>
<th>basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>animal</td>
<td>0.36704</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>location</td>
<td>0.27781</td>
<td>0.58612</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>body part</td>
<td>0.00029</td>
<td>0.03912</td>
<td>0.08195</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>natural</td>
<td>0.00029</td>
<td>0.06444</td>
<td>0.04751</td>
<td>0.22133</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>basic</td>
<td>0.00776</td>
<td>0.27781</td>
<td>0.27781</td>
<td>0.77497</td>
<td>0.38042</td>
<td>-</td>
</tr>
<tr>
<td>advanced</td>
<td>0.00029</td>
<td>0.06444</td>
<td>0.14005</td>
<td>0.31432</td>
<td>0.95018</td>
<td>0.27781</td>
</tr>
</tbody>
</table>

P value adjustment method: BH

In addition to confirming previous results, this test reveals differences at lower levels of significance ($p < 0.01$) between Animal on the one hand and Body part, Natural phenomenon and Advanced technology (or concept) on the other. There are also significant differences between Location on the one hand and Body part and Natural phenomenon on the other. This gives the following approximate scale:

(134) person, animal, location < basic < body part, natural, advanced

In conclusion, we have established that the number of markers a language uses does not differ significantly across geographical areas, but the number of markers used to express meanings does differ significantly across certain semantic types. This can be summed up as follows:

(135) Words denoting body parts, natural phenomena and advanced technologies (and concepts) tend to use significantly more marking than words denoting people, animals and locations. Words denoting basic technologies (and concepts) fall in between the two extremes.

7.4 Chapter summary

In this chapter I investigated three typological issues in some detail: constituent order, the relationship between binominals and possessive constructions, and the interplay between morphosyntactic strategies and semantics.

The data suggest that right-headed binominals are approximately twice as frequent as left-headed, a ratio which is in line with that found by Bauer and at odds with that arrived at in the Morbo/Comp project. In terms of morphosyntactic strategies, a number of interesting observations can be made. The der type is overwhelmingly (95%) right-headed, and right-headedness is also favoured by cmp (81%), adj (79%), cls (73%) and gen (70%); conversely, left-headedness is favoured by prp (93%), con (63%) and dbl (60%), though the numbers for cls and dbl, in particular, should be taken with a grain of salt due to the small sample sizes for these types.
Perhaps the most striking finding at this level is that the jxt strategy, with a 51:49 split, exhibits no particular preference. When languages exhibit “inconsistent” (or mixed) order, this is often due to the effect of including the predominantly right-headed derivational strategy (der), but six languages are mixed even without der. For one of these, Vietnamese, the explanation is clear (loanwords from Chinese); for the others, some evidence of a correlation between morphosyntactic strategy and semantic relation was found, but these require further investigation with more data.

To test the hypothesis that binominal lexeme constructions recruit their strategy from adnominal possession constructions I developed a methodology for comparing non-binary typologies. This involved defining a scale for expressing the degree of similarity between two constructions, the Pepper scale, which consists of five grades: always, mostly, sometimes, rarely and never. I then provided a set of definitions for these five grades suitable for the comparison of binominal and anchoring possessive constructions that allowed me to operationalize the comparison in a purely objective manner. I also showed how the scale could be adapted for more fine-grained analysis by splitting cases of grammaticalization out from the never category. As a result, I was able to define two universals:

(129) With overwhelmingly greater than chance frequency, languages recruit at least one of their binominal strategies from anchoring nominal modifier constructions.

(130) If a language does not recruit at least one of its binominal strategies from an anchoring nominal modifier constructions, there is a strong tendency for it to use compounding for this purpose.

I believe the Pepper scale has the potential for more general application in the field of language typology, whenever there is a need to compare two constructions that cannot be reduced to pairs of binary values suitable for expression using tetrachoric tables.

After explaining why we should not expect to find overall, crosslinguistic correlations between morphosyntactic strategies and semantics, I approached the question from two directions, one intralinguistic, the other cross-linguistic, using statistical methods. Drawing on Koch’s idea of a motivational grid I showed that, even with the limited set of data available for each language, it is possible to find significant structure. I illustrated this with the Polish data and then produced a table listing 22 languages that appear to be deserving of further investigation in this respect.
For the investigation of cross-linguistic patterns I abstracted away from the set of nine binominal types and focused on the number of markers. Doing so allowed me to assign a value of 0, 1 or 2 to each binominal and then calculate weighted values for each language and for each meaning. It was then possible to test groupings of languages and meanings for statistically significant differences in terms of degree of marking. For languages I focused on areal distribution (since the data is too sparse for comparisons based on genetic affiliation) and found nothing significant. For meanings, on the other hand, there were clear differences in terms of the amount of marking found in binominals used to denote meanings of different semantic types, which I summed up as follows:

(135) Words denoting body parts, natural phenomena and advanced technologies (and concepts) tend to use significantly more marking than words denoting people, animals and locations. Words denoting basic technologies (and concepts) fall in between the two extremes.

In sum, the data revealed a number of interesting patterns that are worthy of further investigation, but many of them require more data. Some could be studied using fewer meanings but would require coverage of more languages, others necessitate more data for each language (in other words, more meanings), but not such a large sample. 100 meanings from 100 languages was thus in some sense the ideal size for an exploratory, hypothesis-generating study, even though it was sometimes too small to produce immediate results.
8 Conceptual generalizations

Despite the exploratory, hypothesis-generating nature of the present study, there has been from the outset the germ of a hypothesis waiting to be tested. This is the idea, first formulated in Pepper (2010), that there are two fundamentally distinct ways of providing mental access to a complex concept that involves two other, less-complex concepts. In this section I revisit the original claim and then examine it in the light of evidence available in the binominals data (§8.1). Following this I approach the hypothesis from the perspective of salience: in §8.2 I look into the relative salience of head and modifier, and in §8.3 the salience of elaboration sites. Finally, in §8.4 I permit myself an excursus into a more tangential topic (albeit one related to head-modifier salience), where I suggest the possibility of a “species-attribute typology”.

8.1 The two-paths hypothesis

The basis for the two-paths hypothesis (originally called the “dual strategy” was the presence of two types of compound in Nizaa, left-headed (jxtL) and right-headed (jxtR). I discovered that these exhibited two disjunct sets of semantic relation (Table 53). The relations that I found amongst left-headed compounds included LOCATION, PURPOSE, ACTIVITY, APPEARANCE, etc., while those found amongst right-headed compounds included PART, KIND, LOCATED and POSSESSION, etc.

For the Nizaa study I reinvented the wheel by developing my own set of semantic relations. These do not correspond directly to the ones used in the present study, but their names are fairly transparent if one bears in mind that they generally denote the role played by one of participants in the relation. For example, LOCATION is a relation in which the modifier denotes a location (136a), while LOCATED is a relation in which the modifier denotes something which has a location (136b). The non-transparent term IDEM was used for any kind of appositional relation (136c).

(136) Nizaa (Pepper 2010)
 a. LOCATION sinw nim [bird water] ‘duck’
 b. LOCATED yir nim [eye water] ‘tear’
 c. IDEM sinw ŋgɔ̀ [bird cock] ‘cock’
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>Relation type</th>
<th>Total</th>
<th>LH</th>
<th>RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>26</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>PURPOSE</td>
<td>13</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>APPEARANCE</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>IDEM</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>STATE</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>GENDER</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>EVENT</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>PROPER</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EMOTION</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>DOMAIN</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FEATURE</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FOOD</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relation type</th>
<th>Total</th>
<th>LH</th>
<th>RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART</td>
<td>45</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>KIN</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>LOCATED</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>POSSESSION</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>PRODUCT</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>CONTAINER</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RESPONSIBLE</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>opaque</td>
<td>13</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

 Totals 190 111 79

Table 53: Semantic relations in Nizaa (after Pepper 2010)

What was striking about the results of my analysis was that there was no overlap between the two sets of relations: none of those found in left-headed compounds ever occur in right-headed compounds, and vice versa. The results might seem too good to be true,¹ but there can be little doubt about the overall trend.

This clearly called for an explanation, which I attempted to provide from within the framework of Cognitive Grammar. I observed that cmpR relations (i.e. those found in right-headed compounds) were those typical of possessive constructions, which Langacker analyses in terms of a cognitive facility called the reference point ability; in such compounds, mental access to the target concept (e.g. ‘tear’) is provided via a related concept (e.g. ‘eye’). In the case of cmpL relations, I argued, a different cognitive facility appears to be at work, namely the ability to categorise (and sub-categorise); in this case, mental access to the target concept (e.g. ‘duck’) is provided via a more general concept (e.g. ‘bird’), and its extension reduced through reference to a characteristic feature (e.g. ‘water’).

¹ I address this question in Pepper (2016: 301). It would be interesting to reanalyse the Nizaa data with the aid of the Bourquifier and (preferably) multiple raters.
In my 2016 paper I restate this analysis in the context of the three-way classification of compounds developed by Scalise and Bisetto. As discussed earlier (§2.1.4), this classification identifies three basic types, subordinate, attributive and coordinate, but fails to define them and, as a result, the scheme gets applied inconsistently. (I discuss the case of windmill, which is classified as subordinate by the authors and as attributive by Lieber.) This raises the following question:

What does “subordination” actually mean in the context of the relation between two nominals? In the case of a verb and a nominal its meaning is fairly clear: if the nominal can be regarded as an argument of the verb, then it is subordinate to it, but in what sense is mill subordinate (or not, as the case may be) to wind in windmill? (p. 290).

My proposal is that the notion of subordination should be tied to that of reference points. Doing so allows us to rephrase the question as follows:

Is it more likely that WINDMILL is conceptualized primarily as a MILL of a particular kind, or as an entity closely associated with the (more salient) concept of WIND? The former would point towards an attributive interpretation and support the classification proposed by Lieber (2010); the latter would indicate a subordinative interpretation and support that of Bisetto and Scalise (2005) (p. 306).

In my paper I leave the decision to the reader, on the grounds that “such judgement calls inevitably involve an element of subjectivity”, and that there is reason to believe that the two types of compound sometimes shade into each other. Here I can reveal that in the present study the relation between WIND and MILL is regarded as one of USG-R (a windmill is a mill that uses wind), which maps to Hatcher’s MtoH, is subordinative (Figure 73).

<table>
<thead>
<tr>
<th>Bourquiﬁer3</th>
<th>Binominal (B)</th>
<th>Modifier (M)</th>
<th>Head (H)</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation</td>
<td>Roles</td>
<td>B2 H2</td>
<td>Example</td>
<td>B2 H2</td>
</tr>
<tr>
<td>TAXONOMY</td>
<td>TAX</td>
<td>(a) wind is a kind of mill</td>
<td>oak tree</td>
<td>FAX-R</td>
</tr>
<tr>
<td>COORDINATION</td>
<td>DOG</td>
<td>(a) mill that is also (a) wind</td>
<td>boy king</td>
<td></td>
</tr>
<tr>
<td>SIMILARITY</td>
<td>SIM</td>
<td>(a) mill that is similar to (a) wind</td>
<td>kidney bean</td>
<td></td>
</tr>
<tr>
<td>CONTAINMENT</td>
<td>CONT</td>
<td>(a) mill that is contained in (a) wind</td>
<td>orange seed</td>
<td></td>
</tr>
<tr>
<td>POSSESSION</td>
<td>POS</td>
<td>(a) mill that is possessed by (a) wind</td>
<td>family estate</td>
<td></td>
</tr>
<tr>
<td>MERONYM</td>
<td>MER</td>
<td>(a) mill that is part of (a) wind</td>
<td>car motor</td>
<td></td>
</tr>
<tr>
<td>LOCATION</td>
<td>LOC</td>
<td>(a) mill located at/near/in (a) wind</td>
<td>house music</td>
<td></td>
</tr>
<tr>
<td>TEMPORALITY</td>
<td>TEMP</td>
<td>(a) mill that occurs at/during (a) wind</td>
<td>summer job</td>
<td></td>
</tr>
<tr>
<td>COMPOSITION</td>
<td>COMP</td>
<td>(a) mill that (a) wind is composed of</td>
<td>tube sugar</td>
<td></td>
</tr>
<tr>
<td>TOPIC</td>
<td>TOP</td>
<td>(a) mill that is about (a) wind</td>
<td>history book</td>
<td></td>
</tr>
<tr>
<td>DIRECTION</td>
<td>DIR</td>
<td>(a) mill whose goal is (a) wind</td>
<td>sun worship</td>
<td></td>
</tr>
<tr>
<td>SOURCE</td>
<td>SRC</td>
<td>(a) mill that is a source of (a) wind</td>
<td>sugar cane</td>
<td></td>
</tr>
<tr>
<td>CAUSATION</td>
<td>CAUS</td>
<td>(a) mill that causes (a) wind</td>
<td>sea gas</td>
<td></td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>PROD</td>
<td>(a) mill that produces (a) wind</td>
<td>long bred</td>
<td></td>
</tr>
<tr>
<td>USAGE</td>
<td>USE</td>
<td>(a) mill that (a) wind uses</td>
<td>lamp oil</td>
<td></td>
</tr>
<tr>
<td>FUNCTION</td>
<td>FUNC</td>
<td>(a) mill that serves as (a) wind</td>
<td>buffer state</td>
<td></td>
</tr>
<tr>
<td>PURPOSE</td>
<td>PURP</td>
<td>(a) mill intended for (a) wind</td>
<td>animal doctor</td>
<td></td>
</tr>
</tbody>
</table>

Figure 73: The Bourquiﬁer – WINDMILL
The evidence from Nizaa for the two-paths hypothesis resides solely in the fact that the two strategies surface directly in the grammar (in the form of two types, jxtL and jxtR). Importantly, it does not hinge on the order of constituents; in Nizaa the two constructions do in fact iconically diagram the mental route that the conceptualizer needs to follow in order to identify the target concept (to adapt the words of Taylor 1996: 18). Thus, when a reference point is involved, it precedes the target (as ‘eye’ precedes ‘water’ in 136b), whereas when (sub-)categorisation is employed, the broader concept precedes the modifier (as ‘bird’ precedes ‘water’ in 136a). While this is noteworthy, such iconicity is not crucial to the argument, as we shall see below.

It is also important to note that the claim relates to the process of conceptualization and does not require that the two paths always surface in the grammar. In other words, I hypothesise that the two strategies are used by speakers of every language, including those that do not provide explicit syntactic or morphological evidence of the fact. However, it was already clear to me that Nizaa is not alone in providing such evidence, and I envisaged that a cross-linguistic investigation into binominals could bring more to light.

I expected evidence for the two-paths hypothesis to take the form of a significant one-way correlation between morphosyntactic strategy (which would have to be at the level of my variable ftype2 in order to capture differences between left- and right-headed forms of the same higher level ftype) and semantic relation (either at the lower-level of Bourque2 or at the higher level of Hatcher2). Moreover, it would have to be possible to plausibly relate the kinds of semantic relation involved in the correlation to the notions of reference point and subcategorization.

Unfortunately for the hypothesis, no such statistically significant correlations were found across languages. It is true that the analysis in §6.4 revealed some minor differences between binominal strategies in terms of the kinds of semantic relation that they express. However, these differences have not been pursued, for the reason given §7.1.3: that the morphosyntactic strategies of a comparative concept are not functionally commensurable across languages.

Compared to this, the analysis in §7.3.1 using the chi-squared and Fisher’s Exact tests on language-specific motivational grids is more theoretically sound, and the results indicate that there may be significant associations between the relations expressed by binominals and the choice of morphosyntactic strategy in as many as 22 of the 106 languages. However, this analysis came up against the problems of
sparse data and small sample size. This is well illustrated by the fact that the one language that on the basis of previous knowledge was expected to provide evidence in support of the hypothesis, Mapudungun, did not even make it onto the list of 22 languages in Table 48 (page 283). This is surely because of the sparsity of the data, as shown in the motivational grid on page 263 (Table 36).

In sum, the present data provide no significant evidence in support of the two-paths hypothesis. But this, in itself, does not disprove the hypothesis. It could just be that more data is required. A more likely alternative is that the semantic relation is just one of several factors that play a role in influencing the user’s choice of construction. The most obvious competing motivation is alienability, which is known to be an important factor in determining the surface form of possessive constructions in many languages (e.g. Chappell & McGregor 1996; Aikhenvald & Dixon 2013; Haspelmath 2017b). The kinds of relation found in prototypical possessive constructions (ownership, kinship, part-whole, etc.) are exactly those that involve the reference point ability. Giving these relations different surface realizations depending on the alienability of the possessum will interfere with the simple two-way distinction predicted by the two-paths hypothesis. If there are other, uncorrelated factors at play, the interference will be even stronger.

In order to investigate what the various factors might be, and how they interact, we can examine in more depth a language where there are several competing constructions. Such a language is Kalamang, mentioned previously in §7.1.3 as a language that exhibits no basic order.

<table>
<thead>
<tr>
<th></th>
<th>htype</th>
<th>Mish</th>
<th>HinM</th>
<th>MinH</th>
<th>HtoM</th>
<th>MtoH</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftype2</td>
<td>adjL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>cmpR</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>conR</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>genL</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>jxtL</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>jxtR</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>prpL</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>chi-squared p = 0.000646754003969361</td>
<td>x-squared = 52.6318355973528</td>
<td>df = 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's exact p = 0.00199900049975012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 54: Motivational grid for Kalamang with row sums

Table 54 shows the motivational grid for Kalamang, here extended with row sums.

1 For my analysis of Nizaa I had some 200 compounds to work with. In the present study the average number of binominals per language is a mere 35.3 (see Table 23 on page 116).
The typology and semantics of binominal lexemes

jxtL and **conR** account for slightly over 50% of the data and the third most frequent type is **jxtL**. Since the latter has almost the same profile (or fingerprint) as **cmpL**, we are justified in combining the two, ignoring the different degrees of fusion that are indicated by the presence of a word space in the former and its absence in the latter. This combined type, which I will label **cmbL**, comprises all left-headed “compounds” (in the broad sense) and has 18 instances. In order to avoid confusion, I will also relabel **jxtL**, as **cmbL**, even though there are no instances of **cmpL** to combine it with. In the resulting system, 47 of the 56 binominals in the Kalamang data set are distributed almost equally across three structural types: **cmbL**, **cmbR** and **conR** (Table 55). The question we wish to answer, is what kind of system motivates this distribution.

<table>
<thead>
<tr>
<th>htype</th>
<th>MisH</th>
<th>HinM</th>
<th>MinH</th>
<th>HtoM</th>
<th>MtoH</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmbL</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>cmbR</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>conR</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 55: Simplified motivational grid for Kalamang

The principal difference between **cmbL** and **cmbR** is that the former favours the **MisH** relation and the latter the **HinM** relation, that is, attributive and subordinative relations, respectively. More striking, however, are the profiles of the two right-headed constructions, **cmbR** and **conR**, which tend to encode the same high-level relation, **HinM**. I will therefore focus on the data points that underpin this particular statistic. Table 56 lists all 32 binominals that instantiate these two types, grouped by type, together with the corresponding meaning and semantic type, the gloss for head and modifier, and both types of semantic relation: in short, every property for which these binominals have been annotated in the database.

Now, if any of these properties were responsible for the choice of morphosyntactic strategy, there should be no overlap between the values of that property across the two types, just as there was no overlap between the semantic relations exhibited by the **cmpL** and **cmpR** compounds in Nizaa. In fact, it turns out that there are overlaps in every one of these properties. We already know from Table 54 that the high-level relation **HinM** is found in both types; Table 56 shows that the low-level relation **MER** is also common to both, so it is clearly not a matter of the semantic relation. Likewise, the semantic types Body part and Basic are common to both, so the property semantic type can also not be the criterion by which concepts are encoded using different morphosyntactic strategies.
<table>
<thead>
<tr>
<th>word</th>
<th>meaning</th>
<th>semType</th>
<th>head</th>
<th>mod</th>
<th>htype</th>
<th>stype</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmbR (Mod Head)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kor 'kasir</td>
<td>ANKLE</td>
<td>Body part</td>
<td>##</td>
<td>foot</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>kanggir nenen</td>
<td>EYELASH</td>
<td>Body part</td>
<td>hair</td>
<td>eye</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>kirkang</td>
<td>RIB</td>
<td>Body part</td>
<td>bone</td>
<td>side</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>bekiemkang</td>
<td>SHOULDERBLADE</td>
<td>Body part</td>
<td>bone</td>
<td>shoulder</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>nakal taok</td>
<td>SKULL</td>
<td>Body part</td>
<td>shell?</td>
<td>head</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>somkangkang</td>
<td>SKULL</td>
<td>Body part</td>
<td>bone</td>
<td>person</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>suolkang</td>
<td>SPINE</td>
<td>Body part</td>
<td>bone</td>
<td>back</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>korparok</td>
<td>TOE</td>
<td>Body part</td>
<td>##</td>
<td>foot</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>tan kasir</td>
<td>WRIST</td>
<td>Body part</td>
<td>##</td>
<td>hand</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>per'tam</td>
<td>TEAR</td>
<td>Body part</td>
<td>drops</td>
<td>water</td>
<td>MinH</td>
<td>COMP-R</td>
</tr>
<tr>
<td>korkom</td>
<td>FOOTPRINT</td>
<td>Body part</td>
<td>##</td>
<td>foot</td>
<td>MtoH</td>
<td>CAUS-R</td>
</tr>
<tr>
<td>we,nawe'na e'un</td>
<td>BEEHIVE</td>
<td>Natural</td>
<td>nest</td>
<td>bee</td>
<td>HinM</td>
<td>POSS</td>
</tr>
<tr>
<td>din pa'ras</td>
<td>FLAME</td>
<td>Natural</td>
<td>embers</td>
<td>fire</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>ror ewun</td>
<td>TREE TRUNK</td>
<td>Natural</td>
<td>base/trunk</td>
<td>tree</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>kalis tanggir</td>
<td>RAINBOW</td>
<td>Natural</td>
<td>##</td>
<td>rain</td>
<td>MtoH</td>
<td>CAUS-R</td>
</tr>
<tr>
<td>saun muap</td>
<td>DINNER</td>
<td>Basic</td>
<td>food</td>
<td>evening</td>
<td>HinM</td>
<td>TEMP</td>
</tr>
<tr>
<td>goyiol muawet</td>
<td>LUNCH</td>
<td>Basic</td>
<td>food</td>
<td>afternoon</td>
<td>HinM</td>
<td>TEMP</td>
</tr>
<tr>
<td>tan sarong</td>
<td>GLOVE</td>
<td>Basic</td>
<td>cover</td>
<td>hand</td>
<td>HtoM</td>
<td>PURP</td>
</tr>
<tr>
<td>conR (Mod Head.3POSS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ke'we ta'raun</td>
<td>HOST</td>
<td>Person</td>
<td>old person</td>
<td>house</td>
<td>MinH</td>
<td>POSS-R</td>
</tr>
<tr>
<td>kuda tumunun</td>
<td>FOAL OR COLT</td>
<td>Animal</td>
<td>child</td>
<td>horse</td>
<td>MisH</td>
<td>COOR</td>
</tr>
<tr>
<td>domba tumunun</td>
<td>LAMB</td>
<td>Animal</td>
<td>child</td>
<td>sheep</td>
<td>MisH</td>
<td>COOR</td>
</tr>
<tr>
<td>kelkam elaun</td>
<td>EARLOBE</td>
<td>Body part</td>
<td>under</td>
<td>ear</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>kanggir pulun</td>
<td>EYEBROW</td>
<td>Body part</td>
<td>skin</td>
<td>eye</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>kanggir pulun</td>
<td>EYELID</td>
<td>Body part</td>
<td>skin</td>
<td>eye</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>am be'lun</td>
<td>NIPPLE OR TEAT</td>
<td>Body part</td>
<td>##</td>
<td>breast</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>bustang posun</td>
<td>NOSTRIL</td>
<td>Body part</td>
<td>hole</td>
<td>nose</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>tan elun</td>
<td>PALM OF HAND</td>
<td>Body part</td>
<td>under</td>
<td>hand</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>ak'nar kangun</td>
<td>COLLARBONE</td>
<td>Body part</td>
<td>bone</td>
<td>chest</td>
<td>HinM</td>
<td>LOC</td>
</tr>
<tr>
<td>kolkam kirun</td>
<td>EARWAX</td>
<td>Body part</td>
<td>poop</td>
<td>ear</td>
<td>HinM</td>
<td>LOC</td>
</tr>
<tr>
<td>angas rorun</td>
<td>DOORPOST</td>
<td>Basic</td>
<td>door</td>
<td>wood</td>
<td>HinM</td>
<td>MER</td>
</tr>
<tr>
<td>din tomparun</td>
<td>FIREPLACE</td>
<td>Basic</td>
<td>place</td>
<td>fire</td>
<td>MinH</td>
<td>LOC-R</td>
</tr>
<tr>
<td>mobil pelarun</td>
<td>LICENSE PLATE</td>
<td>Advanced</td>
<td>plate</td>
<td>car</td>
<td>HinM</td>
<td>MER</td>
</tr>
</tbody>
</table>

Table 56: Competition between cmbR and conR in Kalamang
Nor does alienability appear to play a role. If it did, we would not expect the same concept to appear as the head in both sets of binominals, but it does: *kang* ‘bone’ can is the head of ([conR] aknar kang.un) COLLARBONE, as well as various ([cmbR]) words denoting the body parts RIB, SHOULDERBLADE, SKULL and SPINE. Bones that are part of the human anatomy are surely equally inalienable, irrespective of the particular body part to which they belong?

As to the role and type of the modifier, both ‘eye’, ‘hand’ and ‘fire’ appear as the first (left-hand) constituent of both types. There is even a minimal pair (137) of words that both use the MER relation to denote a Body part, where the modifier is ‘eye’ and the heads are both body-related (‘hair’ and ‘skin’), but that exhibit two different structural types.

(137) a. **cmbR** kanggir nenen [eye hair] EYELASH
b. **conR** kanggir pul.un [eye skin.3POSS] EYELID

To sum up: None of the recorded properties of these binominals can account for the choice of structural type used to express them. Of course, it is unlikely that the choice is random, but understanding the actual motivation has to remain a topic for further research. Although our attempt to explain the motivation for the two main structural types in Kalamang ended in failure, the method applied here may prove fruitful with other languages. However, that, too, is a topic for future research.

8.2 Head-framing vs. modifier-framing

Another way to think about the two-paths hypothesis is to pose the question *why* one path of mental access would be used in preference to the other. One plausible answer relates to salience. There are two aspects to this:

- If one of the two concepts to be combined is significantly more salient than the other, then it might constitute a better starting point for the path (of mental access) than the other.
- Alternatively, if one of the elaboration sites (or “slots”) of the two concepts is significantly more salient than the other, then the concept it belongs to might constitute the better starting point.

I discuss the first of these here and the second in the next section. Both discussions require an understanding of the concept of salience and a way to operationalise it.
Salience is defined as “the quality of being particularly noticeable or important; prominence”.¹ Koch (2001: 1151) notes how a major issue in prototype theory is “the discovery of salience effects in the vertical dimension of (folk) taxonomies: the ‘basic level’ of categorization, e.g. BIRD, is cognitively more salient than the ‘superordinate level’, e.g. ANIMAL, and the ‘subordinate level’, e.g. ROBIN.” For the sake of simplicity, I will also assume that salience correlates to a large degree with frequency. With this as our starting point, consider Table 57, which lists every gloss for the head and modifier respectively, for each of the three meanings EYELID, TRAIN and MARE.

Amongst binominals denoting EYELID there are 31 different head constituents and just four different modifier constituents. The contrast between the multiplicity of head concepts and the paucity of modifier concepts is striking, and this would still be the case if synonyms like animal skin ~ skin ~ skin/hide were to be consolidated into a single concept: the count of 31 might be reduced to 10. The contrast in what could be called “conceptual variation” is even more striking given that the modifiers face, lid and surface only occur once each: of the 70 binominals denoting EYELID, 67 use a word meaning EYE as the modifier. I call this pattern, where there are few modifiers and many heads, ‘modifier-framed’ (MF) and denote it symbolically as (1,10); the latter will shortly be used as coordinates in a scatter plot.

<table>
<thead>
<tr>
<th>EYELID (4,31) → (1,10)</th>
<th>TRAIN (9,5) → (10,1)</th>
<th>MARE (6,6) → (2,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>modifiers</td>
<td>heads</td>
<td>modifiers</td>
</tr>
<tr>
<td>eye, face, lid, surface</td>
<td>animal skin, back, body</td>
<td>electricity, fire, ground, land, outside, rail, railway, smoke, steam</td>
</tr>
<tr>
<td>eye, face, lid, surface</td>
<td>hair, brim, cover, cup-like shape, DIM, eyelid, fabric, flap, hair, half, hand, hut, layer, leaf, lid, little cap, meat, rim, roof, root, sack/bag, sheath, shell, skin, skin/hide, small piece, superior part, top, up</td>
<td>boat, car, cart, tree, vehicle</td>
</tr>
<tr>
<td>4 → 1</td>
<td>31 → 10</td>
<td>5 → 1</td>
</tr>
</tbody>
</table>

Table 57: Conceptual variation in heads and modifiers

¹ https://en.oxforddictionaries.com/definition/salience
The typology and semantics of binominal lexemes

The pattern exhibited by the 19 binominals that denote TRAIN is quite different. Here there are five different heads and nine different modifiers. Three of the five heads (boat, car and cart) are hyponyms of the fourth (vehicle), and the word glossed as ‘tree’ in Baa kí.sà [tree.outside] is also used more generally to denote vehicle (cf. kí.kpà [tree.water] ‘canoe’ and kíinyiní [tree.sky] ‘airplane’, Mirjam Möller, p.c.). So there is essentially just one kind of head. Modifiers, by contrast, vary substantially, so the pattern here (with many modifiers and few heads) is ‘head-framed’ (HF), which I will denote (10,1).

The meaning MARE exemplifies a third type. At a superficial level there are six different heads and six different modifiers, but both heads and modifiers can be reduced to just two basic concepts, HORSE and FEMALE, giving a neutrally-framed (NF) pattern (few heads, few modifiers), which can be denoted as (2,2). Note that, in this analysis, both HORSE and FEMALE can occur as either the head or the modifier. The implications of this are discussed in §8.4.

The very different patterns of conceptual variation exemplified by EYELID, TRAIN and MARE can be illustrated schematically as shown in Figure 74, in which the horizontal axis represents the diversity of modifier concepts and the vertical axis the diversity of head concepts. A meaning like EYELID (MF) belongs in the top left corner of the quadrant; TRAIN (HF) belongs in the bottom right; and MARE (NF) near the bottom left. As implied above, MARE constitutes a special case that will be discussed in depth later; it is the contrast between EYELID and TRAIN that concerns us here, since it relates to the two-paths hypothesis.

Figure 74: Conceptual variability of head and modifier
My proposal is that the same two paths of mental access (via a related concept and via a superordinate concept, or hypernym) are inherent in the conceptualizations of EYELID and TRAIN. EYELID has a strong tendency to be conceptualized as an object related to the EYE, whereas TRAIN tends to be conceptualized as a VEHICLE of a particular (sub)type. This influences the degree of conceptual variation in the head and modifier, as follows:

- Given the choice of EYE as the reference point (modifier) for EYELID, there are relatively few constraints on the choice of head; its task is simply to distinguish EYELID from other eye-related concepts, such as EYEBALL, EYEBROW or EYEBLASH. As a consequence, there is room for considerable variety in the head; skin, cover, hut, shell, cup-like shape: all of these and more will do the job. The MF pattern thus corresponds to the reference point path.

- With TRAIN, the situation is the reverse: once the hypernym VEHICLE, has been selected as the starting point for the conceptualization, the only constraint on the modifier is that it should serve to distinguish TRAIN from other types of vehicle. This can be done in numerous ways and, consequently, there is room for considerable variety in the choice of modifier: electricity, fire, railway, iron, steam, etc. The HF pattern thus corresponds to the hypernym path.

EYE and VEHICLE are chosen as starting points for the two conceptualizations, I suggest, because they are salient, basic-level concepts, and this is reflected in the small amount of conceptual variation amongst the modifiers of EYELID binominals and the heads of TRAIN binominals.

This hypothesis can be explored by comparing the degree of conceptual variation in the head and modifier concepts of all 100 meanings. The ideal way to proceed would be to first consolidate synonyms and near-synonyms into synonym sets. This could be done through introspective analysis (as I did with EYELID, TRAIN and MARE, above). A more principled approach would be to use a thesaurus, such as WordNet, a large lexical database of English, in which synonyms are grouped into “synsets”, which themselves are connected via hyponymy relations (Fellbaum 2010). Both of these approaches are beyond the scope of the present study and must be left for future work. Instead I take a less nuanced approach, in which each word is counted, irrespective of its status as a synonym. For the three meanings in Table 57 this results in the following counts: EYELID (4,31), TRAIN (9,5) and MARE (6,7). The advantage of this approach is that the counts can be performed directly on the data in the database, without additional qualitative analysis. The results of doing so with all 100 meanings is shown in Figure 75 and Figure 76.
Figure 75: Scatterplot of heads and modifiers

Figure 75 shows a scatterplot of all 100 meanings using the first four letters of the name as labels. The vertical axis gives the number of different glosses used for the head and the horizontal axis the number of different glosses used for the modifier. Meanings are grouped by semantic type, which is indicated by different symbols and different colours. Thus, for example, the Body part EYELID is indicated by a blue × and the label eyel, and positioned at coordinates x=4, y=31. We observe a strong tendency for body parts to cluster with EYELID in the top left (MF) corner of the plot, with EARLOBE and PALM (OF THE HAND) exhibiting even more variability in their heads than EYELID. The tendency is for body part binominals to be named in terms of a more salient body part. The main exception to this pattern is the bony body parts; here the more salient concept is BONE, the variety of heads is much less, and such meanings are found in the lower portion of the plot.

The Advanced concept TRAIN is found at coordinates (9,5), which turns out to be higher up the modifier scale compared to other Advanced concepts, but it is by no means the concept with the highest number of modifiers; that honour goes to three Person concepts: SORCERER OR WITCH, NIECE and MOTHER-IN-LAW (OF A MAN). The feature that characterizes Advanced concepts is not so much the multiplicity of modifiers but the paucity of heads. This is no doubt because most new-fangled objects are conceptualized as specialized subtypes of a more familiar (and more general) concept.
The different ways in which semantic types distribute across the head/modifier variability space can be observed more clearly in the heatmap shown in Figure 76. Here the seven semantic types are separated out and dots are replaced by hexagons of varying densities. As we just observed, Advanced concepts tend strongly to have rather few heads and this is indicated by the dense hexagon in the far left panel. In the far right panel we see that most of the Person category cluster around the (10,10) region; these are mostly professions. Body parts, as previously noted, tend to occupy the MF (top left) area with few modifiers and many heads, while most animals, including MARE, are to be found in the lower-left, NF (neutrally-framed) area.

![Figure 76: Heatmap of heads and modifiers by semantic type](image)

Meanings might also be positioned on a one-dimensional scale based on the ratio of heads to modifiers. On such a scale, TRAIN would have the value (5/9=) 0.56 (i.e. towards zero); MARE would have the value (6/6=) 1.0 (exactly one); and EYELID would have the value (31/4=) 7.75 (considerably more than one). The lowest value would be for PADDLE WHEEL (1/10=) 0.1 and the highest EARLOBE (35/3=) 11.67. However, the ratio-based method would obscure the difference between MARE and a concept like RAINBOW, which shows almost the same ratio (1.07) but far greater multiplicity of heads and modifiers (15 and 14, respectively).

This investigation demonstrates marked differences across meanings in terms of the number of heads and modifiers employed in conceptualization: some meanings are routinely conceptualized in terms of one and the same modifier concept (e.g. EYE in EYELID), others in terms of the same head concept (e.g. VEHICLE in TRAIN). These correspond precisely to the two hypothesized paths of mental access – via a reference point and via a superordinate concept – and provide evidence in support of the two paths hypothesis. The case of MARE and its ilk, where we find the same two concepts for head and modifier, will be examined in §8.4.
8.3 Elaboration sites and the relationality cline

In the previous section I focused simply on the salience of heads and modifiers, but salience has other aspects as well. At a doctoral defence in 2016, Ron Langacker wondered whether the salience of elaboration sites in noun-noun compounds could be measured empirically. He gave mill as an example (138).

(138) product (pepper mill, salt mill, flour mill, paper mill)
 power source (windmill, water mill)
 part, use (saw mill)

Langacker (1991) defines elaboration site as follows: “In a construction, those facets of one component structure that the other component serves to elaborate”. In the later wording of Langacker (2008: 198), an e-site is a schematic substructure of one component in a construction, which the other component serves to elaborate (i.e. characterize in finer-grained detail). E-site thus equates to ‘slot’ in the slot-filler theories described on page 183. Of Langacker’s examples, the most pertinent in the context of binominals is jar lid, where “lid evokes a schematic container specified in finer detail by jar”. In our examples, mill evokes both a product, a power source, and (perhaps to a lesser degree) some component that is of central importance to its function. Each of these constitutes an e-site; in (138) they are elaborated by pepper, wind, saw, etc.

Implicit in the notion of e-site, but not discussed by Langacker, is the existence of a semantic relation between the component to which the e-site belongs (e.g. mill) and the component that elaborates it (e.g. pepper). In the case of pepper mill, the Bourquifier tells us that this is PROD: a pepper mill is a mill that produces (or processes) pepper; in the case of windmill it is USG-R; and in the case of saw mill it is MER-R. Given the kind of data collected and annotated for the present project, it is therefore possible to identify e-sites empirically, by querying for the kinds of semantic relation that a head constituent participates in. The raw results of such a query are shown in Table 58, which lists the ten head concepts that participate in the greatest diversity of relations. Thus, house participates in seven kinds of relation; head, place, string, thread, tree and wheel in five, etc. (Note that I have not attempted to consolidate synonyms in the manner discussed in the previous section, otherwise string and thread might have been combined, and a synset that includes skin, hide, pelt, and perhaps even bark, cf. 9 on page 55, might have made it into the Top Ten.)

1 The relations LOC-R and USG-R are acceptable alternatives here. MER-R and LOC-R both map to MinH, whereas USG-R maps to MtoH. As observed earlier, there is often overlap between different relations.
Interpreting Table 58 is not entirely straightforward since the codes are mnemonics for the kind of relation and not the role played by the head in that relation. For example, while POSS clearly indicates the relation of POSSESSION, the code itself does not tell us whether the head constituent is the possessor or the possessum. In order to figure that out, we need to refer back to Table 31 on page 236, where the template for POSS tells us that the relation involves “(an) H that (an) M possesses”. If the head is house, as it is in the first row of the table, then the e-site indicated by the POSS relation is the one that would be elaborated by a modifier indicating the possessor. Conversely the template for POSS-R (“(an) H that possesses (an) M”), which we find with the head father in the penultimate row, tells us that the e-site would be elaborated by a modifier indicating the possessum.

Similarly, the template for LOC-R (“(an) H that (an) M is located at/near/in”) tells us that the e-site concerns the kinds of thing that might be located at, near or in the house, where the house itself is the location; it does not concern the location of the house (which would be indicated by the inverse relation LOC).

In general, it is the role played by the modifier (the elaborating component) that best characterizes the e-site. This suggests that it would be useful to supplement the Hatcher-Bourque classification scheme with information pertaining to the roles played by the head and modifier respectively. I will return to this matter in §9.3. If we relabel Table 58 using the modifier role instead of the relation (Table 59), the nature of each e-site becomes clear.
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>head</th>
<th>elaboration sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSE (7)</td>
<td>Possessor, Located, Purpose, Material, Location, Part, Whole</td>
</tr>
<tr>
<td>HEAD (5)</td>
<td>Whole, Possessor, Located, Result, Material</td>
</tr>
<tr>
<td>PLACE (5)</td>
<td>Located, Purpose, Cause, Location, Result</td>
</tr>
<tr>
<td>STRING (5)</td>
<td>Possessum, Possessor, Part, Purpose, Whole</td>
</tr>
<tr>
<td>THREAD (5)</td>
<td>Possessor, Purpose, User, Whole, Possessum</td>
</tr>
<tr>
<td>TREE (5)</td>
<td>Part, Whole, Located, Location, User</td>
</tr>
<tr>
<td>WHEEL (5)</td>
<td>Part, Purpose, Whole, Location, Used</td>
</tr>
<tr>
<td>BONE (4)</td>
<td>Whole, Location, Located, Possessum</td>
</tr>
<tr>
<td>FATHER (4)</td>
<td>Possessor, Possessum, Product, Whole</td>
</tr>
<tr>
<td>HOLE (4)</td>
<td>Whole, Located, Purpose, Possessor</td>
</tr>
</tbody>
</table>

Table 59: Salience of elaboration sites (by role)

We see at once that HOUSE has seven e-sites, for its possessor, the things located in it, its purpose, material and location, its parts, and the whole of which it is a part. These seven sites are elaborated by the components shown in Table 60, where the numbers in the first column show the number of different components per e-site, e.g. Purpose (13), and in the second column the number of tokens of each component, e.g. excrement (3). (Recall that these results are based on the raw, unnormalized data, so both ‘animal’ and ‘animals’ occur under Purpose, ‘bee’ and ‘bees’ under Possessor, etc.) Given some familiarity with the meaning list it is easy to infer just from this table that the meanings TOILET and STABLE OR STALL utilize the Purpose e-site of HOUSE; HOSPITAL and COOKHOUSE utilize the Location e-site, SPIDER WEB and BEEHIVE the Possessor e-site, etc.

<table>
<thead>
<tr>
<th>e-site</th>
<th>elaborating component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose (13)</td>
<td>excrement (3), urine (3), bovine (2), horse (2), livestock (2), animal (1), animal/cattle (1), animals (1), donkey (1), hand (1), horses (1), pig (1), poo (1)</td>
</tr>
<tr>
<td>Located (12)</td>
<td>doctor (5), medicine (3), food (2), hospital (2), bath (1), disease (1), fire (1), illnesses (1), kitchen (1), oven (1), pain (1), stove (1)</td>
</tr>
<tr>
<td>Possessor (3)</td>
<td>spider (11), bee (9), bees (1)</td>
</tr>
<tr>
<td>Material (2)</td>
<td>leaf (1), straw (1)</td>
</tr>
<tr>
<td>Location (1)</td>
<td>side (1)</td>
</tr>
<tr>
<td>Part (1)</td>
<td>incense (1)</td>
</tr>
<tr>
<td>Whole (1)</td>
<td>nose (1)</td>
</tr>
</tbody>
</table>

Table 60: Components that elaborate the concept HOUSE
With this approach, it is possible to measure the salience of e-sites empirically: as the frequency with which it is used in concept combination. Based on the present data, we see that the most salient e-sites of the concept HOUSE are Purpose (i.e., what the house is used for) and Located (what it contains). The other five e-sites (Possessor, Material, Location, Part and Whole) are also inherent in the concept, but are much less frequently used to denote a more specialized meaning of HOUSE, and can hence be said to be less salient. Saliency can be measured either by the type frequency of the elaborating components (cf. the first column of Table 60), which for HOUSE would give a value of 3 for Possessor (2 after normalization); or by the sum of the token frequencies of the elaborating components (cf. the second column), which would give a value of 21 (11+9+1) for Possessor. For Purpose the corresponding values would be 13 (reduced to perhaps 3 after normalization and synonym consolidation) and 20; for Location they would be 12 (9) and 20; etc.

Admittedly, the present data are limited by the fact that they are based on just 100 meanings. Out of these, an element glossed as [house] occurs as the head of 11 meanings which are expressed by elaborating the seven e-sites listed above: BEE-HIVE, BEESWAX, COOKHOUSE, GLOVE, HOSPITAL, NEIGHBOUR, NOSTRIL, SPIDER WEB, STABLE OR STALL, THATCH and TOILET. A different sample of 100 meanings would lead to a different list of meanings in which [house] occurs as the head of the binominal, and this may lead to somewhat different results in terms of e-site salience. However, since the original selection of 100 meanings was made entirely independently of any considerations regarding the kinds of semantic relation they embody or the elaboration sites that might be involved, there is no reason to believe that the results attained above are not reliable.

To conclude this section, I would like to reflect on the fact that in traditional grammar nouns are divided into two types: sortal and relational:

Nouns have two basic interpretations. Taken in isolation they can be considered either sortal nouns or relational nouns. Sortal nouns classify objects, whereas relational nouns describe objects as standing in a certain relation to others. These are two fundamentally different ways to characterize objects, and one cannot be reduced to another (Löbner 1985: 292).

Löbner illustrates the difference with the minimal pair woman and wife, the former sortal, the latter relational, since “a “wife” is always the wife of someone”. Kinship terms like brother, uncle and daughter are typically used to illustrate the notion of relational noun, but Barker (2011) lists other pairs of nouns that “contrast minimally with respect to the sortal/relational distinction”:
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>sortal</th>
<th>relational</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. a day (*of someone)</td>
<td>a birthday of someone</td>
</tr>
<tr>
<td>b. a person (*of someone)</td>
<td>a child of someone</td>
</tr>
<tr>
<td>c. an animal (*of someone)</td>
<td>a pet of someone</td>
</tr>
</tbody>
</table>

This prompts the question, what is the status of house: is it sortal or relational? If pet is relational because a pet can be owned, surely house is also relational, and not just because it, too, can be owned, but also because it has a purpose (its TELIC, in Pustejovsky’s 1995 terms) and contents (its CONSTITUTIVE). Pustejovsky himself (p. 96) talks of “implicitly relational nouns”, such as door, book, newspaper and window. It would seem that the distinction between sortal and relational nouns is not binary at all, but rather a cline in which concepts exhibit differing degrees of relationality. If that is the case, then the method developed here can provide a measure of the degree to which individual concepts are relational. This measure could be as simple as a count of the number of e-sites (cf. the head column of Table 59), which would allow us to claim that HOUSE is the most relational concept in our data, followed by HEAD, PLACE, STRING, etc.

In conclusion, the kind of data collected for the present study lends itself rather well to the task of identifying elaboration sites and measuring their salience, and also to measuring the degree of relationality of a concept along a cline from purely sortal to highly relational.

8.4 Species-framing vs. attribute-framing

The discussion of the relative salience of head and modifier in §8.2 concerned the contrast between the modifier-framed pattern exemplified by EYELID and the head-framed pattern exemplified by TRAIN. In this section I consider the neutral pattern exemplified by MARE. What is striking about this example is not so much that we find relatively little conceptual variation in either the head or the modifier: this is a property, as can be seen in Figure 76, of many other meanings, in particular Advanced concepts. The outstanding feature of MARE is that the same two concepts, HORSE and FEMALE, can occur as either the head or the modifier, as illustrated in (139), where the head constituent is underlined for reasons of clarity. In (a) and (b) the head is HORSE and in (c) and (d) it is FEMALE.

(139)
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Amharic</td>
<td>ye.seti feres [GEN.female horse] GEN.Mod Head</td>
</tr>
<tr>
<td>b. Hawaiian</td>
<td>lio wahine [horse female] Head Mod</td>
</tr>
<tr>
<td>c. Tagalog</td>
<td>babai.ng kabayo [female.LK horse] Head.LK Mod</td>
</tr>
<tr>
<td>d. Wichi</td>
<td>yel’ataj atsinha [horse.female] Mod Head</td>
</tr>
</tbody>
</table>
This raises the question of how one determines the head in such cases. The ISA test tells us that a mare is both a horse and a female, so should not the examples in (139) be analysed as coordinate compounds, which are often said to have two heads (or, alternatively, none)? Doing so with (a) and (c) would be imprudent, since the morphology indicates the head and modifier quite explicitly. The genitive prefix in Amharic always attaches to the modifier, and the Tagalog linker always attaches to the head, so we have clear evidence that the head of (a) is HORSE and the head of (c) is FEMALE. In the case of (b) and (d) there is internal evidence: compounds are consistently left-headed in Hawaiian and right-headed in Wichi.

These observations suggest that MARE is primarily regarded as a kind of HORSE in some languages, and as a kind of FEMALE in others: in some languages the concept is ‘framed’ in terms of the species, and in others it is ‘framed’ in terms of the gender. Now, MARE is not the only meaning used in the present study that has this property of what we might call ‘interchangeable’ heads and modifiers. It is found more generally in meanings of the type FEMALE X and also in meanings of the type MALE X. Moreover, a similar situation pertains with words denoting young animals, such as KID, where we find a combination of species and a different attribute, this time denoting age rather than gender (140). In (a) and (b) the head is GOAT, and in (c) and (d) it is CHILD or some equivalent. In (c) the evidence for this analysis is explicit, while in (a), (b) and (d) it is internal.

(140)
 a. Imbabura Quechua wawa chita [child goat] Mod Head
 b. Hawaiian kao keiki [goat child] Head Mod
 c. Tagalog bata.ng kambing [child.LK goat] Head.LK Mod
 d. Wichi kaila lhos [goat.breeding/son] Mod Head

Observe that the three languages that appear in both (139) and (140) appear to be consistent in terms of framing: Hawaiian is ‘species-framed’ (the heads are HORSE and GOAT); whereas both Tagalog and Wichi are ‘attribute-framed’ (the heads are FEMALE and CHILD or its equivalent). This raises two questions:

1. Are languages always consistent in this respect?
2. What is the distribution of the two types, species-framed and attribute-framed?

The binominal data allow us to address these two questions on the basis of eight different meanings (141).
The typology and semantics of binominal lexemes

(141) a. **FEMALE X**: MARE, QUEEN, NIECE
 b. **MALE X**: COCK/ROOSTER, WIDOWER
 c. **YOUNG X**: FOAL OR COLT, KID, LAMB

Words that denote one or more of these meanings using the COOR relation\(^1\) are found in 84 of the languages in the sample. Of these, 11 (13\%) are consistently species-framed, 57 (68\%) are consistently attribute-framed, and 16 (19\%) are mixed. Their geographical distribution is shown in Figure 77.

![Figure 77: Species- vs. attribute-framing](image)

All 16 of the languages that mix species- and attribute-framing are consistent in terms of how they frame meanings of the type “young X”, with the exception of Mandarin Chinese, Trinitario and Western Farsi. In Mandarin, the meaning LAMB can be expressed as either 羔羊 gāoyáng or 羊羔 yánggāo (where 羊 is glossed as sheep/goat and 羔 as lamb/kid). Apart from this exception, Mandarin is consistently species-framed.

In Trinitario, three different constructions are employed (142). The internal evidence for which constituent of (b) and (c) to regard as the head is extremely meagre, but whatever the case, these two are not consistent so further investigation is required.

(142) a. **kwoy.gira** [horse.DIM] FOAL OR COLT
 b. **chiwa.gira ’moyo** [goat.DIM child] KID
 c. ’moyo ’vesa [child sheep] LAMB

\(^1\) Other relations that are often used to express such meanings are TAX for young animals, POSS for NIECE, and TOP for WIDOWER. Recall also Caijia’s old woman from the sky (SRC-R), cf. page 228.
And in Western Farsi, there are two constructions (143), cmp and jxt, and one of the constituents is not glossed, so here too it is not possible to adjudicate the matter.

(143) a. boz.qāle [goat.???] KID
 b. korre asb [young horse] FOAL OR COLT

There is less consistency amongst mixed languages in how they frame meanings of the type “female X”: MARE and QUEEN are framed differently in Barain and Ket, MARE and NIECE are framed differently in Oroqen and Tagalog, and NIECE and QUEEN are framed differently in Turkish. In Saramaccan, QUEEN can be expressed as either kōnu mujē [king.woman] or mujē.kōnu [woman.king]; assuming both of these are right-headed, the former would be classed as attribute-framed and the latter as species-framed. It may be significant that all of these exceptions involve a human referent. In five of the remaining six ‘inconsistent’ languages (Kalamang, Kam, Malagasy, Malayalam and Wawa) the opposition is between age and gender, i.e. young X (which is attribute-framed) and (fe)male X (species-framed). The same would be true of Kildin Sami were it not for the case of liessk-kāll’es’ [widow-old_man] WIDOWER, which is attribute-framed; here again we perhaps see the system breaking down when applied to human referents.

Overall, the striking imbalance between species-framing and attribute-framing and the areal tendencies hinted at in Figure 77 are worthy of further investigation, but that is beyond the scope of the present study.

8.5 Chapter summary

In this chapter I pursued issues related to the two-paths hypothesis that I originally developed to account for data from Nizaa. I started by restating the hypothesis and suggested that the lack of direct support for it in the present data may be due to sparse data or competing motivations. A search for the latter based on properties recorded in the database for Kalamang, a language in which three morphosyntactic strategies are very frequent, proved fruitless, so the explanation must be sought elsewhere. On the other hand, the investigation into the salience of heads and modifiers can be said to have provided important supporting evidence for the hypothesis, perhaps even opened up a new field of research in semantic typology.

I also developed a method for quantifying the salience of elaboration sites and for measuring the degree of relationality of a concept. And finally, I looked into the ways in which languages combine concepts of species and their attributes, showing a strong preference for attribute-framing as compared to species-framing.
9 A model of associative relations

In Chapter 6 (pages 214–216) I allowed myself a rant about how researchers working on the semantic relations of compounding tend to reinvent the wheel by devising their own classification systems instead of reusing (and refining) existing systems, and I pleaded guilty to the same offence in my 2010 study of compounding in Nizaa. My point was that science cannot progress unless we build on each other’s work. To atone for my own transgression and to set a good example, I harnessed (and refined) two existing classifications in the present study, those of Hatcher and Bourque, and integrated them into a single two-tier system, the Hatcher-Bourque classification (see Table 31 on page 236). The system is shown in hierarchical form in Figure 78, now with the addition of a top-level tier representing Aristotle’s three principles of remembering, reference to which was made several times in Chapters 6 and 7. (The third principle, contrast, is included in the diagram as a placeholder, in the expectation that there may be a use for it later.)

![Figure 78: Semantic relations as a hierarchy](image)

There is an important difference between the two representations of the Hatcher-Bourque classification that should be pointed out. In both the hierarchical and the tabular representation, SIMILARITY and CONTIGUITY are distinguished, and the latter is subdivided into CONTAINMENT and CAUSATION. Beyond that the subdivision of contiguity differs. In Table 31 it is by relation (CONTAINMENT, POSSESSION, etc.); in Figure 78 it is according to the two pairs of relations in the Hatcher classification.
(H ⊆ M vs. M ⊇ H and H → M vs. M → H), which amounts to subdividing by Basic vs. Reversed relation. There are advantages and disadvantages to each of these representations. Subdividing by relation means that Basic and Reversed forms are kept together (thus, for example, CONT and CONT-R are grouped together under CONTAINMENT in Table 31). However, the commonality between CONT, POSS and MER (etc.) on the one hand, and CONT-R, POSS-R and MER-R (etc.) on the other is lost. Subdividing by Hatcher’s pairs highlights this commonality, as the diagram shows, but the connection between Basic and Reversed forms is lost and we have to indicate them in the diagram by dashed lines.

In the process of developing the Hatcher-Bourque classification and applying it to the binominal data set, it became clear that many of the semantic relations found in compounds (and binominals more generally) are present in other domains as well. This would indicate that these relations instantiate a domain general cognitive ability to perceive relationships, an ability that is related to the associative nature of human thought. Moreover it suggests the potential for a unified system of relations that may have much wider application, both within linguistics and beyond. The purpose of this chapter is to follow up on those insights. The end result will be a proposal for a unified model of associative relations that can applied to concept combination in word-formation, metonymy, and lexical semantics, and extended to use in the fields of knowledge representation. Jackendoff’s suggestion that “we are dealing with a common stock of rather primitive semantic relations that can be expressed through various (morpho)syntactic frames, compounding among them”, cited on page 186, will turn out to have underestimated the potential.

In §9.1 I build on Janda’s insight (§6.1.3) regarding the role of metonymy in word-formation. Drawing on the work of Peirsman & Geeraerts (2006) I show that many (perhaps most) metonymic relations are parallel to the semantic relations found in binominals and can be accommodated by the Hatcher-Bourque classification. In §9.2 I turn my attention to the kinds of cognitive relation discussed by Peter Koch and Andreas Blank in the domain of lexical semantics and show how these, too, can be accommodated by the Hatcher-Bourque classification with only minimal extensions. Finally, in §9.3, I return to Topic Maps, which I first mentioned in Chapter 1 in the context of my journey towards the topic (sic) of the present study. This will provide further insights, not least into the importance of roles, and enable me to articulate a general model of associative relations.

1 This is in the nature of a hierarchical representation, which is why I avoided it §5.2.
9.1 Metonymic relations (Peirsman & Geeraerts 2006)

Metonymy is defined by Kövecses (2002: 145) as “a cognitive process in which one conceptual entity, the vehicle, provides mental access to another conceptual entity, the target, within the same domain, or idealized cognitive model (ICM)” (emphasis added). It involves two “entities”, the vehicle and the target, which are connected in such a way as to enable mental access from the one to the other.

To underpin her claim that metonymy is at work in word-formation, Janda (2011) uses a classification system modelled after that found in Peirsman & Geeraerts (2006) and I follow her in taking the latter as my starting point for this discussion. Before doing so I should note that Peirsman & Geeraerts’ purpose was to present metonymy as a prototypical category. They argue that metonymies, starting from spatial part-whole contiguity as the core of the category, can be plotted against three dimensions: strength of contact (going from part-whole containment over physical contact to adjacency without contact), boundedness (involving an extension of the part-whole relationship towards unbounded wholes and parts), and domain (with shifts from the spatial to the temporal, the spatiotemporal and the categorial domain) (p. 269).

I will present a different perspective, one that does not contradicts theirs, and that may turn out to be complementary. In the first instance, it is P&G’s inventory of ‘metonymical patterns’ that interests me. It is shown here in Table 61, along with examples, but without the references supplied by P&G. The list was compiled from five studies of metonymy spanning the period 1880 to 1981 but was not intended to be exhaustive. The goal was “merely to define an empirical basis” for the exercise that they pursue in their paper. I will use it for the same purpose here.

The unstructured inventory consists of 23 patterns of the type SPATIAL PART & WHOLE, LOCATION & LOCATED, PRODUCER & PRODUCT, etc. The ampersand in the name indicates that no direction is specified for the meaning shift. When the direction of the meaning shift is relevant, P&G use the more conventional form VEHICLE FOR TARGET. Thus, for example, the pattern PRODUCER & PRODUCT covers two actual metonymies: PRODUCER FOR PRODUCT and PRODUCT FOR PRODUCER.
Chapter 9. A model of associative relations

<table>
<thead>
<tr>
<th>Metonymical pattern</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SPATIAL PART & WHOLE</td>
<td>Tony Blair is the Prime Minister of England</td>
</tr>
<tr>
<td>2. TEMPORAL PART & WHOLE</td>
<td>Dutch and German morgen “morning” for “tomorrow”</td>
</tr>
<tr>
<td>3. LOCATION & LOCATED</td>
<td>German Das ganze Haus wurde aus dem Schlaf geschreckt</td>
</tr>
<tr>
<td>4. ANTECEDENT & CONSEQUENT</td>
<td>Greek phobos “flight” for “fear”</td>
</tr>
<tr>
<td>5. SUBEVENT & COMPLEX EVENT</td>
<td>Mother is cooking potatoes</td>
</tr>
<tr>
<td>6. CHARACTERISTIC & ENTITY</td>
<td>French beauté “beauty”</td>
</tr>
<tr>
<td>7. PRODUCER & PRODUCT</td>
<td>I’m reading Shakespeare</td>
</tr>
<tr>
<td>8. CONTROLLER & CONTROLLED</td>
<td>Schwarzkopf defeated Iraq</td>
</tr>
<tr>
<td>9. CONTAINER & CONTAINED</td>
<td>French aimer la bouteille “love the bottle”</td>
</tr>
<tr>
<td>10. MATERIAL & OBJECT</td>
<td>French carton “cardboard” for “cardboard box”</td>
</tr>
<tr>
<td>11. CAUSE & EFFECT</td>
<td>unlock the prisons for “let the prisoners free”</td>
</tr>
<tr>
<td>12. LOCATION & PRODUCT</td>
<td>china</td>
</tr>
<tr>
<td>13. POSSESSOR & POSSESSED</td>
<td>the long straw starts for “the person with the long straw”</td>
</tr>
<tr>
<td>14. ACTION & PARTICIPANT</td>
<td>to author a book</td>
</tr>
<tr>
<td>15. PARTICIPANT & PARTICIPANT</td>
<td>the pen is mightier than the sword for “the writer is mightier than the soldier”</td>
</tr>
<tr>
<td>16. PIECE OF CLOTHING & PERSON</td>
<td>French une vieille perruque “an old wig” for “an old person”</td>
</tr>
<tr>
<td>17. PIECE OF CLOTHING & BODY PART</td>
<td>German Sohle “sole” for “sole”</td>
</tr>
<tr>
<td>18. SINGLE ENTITY & COLLECTION</td>
<td>German Imme “swarm of bees” for “bee”</td>
</tr>
<tr>
<td>19. TIME & ENTITY</td>
<td>French un mardi-gras “a Shrove Tuesday” for “a disguised man”</td>
</tr>
<tr>
<td>20. OBJECT & QUANTITY</td>
<td>French un quart “a quarter” for “a tin of sardines in oil”</td>
</tr>
<tr>
<td>21. CENTRAL FACTOR & INSTITUTION</td>
<td>the press</td>
</tr>
<tr>
<td>22. POTENTIAL & ACTUAL</td>
<td>Can you see him?</td>
</tr>
<tr>
<td>23. HYponYM & HYPERONYM</td>
<td>the pill for “the contraceptive pill”</td>
</tr>
</tbody>
</table>

Table 61: Peirsman & Geeraerts’ metonymical patterns

The parallel with Bourque’s reversible relations is plain to see. Table 62 shows the Bourquifier templates for the basic and reversed forms of PRODUCTION, along with the examples, *song bird* and *bird song*. In both relations, *song* is the product and *bird* is the producer, irrespective of the direction of the relation. However, the roles played by the head and modifier can be either of these, depending on the direction of the relation. Thus the general relation PRODUCTION corresponds precisely to the metonymic pattern PRODUCER & PRODUCT, and its basic and reversed forms (PROD and PROD-R) correspond to the directed metonymies PRODUCT FOR PRODUCER and PRODUCER FOR PRODUCT, respectively.
I use the term ‘corresponds to’ advisedly since I do not claim that metonymy is at work in binominals, as Janda does in her paper. My claim is that the same kinds of associative relation underpin both metonymy and both kinds of word-formation. Of course, this is partly a matter of terminology, as Janda points out. However, it seems to me that embracing the term ‘associative relation’, which is underutilized in linguistics, has more potential than extending either ‘metonymy’ or ‘semantic relation’, which both have long-established traditions and communities of research interest.

<table>
<thead>
<tr>
<th>Metonymic pattern</th>
<th>Code Relation</th>
<th>Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SPATIAL PART & WHOLE</td>
<td>(T) MERONY</td>
<td>part, whole</td>
</tr>
<tr>
<td>2. TEMPORAL PART & WHOLE</td>
<td>(S) MERONY</td>
<td>part, whole (temporal)</td>
</tr>
<tr>
<td>3. LOCATION & LOCATED</td>
<td>(T) LOCATION</td>
<td>location, located</td>
</tr>
<tr>
<td>4. ANTECEDENT & CONSEQUENT</td>
<td>(G) CAUSATION</td>
<td>cause, effect</td>
</tr>
<tr>
<td>5. SUBEVENT & COMPLEX EVENT</td>
<td>(S) MERONY</td>
<td>part, whole (events)</td>
</tr>
<tr>
<td>6. CHARACTERISTIC & ENTITY</td>
<td>(A) SIMILARITY</td>
<td>likeness</td>
</tr>
<tr>
<td>7. PRODUCER & PRODUCT</td>
<td>(T) PRODUCTION</td>
<td>producer, product</td>
</tr>
<tr>
<td>8. CONTROLLER & CONTROLLED</td>
<td>(G) POSSESSION</td>
<td>possessor, possessed</td>
</tr>
<tr>
<td>9. CONTAINER & CONTAINED</td>
<td>(T) CONTAINMENT</td>
<td>container, contained</td>
</tr>
<tr>
<td>10. MATERIAL & OBJECT</td>
<td>(T) COMPOSITION</td>
<td>material, object</td>
</tr>
<tr>
<td>11. CAUSE & EFFECT</td>
<td>(T) CAUSATION</td>
<td>cause, effect</td>
</tr>
<tr>
<td>12. LOCATION & PRODUCT</td>
<td>(G) SOURCE</td>
<td>source, result</td>
</tr>
<tr>
<td>13. POSSESSOR & POSSESSED</td>
<td>(T) POSSESSION</td>
<td>possessor, possessed</td>
</tr>
<tr>
<td>14. ACTION & PARTICIPANT</td>
<td>(S) SOURCE</td>
<td>agent, action</td>
</tr>
<tr>
<td>15. PARTICIPANT & PARTICIPANT</td>
<td>(G) USAGE</td>
<td>user, used</td>
</tr>
<tr>
<td>16. PIECE OF CLOTHING & PERSON</td>
<td>(S) USAGE</td>
<td>wearer, clothing</td>
</tr>
<tr>
<td>17. PIECE OF CLOTHING & BODY PART</td>
<td>(S) LOCATION</td>
<td>clothing, body part</td>
</tr>
<tr>
<td>18. SINGLE ENTITY & COLLECTION</td>
<td>(S) MERONY</td>
<td>individual, collection</td>
</tr>
<tr>
<td>19. TIME & ENTITY & COLLECTION</td>
<td>(T) TEMPORALITY</td>
<td>time, entity</td>
</tr>
<tr>
<td>20. OBJECT & QUANTITY</td>
<td>(S) CONTAINMENT?</td>
<td>object, quantity</td>
</tr>
<tr>
<td>21. CENTRAL FACTOR & INSTITUTION</td>
<td>(S) MERONY</td>
<td>central part, whole</td>
</tr>
<tr>
<td>22. POTENTIAL & ACTUAL</td>
<td>(X) NA</td>
<td>–</td>
</tr>
<tr>
<td>23. HYPONYM & HYPERONY</td>
<td>(T) TAXONOMY</td>
<td>supertype, subtype</td>
</tr>
</tbody>
</table>
The correspondence between the metonymic pattern PRODUCER & PRODUCT (#7) and the semantic relation PRODUCTION is transparent because the same verb, *to produce*, is used for both. This applies to another eight of P&G’s patterns, coded as (T) in Table 63, viz. MERONOMY (#1), LOCATION (#3), CONTAINMENT (#9), COMPOSITION (#10), CAUSATION (#11), POSSESSION (#13), TEMPORALITY (#19), TAXONOMY (#23): none of these require further explication.

Lest this evidence be deemed insufficient to support my claim, I will briefly discuss the 14 remaining patterns, for most of which there are correspondences of one kind of another with relations in Bourque’s system. The reason many of these are less transparent than the nine listed above is because the pattern either generalizes (G) or specializes (S) the corresponding relation.

Specialization accounts for nine patterns, four of which specialize the MERONOMY relation. In #2 the part and whole are temporal, while those of #5 are events. The whole in #18 is special in that it consists of multiple parts of the same type, and in #21, exemplified by *the press*, the whole is an institution (here, that of newspapers), denoted by a salient part (the printing press). It is quite possible to define more fine-grained semantic relations to provide exact equivalents for these four, as required by the analysis (for example, the relation COLLECTION, with the roles member and group would cater more specifically to #18). If that level of detail is not required, the more general relation of MERONOMY covers all four of these patterns.

The remaining five cases in which the metonymical pattern is a specialization of an existing relation are:

- #12 LOCATION & PRODUCT is exemplified by *china* (in the sense of household tableware or other objects made of porcelain, which originally came from China). This, like the old woman from the sky (cf. page 228), is clearly a specialization of the SOURCE relation (not LOCATION, as might at first be thought), in which the more specific product is used in place of the more general result.¹
- #14 ACTION & PARTICIPANT: In P&G’s example, *to author a book*, the vehicle is an agent (the author) and the target is an action (the act of writing). We recall from page 200 that Hatcher assigned such cases (exemplified by *sunshine*) to her A→B, on the grounds that the subject is the source of its own activity, and

¹ This is actually a double metonymy, since *china* is also the name of the material used, so the actual SOURCE relation (LOCATION & PRODUCT) occurs in the meaning shift from country to material. The second meaning shift, from material to tableware, is an example of the COMPOSITION relation (P&G’s MATERIAL & OBJECT).
that in doing so “we are merely adding Agent to Agency” (p. 365). On that basis, Bourque’s SOURCE is the most appropriate correspondence, with roles specialized, if necessary, from source and result to agent and action.

- #16 PIECE OF CLOTHING & PERSON: The relation between a piece of clothing and the person who wears it is USAGE. Again, the roles can be specialized from user to wearer and from used to clothing.

- #17 PIECE OF CLOTHING & BODY PART: This is a specialization of LOCATION with the roles clothing and body part for located and location, respectively.

- #20 OBJECT & QUANTITY: P&G’s example here is Fr. un quart ‘a quarter’ for “a tin of sardines in oil”, cf. Eng. a pint (of beer). Since binominal quantifier constructions were explicitly excluded from the present study (see page 13) and they were also not pertinent to Bourque’s, there is no precise counterpart among the existing relations. However, this is no more than a very slightly specialized version of CONTAINMENT, with container specialized as quantity.

Three of P&G’s metonymical patterns generalize one of Bourque’s relations:

- #4 ANTECEDENT & CONSEQUENT is a more general relation, encompassing both SOURCE and CAUSATION, that we might call SEQUENCE in a less fine-grained classification (with the roles antecedent and consequent). The example cited by P&G (Greek phobos “flight” for “fear”) is surely an instance of CAUSATION (with the roles cause and effect).

- #8 CONTROLLER & CONTROLLED. This pattern is slightly more tricky. It could be regarded as a generalization of POSSESSION, a significant aspect of which is control. Alternatively, and given the example of Schwarzkopf (standing for the coalition forces) defeating Iraq in Operation Desert Shield, the metonymy might be expressed slightly more generally as MEMBER & GROUP, for which there is no precise equivalent in Bourque’s system. However, extending the latter with MEMBERSHIP (member, group), as a subtype of MERONOMY (part, whole), is perfectly possible if one needs that degree of granularity.

- #15 PARTICIPANT & PARTICIPANT: This pattern is general to the point of being almost innocuous. P&G’s gloss their example (the pen is mightier than the sword) as “the writer is mightier than the soldier”. I suggest that this could be more precisely characterized as INSTRUMENT FOR USER, which corresponds to Bourque’s USG-R.

The two remaining patterns are exceptional, each in its own way.
• #6 CHARACTERISTIC & ENTITY embodies a relation that would not be found in a classification geared towards binominals since a characteristic is a property, not a thing.\(^1\) A broader system of associative relations would have to cater for such cases, but that is a topic for further research. Having said that, the very name of the pattern brings to mind Jakobsen’s Characterizing Feature, which Hatcher had no hesitation in subsuming under her A \(\subset\) B, our \(\minH\), so any new relation that might be required would fit in neatly beside CONT, POSS, MER and the like.

• #22 POTENTIAL & ACTUAL, the only remaining pattern, is exemplified by *Can you see him?* This one is special because, as Panther & Thornburg (1999) state, it is non-referential. Because of this, incorporating it into our classification of semantic relations would require extending the system far beyond its present scope, and I therefore choose to ignore it in this context.

To conclude this section: I have shown that all but one highly exceptional item from P&G’s inventory of metonymical patterns have (or could have) equivalents – many of them completely transparent – in the Hatcher-Bourque classification. This constitutes strong evidence in support of my claim of a commonality between metonymy and the kinds of semantic relation found in binominals. The fact that some correspondences involve generalization or specialization simply underlines the view expressed earlier, that the granularity of the classification is dependent on the needs of the application: any two relations can always be lumped together, and any single relation can always be split into subtypes. The next section, on cognitive relations, offers further evidence for this view.

9.2 Cognitive relations (Koch and Blank)

The terms ‘cognitive relations’, ‘associative relations’ and ‘semantic associations’ are variously used in the fields of lexical semantics and lexical typology to denote both synchronic and diachronic relations between lexical concepts (e.g. Blank 1999, 2003; Koch 1999, 2001; Koch & Marzo 2007; Urban 2012). In the following I will employ the term cognitive relations, since it was introduced earlier in the context of motivational grids in §7.3.1.

According to Koch and Marzo, all such basic cognitive relations ultimately derive from the three associative relations of ‘contiguity’, ‘similarity’, and ‘contrast’,

\(^1\) In Croft’s terms, the relation involves property modification, not object modification; in Štekauer’s terms it is appropriate to word-formations of Onomasiological Type 4 rather than Type 3.
that have been well established since Aristotle and have been corroborated by Husserl’s phenomenology (cf. Holenstein 1972), by gestalt psychology (cf. Wertheimer 1922/23 and Raible 1981), and by free association tests (cf. Raible 1981), that have been introduced into linguistics by Roudet (1921: 686–692) and Jakobson (1956), and that have been applied with success to problems of lexical semantic change (cf., once more Roudet, and Ullmann 1962: 211–227…) (p. 269).

Blank (2003) identifies ten subtypes of these basic relations, summarized in Table 64. Two of these, formal identity and syntagmatic contiguity, are based on form rather than meaning, and are disregarded by Koch in the works cited above, as is antiphrastic contrast, which Koch claims is very rare (2001: 1159). Thus, for the semantic axis of his motivational grid, Koch includes seven of the ten relations (those shown in bold).

<table>
<thead>
<tr>
<th>similarity</th>
<th>contrast</th>
<th>contiguity</th>
</tr>
</thead>
<tbody>
<tr>
<td>• metaphorical similarity (foot of mountain)</td>
<td>• co-taxonomic contrast (bad > good)</td>
<td>• conceptual contiguity (“spatial, temporal, or logical connection between the concepts”)</td>
</tr>
<tr>
<td>• co-taxonomic similarity (Sp. tigre > jaguar in South America)</td>
<td>• (antiphrastic contrast) (“more indirectly opposed concepts”, e.g. Fr. pensionnaire ‘guest in a boarding house’ > ‘convict’)</td>
<td>• syntagmatic contiguity (“the relation between the parts of complex lexical units”, e.g. motor car ~ car)</td>
</tr>
<tr>
<td>• taxonomic subordination (hound ‘dog in general’ > ‘hunting dog’)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• taxonomic superordination (inverse of preceding, no example)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• conceptual identity (tautology “or certain classes of word-formation”)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• formal identity (hotel > motel)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 64: Blank’s ten cognitive relations

Blank is of the opinion that, of the three Aristotelian principles of remembering, “similarity shows by far the greatest diversity” (2003: 46),¹ and this is reflected in his classification. Observe that there are five subtypes of similarity as against four in the Hatcher-Bourque system (cf. Figure 78). Metaphorical similarity corresponds to SIMILARITY; taxonomic subordination and superordination are the equivalent of TAXONOMY, and co-taxonomic similarity equates to COORDINATION. Conceptual

¹ This despite his awareness of engynomy as “a system of concepts that exhibit a subtype of contiguity, such as part/whole, cause/consequence, producer/product, activity/place etc.”
identity does not have any direct correspondence. I have previously treated identity as a limiting case of similarity and subsumed it under SIMILARITY, but I have also suggested (page 209) that it could be regarded as a subtype of the latter, along with Similarity (proper) and Taxonomy. Implementing this idea as an extension to our classification would not only harmonise the two systems, it would also provide a very obvious home for reduplication as a word-formation process.

The relation of (co-taxonemic) contrast has not played any role in the present study for the simple reason that no examples turned up in either Bourque’s data or mine. However, as I noted on page 214, it does occur, for example in Chinese, and so it should be incorporated into our extended model and future revisions of the Hatcher-Bourque classification.

The upshot of this discussion is that all that is required in order to accommodate Blank and Koch’s similarity- and contrast-based relations in our classification is the inclusion of IDENTITY and CONTRAST as separate relations. No such extension is required for their one remaining relation, conceptual contiguity, which Blank characterizes as a “spatial, temporal, or logical connection” between concepts, since it basically lumps together all the remaining relations under a single label.

I have now shown how the same, multilevel system of associative relations covers word-formation, metonymy, polysemy and semantic shift. It seems probable that the system can also accommodate semantic roles (cf. Kittilä & Zúñiga 2014), case systems and semantic word-substitution speech errors, but these are all topics for further research. I would like now to move beyond linguistics to the domain of knowledge representation, where I believe that further insights can be gleaned from Topic Maps.

9.3 Topic Maps: roles and granularity

The insights that Topic Maps can offer in the context of associative relations are of two kinds. The first relate to the underlying model: the nature of the relationship, as it were, between relations, roles and participants. The second has to do with the further understanding of granularity as it relates to the classification I have been developing.

Topic Maps, we recall from §1.1.1, is an ISO standard for knowledge organisation that incorporates significant insights from the fields of knowledge representation and artificial intelligence. In contrast to RDF (the representational model used in the CLLD, the project that includes both WOLD and WALS, and other linked data
initiatives), Topic Maps is not based on formal logic. It developed organically from a formalization of the models implicit in traditional finding aids such as back-of-book indexes, thesauri and glossaries and, in that sense, it can be called a “usage-based” model. The primary constituents of that model, which I described earlier, are topics, associations and occurrences (the TAO of Topic Maps). Our concern here is with associations.

The structure of an association was shown in Figure 2 (reproduced here as Figure 79 for convenience). The figure depicts an association (A) from the domain of opera, which asserts a relation of a particular type (labelled composed-by) between two topics (T) that represent the opera Tosca and the person Puccini, and play the roles (R) of work and composer, respectively.

![Figure 79: The anatomy of an association](image)

This associative relation (let us give it that name) can be understood in terms of the cognitive, metonymic and semantic relations that we have been discussing as follows:

- In Koch and Blank’s model (cf. Table 64 on page 322) it is an example of conceptual contiguity (or more precisely, the engynonomic relation ‘producer/product’, cf. Blank 2003: 42).
- The statement I am listening to Puccini when I am in fact listening to Tosca is be a case of Peirsman and Geeraerts’ PRODUCER FOR PRODUCT metonymy.
- There can be no binominal lexeme puccini tosca, since both Puccini and Tosca usually denote individuals rather than types, but the corresponding anchoring possessive construction Puccini’s Tosca is perfectly plausible\(^1\) and the semantic relation it involves is Hatcher-Bourque’s PRODUCTION.

\(^1\) It would distinguish Puccini’s opera from Sardou’s play or Renoir’s film of the same name.
The only difference between the relation expressed by the association and these three statements is the level of granularity: as indicated in the diagram, composed-by specializes a more high-level relation created-by, which itself specializes the relation produced-by, i.e. PRODUCTION. Corresponding to these three levels of relation are three pairs of roles: work/composer, creation/creator and product/producer, the names of which could be reflected in three metonymies: WORK & COMPOSER, CREATION & CREATOR and PRODUCT & PRODUCER, all at different levels of granularity. Moreover, it can be seen from Figure 78 that the PRODUCTION relation can be further generalized to CAUSATION, to CONTIGUITY, and thence to the mother of all relations, the equivalent of the unspecified ‘see’ relation in book indexes that I discussed in Pepper (2002): the one, very abstract and vague relation meaning “there is a connection between” that was entertained by Bauer in 1979 (cf. page 185).

This example draws our attention to the naming of semantic relations. Following Bourque, I have mostly used nominalizations of a verb commonly used to express the relation (CONTAINMENT, POSSESSION, COMPOSITION, PRODUCTION, etc.). Such names are neutral with respect to the direction of the relation. They were used as the basis for the codes used to denote relations viewed from one particular direction (CONT, POSS, COMP and PROD, etc.). Then, in order to cater for the other direction, I adopted codes like CONT-R, POSS-R, COMP-R and PROD-R. This approach had the advantage of brevity, which is good for databases and spreadsheets and statistical software, but it will not do for humans, because we cannot tell from the label whether POSS-R stands for “(an) H that possesses (an) M” or “(an) H that (an) M possesses”. An alternative labelling convention was used (up to a point) by Warren (1978), who, we recall from page 184 used names like Source-Result, Whole-Part, Part-Whole, Size-Whole, Goal-OBJ, Place-OBJ, Time-OBJ, Origin-OBJ and Activity-Actor (but also Copula, Resemblance and Purpose). These, as we can now recognize, are based on the roles played by the participants in the relation and they correspond exactly to the naming conventions used in the study of metonymy (PART FOR WHOLE, WHOLE FOR PART, etc.). In the extended model of associative relations that I will present shortly, I adopt the same convention for ‘reversible’ relations. Adding explicit roles to the overall model will also cater for the need that we experienced in §8.3 to use the role played by the modifier in order to understand the nature of specific elaboration sites.

The preceding discussion centred on a single association type, composed-by, and how it corresponds to the semantic relations, metonymies and cognitive relations.
discussed in the earlier part of this chapter. That association type comes from the *Italian Opera Topic Map* (Pepper 2009), a topic map that I developed incrementally over a period of ten years as I strove first to understand, and then to explain and further develop the Topic Maps model. In fact, the whole *Italian Opera Topic Map* grew out of the initial assertion that *Tosca* was composed by Puccini. Following that, I added the other Puccini operas, and then other composers and their operas. At that point I had to add further association types, in order to capture who wrote the librettis, the literary works these were based on, where the composers, librettists and writers were born and died, etc. In the most recent version of the topic map, which has not been touched for the last ten years, there are 22 different association types. They are listed in Table 65, along with their corresponding roles and an example of each. It is instructive to examine some of them more closely.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Roles</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>appears-in</td>
<td>character, work</td>
<td>Scarpia appears in Tosca</td>
</tr>
<tr>
<td>based-on</td>
<td>source, result</td>
<td>Tosca (the opera) is based on La Tosca (the play)</td>
</tr>
<tr>
<td>born-in</td>
<td>person, place</td>
<td>Puccini was born in Lucca</td>
</tr>
<tr>
<td>completed-by</td>
<td>work, composer</td>
<td>Turandot was completed by Alfano</td>
</tr>
<tr>
<td>composed-by</td>
<td>work, composer</td>
<td>Tosca was composed by Puccini</td>
</tr>
<tr>
<td>died-in</td>
<td>person, place</td>
<td>Puccini died in Brussels</td>
</tr>
<tr>
<td>exponent-of</td>
<td>person, style</td>
<td>Puccini is an exponent of verismo</td>
</tr>
<tr>
<td>has-voice</td>
<td>character, voice type</td>
<td>Floria Tosca has the voice type soprano</td>
</tr>
<tr>
<td>killed-by</td>
<td>victim, perpetrator, cause of death</td>
<td>Tosca killed Scarpia by stabbing</td>
</tr>
<tr>
<td>libretto-by</td>
<td>opera, librettist</td>
<td>Tosca’s libretto was written by Illica and Giacosa</td>
</tr>
<tr>
<td>located-in</td>
<td>containee, container</td>
<td>Lucca is located in Italy</td>
</tr>
<tr>
<td>part-of</td>
<td>part, whole</td>
<td>Vissi d’arte (the aria) is part of Tosca</td>
</tr>
<tr>
<td>premiere</td>
<td>work, place</td>
<td>Tosca was first performed at Teatro Costanzi</td>
</tr>
<tr>
<td>published-by</td>
<td>work, publisher</td>
<td>Tosca was published by Ricordi</td>
</tr>
<tr>
<td>pupil-of</td>
<td>pupil, teacher</td>
<td>Puccini was a pupil of Ponchielli</td>
</tr>
<tr>
<td>revision-of</td>
<td>source, result</td>
<td>Aroldo is a revision of Stiffelio</td>
</tr>
<tr>
<td>subtype-of</td>
<td>subtype, supertype</td>
<td>city is a subtype of place</td>
</tr>
<tr>
<td>sung-by</td>
<td>person, aria</td>
<td>Vissi d’arte is sung by Floria Tosca</td>
</tr>
<tr>
<td>takes-place-during</td>
<td>opera, event</td>
<td>Tosca takes place during the Napoleonic Wars</td>
</tr>
<tr>
<td>takes-place-in</td>
<td>opera, place</td>
<td>Tosca takes place in Rome</td>
</tr>
<tr>
<td>unfinished</td>
<td>work</td>
<td>Turandot was unfinished</td>
</tr>
<tr>
<td>written-by</td>
<td>writer, work</td>
<td>La Tosca was written by Sardou</td>
</tr>
</tbody>
</table>

Table 65: Association types in the Italian Opera Topic Map
We observe that some association types are isomorphic with Bourque’s relations (located-in = LOCATION, part-of = MERONOMY); subtype-of is equivalent to TAXONOMY; libretto-by and written-by, like composed-by, are specializations of PRODUCTION, and based-on and revision-of are more fine-grained versions of SOURCE, as their roles make clear. We see that the level of granularity tends to be higher in a topic map than in binominals, but this does not detract from the overall compatibility of the two models, and the ability of one model to inform the other. For my own part, I believe that the very explicit and carefully articulated model of Topic Maps has helped me to clarify my understanding of the relations, roles and labels in semantic, metonymic and conceptual relations, and enabled me to unify what, on the surface, seem to be very different linguistic processes.

Topic Maps has thus informed linguistics in some respects, but linguistics can also inform Topic Maps. During the development of the standard, there were repeated discussions about the extent to which we should not only standardize the basic model and interchange syntax, but also some more detailed aspects of the model. In general the ISO working group held off from standardizing too many details. We did make two exceptions, however: we standardized the association types class-instance and superclass-subclass (Pepper & Moore 2001 §2.2.4). The first expresses the relationship between a class (e.g. opera) and one of its instances (e.g. tosca), and the second expresses the relationship between a class (e.g. place) and one of its subclasses (e.g. city). The rationale for standardizing these two types of association results was to enable greater interoperability between Topic Maps systems “out of the box”. Having done so, the question we then faced was whether to standardize more than just these two types of relationship, in order to achieve even greater interoperability. We refrained, on the grounds that we did not have sufficient experience with how Topic Maps would be used, and did not know which kinds of relationship would be most useful.

Thanks to the present study we now know much more about the relative frequency of various semantic relations. We know that MERONOMY, LOCATION, CAUSATION and the like are extremely frequent in binominal word-formation and metonymy, and since language is essentially a form of knowledge representation, we can take for granted that these relations should be among those prioritized if any further standardization were to take place.

1 The superclass-subclass relation is, of course, the equivalent of the TAXONOMY relation. The class-instance relation is not relevant to the present domain because the common nouns that we are concerned with in the domain of binominals denote classes rather than individual referents.
9.4 Putting it all together: the PHAB model

On the basis of all preceding discussion I propose the integrated model shown in Figure 80, which I call the PHAB model.¹

![Figure 80: The PHAB model of associative relations](image)

At the top of the hierarchy is Bauer’s (1979) one relation to rule them all (see page 185), which conveys no information other than that there is some kind of connection. At the next level we find the three Aristotelian relations, Similarity, Contiguity and Contrast (page 207). Similarity is divided into four subtypes, one of which, IDENTITY, is additional to the three found in Bourque’s classification (cf. page 213). Given that TAXONOMY is a reversible relation (which is why it alone has two distinct roles), these four cover Blank’s five subtypes of Similarity listed in Table 64 on page 322; together with Contiguity and Contrast, they constitute the seven cognitive relations employed by Koch in his motivational grids (page 279).

Contiguity is subdivided into CONTAINMENT and SEQUENCE, which corresponds to Hatcher’s static vs. dynamic duality in non-appositional compounds (page 199) as well as Bourque’s Basic and Reversed types (page 193); SEQUENCE is used in preference to CAUSATION (cf. Figure 78, page 314) since on reflection, prompted by Peirsman and Geeraerts’ metonymical pattern #4, (page 320), this seems to be the best way to express the basic commonality between SOURCE/RESULT, CAUSATION and PRODUCTION. The latter are tentatively placed in hierarchical relation to one another since some kind of scale of intentionality or agency appears to distinguish them. (There is, of course, a certain sense in which Puccini was both the “cause”

¹ The Pepper-Hatcher-Arnaud-Bourque model, pronounced ‘fab’.
and the “source” of *Tosca.*) Likewise, I suggest that COMPOSITION is a subtype of MERONYMY, and that TEMPORALITY (a term I have co-opted to denote temporal location) is a subtype of LOCATION. The dotted boxes around USAGE, FUNCTION and PURPOSE indicate uncertainty as to how they relate to one another. This is yet another topic for future research.

Note, finally, that there is just one role linked to TOPIC, FUNCTION and PURPOSE. This is not because they are unary relations (like unfinished in Table 65). Rather it indicates that they are not reversible. Quite why these three, and only these three have that property is a conundrum that awaits further investigation.

Caveats

The PHAB model as currently presented appears to cover all the semantic relations found in determinative noun-noun compounds, binominals and typifying nominal modifier constructions in general, and quite possibly also all anchoring nominal modifier constructions. In addition, it appears to cover most forms of metonymy (at least as used in word-formation), albeit sometimes at a more general level than one finds in metonymy research. It also covers all the cognitive relations identified by Koch and Blank in the domains of polysemy and semantic shift.

However, it is not yet a complete model of associative relations. For one thing, more work is required to test, and perhaps extend, the subclassification of Similarity and Contrast. Wälchli’s (2005) study of co-compounds may be a good starting point for Similarity, but I know of no equivalent study relating to Contrast.

Furthermore, the PHAB model has only been stress tested on word-formations of Onomasiological Type 3; it remains to be seen how other Onomasiological Types fit in. The characteristic feature of OT1 (e.g. *truck driver*) and OT2 (e.g. *driver*) is, as seen in Figure 3 on page 11, that the determined (actional) element is present. That element essentially describes the relationship involved in the conceptualization (for example the DRIVING relationship between the agent (-er) and the truck), at a much finer level of detail than the relations found in Hatcher-Bourque. But to what extent are they subtypes of the latter? Based on the discussion above, we can already confirm that *opera composer*, a parallel formation to *truck driver*, fits easily within the model (musical composition as a subtype of the PRODUCTION→CREATION sub-hierarchy), but does that apply to all such synthetic compounds?

Then there is the question of relations involving action nouns, which also fall outside the scope of prototypical binominals. Do the same relations apply? Hatcher was able to cater for Jespersen’s *sunshine* and *sun worship* as A→B and A←B (page 200); in
the revised Bourque scheme they would be classified as SRC-R (“(a) shine whose source is (a) sun”) and DIR (“(a) worship whose goal is (a) sun”); and further grounds for optimism are that Levi’s (1978) classification (which Bourque had recourse to when developing his system) was designed to cover all kinds of ‘complex nominal’, including nominalizations (cf. §2.3.1).

Property modification is yet another domain that remains to be investigated, and that would extend the enquiry to Onomasiological Type 4 (e.g. *blackbird*). *Croft* (forthc.) presents a ranking of property concept semantic classes according to the likelihood of their having a distinct strategy or of recruiting an object modification or action modification strategy (* = most prototypical property modifiers, + = next most prototypical property modifiers):

(144) **MORE LIKELY TO RECRUIT OBJECT MODIFICATION CONSTRUCTION**

1. Material/Substance: *wood(en), gold(en),* etc.
2. Gender: *male, female*
3. +Color: *white, black, red, green, blue, yellow, brown*
4. +Shape: *round, flat, etc.*
5. *Age: old, young, ripe*
6. *Value: good, bad*
7. *Dimension: big, little, tall, short, wide, narrow, etc.*
8. Physical Properties: *smooth, sharp, soft, hard, heavy, light, etc.*
9. Human Propensity: *happy, jealous, kind, clever, etc.*

 MORE LIKELY TO RECRUIT ACTION MODIFICATION CONSTRUCTION

The binominals data includes many examples from the top end of this scale. The question to be addressed is to what extent properties at the lower end of the scale can be accommodated by the PHAB model. So there is still much to be done, but I suggest that the PHAB model provides a good starting point for further work and I hope other researchers will take it up.

9.5 Chapter summary

In this chapter I ventured far beyond the confines of binominal lexemes in order to synthesize the results of investigating those unstated (or underspecified) semantic relations that first intrigued me about noun-noun compounds. I plead guilty to dragging Topic Maps into the proceedings, and I apologize for forcing my linguist readers out of their comfort zone; but I think the excursus was both interesting and worthwhile. It was inevitable that metonymy would be brought into the discussion
was inevitable in the light of Janda’s (2011) paper, and I could not avoid Blank and Koch’s cognitive relations once I realized the relevance of motivational grids.

I showed how the Hatcher-Bourque classification developed in Chapter 6 can be easily extended to cover most, if not all, metonymic relations, as well as the kind of cognitive relations found in polysemy and semantic shift. I also emphasized the importance of having an explicit model of relationships that distinguishes between relations, roles and participants and I demonstrated how it is possible for lumpers and splitters to coexist: any two relations can be combined under the umbrella of a more general relation. For example, at a low level of granularity, COMPOSED BY and WRITTEN BY can be amalgamated into CREATED BY (which will, of course, have other subtypes, such as DIRECTED BY). At a higher level of granularity, even such disparate relations as MERONOMY and CAUSATION can be combined under the umbrella Contiguity (which is essentially what Blank did, cf. footnote 1 on page 322). Conversely, any relation can be subdivided into more specific relations, as I proposed doing with the SOURCE relation in order to accommodate the metonymic pattern LOCATION & PRODUCT. It is not a matter of different sets of relations, but one of defining the degree of granularity required for any particular application.

The resulting synthesis, the PHAB model, is a general model of associative relations that I believe has applicability across several fields of linguistic enquiry and also beyond.
10 Conclusion

Typology’s remit is simple in principle, though beset with huge practical difficulties: it is (i) to chart linguistic diversity and (ii) to seek out order or even unity in diversity and to make sense of it. (Plank 2016)

Whether or not I have succeeded in fulfilling the remit of typology as Plank sees it is for others to judge. As far as binominal lexemes are concerned, I have at least made a start. I have been able to show that ‘binominal lexeme’ figures in certain cross-linguistic generalizations, so I can claim to have satisfied Edith Moravcsik’s criterion for a cross-linguistically applicable comparative concept:

It seems to me that the only consideration to help us choose from among the various alternative definitions listed by Matthew is typological implications. If a given concept can be shown to figure in crosslinguistic generalizations either by serving as an implicans or by serving as an implicatum, it is it a useful one. If it is not a term in typological implications, it is not useful (LingTyp mailing list, 19 Oct 2018).

But then again, this was only ever an exploratory study, and my own feeling is that it has thrown up enough interesting data and observations to justify the selection of binominal lexeme as a comparative concept. Now, by way of conclusion, I present a brief summary, outline what I believe has been the contribution to science of this work, and present some of my ideas for future research.

10.1 Summary

In Chapter 1 I explained the genesis of the present study and arrived at a definition of binominal lexeme. My choice of comparative concept was then further justified in Chapter 2 in the light of previous studies of compounding, word-formation and morphological complexity – and not least, a number of studies that prefigured the concept of binominals without actually recognizing it as a category. In Chapter 3, I discussed my methodology in some detail (not least in order to promote reuse of the data and replication of the study): I covered the development of the list of 100 meanings, the sample of 106 languages and the data collection. Then, in Chapter 4 I described the initial annotation of the data and considered some theoretical and analytical issues concerning identification of thing-roots and -affixes, determining the head, and defining constructions based on glosses provided by contributor. This chapter also contained an initial analysis of the data.
In Chapter 5 I developed a typological classification based on morphosyntactic strategies, identifying nine types of binominal, each of which can occur as a head-initial or head-final construction. These were presented in a two-dimensional grid in which the primary parameters were number of markers and locus of marking. I also discussed gradient phenomena and apparent gaps in the system.

I then developed a second classification in Chapter 6, devoted to semantic relations, building on the work of Anne Hatcher and Yves Bourque. I refined and extended their high- and low-level systems and then integrated the two into a single model, the Hatcher-Bourque classification, which I then applied to my binominal data.

In Chapter 7 I carried out investigations into three major typological topics, looking first at constituent order, then the relationship between binominals and possessives (or, more precisely, anchoring nominal modifier constructions), and finally various aspects of the relationship between morphosyntactic strategies and semantics.

The focus of Chapter 8 was the two-paths hypothesis: the idea that there are two fundamentally distinct ways of providing mental access to a complex concept that involves two other, less-complex concepts. Here it was the notion of head-framing versus modifier-framing in concept combination that provided most support for the hypothesis. I developed a method for quantifying the salience of elaboration sites and measuring the degree of relationality of an object concept, and I also put forward the idea that languages might be more or less consistent in their application of species-framing versus attribute-framing (when concept combination does not clearly follow either the reference point path or the hypernym path).

In Chapter 9 I expanded the focus quite radically from binominals and the semantic relations they embody to other domains of linguistics (specifically metonymy and lexical semantics) and to a domain that might seem far beyond linguistics, namely knowledge representation. The purpose was to demonstrate the feasibility of a very general, reusable model of associative relations with much wider application.

10.2 Contribution to science

It is for others to judge the contribution to science of a work like this, but since it is customary in dissertations for the researcher to express an opinion on the matter, I shall set out my own thoughts. My contributions are in the two main areas named in the title – typology and semantics – and in the development of some new research methods.
10.2.1 Typology

The most important contribution to typology, as I see it, is in identifying binominal lexeme as a comparative concept and developing the nine-way typological classification.

Binominal lexemes. Most previous work in this field has focused on subsets of binominals: either compounds (e.g. Bauer 2001; Scalise & Bisetto 2009; Guevara & Scalise 2009; Scalise & Fábregas 2010), or phrasal lexemes (e.g. Masini & Benigni 2010), or denominal derivation (multiple studies). These are traditionally seen as belonging to different compartments of grammar – syntax or morphology – or, in the case of compounding, as being somehow on the cusp between the two (Jackendoff 2010). The present work is the first systematic investigation of all three types of construction as a single category.

Over recent decades, more and more linguists have come to question the traditional division of language into grammar and lexicon, and of grammar into syntax and morphology (see, in particular, various constructionist approaches, e.g. Langacker 1987; 1991; Goldberg 1995; 2006; Croft 2001; Masini 2009). The boundary line between roots and affixes has been shown to be a fuzzy one (e.g. Tuggy 1992), and so has that between derivation and compounding (e.g. Bauer 2005; Booij 2005; Štekauer 2005). The present study is part of this trend. The very object of study constitutes strong evidence that the compartmental view of grammar is artificial and that the constructionist approach accords better with the facts.

Binominal typology. The binominals database provides evidence to support a nine-way classification of morphosyntactic strategies (**jxt**, **cmp**, **cls**, **der**; **gen**, **prp**, **adj**; **con**; **dbl**), the names of which are purely mnemonic and not to be taken literally (thus, for example, **prp** includes postpositions as well as prepositions). These nine types are arranged on a two-dimensional grid, rather than hierarchically; the vertical axis represents the number of markers (0, 1 or 2) and the horizontal axis (on level 2 only) the degree of fusion. A second layer of the grid is used when it is desirable to take constituent order into account (**jxtL**, **jxtR**, etc.).
Of the many findings, large and small, which I have attempted to summarize at the end of each chapter, I believe the following stand out:

Strategy recruitment. With overwhelmingly greater than chance frequency, languages recruit at least one of their binominal strategies from anchoring nominal modifier constructions; when they don’t, there is an overwhelming tendency to use compounding (§7.2). The figure below shows how the languages distribute on the Pepper scale (with cases of grammaticalization split out of the category *never*).

![Graph showing the distribution of binominal strategies.](image)

Non-universality of compounding. Noun-noun compounding, the union of the jxt and cmp strategies, is not an absolute universal, but it is by far the most widespread form of binominal word-formation, accounting for roughly half of all binominals. If a language has just one binominal strategy, that strategy is almost always compounding (§5.6.3). If noun-noun compounding can serve as a proxy for compounding in general, then compounding in general is not universal.
Prevalence of right-headedness. The ratio of right- to left-headed constructions is approximately 2:1, for both binominals in general and noun-noun compounds, the latter defined as the union of jxt and cmp strategies. The so-called “righthand head rule” thus fails to account for fully one third of the data. The ratios for jxt and cmp are 1:1 and 4:1, respectively, demonstrating a strong tendency for the constituents of head-final compounds to fuse (§7.1). The predilection for right-headedness is strongest in Eurasia (90%), PNG/Australia (87%) and South America (84%); in Oceania/SE Asia it is weakest (35%); and in Africa and North America the figures there is no strong predilection either way (60% and 53% right-headed, respectively).

10.2.2 Semantics

The most important contributions in the field of semantics are the Hatcher-Bourque classification (and the accompanying tool, the Bourquifier), the PHAB model of associative relations, and various scales of preference for semantic relations.
The typology and semantics of binominal lexemes

Hatcher-Bourque. A well-documented and reusable two-level classification of semantic relations, based on revisions of Hatcher’s and Bourque’s classifications. It comprises 29 relations (of which 12 reversible) at the lower level of granularity and five at the higher level (§6.3.3, cf. Table 31).

The Bourquifier. An Excel-based tool for assisting classification by automatically populating the templates of the Hatcher-Bourque classification.

<table>
<thead>
<tr>
<th>Bourquifier3</th>
<th>Binominal (B)</th>
<th>Modifier (M)</th>
<th>Head (H)</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXONOMY</td>
<td>TAX</td>
<td>(a) wind is a kind of mill</td>
<td>oak tree</td>
<td>(a) mill is a kind of wind</td>
</tr>
<tr>
<td>CONTAINMENT</td>
<td>CONT</td>
<td>(a) mill that is contained in (a) wind</td>
<td>orange seed</td>
<td>(a) mill contains (a) wind</td>
</tr>
<tr>
<td>LOCATION</td>
<td>LOC</td>
<td>(a) mill located at/near/in (a) wind</td>
<td>house music</td>
<td>(a) wind is located at/near/in</td>
</tr>
<tr>
<td>TEMPORALITY</td>
<td>TEMP</td>
<td>(a) mill that occurs at/during (a) wind</td>
<td>summer job</td>
<td>(a) wind occurs at/during</td>
</tr>
<tr>
<td>COMPOSITION</td>
<td>COMP</td>
<td>(a) mill that is composed of</td>
<td>tube sugar</td>
<td>(a) mill is composed of</td>
</tr>
<tr>
<td>TOPIC</td>
<td>TOP</td>
<td>(a) mill that is about (a) wind</td>
<td>history book</td>
<td>(a) mill is about</td>
</tr>
<tr>
<td>DIRECTION</td>
<td>DIR</td>
<td>(a) mill whose goal is (a) wind</td>
<td>sun worship</td>
<td>(a) mill is the goal of</td>
</tr>
<tr>
<td>CAUSATION</td>
<td>CAS</td>
<td>(a) mill that causes (a) wind</td>
<td>tear gas</td>
<td>(a) mill causes</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>PROD</td>
<td>(a) mill that produces (a) wind</td>
<td>long bird</td>
<td>(a) mill produces</td>
</tr>
<tr>
<td>USAGE</td>
<td>USG</td>
<td>(a) mill that uses (a) wind</td>
<td>lamp oil</td>
<td>(a) mill is used for</td>
</tr>
<tr>
<td>PURPOSE</td>
<td>PURP</td>
<td>(a) mill intended for (a) wind</td>
<td>animal doctor</td>
<td>(a) mill is intended for</td>
</tr>
</tbody>
</table>

The PHAB model. A synthesis of semantic, metonymical and conceptual relations found in the literature into a holistic system of associative relations. It is not yet a complete model, and more collaborative work is required in order to test, refine and extend it in various ways. The model may have application in the study of semantic roles, case systems and semantic word-substitution speech errors, and also beyond linguistics, in the domain of knowledge representation.
Frequency of semantic relations. The analysis of semantic relations can provide insights into the ways in which humans tend to conceptualize the world. The present data disconfirm Bauer’s suggestion that the most frequent semantic relations are LOCATION and COMPOSITION. In fact, by far the most widespread semantic relation is MERONOMY, followed by PURPOSE. Of the two types of MERONOMY, Basic (MER) and Reversed (MER-R), the former is considerably more frequent, which indicates that the conceptualization of a complex meaning is much more likely to involve modification by the whole than modification by the parts.

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Example</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>MER</td>
<td>977</td>
<td>(an) H that is part of (an) M</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>PURP</td>
<td>540</td>
<td>(an) H intended for (an) M</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>COOR</td>
<td>358</td>
<td>(an) H that is also (an) M</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>LOC</td>
<td>321</td>
<td>an H that (an) M is located at/near/in</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>COMP-R</td>
<td>216</td>
<td>(an) H composed of (an) M</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>POSS</td>
<td>211</td>
<td>(an) H that (an) M possesses</td>
<td>[Diagram]</td>
</tr>
</tbody>
</table>

Morphosyntactic strategies and semantic relations. There is no general, cross-linguistic correlation between morphosyntactic strategies and semantic relations. It is thus not the case that some strategies are used to express some relations, while other strategies are used for other relations. Every one of the high-level relations is expressed by each of the nine strategies, and the same seems to apply to low-level relations, although sparsity of data for some strategies and a low frequency for some low-level relations (in particular TEMP-R, SRC-R and TAX-R) means that not every combination of binominal type and relation is attested.
Head- vs. modifier-framing. Binominal meanings tend to be conceptualized in one of three ways: as concepts related to a more salient concept that serves as a reference point (modifier-framed); as concepts that are subtypes of a more salient, superordinate concept (head-framed); or as combinations of concepts that are roughly equally salient (neutrally-framed) (§8.2).

Degree of relationality of a concept. If the distinction between sortal nouns and relational nouns is a cline, the degree of relationality of a concept can be measured by the number of elaboration sites (or “slots”) that it employs when combining with other concepts. This equates to the number of different low-level relations the concept participates in. E-sites are best expressed as the role played by the modifier in the combined expression, as defined by the Hatcher-Bourque classification. In the raw, unnormalized data used in the present study, the most relational concept is HOUSE, followed by HEAD, PLACE, STRING, THREAD, TREE and WHEEL (§8.3).
Chapter 10. Conclusion

Elaboration site salience. The salience of the elaboration site of a concept such as HOUSE can be measured by the either type frequency (i.e. the number of different elaborating components) or their token frequency. The elaborating components should ideally be normalized before being counted. With the data shown here, this would result in values of 2 (type frequency) and 21 (token frequency) for the e-site labelled Possessor.

<table>
<thead>
<tr>
<th>e-site</th>
<th>elaborating component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>excrement (3), urine (3), bovine (2), horse (2), livestock (2), animal (1), animal/cattle (1), animals (1), donkey (1), hand (1), horses (1), pig (1), poo (1)</td>
</tr>
<tr>
<td>Located</td>
<td>doctor (5), medicine (3), food (2), hospital (2), bath (1), disease (1), fire (1), illnesses (1), kitchen (1), oven (1), pain (1), stove (1)</td>
</tr>
<tr>
<td>Possessor</td>
<td>spider (11), bee (9), bees (1)</td>
</tr>
<tr>
<td>Material</td>
<td>leaf (1), straw (1)</td>
</tr>
<tr>
<td>Location</td>
<td>side (1)</td>
</tr>
<tr>
<td>Part</td>
<td>incense (1)</td>
</tr>
<tr>
<td>Whole</td>
<td>nose (1)</td>
</tr>
</tbody>
</table>

10.2.3 Methods

I hope that some of the methodologies I developed will be of use to other researchers. These include:

Constructing a meaning list. The list of 100 meanings that formed the basis for data collection was constructed in a semi-principled manner (§3.1). With hindsight it is possible to list four main desiderata for such a list:
1. maximal structural diversity
2. maximal yield of binominals
3. cross-categorial balance
4. cross-linguistic representation

The iterative method by which the list was constructed favoured the first two, and it is fair to say that the latter two did not receive sufficient attention.

Typological fingerprints. With the method of fingerprinting it possible to perform groupwise comparisons of languages (for example by geographical area or genetic affiliation) even when many of them exhibit multiple values for an attribute such as morphosyntactic strategy (§5.6.4).

![Typological fingerprints graph]

The Pepper scale. This provides a means of comparing two non-binary typologies, and is particularly useful for investigating the degree to which languages recruit strategies from one construction (such as the anchoring possessive construction) for use in another (such as the binominal construction). The scale consists of five grades of similarity; these are expressed as adverbs qualifying the property ‘identical’ and must be given clear definitions for the purpose at hand, preferably in a form that can be operationalized in a non-subjective manner (§7.2.2).

always → mostly → sometimes → rarely → never
Motivational grids. The motivational grid approach pioneered by Koch is very well suited to investigating correlations between morphosyntactic strategies and semantic relations in individual languages (§7.3.1). The present data was mostly too sparse to produce interesting results, but with sufficient data points, coded for binominal type and semantic relation, significant patterns can be expected in many languages. The method involves generating simple contingency tables, testing for significance, and examining residuals.

<table>
<thead>
<tr>
<th>Language</th>
<th>52xNN, 7x5</th>
<th>ftype</th>
<th>MspH</th>
<th>HspM</th>
<th>MinH</th>
<th>HtoM</th>
<th>MtoH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polish</td>
<td></td>
<td>adjL</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>adjR</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cmpL</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cmpR</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>derR</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>genL</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prpL</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

R scripts. Almost all the tables and figures in this dissertation (including the one above) were generated directly using R. The scripts are publicly available and I encourage other researchers to adapt and use them for their own purposes.

Binominals database. All the data used for this project is freely available in the form of an Excel workbook at https://dataverse.no/dataverse/trolling. The database table structures are described in Appendix F. Please reuse it, please inform me of any errors (bearing in mind that I am not an expert on the 106 languages of the sample), and please contact me if you want to contribute more data to this project, especially from languages of PNG/Australia, North America and South America.
10.3 Further research

This study was the first systematic investigation into the typology and semantics of binominal lexemes and, as such, it has been mostly exploratory. Nevertheless it has produced a number of new insights and interesting results, as the preceding section shows. But, as befits an exploratory study, it has thrown up many more new questions than it has answered and provided plenty of scope for further research.

The data set consists of over 10,000 data points: lexical items from 106 languages that express 100 meanings. 3,738 of these are binominals, all of which have been annotated for a number of morphosyntactic and semantic properties: morphological structure, gloss, language-specific construction, binominal type, head, modifier, constituent order and semantic relation; and, of course, language and meaning, each of which bring with them additional properties, including areal and genetic affiliation, semantic type and semantic field. That is a lot of data and I was able to do quite a lot with it. Nevertheless, some investigations I wished to make required more. Furthermore, the language sample was not balanced; this had the advantage that I was able to investigate some microvariation (e.g. the binominal fingerprints of Indo-European languages, §5.6.4), but it also meant that I was unable to make robust typological claims regarding certain matters. The first task for me would therefore be to extend the sample for better genetic and areal balance. This means expanding the representation of PNG/Australia, North America and South America; adding data from a further 11 languages would allow me to create an areally balanced sample of 72 languages, 12 per major geographical area. So if anyone is

1 My original goal was to collect data from 200 languages for 200 meanings, but I was politely told that I was being far too “data greedy”!
in a position to supply me with data from a language from one of these parts of the world – in particular, one from a genus that is not already represented in the database – I would love to hear from you. I will do the annotation and number crunching once you have filled in the questionnaire in Appendix G.

Other topics for further research call for even more collaboration. Foremost among these is testing and refining the PHAB model and its central component, the Hatcher-Bourque classification. The latter is ideal for investigating the semantic relations of noun-noun compounds and other binominals in individual languages. So, instead of reinventing the wheel, I urge future researchers to come together and contribute to the development of a system that makes it possible to compare our results across languages. With the help of the Bourquifier, it is very easy to apply the Hatcher-Bourque classification consistently and it gives you two levels of granularity for the price of one. If you find a bug or a shortcoming, let me know and together we can fix it.

The PHAB model is even more of a work-in-progress. It needs to be tested against more appositional compounds, more onomasiological types and more metonymical patterns. The subtypes of SIMILARITY and CONTRAST require particular attention. It would also be interesting to see how semantic roles, case systems and semantic word-substitution speech errors can be accommodated, and there are a number of other questions that need to be addressed, including:

- Is it possible to define subhierarchies of CONTAINMENT and CAUSATION based on logically consistent criteria?
- What is the logical relationship between USAGE, FUNCTION and PURPOSE?
- Why are TOPIC, FUNCTION and PURPOSE non-reversible?
- What semantic types can play the different roles in the various relations?

If such questions could be answered, we could be confident that we have a model that truly provides interesting insights into the associative nature of human thought.

More work remains to be done also on the typological classification of binominals. The cls type, in particular, needs to be fleshed out with many more examples from many more languages, in order to understand the real nature of this category. A good challenge would also be to apply Croft’s classification of morphosyntactic strategies instead of mine and see if they throw up any more interesting insights. Then there is the matter of the “missing types”, labelled (prn) and (nml) in the diagram at the beginning of §10.2.1. The former may well exist in some language
out there; if so, please help me find it! The latter, I claim, is a logical impossibility, but I am willing to be proven wrong.

The question of competition between different binominal constructions in one and the same language has been raised at several points and is a suitable topic for studies that focus on a single language. Many factors can play a role: alienability, borrowing, diachronic word order change, the analogical pull of items already in the lexicon, and more … but also the semantic relation inherent in the conceptualization. The latter can be investigated using the motivational grid approach, but that will require samples of data larger than the average 35 binominals per language I had available. For anyone wanting to take on such a task, the Hatcher-Bourque classification, the Bourquifier and the binominal typology will be of great assistance.

In terms of cross-linguistic studies, both the species- vs. attribute-framing and the head- vs. modifier-framing dichotomies are worth exploring further, but they too require more data. For the latter there is also the need to develop a methodology (perhaps based on WordNet) for normalizing the raw data, so as to avoid counting, say, *bee* and *bees* as two separate concepts.

These are just some ideas for further research relating to the typology and semantics of binominal lexemes.

10.4 Envoie

In writing this work I have had the honour to stand on the shoulders of giants. My greatest sources of inspiration have been Bill Croft, Ron Langacker and Martin Haspelmath. Without Masja Koptjevkaja-Tamm’s detailed analysis of possessive noun phrases and Yves Bourque’s tremendous job of synthesizing many previous attempts to classify semantic relations, my task would have been much harder. Without Anna Granville Hatcher’s distillation of Jespersen, the innovative work of Laura Janda on metonymy in word-formation, and Pierre Arnaud’s brilliant idea of mapping a low-level classification to a higher one, this work would not have been possible in its present form. To all these linguists, living and deceased, I express my profound gratitude. And in parting, I would like to express my particular thanks, once again, to all those who contributed data for this project. Their names are listed in the Acknowledgements, in Appendix B (*Sources*), and in the Name index.
References

The typology and semantics of binominal lexemes

The typology and semantics of binominal lexemes

The typology and semantics of binominal lexemes

Egmond, Marie-Elaine van. forthc. New types of binominal lexeme in Anindilyakwa (Australia). In Francesca Masini, Simone Mattiola & Steve Pepper (eds.), *When noun meets noun: Binominal lexemes in cross-linguistic perspective*. Berlin: de Gruyter.

The typology and semantics of binominal lexemes

The typology and semantics of binominal lexemes

References

The typology and semantics of binominal lexemes

The typology and semantics of binominal lexemes

The typology and semantics of binominal lexemes

Pepper, Steve. 2007. As We REALLY May Think: Memex, Topic Maps, and subject-centric computing. Presented at the AToMS 2007, Kyoto.

The typology and semantics of binominal lexemes

Rijkhoff, Jan & Dik Bakker. 1998. Language sampling. Linguistic Typology 2(3).

The typology and semantics of binominal lexemes

The typology and semantics of binominal lexemes

Theil Endresen, Rolf. nd. Field notes on Nizaa: Word lists and accompanying notes.

The typology and semantics of binominal lexemes

References

The typology and semantics of binominal lexemes

Appendices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Languages</td>
<td>379</td>
</tr>
<tr>
<td>B. Sources</td>
<td>383</td>
</tr>
<tr>
<td>C. Meanings</td>
<td>389</td>
</tr>
<tr>
<td>D. Strategies and constructions</td>
<td>391</td>
</tr>
<tr>
<td>E. Binominal data set</td>
<td>444</td>
</tr>
<tr>
<td>F. Database structures</td>
<td>479</td>
</tr>
<tr>
<td>G. Questionnaire</td>
<td>481</td>
</tr>
<tr>
<td>H. Additional tables</td>
<td>483</td>
</tr>
</tbody>
</table>
This appendix lists all the languages in the sample, ordered by ISO code\(^1\) in order to facilitate looking up language names by ISO code. The genetic classification is based on Glottolog 2.7 and the geographic classification on Dryer (1992). For a list of sources, see Appendix B.

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Family</th>
<th>Genus</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKK</td>
<td>Akkadian</td>
<td>Afro-Asiatic</td>
<td>Semitic</td>
<td>Africa</td>
</tr>
<tr>
<td>AMH</td>
<td>Amharic</td>
<td>Afro-Asiatic</td>
<td>Semitic</td>
<td>Africa</td>
</tr>
<tr>
<td>AMR</td>
<td>Harakmbut</td>
<td>Harakmbut</td>
<td>Harakmbut</td>
<td>South America</td>
</tr>
<tr>
<td>AOI</td>
<td>Anindilyakwa</td>
<td>Gunwinyguan</td>
<td>Gunwinyguan</td>
<td>PNG/Australia</td>
</tr>
<tr>
<td>AQG</td>
<td>Archi</td>
<td>Nakh-Daghestanian</td>
<td>Lezgic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>ARN</td>
<td>Mapudungun</td>
<td>Araucanian</td>
<td>Araucanian</td>
<td>South America</td>
</tr>
<tr>
<td>ASM</td>
<td>Assamese</td>
<td>Indo-European</td>
<td>Indo-Aryan</td>
<td>Eurasia</td>
</tr>
<tr>
<td>BAM</td>
<td>Bambara</td>
<td>Atlantic-Congo</td>
<td>Mande</td>
<td>Africa</td>
</tr>
<tr>
<td>BQJ</td>
<td>Bandial</td>
<td>Atlantic-Congo</td>
<td>North-Central Atlantic</td>
<td>Africa</td>
</tr>
<tr>
<td>BVA</td>
<td>Barain</td>
<td>Afro-Asiatic</td>
<td>Chadic</td>
<td>Africa</td>
</tr>
<tr>
<td>CBJ</td>
<td>Caijia</td>
<td>Sino-Tibetan</td>
<td>Macro-Bai</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>CAR</td>
<td>Galibi Carib</td>
<td>Cariban</td>
<td>Guianan</td>
<td>South America</td>
</tr>
<tr>
<td>CES</td>
<td>Czech</td>
<td>Indo-European</td>
<td>Slavic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>CJP</td>
<td>Cabécar</td>
<td>Chibchan</td>
<td>Chibchan</td>
<td>South America</td>
</tr>
<tr>
<td>CLI</td>
<td>Chakali</td>
<td>Atlantic-Congo</td>
<td>Gur</td>
<td>Africa</td>
</tr>
<tr>
<td>CMN</td>
<td>Mandarin Chinese</td>
<td>Sino-Tibetan</td>
<td>Sinitic</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>CRS</td>
<td>Seychelles Creole</td>
<td>Pidgins & Creoles</td>
<td>French-based</td>
<td>Pidgins/Creoles</td>
</tr>
<tr>
<td>CWG</td>
<td>Ceq Wong</td>
<td>Austro-Asiatic</td>
<td>Aslian</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>CYM</td>
<td>Welsh</td>
<td>Indo-European</td>
<td>Celtic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>DEU</td>
<td>German</td>
<td>Indo-European</td>
<td>Germanic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>DSB</td>
<td>Lower Sorbian</td>
<td>Indo-European</td>
<td>Slavic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>ELL</td>
<td>Greek</td>
<td>Indo-European</td>
<td>Greek</td>
<td>Eurasia</td>
</tr>
<tr>
<td>ENG</td>
<td>English</td>
<td>Indo-European</td>
<td>Germanic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>EST</td>
<td>Estonian</td>
<td>Uralic</td>
<td>Finnic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>EUP</td>
<td>Central Yupik</td>
<td>Eskimo-Aleut</td>
<td>Yupik</td>
<td>North America</td>
</tr>
<tr>
<td>EUS</td>
<td>Basque</td>
<td>Basque</td>
<td>Basque</td>
<td>Eurasia</td>
</tr>
<tr>
<td>FIN</td>
<td>Finnish</td>
<td>Uralic</td>
<td>Finnic</td>
<td>Eurasia</td>
</tr>
</tbody>
</table>

\(^1\) Caijia does not have an ISO 639 code so I have co-opted CAI in this work, since it is currently unused in ISO 639. The Glottocode, caij1234, should be used in database applications.
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Family</th>
<th>Genus</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>FRA French</td>
<td>Indo-European</td>
<td>Romance</td>
<td>Eurasia</td>
</tr>
<tr>
<td>29</td>
<td>GLE Irish</td>
<td>Indo-European</td>
<td>Celtic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>30</td>
<td>GNT Warta Thuntau</td>
<td>Morehead-Wasur</td>
<td>Morehead-Wasur</td>
<td>PNG/Australia</td>
</tr>
<tr>
<td>31</td>
<td>GOH Old High German</td>
<td>Indo-European</td>
<td>Germanic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>32</td>
<td>GUE Gurindji</td>
<td>Pama-Nyungang</td>
<td>Desert Nyungic</td>
<td>PNG/Australia</td>
</tr>
<tr>
<td>33</td>
<td>GUN Mbyá Guaraní</td>
<td>Tupian</td>
<td>Tupi-Guarani</td>
<td>North America</td>
</tr>
<tr>
<td>34</td>
<td>GWD Gawwada</td>
<td>Afro-Asiatic</td>
<td>Cushitic</td>
<td>Africa</td>
</tr>
<tr>
<td>35</td>
<td>HAU Hausa</td>
<td>Afro-Asiatic</td>
<td>Chadic</td>
<td>Africa</td>
</tr>
<tr>
<td>36</td>
<td>HAW Hawaiian</td>
<td>Austronesian</td>
<td>Oceanic</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>37</td>
<td>HEB Hebrew</td>
<td>Afro-Asiatic</td>
<td>Semitic</td>
<td>Africa</td>
</tr>
<tr>
<td>38</td>
<td>HIN Hindi</td>
<td>Indo-European</td>
<td>Indo-Aryan</td>
<td>Eurasia</td>
</tr>
<tr>
<td>39</td>
<td>HRV Croatian</td>
<td>Indo-European</td>
<td>Slavic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>40</td>
<td>HUN Hungarian</td>
<td>Uralic</td>
<td>Hungarian</td>
<td>Eurasia</td>
</tr>
<tr>
<td>41</td>
<td>HUU Murui Huitoto</td>
<td>Huitotoan</td>
<td>Huitotoan</td>
<td>South America</td>
</tr>
<tr>
<td>42</td>
<td>IND Indonesian</td>
<td>Austronesian</td>
<td>Malayo-Sumbawan</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>43</td>
<td>IRK Iraqw</td>
<td>Afro-Asiatic</td>
<td>Cushitic</td>
<td>Africa</td>
</tr>
<tr>
<td>44</td>
<td>ITA Italian</td>
<td>Indo-European</td>
<td>Romance</td>
<td>Eurasia</td>
</tr>
<tr>
<td>45</td>
<td>JPN Japanese</td>
<td>Japanese</td>
<td>Japanese</td>
<td>Eurasia</td>
</tr>
<tr>
<td>46</td>
<td>JUP Hupdë</td>
<td>Nadahup</td>
<td>Nadahup</td>
<td>South America</td>
</tr>
<tr>
<td>47</td>
<td>KAP Bezhta</td>
<td>Nakh-Daghestanian</td>
<td>Avar-Andic-Tsezic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>48</td>
<td>KDX Kam</td>
<td>Atlantic-Congo</td>
<td>Adamawa-Ubangi</td>
<td>Africa</td>
</tr>
<tr>
<td>49</td>
<td>KCK Kekchí</td>
<td>Mayan</td>
<td>Core Mayan</td>
<td>North America</td>
</tr>
<tr>
<td>50</td>
<td>KET Ket</td>
<td>Yeniseian</td>
<td>Yeniseian</td>
<td>Eurasia</td>
</tr>
<tr>
<td>51</td>
<td>KGV Kalamang</td>
<td>West Bomberai</td>
<td>West Bomberai</td>
<td>PNG/Australia</td>
</tr>
<tr>
<td>52</td>
<td>KNC Kanuri</td>
<td>Nilo-Saharan</td>
<td>Saharan</td>
<td>Africa</td>
</tr>
<tr>
<td>53</td>
<td>KOR Korean</td>
<td>Koreanic</td>
<td>Koreanic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>54</td>
<td>KPZ Kupsabiny</td>
<td>Nilo-Saharan</td>
<td>Nilotic</td>
<td>Africa</td>
</tr>
<tr>
<td>55</td>
<td>KTB Kambaata</td>
<td>Afro-Asiatic</td>
<td>Cushitic</td>
<td>Africa</td>
</tr>
<tr>
<td>56</td>
<td>KW6 Baa</td>
<td>Atlantic-Congo</td>
<td>Gur</td>
<td>Africa</td>
</tr>
<tr>
<td>57</td>
<td>LAV Latvian</td>
<td>Indo-European</td>
<td>Baltic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>58</td>
<td>LT Lithuanian</td>
<td>Indo-European</td>
<td>Baltic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>59</td>
<td>LSR Srenge</td>
<td>Nuclear Torricelli</td>
<td>Nuclear Torricelli</td>
<td>PNG/Australia</td>
</tr>
<tr>
<td>60</td>
<td>MAL Malayalam</td>
<td>Dravidian</td>
<td>Dravidian</td>
<td>Eurasia</td>
</tr>
<tr>
<td>61</td>
<td>MLT Maltese</td>
<td>Afro-Asiatic</td>
<td>Semitic</td>
<td>Africa</td>
</tr>
<tr>
<td>62</td>
<td>MRJ Western Mari</td>
<td>Uralic</td>
<td>Mari</td>
<td>Eurasia</td>
</tr>
<tr>
<td>63</td>
<td>MWW Hmong Daw</td>
<td>Hmong-Mien</td>
<td>Hmong-Mien</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>64</td>
<td>MYS Mamara Senoufo</td>
<td>Atlantic-Congo</td>
<td>Kwa</td>
<td>Africa</td>
</tr>
<tr>
<td>65</td>
<td>MZH Wichi</td>
<td>Matacoan</td>
<td>Matacoan</td>
<td>South America</td>
</tr>
<tr>
<td>66</td>
<td>NAV Navajo</td>
<td>Athabaskan-Eyak-Tlingit</td>
<td>Athabaskan-Eyak-Tlingit</td>
<td>North America</td>
</tr>
<tr>
<td>67</td>
<td>NFL Äiwoo</td>
<td>Austronesian</td>
<td>Oceanic</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>Code</td>
<td>Language</td>
<td>Family</td>
<td>Genus</td>
<td>Area</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>68</td>
<td>NLD Dutch</td>
<td>Indo-European</td>
<td>Germanic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>69</td>
<td>NMM Manange</td>
<td>Sino-Tibetan</td>
<td>Bodic</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>70</td>
<td>NOR Norwegian</td>
<td>Indo-European</td>
<td>Germanic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>71</td>
<td>NPI Nepali</td>
<td>Indo-European</td>
<td>Indo-Aryan</td>
<td>Eurasia</td>
</tr>
<tr>
<td>72</td>
<td>ORH Oroqen</td>
<td>Altaic</td>
<td>Tungusic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>73</td>
<td>OTQ Querétaro Otomi</td>
<td>Otomanguean</td>
<td>Otopamean</td>
<td>North America</td>
</tr>
<tr>
<td>74</td>
<td>PES Western Farsi</td>
<td>Indo-European</td>
<td>Iranian</td>
<td>Eurasia</td>
</tr>
<tr>
<td>75</td>
<td>PLT Malagasy</td>
<td>Austronesian</td>
<td>Greater Barito</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>76</td>
<td>POL Polish</td>
<td>Indo-European</td>
<td>Slavic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>77</td>
<td>PYU Puyuma</td>
<td>Austronesian</td>
<td>Formosan</td>
<td>PNG/Australia</td>
</tr>
<tr>
<td>78</td>
<td>QVI Imbabura Quechua</td>
<td>Quechuan</td>
<td>Quechua II</td>
<td>South America</td>
</tr>
<tr>
<td>79</td>
<td>RIF Tarifit</td>
<td>Afro-Asiatic</td>
<td>Berber</td>
<td>Africa</td>
</tr>
<tr>
<td>80</td>
<td>RMC Selice Romani</td>
<td>Indo-European</td>
<td>Indo-Aryan</td>
<td>Eurasia</td>
</tr>
<tr>
<td>81</td>
<td>RON Romanian</td>
<td>Indo-European</td>
<td>Romance</td>
<td>Eurasia</td>
</tr>
<tr>
<td>82</td>
<td>RUS Russian</td>
<td>Indo-European</td>
<td>Slavic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>83</td>
<td>SAH Yakut</td>
<td>Altaic</td>
<td>Turkic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>84</td>
<td>SEI Seri</td>
<td>Seri</td>
<td>Seri</td>
<td>North America</td>
</tr>
<tr>
<td>85</td>
<td>SID Sidamo</td>
<td>Afro-Asiatic</td>
<td>Cushitic</td>
<td>Africa</td>
</tr>
<tr>
<td>86</td>
<td>SJD Kildin Sami</td>
<td>Uralic</td>
<td>Saami</td>
<td>Eurasia</td>
</tr>
<tr>
<td>87</td>
<td>SLK Slovak</td>
<td>Indo-European</td>
<td>Slavic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>88</td>
<td>SOM Somali</td>
<td>Afro-Asiatic</td>
<td>Cushitic</td>
<td>Africa</td>
</tr>
<tr>
<td>89</td>
<td>SRM Saramacccan</td>
<td>Pidgins & Creoles</td>
<td>English-based</td>
<td>Pidgins/Creoles</td>
</tr>
<tr>
<td>90</td>
<td>SWH Swahili</td>
<td>Atlantic-Congo</td>
<td>Bantoid</td>
<td>Africa</td>
</tr>
<tr>
<td>91</td>
<td>TBC Takia</td>
<td>Austronesian</td>
<td>Oceanic</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>92</td>
<td>TCA Ticuna</td>
<td>Ticuna-Yuri</td>
<td>Ticuna-Yuri</td>
<td>South America</td>
</tr>
<tr>
<td>93</td>
<td>TCC Datooga</td>
<td>Nilo-Saharan</td>
<td>Nilotic</td>
<td>Africa</td>
</tr>
<tr>
<td>94</td>
<td>TGL Tagalog</td>
<td>Austronesian</td>
<td>Greater Central Philippine</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>95</td>
<td>THA Thai</td>
<td>Tai-Kadai</td>
<td>Kam-Tai</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>96</td>
<td>TRN Trinitario</td>
<td>Arawakan</td>
<td>Arawakan</td>
<td>South America</td>
</tr>
<tr>
<td>97</td>
<td>TUR Turkish</td>
<td>Altaic</td>
<td>Turkic</td>
<td>Eurasia</td>
</tr>
<tr>
<td>98</td>
<td>TWW Tuwari</td>
<td>Walio</td>
<td>Walio</td>
<td>PNG/Australia</td>
</tr>
<tr>
<td>99</td>
<td>TZO Zinacantán Tzotzil</td>
<td>Mayan</td>
<td>Core Mayan</td>
<td>North America</td>
</tr>
<tr>
<td>100</td>
<td>VAN Walman</td>
<td>Nuclear Torricelli</td>
<td>Nuclear Torricelli</td>
<td>Eurasia</td>
</tr>
<tr>
<td>101</td>
<td>VIE Vietnamese</td>
<td>Austro-Asiatic</td>
<td>Vietic</td>
<td>Oceania/SE Asia</td>
</tr>
<tr>
<td>102</td>
<td>WIM Wik-Mungkan</td>
<td>Pama-Nyungun</td>
<td>Paman</td>
<td>PNG/Australia</td>
</tr>
<tr>
<td>103</td>
<td>WIN Ho-Chunk</td>
<td>Siouan</td>
<td>Siouan</td>
<td>North America</td>
</tr>
<tr>
<td>104</td>
<td>WOL Wolof</td>
<td>Atlantic-Congo</td>
<td>North-Central Atlantic</td>
<td>Africa</td>
</tr>
<tr>
<td>105</td>
<td>WWW Wawa</td>
<td>Atlantic-Congo</td>
<td>Bantoid</td>
<td>Africa</td>
</tr>
<tr>
<td>106</td>
<td>YAQ Yaqui</td>
<td>Uto-Aztecan</td>
<td>Southern Uto-Aztecan</td>
<td>North America</td>
</tr>
</tbody>
</table>
This appendix lists the sources used for each language, ordered by language name (in order to facilitate looking up ISO codes from language names). Contributors who have provided data specifically for the present project, either for the full set of meanings, or for meanings supplementary to WOLD, are listed by name. Other sources are:

- **W**: WOLD vocabulary
- **D**: dictionary or wordlist
- **G**: grammar, grammar sketch or other grammatical information

<table>
<thead>
<tr>
<th>Language</th>
<th>Code</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Åiwoo</td>
<td>NFL</td>
<td>Åshild Næss G: (Wurm 1981; Næss 2006; 2018; forthc.)</td>
</tr>
<tr>
<td>Akkadian</td>
<td>AKK</td>
<td>Rodrigo Hernaiz G: (Ungnad 1992; Worthington 2010)</td>
</tr>
<tr>
<td>Amharic</td>
<td>AMH</td>
<td>Mengistu Amberber G: (Leslau 1995)</td>
</tr>
<tr>
<td>Anindilyakwa</td>
<td>AOI</td>
<td>Marie-Eline Van Egmond G: (van Egmond 2012; forthc.)</td>
</tr>
<tr>
<td>Archi</td>
<td>AQC</td>
<td>W: (Chumakina 2009) G: (Kibrik 1994)</td>
</tr>
<tr>
<td>Assamese</td>
<td>ASM</td>
<td>Bipasha Patgiri G: (Goswami & Tamuli 2003)</td>
</tr>
<tr>
<td>Baa</td>
<td>KWB</td>
<td>Mirjam Möller Nwadigo G: (Möller Nwadigo 2018)</td>
</tr>
<tr>
<td>Bambara</td>
<td>BAM</td>
<td>Sekou Coulibaly G: (Dumestre 2003)</td>
</tr>
<tr>
<td>Bandial</td>
<td>BQJ</td>
<td>Rachel Watson G: (Watson 2015)</td>
</tr>
<tr>
<td>Barain</td>
<td>BVA</td>
<td>Joey Lovestrand G: (Lovestrand 2012)</td>
</tr>
<tr>
<td>Basque</td>
<td>EUS</td>
<td>Koldo Garai G: (Saltarelli 1988; Coyos 2004; Rijk 2008; Artiagoitia, Hualde & Urbina 2016)</td>
</tr>
<tr>
<td>Bezhta</td>
<td>KAP</td>
<td>Bernard Comrie and Madzhid Khalilov W: (Comrie & Khalilov 2009) G: (Kibrik & Testelets 2004)</td>
</tr>
<tr>
<td>Cabécar</td>
<td>CJP</td>
<td>Guillermo González G: (Quesada 2007; Verhoeven 2012)</td>
</tr>
</tbody>
</table>
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>Language</th>
<th>Code</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caijia⁰</td>
<td>CAI</td>
<td>Shanshan Lü</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: –</td>
</tr>
<tr>
<td>Central Yupik</td>
<td>ESU</td>
<td>D: (Jacobson 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Jacobson 1995; Miyaoka 2012)</td>
</tr>
<tr>
<td>Ceq Wong</td>
<td>CWG</td>
<td>Nicole Kruspe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Kruspe 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Kruspe, Burenhult & Wnuk 2015)</td>
</tr>
<tr>
<td>Chakali</td>
<td>CLI</td>
<td>Jonathan Brindle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Brindle 2017)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Brindle 2017)</td>
</tr>
<tr>
<td>Croatian</td>
<td>HRV</td>
<td>Višnja Cicin-Sain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Grubišić 2007)</td>
</tr>
<tr>
<td>Czech</td>
<td>CES</td>
<td>Pavlína Pešková</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Janda & Townsend 2002; Naughton 2005; Štichauer 2009)</td>
</tr>
<tr>
<td>Datooga</td>
<td>TCC</td>
<td>Alice Mitchell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Rottland 1983)</td>
</tr>
<tr>
<td>Dutch</td>
<td>NLD</td>
<td>W: (van der Sijs 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Donaldson 1981; Booij 2002; Don 2009)</td>
</tr>
<tr>
<td>English</td>
<td>ENG</td>
<td>W: (Grant 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Dixon 2005)</td>
</tr>
<tr>
<td>Estonian</td>
<td>EST</td>
<td>Reili Argus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Harms 1962; Tauli 1973; 1983)</td>
</tr>
<tr>
<td>Finnish</td>
<td>FIN</td>
<td>Matti Miestamo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Sulkala & Karjalainen 1992; Karlsson 2013; Mahieu 2013)</td>
</tr>
<tr>
<td>French</td>
<td>FRA</td>
<td>Yves Bourque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Corréard et al. 2009; Bourque 2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Lang & Perez 2004; Booth 2010; Bourque 2014)</td>
</tr>
<tr>
<td>Galibi Carib</td>
<td>CAR</td>
<td>W: (Renault-Lescure 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Courtz 2008)</td>
</tr>
<tr>
<td>Gawwada</td>
<td>GWD</td>
<td>Mauro Tosco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Tosco 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Tulu 2003; Tosco 2007)</td>
</tr>
<tr>
<td>German</td>
<td>DEU</td>
<td>Anne Krause</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Whittle et al. 2011)</td>
</tr>
<tr>
<td>Greek</td>
<td>ELL</td>
<td>Katerina Fragkopoulou</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Holton et al. 2012; Ralli 2013)</td>
</tr>
<tr>
<td>Gurindji</td>
<td>GUE</td>
<td>W: (McConvell 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: –</td>
</tr>
<tr>
<td>Harakmbut</td>
<td>AMR</td>
<td>An Van linden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Van linden 2019; forthc.)</td>
</tr>
<tr>
<td>Hausa</td>
<td>HAU</td>
<td>W: (Awagana & Wolff 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Newman 1990; Newman 2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Newman 2000; Jagger 2001; Ahmad 1994; Abraham 1968)</td>
</tr>
</tbody>
</table>

⁰ Caijia (glottocode caij1234) does not have an ISO 639 code. CAI is currently unused in ISO 639 and has therefore been co-opted in the present work.
<table>
<thead>
<tr>
<th>Language</th>
<th>Code</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaiian</td>
<td>HAW</td>
<td>W: (Jones 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Pukui & Elbert 1971)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Elbert & Pukui 1979)</td>
</tr>
<tr>
<td>Hebrew</td>
<td>HEB</td>
<td>Julian Lysvik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Levi 1976; Glinert 1989; Borer 2009)</td>
</tr>
<tr>
<td>Hindi</td>
<td>HIN</td>
<td>Claus Peter Zoller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (McGregor 1993; Verma & Sahai 2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Kachru 2006)</td>
</tr>
<tr>
<td>Hmong Daw</td>
<td>MWW</td>
<td>Martha Ratliff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Ratliff 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Heimbach 1979)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Mottin 1978)</td>
</tr>
<tr>
<td>Ho-Chunk</td>
<td>WIN</td>
<td>Iren Hartmann</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Marino 1968)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Lipkind 1945; Helmbrecht 2003)</td>
</tr>
<tr>
<td>Hungarian</td>
<td>HUN</td>
<td>Zsöfia Schön</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Tompa 1985; Rounds 2001)</td>
</tr>
<tr>
<td>Hupdë</td>
<td>JUP</td>
<td>Patience Epps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Epps 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Epps 2008)</td>
</tr>
<tr>
<td>Imbabura</td>
<td>QVI</td>
<td>W: (Rendón 2009)</td>
</tr>
<tr>
<td>Quechua</td>
<td></td>
<td>G: (Cole 1985; Kirtchuk-Halevi 2004)</td>
</tr>
<tr>
<td>Indonesian</td>
<td>IND</td>
<td>W: (Tadmor 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Echols & Shadily 1975)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Sneddon 1996)</td>
</tr>
<tr>
<td>Iraqw</td>
<td>IRK</td>
<td>Maarten Mous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Mous 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Mous, Qorro & Kiessling 2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Nordbustad 1988; Mous 1993)</td>
</tr>
<tr>
<td>Irish</td>
<td>GLE</td>
<td>Cormac MacAindir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Ahlqvist 1985; Doyle 2001; Craig 2014)</td>
</tr>
<tr>
<td>Italian</td>
<td>ITA</td>
<td>Francesca Masini</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Bareggi 2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Maiden 2007; Masini & Scalise 2012; Proudfoot & Cardo 2013; Masini 2016)</td>
</tr>
<tr>
<td>Japanese</td>
<td>JPN</td>
<td>W: (Schmidt 2009)</td>
</tr>
<tr>
<td>Kalamang</td>
<td>KGV</td>
<td>Eline Visser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Visser 2016)</td>
</tr>
<tr>
<td>Kam</td>
<td>KDX</td>
<td>Jakob Lesage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Lesage in prep)</td>
</tr>
<tr>
<td>Kambaata</td>
<td>KTB</td>
<td>Yvonne Treis and Deginet Wotango</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Treis 2008)</td>
</tr>
<tr>
<td>Kanuri</td>
<td>KNC</td>
<td>W: (Löhr & Wolff 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Lukas 1937; Hutchison 1981; Cyffer 1998)</td>
</tr>
<tr>
<td>Kekché</td>
<td>KEK</td>
<td>W: (Wichmann & Hull 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Stone 1976; Tzoc 2003)</td>
</tr>
<tr>
<td>Language</td>
<td>Code</td>
<td>Sources</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Ket</td>
<td>KET</td>
<td>Edward Vajda and Andrey Nefedov</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Vajda & Nefedov 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Maksunova 2003; Vajda 2004; Georg 2007; Smith 2014)</td>
</tr>
<tr>
<td>Kildin Sami</td>
<td>SJD</td>
<td>Michael Rießler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Rießler 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Rießler 2007; Rießler 2009; to appear)</td>
</tr>
<tr>
<td>Korean</td>
<td>KOR</td>
<td>Petter Mæhlum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Sohn 1994; Song 2005; Yeon & Brown 2011)</td>
</tr>
<tr>
<td>Kupsabiny</td>
<td>KPZ</td>
<td>Kazuhiro Kawachi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Montgomery 1966; O’Brien & Cuypers 1975)</td>
</tr>
<tr>
<td>Latvian</td>
<td>LAV</td>
<td>Agnē Navickaitē-Klišauskienē</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Turkina 1982; Belzēja 1996)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Mathiassen 1997; Praulīns 2012; Navickaitē-Klišauskienē 2016)</td>
</tr>
<tr>
<td>Lithuanian</td>
<td>LIT</td>
<td>Agnē Navickaitē-Klišauskienē</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Mathiassen 1996; Ambrazas 1997; Stundžia 2016)</td>
</tr>
<tr>
<td>Lower Sorbian</td>
<td>DSB</td>
<td>Hauke Bartels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Bartels 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Stone 1993; Schuster-Šewc 1996; Pohontsch 2016)</td>
</tr>
<tr>
<td>Malagasy</td>
<td>PLT</td>
<td>W: (Adelaar 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Rasoloson & Rubino 2005)</td>
</tr>
<tr>
<td>Malayalam</td>
<td>MAL</td>
<td>Ārathi Raghunathan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Ravindran 1973; Asher & Kumari 1997)</td>
</tr>
<tr>
<td>Maltese</td>
<td>MLT</td>
<td>Benjamin Saade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Fabri 1996; 2009; Koptjevskaja-Tamm 1996; Borg & Azzopardi-Alexander</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1997; Fabri & Borg 2002)</td>
</tr>
<tr>
<td>Mamara Senoufo</td>
<td>MYK</td>
<td>Sekou Coulibaly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: –</td>
</tr>
<tr>
<td>Manange</td>
<td>NMM</td>
<td>W: (Hildebrandt 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Hildebrandt 2004)</td>
</tr>
<tr>
<td>Mandarin Chinese</td>
<td>CMN</td>
<td>Shuqiong Wu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Wiebusch 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Yip & Rimmington 2004; Ceccagno & Basciano 2009; Luo 2013)</td>
</tr>
<tr>
<td>Mapudungun</td>
<td>ARN</td>
<td>Antonio Chihuaicura, Belén Villena, Fernando Zúñiga</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Golluscio, Fraguas & Mellico 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Smeets 2008; Baker & Fasola 2009; Zúñiga 2000; 2014)</td>
</tr>
<tr>
<td>Mbyá Guaraní</td>
<td>GUN</td>
<td>Bob Dooley</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Martins 2003)</td>
</tr>
<tr>
<td>Murui Huitoto</td>
<td>HUU</td>
<td>Kasia Wojtylak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Wojtylak 2015; Wojtylak 2017)</td>
</tr>
<tr>
<td>Navajo</td>
<td>NAV</td>
<td>Steve Pepper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Young & Morgan 1980)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Reichard 1951; Young & Morgan 1980; Goossen 1995)</td>
</tr>
<tr>
<td>Nepali</td>
<td>NPI</td>
<td>Krishna Prasad Parajuli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Jayaraj 1990)</td>
</tr>
<tr>
<td>Norwegian</td>
<td>NOR</td>
<td>Steve Pepper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Faarlund, Lie & Vannebo 1997; Golden, Mac Donald & Ryen 2008;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Askedal 2016)</td>
</tr>
<tr>
<td>Language</td>
<td>Code</td>
<td>Sources</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Old High German</td>
<td>GOH</td>
<td>W: (Schuhmann 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: –</td>
</tr>
<tr>
<td>Oroqen</td>
<td>ORH</td>
<td>W: (Fengxiang Li & Whaley 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Nedjalkov 1997)</td>
</tr>
<tr>
<td>Polish</td>
<td>POL</td>
<td>Pavel Urbanik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Linde-Usiekniwicz & Smith 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Swan 2002; Szymanek 2009; 2015; Cetnarowska 2014; Nagórko 2016)</td>
</tr>
<tr>
<td>Puyuma</td>
<td>PYU</td>
<td>Stacy Fang Ching Teng</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (Cauquelin 2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Teng 2007)</td>
</tr>
<tr>
<td>Querétaro Otomi</td>
<td>OTQ</td>
<td>W: (Bakker & Hekking 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Palancar 2006; 2009)</td>
</tr>
<tr>
<td>Romanian</td>
<td>RON</td>
<td>W: (Schulte 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Mallinson 1986; Grossmann 2012; Giurgea & Dobrovie-Sorin 2013;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nicolae 2013)</td>
</tr>
<tr>
<td>Russian</td>
<td>RUS</td>
<td>Svetlana Sokolova</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Timberlake 2004; Wade 2011; Petegham & Paykin 2013)</td>
</tr>
<tr>
<td>Saramaccan</td>
<td>SRM</td>
<td>Jeff Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Good 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Veenstra 2006; McWhorter & Good 2012)</td>
</tr>
<tr>
<td>Selice Romani</td>
<td>RMC</td>
<td>W: (Elšík 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Holzinger 1995; Koptjevskaja-Tamm 2000)</td>
</tr>
<tr>
<td>Seri</td>
<td>SEI</td>
<td>Steve Marlett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Marlett 1981)</td>
</tr>
<tr>
<td>Seychelles Creole</td>
<td>CRS</td>
<td>W: (Michaelis 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Alsdorf-Bollée 1977; Corne 1977; Arends et al. 2006)</td>
</tr>
<tr>
<td>Sidamo</td>
<td>SID</td>
<td>Kjell-Magne Yri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Kawachi 2007)</td>
</tr>
<tr>
<td>Slovak</td>
<td>SLK</td>
<td>Pavol Štekauer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Mistrík 1983; Naughton 1997)</td>
</tr>
<tr>
<td>Somali</td>
<td>SOM</td>
<td>Nina Hagen Kaldhol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Saeed 1993; 1999)</td>
</tr>
<tr>
<td>Srenge</td>
<td>LSR</td>
<td>Lea Brown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: –</td>
</tr>
<tr>
<td>Swahili</td>
<td>SWH</td>
<td>W: (Schadeberg 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Polomé 1967; Van de Velde 2013)</td>
</tr>
<tr>
<td>Tagalog</td>
<td>TGL</td>
<td>Mark Donohue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D: (English 1977; 1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Schachter & Otanes 1972)</td>
</tr>
<tr>
<td>Takia</td>
<td>TBC</td>
<td>Malcolm Ross</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Ross 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Ross 2002)</td>
</tr>
<tr>
<td>Tarifit</td>
<td>RIF</td>
<td>Maarten Kossmann and Khalid Mourigh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W: (Kossmann 2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G: (Theil Endresen 1990; Kossmann 2000; Putten 2013)</td>
</tr>
</tbody>
</table>
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>Language</th>
<th>Code</th>
<th>Sources</th>
</tr>
</thead>
</table>
| Thai | THA | Titima Suthiwan
W: (Suthiwan 2009)
G: (Singnoi 2000; Smyth 2002; Iwasaki & Ingkaphirom 2005) |
| Ticuna | TCA | Denis Bertet
G: (Anderson 1962) |
| Trinitario | TRN | Françoise Rose
G: (Rose 2015) |
| Turkish | TUR | Ashl Gürer
D: (Akdikmen 2006)
G: (Kornfilt 1997; Göksel & Kerslake 2005; Göksel & Haznedar 2007; Göksel 2009) |
| Tuwari | TWW | Sylvain Loiseau
G: – |
| Vietnamese | VIE | W: (Kruspe 2009)
| Walman | VSN | Lea Brown
G: – |
| Warta Thuntai | GNT | Kyla Quinn
G: (Quinn 2014) |
| Wawa | WWW | Marieke Martin
G: (Martin 2012) |
| Welsh | CYM | Gwen Awbery
D: (Hawke, Fychan & Roberts 2014)
G: (Jones & Thomas 1977; Thorne 1993; King 2003; Awbery 2004; Awbery 2014) |
| Western Mari | MRJ | Polina Pleshak
G: (Riese et al. 2010; Riese 2016; Pleshak 2018) |
| Western Farsi | PES | Cormac MacAindir
G: (Tehranisa 1987; Mahootian 1997; Mace 2003; Foroodi-Nejad & Paradis 2009) |
| Wuchi | MZH | W: (Vidal & Nercesian 2009)
G: (Nercesian 2014) |
| Wik-Mungkan | WIM | David Osgarby
G: (Kilham 1974; Kilham et al. 1986) |
| Wolof | WOL | Sokhna Bao
D: (Fal 1990; Diouf 2003)
G: (Ngom 2003) |
| Yakut | SAH | Innokentij Novgorodov
D: (Nedjalkov 1997)
G: (Stachowski & Menz 1998) |
| Yaqui | YAQ | W: (Fernández 2009)
G: (Lindenfeld 1973; Fernández & Gonzalez 2008) |
| Zinacantán | TZO | W: (Brown 2009)
G: (Cowan 1969; Haviland 2001) |
This appendix lists all 100 meanings in alphabetical order, together with the size of the sub-vocabulary, the number of analysable forms and the number of binominals (NN). These data are plotted in order of sub-vocabulary size in Figure 27 on page 123. Information regarding how the meanings are categorized by semantic field and semantic type can be found in Table 18 on page 77. Additional statistics are given in §4.4.2.

<table>
<thead>
<tr>
<th>meaning</th>
<th>size</th>
<th>anal.</th>
<th>NN</th>
<th>meaning</th>
<th>size</th>
<th>anal.</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANKLE</td>
<td>111</td>
<td>58</td>
<td>47</td>
<td>FISHERMAN</td>
<td>101</td>
<td>86</td>
<td>28</td>
</tr>
<tr>
<td>ARCTIC LIGHTS</td>
<td>54</td>
<td>46</td>
<td>36</td>
<td>FISHING LINE</td>
<td>94</td>
<td>61</td>
<td>34</td>
</tr>
<tr>
<td>BACKPACK</td>
<td>62</td>
<td>37</td>
<td>30</td>
<td>FLAME</td>
<td>102</td>
<td>44</td>
<td>32</td>
</tr>
<tr>
<td>BEE</td>
<td>126</td>
<td>34</td>
<td>25</td>
<td>FLEA MARKET</td>
<td>42</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>BEEHIVE</td>
<td>105</td>
<td>68</td>
<td>56</td>
<td>FOAL OR COLT</td>
<td>89</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>BEESWAX</td>
<td>82</td>
<td>55</td>
<td>50</td>
<td>FOOTPRINT</td>
<td>103</td>
<td>63</td>
<td>47</td>
</tr>
<tr>
<td>BICYCLE PUMP</td>
<td>57</td>
<td>51</td>
<td>42</td>
<td>GIRL</td>
<td>115</td>
<td>58</td>
<td>38</td>
</tr>
<tr>
<td>BICYCLE</td>
<td>99</td>
<td>33</td>
<td>13</td>
<td>GLOVE</td>
<td>84</td>
<td>49</td>
<td>38</td>
</tr>
<tr>
<td>BLACKSMITH</td>
<td>92</td>
<td>54</td>
<td>26</td>
<td>GOLD RING</td>
<td>66</td>
<td>64</td>
<td>56</td>
</tr>
<tr>
<td>BOY</td>
<td>116</td>
<td>52</td>
<td>34</td>
<td>HAND BRAKE</td>
<td>52</td>
<td>46</td>
<td>40</td>
</tr>
<tr>
<td>BRACELET</td>
<td>103</td>
<td>50</td>
<td>30</td>
<td>HANDBAG</td>
<td>79</td>
<td>47</td>
<td>36</td>
</tr>
<tr>
<td>BREAKFAST</td>
<td>96</td>
<td>62</td>
<td>29</td>
<td>HANDBERCHIEF OR RAG</td>
<td>114</td>
<td>50</td>
<td>31</td>
</tr>
<tr>
<td>CARPENTER</td>
<td>90</td>
<td>48</td>
<td>25</td>
<td>HERDSMAN</td>
<td>91</td>
<td>58</td>
<td>14</td>
</tr>
<tr>
<td>CHIEFTAIN</td>
<td>119</td>
<td>53</td>
<td>27</td>
<td>HOSPITAL</td>
<td>99</td>
<td>55</td>
<td>22</td>
</tr>
<tr>
<td>COCK/ROOSTER</td>
<td>103</td>
<td>40</td>
<td>33</td>
<td>HOST</td>
<td>82</td>
<td>49</td>
<td>27</td>
</tr>
<tr>
<td>COLLARBONE</td>
<td>84</td>
<td>57</td>
<td>46</td>
<td>KEYWORD</td>
<td>46</td>
<td>42</td>
<td>31</td>
</tr>
<tr>
<td>COOKHOUSE</td>
<td>83</td>
<td>53</td>
<td>19</td>
<td>KID</td>
<td>92</td>
<td>62</td>
<td>46</td>
</tr>
<tr>
<td>DAIRY COW</td>
<td>60</td>
<td>48</td>
<td>33</td>
<td>LAMB</td>
<td>99</td>
<td>47</td>
<td>34</td>
</tr>
<tr>
<td>DINNER</td>
<td>83</td>
<td>55</td>
<td>40</td>
<td>LICENSE PLATE</td>
<td>70</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>DOORPOST</td>
<td>85</td>
<td>52</td>
<td>44</td>
<td>LUNCH</td>
<td>93</td>
<td>51</td>
<td>36</td>
</tr>
<tr>
<td>EARLOBE</td>
<td>83</td>
<td>69</td>
<td>60</td>
<td>MAGIC</td>
<td>101</td>
<td>34</td>
<td>11</td>
</tr>
<tr>
<td>EARRING</td>
<td>104</td>
<td>66</td>
<td>41</td>
<td>MAIL BOX</td>
<td>53</td>
<td>46</td>
<td>43</td>
</tr>
<tr>
<td>EARWAX</td>
<td>95</td>
<td>73</td>
<td>68</td>
<td>MARE</td>
<td>86</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>EYEBROW</td>
<td>110</td>
<td>57</td>
<td>44</td>
<td>MARRIED WOMAN</td>
<td>86</td>
<td>64</td>
<td>15</td>
</tr>
<tr>
<td>EYELASH</td>
<td>100</td>
<td>66</td>
<td>54</td>
<td>MIDDAY</td>
<td>108</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>EYELID</td>
<td>99</td>
<td>76</td>
<td>70</td>
<td>MILKY WAY</td>
<td>65</td>
<td>56</td>
<td>48</td>
</tr>
<tr>
<td>FARMER</td>
<td>99</td>
<td>63</td>
<td>32</td>
<td>MOTHER-IN-LAW</td>
<td>104</td>
<td>56</td>
<td>30</td>
</tr>
<tr>
<td>FIREPLACE</td>
<td>97</td>
<td>48</td>
<td>35</td>
<td>NATIVE COUNTRY</td>
<td>88</td>
<td>70</td>
<td>37</td>
</tr>
<tr>
<td>meaning</td>
<td>size</td>
<td>anal.</td>
<td>NN</td>
<td>meaning</td>
<td>size</td>
<td>anal.</td>
<td>NN</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>-------</td>
<td>----</td>
<td>-------------------</td>
<td>------</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>NEIGHBOUR</td>
<td>95</td>
<td>48</td>
<td>14</td>
<td>SUGAR CANE</td>
<td>91</td>
<td>46</td>
<td>35</td>
</tr>
<tr>
<td>NIECE</td>
<td>105</td>
<td>60</td>
<td>49</td>
<td>SUNDAY</td>
<td>68</td>
<td>41</td>
<td>23</td>
</tr>
<tr>
<td>NIPPLE OR TEAT</td>
<td>108</td>
<td>57</td>
<td>53</td>
<td>SUPPER</td>
<td>86</td>
<td>56</td>
<td>40</td>
</tr>
<tr>
<td>NOSTRIL</td>
<td>104</td>
<td>80</td>
<td>76</td>
<td>TEAR</td>
<td>101</td>
<td>41</td>
<td>33</td>
</tr>
<tr>
<td>PADDLE WHEEL</td>
<td>35</td>
<td>31</td>
<td>26</td>
<td>THATCH</td>
<td>73</td>
<td>37</td>
<td>31</td>
</tr>
<tr>
<td>PALM OF HAND</td>
<td>85</td>
<td>64</td>
<td>60</td>
<td>THUMB</td>
<td>107</td>
<td>72</td>
<td>33</td>
</tr>
<tr>
<td>POSTCARD</td>
<td>65</td>
<td>38</td>
<td>30</td>
<td>TOE</td>
<td>110</td>
<td>75</td>
<td>64</td>
</tr>
<tr>
<td>POTTER</td>
<td>84</td>
<td>65</td>
<td>35</td>
<td>TOILET PAPER</td>
<td>57</td>
<td>48</td>
<td>38</td>
</tr>
<tr>
<td>QUEEN</td>
<td>81</td>
<td>47</td>
<td>41</td>
<td>TOILET</td>
<td>114</td>
<td>47</td>
<td>24</td>
</tr>
<tr>
<td>RAILWAY</td>
<td>67</td>
<td>57</td>
<td>57</td>
<td>TOOL</td>
<td>98</td>
<td>45</td>
<td>17</td>
</tr>
<tr>
<td>RAINBOW</td>
<td>107</td>
<td>56</td>
<td>39</td>
<td>TOOLBOX</td>
<td>54</td>
<td>49</td>
<td>44</td>
</tr>
<tr>
<td>RIB</td>
<td>109</td>
<td>41</td>
<td>27</td>
<td>TOOTHBRUSH</td>
<td>69</td>
<td>59</td>
<td>38</td>
</tr>
<tr>
<td>SHOEMAKER</td>
<td>79</td>
<td>57</td>
<td>21</td>
<td>TRAIN</td>
<td>85</td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>SHORE</td>
<td>122</td>
<td>54</td>
<td>41</td>
<td>TREE TRUNK</td>
<td>103</td>
<td>60</td>
<td>52</td>
</tr>
<tr>
<td>SHOULDERSBLADE</td>
<td>102</td>
<td>58</td>
<td>46</td>
<td>VEIN OR ARTERY</td>
<td>113</td>
<td>42</td>
<td>29</td>
</tr>
<tr>
<td>SKULL</td>
<td>107</td>
<td>63</td>
<td>52</td>
<td>VINE</td>
<td>85</td>
<td>34</td>
<td>26</td>
</tr>
<tr>
<td>SORCERER OR WITCH</td>
<td>121</td>
<td>67</td>
<td>38</td>
<td>WATER PUMP</td>
<td>61</td>
<td>49</td>
<td>42</td>
</tr>
<tr>
<td>SPECTACLES/GLASSES</td>
<td>94</td>
<td>47</td>
<td>23</td>
<td>WEDNESDAY</td>
<td>65</td>
<td>44</td>
<td>21</td>
</tr>
<tr>
<td>SPIDER WEB</td>
<td>95</td>
<td>73</td>
<td>66</td>
<td>WIDOWER</td>
<td>94</td>
<td>55</td>
<td>18</td>
</tr>
<tr>
<td>SPINE</td>
<td>107</td>
<td>73</td>
<td>58</td>
<td>WINDMILL</td>
<td>47</td>
<td>43</td>
<td>36</td>
</tr>
<tr>
<td>STABLE OR STALL</td>
<td>93</td>
<td>29</td>
<td>26</td>
<td>WRIST</td>
<td>105</td>
<td>66</td>
<td>57</td>
</tr>
<tr>
<td>STONE BRIDGE</td>
<td>59</td>
<td>56</td>
<td>51</td>
<td>YOLK</td>
<td>88</td>
<td>63</td>
<td>43</td>
</tr>
</tbody>
</table>
D. Strategies and constructions

This appendix provides a summary of every (cross-linguistic) strategy and every (language-specific) construction employed by each language in the sample for both anchoring (i.e. possessive) and non-anchoring (i.e. binominal) relations. Headings provide a summary of the binominal data in the following format:

Tarifit (RIF): 96W / 18B / 4C ► prp:14 gen:3 jxt:1

The heading consists of the language name (here, Tarifit), followed by the ISO code and three numbers that indicate the number of words (W) in the data set for the language in question (in the case of Tarifit, 96), the total number of binominals (18B), and the number of different binominal constructions (4C). Following the arrow ► is a list of the strategies employed and the number of instances of each (prp:14 gen:3 cmp:1).

There are two sections for each language. The first provides a brief description of the attributive possessive construction(s), together with examples; the focus here is on adnominal possessives where the possessor is a full nominal. The second section comments on binominal preferences and lists every binominal construction found in the data (in order of frequency), along with the strategy it exemplifies, an example, and the number of occurrences. This is followed by a brief comment regarding the relationship between the anchoring and non-anchoring strategies.

Africa

(Afro-Asiatic) Berber

Tarifit (RIF): 96W / 18B / 4C ► prp:14 gen:3 jxt:1

Possessives: prp strategy using ‘la préposition génitif’ with the modifier in the annexed state (Kossmann 2000: 107-108).

axxam n wəryaz [house of man:STC] ‘the man’s house’

bbw’as n mhənd [father of Mhend:STC] ‘Mhend’s father’

1 Note that a strategy may be employed by more than one Construction, as is the case with Tarifit, where both Head PREP Mod:STC and Head.3SG PREP Mod:STC are considered to exemplify the prp strategy.
Binominals: Strong preference for prp. The only difference between the construction used for NIECE and the dominant construction is that the former has additional marking on the head.

<table>
<thead>
<tr>
<th>13 prp</th>
<th>Head PREP Mod:STC: abrid n mašina [road of train:STC] RAILWAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 gen</td>
<td>Head Mod:STC: tahr’us’t un♭ż♭zun [ring? ear:STC] EARLOBE</td>
</tr>
<tr>
<td>1 jxt</td>
<td>Head Mod: frinu manu [brake hand] HAND BRAKE</td>
</tr>
<tr>
<td>1 prp</td>
<td>Head.3SG PREP Mod:STC: dyaggi.s n uma [daughter.3SG of brother:STC] NIECE</td>
</tr>
</tbody>
</table>

► Non-anchoring identical to anchoring.

(Afro-Asiatic) Chadic

Barain (BVA): 57W / 21B / 7C ► prp:11 con:7 dbl:2 jxt:1

Possessives: dbl strategy. “The possessor agreement suffix attaches to the possessum, and indexes the person, gender (if singular), and number of the possessor of the noun to which the marker is suffixed. It can express ownership or immediate possession. It can also express intangible attributes or a relationship to a person or thing… When the possessor is explicitly stated, it follows the possessum with the oblique preposition iŋ preceding it” (Lovestrand 2012: 75-79).

gerā,ji iŋ úmar [village.POSS:3M ASS Oumar] ‘the village of Oumar’

Binominals: prp and con are both common; dbl is marginal. Two prepositions occur: (i)ŋ (associative) and ta (purposive). Of the seven binominals that involve a relativizer as well as a preposition, four could be descriptive phrases rather than naming units, but the other three (including the example below) are probably not.

<table>
<thead>
<tr>
<th>7 prp</th>
<th>Head REL ASS Mod: gera ge ŋ gargar [home REL:3SG:M ASS spider] SPIDER WEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 con</td>
<td>Mod Head.POSS: sinja guma.geti [nose hole.POSS:3SG:F] NOSTRIL</td>
</tr>
<tr>
<td>2 prp</td>
<td>Head PURP Mod: looli ta lutta [dirt PURP ear] EARWAX</td>
</tr>
<tr>
<td>2 dbl</td>
<td>Head.POSS ASS Mod: bug.eti ŋ moooro [mouth.POSS:3SG:F ASS river] SHORE</td>
</tr>
<tr>
<td>1 jxt</td>
<td>Head Mod: peesi mee [horse woman] MARE</td>
</tr>
<tr>
<td>1 prp</td>
<td>Mod ASS Head.POSS: golmo ŋ bal.ti [house ASS back.POSS:3SG:F] TOILET</td>
</tr>
<tr>
<td>1 prp</td>
<td>Head REL Mod.POSS: mee de mer.geti [women REL:SG:F husband.POSS:3SG:F] MARRIED WOMAN</td>
</tr>
</tbody>
</table>

► Non-anchoring mostly different from anchoring.

Hausa (HAU): 100W / 43B / 4C ► con:40 der:2 jxt:1

Possessives: con strategy. “The linker has two main variants, a free particle na(a) / ta(a), which has two grammatically conditioned allomorphs differing in vowel length, and a bound clitic -n / -r̃ (which is written connected to its host)” (Newman 2000: 300). Based on the examples given, adnominal possession usually involves the free particle.
Binominals: Overwhelming preference for **con** using the bound clitic linker.
40 **con** Head.LK Mod: *kàfá.r hàncìi* [orifice.LK nose] NOSTRIL.
1 **der** Base.ABST: *mài.táa* [sorcerer.ABST] MAGIC.
1 **der** Base.F: *särāu.niyáa* [king.F] QUEEN.
1 **jxt** Mod Head: *ráanáa tsákàa* [sun mid] MIDDAY.
> Non-anchoring similar to anchoring (more grammaticalized).

(Afro-Asiatic) Cushitic

Gawwada (GWD): 74W / 17B / 4C ► gen:8 der:6 jxt:3

Possessives: **con** strategy. “The possessor / the possessed noun relationship in Gawwada is shown by vowel length, whereby the final vowel of the head noun is affected” (Tulu 2003: 25), cf. (a-b). However, Tosco (2007: 526) cites a use of the locative case as genitive, cf. (c-d).

(a) *laalle ongaaye.e* [clothe Ongaye.GEN] ‘Ongaye’s clothe’ *(sic)*
(b) *emte kalato.o* [sheep kalato.GEN] ‘Kalato’s sheep’
(c) *páko gárm.ito* [mouth lion.LOC:M] ‘the lion’s mouth’
(d) *páso hullulitt.atte* [field guinea-fowl.LOC:F] ‘the guinea-fowl’s field’

Binominals: Preference for **gen**. The examples from WOLD are glossed with ASSOC (M,F,P), while those in Tosco (2007) are glossed with LOC and described as both locative and genitive. However, the forms are identical, viz. -ito (M), -atte (F) and -ete (PL). Tulu (2003) uses the term ‘Source and Purposive genitive cases’ (and also regards the initial vowel as epenthetical).

8 **gen** Head Mod.ASS: *hawdato sikk.ete* [craftsman pots.ASS] POTTER.
4 **der** Base.M: *sád.unko* [breast.SG:M] NIPPLE OR TEAT.
3 **jxt** Mod Head: *paso pako* [lake mouth] SHORE.
2 **der** Base.F: *sint.itte* [nose.SG:F] NOSTRIL.
> Non-anchoring mostly different from anchoring.

Iraqw (IRK): 69W / 22B / 5C ► con:15 der:4 jxt:3

Possessives: **con** strategy. “The possessed noun occurs in the construct form followed by the possessor noun in the basic form” (Nordbustad 1988: 105). **Note:** Sources use different orthographies.

huurusmoó waawutmo [cook:STC chief] ‘the chief’s cook’
ságw hee [head:STC person] ‘a person’s head’
maráámara wahaangw [houses:STC people] ‘people’s houses’
Binominals: Strong preference for con.

15 con Head.CON Mod: foxár duunga' [hole:of nose] NOSTRIL
3 jxt Head Mod: afa tlawi [mouth lake] SHORE
2 der Base.AGT: tlee’.usmo [clay.AGT] POTTER
1 der Base.F: wawi’ita.o’o [king.SG:F] QUEEN
1 der Base.M: koonk.amo [hen.SG:M] COCK/ROOSTER

► Non-anchoring identical to anchoring.

Kambaata (KTB): 100W / 34B / 5C ► gen:31 der:2 cmp:1

Possessives: gen strategy. “The genitive is the case of nominal modifiers. There is an array of different semantic relations between modifying and modified noun, the most prototypical being the possessor-possessed relationship or the whole-part-relationship. Kambaata makes little use of compounding for the creation of nouns. Therefore, virtually all compound words of the meta-languages Amharic and English are expressed by genitive constructions in Kambaata” (Treis 2008: 118-119).

Binominals: Overwhelming preference for gen.

30 gen Mod.GEN Head: baabur.i maar.a [train.M:GEN line.M:ACC] RAILWAY
2 der Base.AGT: hoga’.aan.ch.u [plough.AGT.SGLT.M:ACC] FARMER
1 cmp Mod.Head: magan.zeeb.uta [God.??F:ACC] RAINBOW

► Non-anchoring identical to anchoring.

Sidamo (SID): 98W / 29B / 6C ► gen:20 der:7 jxt:1 adj:1

Possessives: gen strategy. “The genitive case is marked with both a suffix and a suprafixed” (Kawachi 2007: 352;356-57).

beett.ú farašš.i [child.GEN:M horse.NOM:MOD:M] ‘the boy’s horse’

Binominals: Overwhelming preference for gen.

20 gen Mod.GEN Head: baabur.u doogo [train.GEN road] RAILWAY
3 der Base.F: moot.itte [king.DER_F] QUEEN
3 der Base.SUF: boos.allo [fireplace.DER] COOKHOUSE
1 der Base.M: lukk.iʧʧo [hen.SGLT_M] COCK/ROOSTER
1 jxt Head Mod: taalo barra [middle day] MIDDAY
1 adj Mod.ADJ Head: k’ar.aame k’ale [sharp_blade.ADJZ wheel] PADDLE WHEEL

► Non-anchoring identical to anchoring.
Somali (SOM): 95W / 19B / 8C ► dbl:7 gen:5 cmp:4 der:3

Possessives: con and gen strategies “Noun phrases expressing possession occur in two types: the first... involves the use of a special possessive determiner on the possessed noun. The order of nominals is possessor-possessed” (a). In the second type (b) the order is possessed-possessor and “the possessed nominal occurs in the absolutive case while the possessor occurs in the genitive” (Saeed 1999: 175).

(b) guiriga Cali [house:ABS Ali:GEN] ‘Ali’s house’

Binominals: gen, dbl and cmp strategies all common. The dbl strategy involves determiners and is unrelated to the gen strategy.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>gen</td>
<td>Head Mod:GEN</td>
<td>guri shinni [house bee:GEN] BEEHIVE</td>
</tr>
<tr>
<td>4</td>
<td>dbl</td>
<td>Head DEF Mod:DEF</td>
<td>deegaan.ta roob.ka [arch.DEF rain.DEF] RAINBOW</td>
</tr>
<tr>
<td>3</td>
<td>cmp</td>
<td>Head Mod:</td>
<td>xaub.caaro [sloughed_snakeskin.spider] SPIDER WEB</td>
</tr>
<tr>
<td>2</td>
<td>der</td>
<td>Base F</td>
<td>boqor.ad [king.F] QUEEN</td>
</tr>
<tr>
<td>2</td>
<td>dbl</td>
<td>Head DEF Mod:GEN</td>
<td>ilays qudi. bi waqooyi [light pole.DEF north:GEN] ARCTIC LIGHTS</td>
</tr>
<tr>
<td>1</td>
<td>der</td>
<td>Base OWN</td>
<td>dheri.yoo.ley [pot.PL.OWN] POTTER</td>
</tr>
<tr>
<td>1</td>
<td>dbl</td>
<td>Mod DEF Head POSS</td>
<td>geed.ka gun.tiisa [tree.DEF base.POSS] TREE TRUNK</td>
</tr>
<tr>
<td>1</td>
<td>cmp</td>
<td>Mod Head</td>
<td>beer.a.le.y [farm.PL.owner.PL] FARMER</td>
</tr>
</tbody>
</table>

► Non-anchoring partly identical to anchoring (i.e. one strategy is identical).

(Afro-Asiatic) Semitic

Akkadian (AKK): 61W / 19B / 2C ► dbl:19

Possessives: dbl strategy. “The genitive always follows its governing noun, which is in the construct state ... Instead of a construct chain one may also use a formation with ša. This is necessary when a genitive is separated from its governing noun by an attributive, e.g. zērum dārium ša šarrūtim (OB) ‘eternal seed of kingship’” (Ungnad 1993: 112-13).

bīt awīl-im [house:STC citizen.GEN] ‘the house of the citizen’

Binominals: dbl only.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>dbl</td>
<td>Head STC Mod GEN</td>
<td>piliš app.im [hole:STC nose.GEN] NOSTRIL</td>
</tr>
<tr>
<td>1</td>
<td>dbl</td>
<td>Head STC Mod OBL</td>
<td>bīt habūb.āti [house:STC bees.OBL] BEEHIVE</td>
</tr>
</tbody>
</table>

► Non-anchoring identical to anchoring.

Amharic (AMH): 100W / 47B / 4C ► gen:37 jxt:9 cmp:1

Possessives: gen strategy. “Possession is expressed by the element ይ yā- ‘of’ followed by the possessor. The yā+possessor structure functions as a qualifier and as such it precedes the possessed” (Leslau 1995: 191-192). Note: Sources use different transliterations.

Binominals: Strong preference for gen.

37 gen GEN.Mod Head: ye.baburi ḥādīdi [GEN.train way] RAILWAY
8 jxt Mod Head: shererīti diri [spider web] SPIDER WEB
1 jxt Head Mod: ikule k’eni [half day] MIDDAY
1 cmp Mod.Head: hakim.beti [doctor.house] HOSPITAL

► Non-anchoring identical to anchoring.

Hebrew (HEB): 100W / 44B / 6C ▶ con:35 der:4 dbl:3 jxt:1 prp:1

Possessives: con, prp and dbl strategies. “Hebrew has a range of ‘genitive’ constructions, i.e. constructions that are often called ‘possessives’ in a very loose sense (though only some of them are strictly possessive). There are three main types... ‘construct phrases’ are a particular juxtaposition of nouns (a)... ‘שֶׁל shel phrases’ use the preposition ‘שֶׁל shel ‘of’ to link two nouns (b)... The third type of genitive, ‘construct + של shel phrases (‘double genitives’), is a particular blend of the two constructions (c)” (Glinert 1989: 24).

(a) bigd.ey ha.tinok [clothes.STC DET.baby] ‘the baby’s clothes’
(b) ha.bgad.im shel ha.tinok [DET.clothes.PL PREP DET.baby] ‘the baby’s clothes’
(c) bgad.av shel ha.tinok [clothes.3M:POSS:PL PREP DET.baby] ‘the baby’s clothes’

Binominals: Strong preference for con using the construct state.

35 con Head.STC Mod: mesil.at barzel [track.STC iron] RAILWAY
4 der Base.SUF: malk.a [king.F] QUEEN
2 dbl Head.STC DEF.Mod: sevil he.xalav [path:STC DEF.milk] MILKY WAY
1 jxt Head Mod: tik gav [bag back] BACKPACK
1 prp Head PREP:DEF.Mod: kešet be.’anan [arc in:DEF.sky] RAINBOW
1 dbl Head.STC Mod.ADJZ: or.ot arkt.iyim [light.STC arctic.ADJZ] ARCTIC LIGHTS

► Non-anchoring similar to anchoring (definiteness only expressed occasionally, cf. MILKY WAY).

Maltese (MLT): 96W / 32B / 8C ▶ prp:25 cmp:2 dbl:2 der:1 gen:1 con:1

Possessives: con and prp strategies. The “two structurally different possessive NPs in Maltese – Construct State-NPs (a) and constructions with ‘analytical genitives’ (b) ... are primarily distinguished as referring to alienable vs. inalienable possession” (Koptjevskaja-Tamm 1996: 245).

(a) bin is-sultān [son DEF-king] ‘the king’s son’
(b) is-siggu ta’ Pietru [DEF-chair of Peter] ‘Peter’s chair’

Binominals: Strong preference for prp. Fabri (2007) uses the term ‘lexical construct’ for Head DEF.Mod and calls Head PREP(DEF)-Mod constructions ‘periphrastic compounds’. The latter are identical to Italian constructions like dito del piede [finger of:DEF foot] TOE.

20 prp Head PREP:DEF-Mod: golla tan-nahal [hive of:DEF-bees] BEEHIVE
3 prp Head PREP Mod: saba’ ta’ sieq [digit of foot] TOE
Non-anchoring identical to anchoring.

(Atlantic-Congo) Adamawa-Ubangi

Kam (*KDX*): 69W / 27B / 3C ► *cmp:*21 *jxt:*6

Possessives: *cmp* strategy. “I have not found any formal differences between attributive (or adnominal) possession constructions and N+N compounds. The construction works with regular juxtaposition: there are no linking morphemes and regular tone rules and phonological rules apply (H tone spread and deletion/centralization of prosodically weak initial à). These rules apply in all parts on the language, and also for example in N+V constructions and preposition+N constructions. The order is always possessee + possessor (which aligns with the general head + modifier order in noun phrases in the language)” (Jakob Lesage, p.c.)

àŋgwòg (*i*)wàn [house chief] ‘house of (the) chief’
àłòg mé m [maternal_relative mother 1SG:NONS] ‘My mother’s relatives’
zúríŋé wó [claw dog] ‘claw of dog’
àkùb (*i*)tábé [bone fish] ‘bone of fish’

Binominals: Strong preference for *cmp; jxt* also common.

13 *cmp* Head.Mod: à.tí. gbàn [NOM.child/boy.female/woman/wife] GIRL
8 *cmp* Head.LE.Mod: à. gù.m.i. mbirëg [NOM.hole.LE.nose] NOSTRIL
6 *jxt* Head Mod: nywë mårë [mouth river] SHORE

Non-anchoring similar to anchoring (more grammaticalized).

(Atlantic-Congo) Bantoid

Swahili (*SWH*): 104W / 52B / 5C ► *prp:*39 *cmp:*6 *cls:*4 *jxt:*3

Possessives: *prp* strategy. “The connective particle {a} preceded by the pronominal concord constitutes essentially two types of complexes with a following nominal complement. [In the first type] the pronominal concord agrees with the preceding noun in compliance with the usual class-concord rules… The first type either shows the possessor of the thing under reference or describes one of its characteristic features…” (Polomé 1967: 132).

jembe la mkulima [hoe CON peasant] ‘the peasant’s hoe’
viatu vya bwana Fulani [shoes CON Mr Fulani] ‘Mr. Fulani’s shoes’
Binominals: Overwhelming preference for prp.

39 prp Head CON Mod: mwanzi wa pua [bamboo CON nose] NOSTRIL
6 cmp Head.Mod: kinu.upepo [mill.wind] WINDMILL
4 cls CL.Base: fumo [CL9:spear] CHIEFTAIN
2 jxt Head Mod: dalili mgwu [sign foot] FOOTPRINT
1 jxt Mod Head: jua kati [sun middle] MIDDAY

► Non-anchoring identical to anchoring.

Wawa (www): 27W / 13B / 4C ► gen:9 jxt:4

Possessives: Two strategies, both gen. “There are two possibilities to mark possession. One possibility is to order the constituents of the NP as possessor-possessed and mark the possessor with the -ɔ̀ suffix (a). The second possibility is to change the word order to possessed-possessor and mark the possessor with the suffix -wòì (b)” (Martin 2012: 211-212).

(a) mūn.ɔ̀ gùr [child.POSS foot] ‘the child’s foot’
(b) gùr mūn.òì [foot child.ASS] ‘the child’s foot’

Binominals: Strong preference for gen; jxt also common.

8 gen Head Mod.POSS.ASS: júg nááb.ò.ì [house food.POSS.ASS] COOKHOUSE
3 jxt Head Mod: mūn nugwɛ́ [child woman] GIRL
1 gen Head Mod.LOC.ASS: náábò tó.n.ì [fufu ear.LOC.ASS] EARWAX
1 jxt Mod Head: sāŋgā̀ të́ngò [sun middle] MIDDAY

► Non-anchoring partly identical to anchoring. (The gen construction is assumed to be the same as possessive construction (b), despite slightly different glossing.)

(Atlantic-Congo) Gur

Baa (kwb): 90W / 47B / 5C ► cmp:26 gen:20 jxt:1

Possessives: jxt strategy. No alienability distinction (Mirjam Möller Nwadigo p.c.).
bà ə̀dà [father Ada] ‘Ada’s father’
ìkúlâ ə̀pàn [chair king] ‘king’s chair’

Binominals: Strong preference for cmp; gen also common.

26 cmp Head.Mod: krà.ki.sà [road.tree.outside] RAILWAY
14 gen Head Mod.INAL: ṃà.jì.vì [mouth.milk.INAL] NIPPLE OR TEAT
5 gen Head LK.Mod: bīsìn rà.nà:t [horse LK.female] MARE
1 jxt Head Mod: gʷè jànggá [day Yanga] WEDNESDAY
1 gen Head Mod.AL: lā.bà.lìr [land.father.AL] NATIVE COUNTRY

► Non-anchoring similar to anchoring (more grammaticalized).

Chakali (cli): 51W / 25B / 5C ► cmp:20 der:5

súgló pàbīī [Suglo hoe_blade] ‘Suglo’s hoe blade’
bdál nū̀́ [man head] ‘a man’s head’

Binominals: Strong preference for **cmp**.

17 **cmp** Mod.Head: *mu.bua* [nose.hole] NOTRIL
3 **cmp** Head.Mod: *bi.nhāny* [child.woman] GIRL
2 **der** Base.F: *pe.lor* [sheep.F:YNG] LAMB
2 **der** Base.M: *būm.belee* [goat.M:YNG] KID
1 **der** Base.AGT: *nātɔr wondered* [shoe.make] SHOEMAKER

► Non-anchoring similar to anchoring (more grammaticalized).

(Atlantic-Congo) Kwa

Mamara Senoufo (MYK): 81W / 28B / 2C ► cmp:26 der:2

Possessives: **prp** and **jxt** strategies for both alienable and inalienable possession. “In some Senufo languages (see Carlson 1994: 477 for Supyire and Dombrowsky-Hahn 1999: 228–234 for the Minyanka dialect spoken in Yorosso) the genitive construction with the possessive marker always has a contrastive focus function. The same meaning exists in the Minyanka dialect spoken in Penesso (the dialect on which I'm interested), but in many cases, there is not any semantic distinction between the genitive construction with possessive marker and the one without any marker (by juxtaposition)” (Sekou Coulibaly, p.c.).

Sékɔ mò p̄i.kɛ́.ɛ̃yî [Sekou POSS house.INDF:CLk.DEF:CLk] ‘Sekou’s house’
Sékɔ p̄i.kɛ́.ɛ̃yî [Sekou house.INDF:CLk.DEF:CLk] ‘Sekou’s house’
lòfà. nù mò f̄ir̄i.mi [donkey.DEF:CLw POSS urine.DEF:CLk] ‘donkey’s urine’
lòfà. nù f̄ir̄i.mi [donkey.DEF:CLw urine.DEF:CLk] ‘donkey’s urine’

Binominals: Overwhelming preference for **cmp**.

26 **cmp** Mod.Head: *tumɔ̀nɔn.ko.li* [iron.road.CL] RAILWAY
2 **der** Base.AGT: *kulo.fɔlɔ* [village.AGT] CHIEFTAIN

► Non-anchoring mostly different from anchoring.

(Atlantic-Congo) Mande

Bambara (BAM): 81W / 39B / 6C ► cmp:25 gen:10 jxt:3 der:1

Possessives: **prp** and **dbl** strategies for alienable and inalienable possession, respectively (Sekou Coulibaly, p.c.).

Mùsò kà sò [woman:DEF POSS money:DEF] ‘the woman’s house’
*Mùsò sèn` [woman:DEF foot:DEF] ‘the woman’s foot’

Binominals: Strong preference for **cmp; gen** also frequent.

25 **cmp** Mod.Head: *terɛn.sira* [train.road] RAILWAY
10 **gen** Mod.LOC.Head: *kùlɔ.la.nɛ̀ge* [ear.LOC.iron] EARRING
The typology and semantics of binominal lexemes

1 der Base.SUF.DIM: mûsó.maní [woman.DIM] GIRL
1 jxt Head Mod: cê filîyatî [man widow] WIDOWER
1 cmp Head.Mod.SUF: bóloŋden.kûn.ba [finger.head.AUG] THUMB
1 prp Mod GEN Head: Ala kâ mîru [God POSS knife] RAINBOW

► Non-anchoring mostly different from anchoring.

(Atlantic-Congo) North-Central Atlantic

Bandial (BQJ): 72W / 16B / 3C ► jxt:9 prp:4 cls:3
Possessives: jxt and prp strategies. “The relation between two nouns that stand in a possessor-possessee relation can be encoded in two ways. The first is direct juxtaposition, with the possessee preceding the possessor (a)… A possessive relation can also be marked with the connector AGR-a, which appears between the possessed and possessor, and where AGR corresponds to agreement with the possessee (b)” Watson (2015: 150-151).
(a) ka.at e.be [CL:ka.foot CL:e.cow] ‘cow’s foot’
(b) ka.ñen k.a pa.i [CL:ka.hand AGR:k.CON father.2S.POSS] ‘your father’s hand’

Binominals: Preference for jxt; prp also found.
9 jxt Head Mod: ka.liba e.mit [CLF.knife CLF.god/sky] RAINBOW
4 prp Head CON Mod: (sinaŋ) sa këbujom [rice AGR:CON morning] BREAKFAST
3 cls CLF.Base: ji.jamen [CLF.goat] KID

► Non-anchoring identical to anchoring.

Wolof (WOL): 64W / 23B / 2C ► con:18 prp:5
Possessives: con strategy. “Wolof suffixes the morpheme ‘-u’ (singular) and ‘-i’ (plural) to the first noun [when] ending with a consonant to indicate the possessive relationship between two nouns (a)… If the noun does not end with a consonant, the singular genitive morpheme ‘-u’ is deleted, and the plural genitive morpheme ‘-i’ is replaced by ‘-y’” (Ngom 2003: 60). In the absence of a class of adjectives, “relative clauses are used to describe, modify or qualify a substantive or NP (noun phrase)” (Ngom 2003: 50). The relativizer -u is prefixed by a class marker that agrees with the noun class of the head (b).
(a) kër.u Mbaye [house.PER Mbaye] ‘Mbaye’s house’
(b) fas wu réy (horse REL big] ‘big horse’

Binominals: Strong preference for con; prp also found.
18 con Head.PER Mod: pax.u bakkan [hole.PER nose] NOSTRIL
5 prp Head REL Mod: gone gu jigéen [child REL girl] GIRL

► Non-anchoring identical to anchoring.
(Nilo-Saharan) Nilotic

Datooga (TCC): 29W / 1B / 1C ► jxt:1

Possessives: jxt strategy. “Pronominal possession involves suffixes but nominal possession involves juxtaposition... There are a couple of associative constructions with an extra word in between the possessee and possessor and sometimes it’s unclear what the semantic difference is between the two constructions” (Alice Mitchell, p.c.).

diibiga huda [children daughter] ‘daughter’s children’
diibiga bea huda [children ASSOC daughter] ‘daughter’s children’

Binominals: Based on the data received, binominals appear to be rare in Datooga; of the 29 items in the list, only one is a binominal. To the extent that they occur, however, the preferred strategy seems to be jxt.1

1 jxt Head.SGLT.SG Mod.SG: fùw.éan.dá bûdày.da [thread.SGLT.SG back.SG] SPINE

► Non-anchoring identical to anchoring.

Kupsabiny (KPZ): 91W / 43B / 4C ► con:35 prp:8

Possessives: con strategy. “There are only three prepositions which are not incorporated in verb forms: am, af, and pp. Of these, ap and pp are alternants of a possessive morpheme, ap occurring only between the nouns and pp occurring elsewhere. Further, ap has the morphophonemic alternant a- before /m/ and /p/” (Montgomery 1966: 46). Note: The sources use different orthographies.

korket âp sëmëntét [woman POSS beggar] ‘the beggar’s woman’
rupet à maynà [famine POSS Mayna] ‘the Mayna famine’
lekweit ap Cerop [child POSS Cerop] ‘Cerop’s child’ (O’Brien & Cuypers 1975: 45)

Binominals: Overwhelming preference for con.

35 con Head.POSS Mod: areet.aap karitaap_maata [road.POSS train] RAILWAY
5 prp Head PREP Mod: tiinkeet nyëpo yoomeet [machine for air] WINDMILL
2 prp Head REL Mod: loleet nyëë cëëkàsënë [bag REL:SG back] BACKPACK
1 prp Mod REL Head: makeyoonteet wuloo mayayi [egg where yellow] YOLK

► Non-anchoring identical to anchoring.

1 Other examples from the original (201 meaning) data set include ùhùù.dá qée.da [head.SGLT house.SGLT] ROOF, hû.dá iiyà [daughter.SGLT mother] SIBLING, qèang’.då ëen.da [eye.SGLT river.SGLT] SPRING OR WELL, all jxt.
The typology and semantics of binominal lexemes

(Nilo-Saharan) Saharan

Kanuri (KNC): 83W / 39B / 7C ➤ gen:23 der:12 jxt:2 cmp:1 adj:1

Possessives: gen strategy. “The normal order of a NP with a modifying genitive postpositional phrase is head noun, followed by genitive postpositional phrase (a)… When genitive PPs are stacked within a given NP then the final modifier phrase is marked by only one occurrence of the genitive postposition (b)… Both of the genitive postpositions in such a stacked NP will be indicated however in the event that a determiner element intervenes between the two (c)” (Hutchison 1981: 197-198).

(a) ḡar Áli.bè [horse Ali.GEN] ‘Ali’s horse’
(b) fótò bānkì kúrà Nìjéríyà.bè [foto bank central Nigeria.GEN] ‘the photo of the central Bank of Nigeria’
(c) fótò bānkì kúrà Nìjéríyà.bè Ìkkóbè dòbè [foto bank central Nigeria.GEN Lagos.GEN DEM] ‘the photo of that central Bank of Nigeria of Lagos’

Binominals: Overwhelming preference for gen.

23 gen Head Mod.GEN: sûwúlí kə̀nzà.bè [opening nose.GEN] NOSTRIL
6 der Base.AGT: njè.má [pot.OWN] POTTER
5 der Base.LOC: kànnù.rám [fire.LOC] COOKHOUSE
2 jxt Mod Head: f̣ə̀r kùrwúdì [horse female] MARE
1 der Base.NMLZ: kòmàgôn.mí [honey.NMLZ] BEESWAX
1 adj Head Mod.ADJZ: kámu níyá.à [woman marriage.ADJZ] MARRIED WOMAN
1 cmp Head.Mod: kùlì.kə̀mágə̀n [insect.honey] BEE
➤ Non-anchoring identical to anchoring.

Eurasia

(Altaic) Tungusic

Oroqen (ORH): 60W / 24B / 7C ➤ der:8 dbl:7 jxt:6 gen:3

Possessives: dbl and con strategies (?). No grammar of Oroqen was available for this project, but for the closely related Evenki (EVN) Nedjalkov (1997: 158-159) distinguishes two major variants of the con strategy. Inalienable possession “is expressed by the nominative case on the possessor nominal plus the marker of possession on the possessum (a)… Alienable possession is marked by the suffix -ng(i) added to the possessum. The noun with the alienable possession marker obligatorily must also have the possession marker of either personal or reflexive possession (b).”

(a) ollomimni.Ø d’av.in [fisherman.NOM boat.3SG:POSS] ‘the boat of a/the fisherman’
(b) bejumimni ulle.ngi.n [hunter meat.AL.3SG:POSS] ‘the hunter’s meat’ (i.e. which he got during hunting)
However, “the possessive relation may [also] be expressed by means of the suffix -iği affixed to the possessor, but this is rare. In this case the possessum has the marker of personal possession (c). This type of possession with the ‘old genitive’ was preferable some fifty years ago, as the folklore texts show, but nowadays people use such possessive phrases mostly without the suffix -iği”. The old genitive construction exemplifies the dbl strategy and is identical to the preferred binominal strategy in Oroqen.

(c) atyrkan.ği gerbi.n [old_woman.POSS name.3SG:POSS] ‘the name of the old woman’

Binominals: Preference for dbl; jxt also common.

7 dbl Mod.GEN Head.POSS: əŋktɔŋ.ŋi do:.n [nose.GEN inside.3SG:POSS] NOSTRIL
5 der Base.DIM: unə:dz1.kan [young_woman.DIM] GIRL
5 jxt Mod Head: gök morm [female horse] MARE
3 gen Mod.GEN Head: tma.ŋi bilgə [morning.GEN food] BREAKFAST
2 der Base.AGT: tərgan.tɛn [farm_land.AGT] FARMER
1 der Base.REC: ano.rok [stool.REC] TOILET
1 jxt Head Mod: inəŋ dulin [day middle] MIDDAY

► Non-anchoring partly identical to anchoring.

(Altaic) Turkic

Turkish (TUR): 100W / 66B / 6C ► con:47 jxt:8 der:8 cmp:3

Possessives: dbl strategy. “The possessive noun phrase places the possessor in the genitive case, and the possessed element as the head of the construction. Suffixed to that head is the possessive agreement suffix, agreeing with the possessor in person and number” (Kornfilt 1997: 185).

Hasan.in kitab.in [Hasan.GEN book.3SG] ‘Hasan’s book’

Binominals: Overwhelming preference for con. The element suffixed to the head element is formally identical to the third person singular possessive marker and is sometimes called a linking element (Göksel & Haznedar 2007) or a compound marker (van Schaaik 2002).

47 con Mod Head.3SG: demir.yol.u [iron.road.3SG] RAILWAY
8 jxt Mod Head: taş köprü [stone bridge] STONE BRIDGE
6 der Base.AGT: çömlek.çι [pot.AGT] POTTER
3 cmp Mod.Head: kayın.valide [brother-in-law.mother] MOTHER-IN-LAW (OF A MAN)
1 der Base.F: kral.içe [king.F] QUEEN
1 der Base.SUF: göz.lük [eye.SUF] SPECTACLES/GLASSES

► Non-anchoring related to anchoring (D less complex).

Yakut (SAH): 109W / 41B / 7C ► con:22 jxt:10 der:7 gen:1 adj:1

Possessives: con strategy. “A construction containing two nouns, of which the second one bears a possessive suffix, can function as a possessive nominal construction (a)” (Stachowski
& Menz 1998: 428). Note: A remnant of the dbl strategy involving the old genitive suffix -(t)In is found in possessive chains (b).

(a) ucūtal jiete [teacher house:3SG] ‘the house of the teacher’
(b) kini ayat.in ɣaray.in ǔta [(s)he father.GEN eye.GEN water:3SG] ‘his/her father’s tears’

Binominals: Strong preference for con; jxt also common.

22 con Mod Head:3SG: murun ɣayayah.a [nose hole.3SG] NOSTRIL
10 jxt Mod Head: timir suol [iron path] RAILWAY
4 der Base:AGT: kūōs.čūt [pot.AGT] POTTER
2 der Base:NMLZ: ɣos.poɣ [room.NMLZ] COOKHOUSE
1 der Base:PROP: ap.taɣ [magic.PROP] SORCERER OR WITCH
1 adj Mod.ADJZ Head: tualet.nay kumа:ɣ [toilet.ADJZ paper] TOILET PAPER
1 gen Mod:PROP Head: sa:ɣar.da:ɣ trostnik [sugar.PROP cane] SUGAR CANE

► Non-anchoring partly identical to anchoring.

Basque (eus): 102W / 55B / 6C ★ cmp:27 jxt:15 der:7 adj:6

Possessives: gen strategy. “For the translation of [English Possessives] into Basque careful analysis is needed, as Basque will use either the genitive in -(r)en or the adnominal in -ko, depending on the nature of the meaning relation in question” (Rijk 2008: 100).

sorgina.ren etxea [witch.GEN house] ‘the witch’s house’

Binominals: Strong preference for cmp; jxt also common.

27 cmp Mod:Head: tren.bide [train.way] RAILWAY
15 jxt Mod Head: ıtssas bazter [sea corner] SHORE
6 adj Mod:ADJZ Head: harri.zko zubi [stone.ADJZ bridge] STONE BRIDGE
4 der Base:AGT: buztin.lari [mud.AGT] POTTER
2 der Base:LOC: erla.tegi [bee.LOC] BEEHIVE
1 der Base:SUF: gos.ari [morning.SUF] BREAKFAST

► Non-anchoring different from anchoring.

Dravidian

Malayalam (mal): 100W / 46B / 5C ★ cmp:41 jxt:4 gen:1

Possessives: gen strategy. “Possessive in noun phrases is expressed by means of a genitive case noun… Such possessives precede the head noun” (Asher & Kumari 1997: 213).

meevay.ute kaalo [table.GEN leg] ‘the leg of the table’
kuṭṭiy.ute amma [child.GEN mother] ‘the child’s mother’ (ibid p.193)
sitiy.ute viṭṭa [Sita.GEN house] ‘Sita’s house’ (ibid. p.173)
raaman_te paṇam [Raman.GEN money] ‘Raman’s money’
Binominals: Overwhelming preference for **cmp**. Binominals containing a linking element are classed as **cmp** rather than **gen** on the grounds that the gemination involved is a morphophonological process and in order not to obscure the lack of a **gen** strategy parallel to that of possessives.

31 **cmp** Mod.Head: *ti.vanț.păta* [fire.vehicle.way] RAILWAY
9 **cmp** Mod.LE.Head: *cevi.k.kâja* [ear.LE.wax] EARWAX
4 **jxt** Mod Head: *svațnâ.mâtirâm* [gold ring] GOLD RING
1 **cmp** Head.Mod: *kaṇâ.n.âl* [part.foot]ANKLE
1 **gen** Mod.GEN.Head: *âtt.in.kuțti* [goat.GEN.child] LAMB

▶ Non-anchoring different from anchoring.

(Indo-European) Baltic

Latvian (**LAV**): 102W / 59B / 8C ► **gen:**30 **cmp:**16 **der:**11 **jxt:**2

mâsa.s grâmata [sister.GEN book] ‘sister’s book’
koka.zari [tree:GEN branches] ‘the branches of the tree’
latviešu valoda [Latvian:GEN:PL language] ‘the Latvian language’

Binominals: Strong preference for **gen**: **cmp** also common.

30 **gen** Mod.GEN Head: *zirnek.l.a tîkls* [spider.GEN net] SPIDER WEB
15 **cmp** Mod.Head: *dzelz.celš* [iron.way] RAILWAY
4 **der** Base.AGT: *pod.nieks* [pot.AGT] POTTER
4 **der** Base.DIM: *kaz.l.âns* [goat.LE.DIM] KID
2 **der** Base.F: *karal.iene* [king.F] QUEEN
2 **jxt** Mod Head: *atslēg.kauls* [key.bone] COLLARBONE
1 **der** Base.INS: *acenes* [eye:INS] SPECTACLES/GLASSES
1 **cmp** Head.Mod: *pus.diena* [half.day] MIDDAY

▶ Non-anchoring identical to anchoring.

Lithuanian (**LIT**): 102W / 47B / 10C ► **der:**22 **gen:**15 **adj:**7 **cmp:**3

Possessives: **gen** strategy. The functions of the genitive include “the possessive (in a broad sense encompassing both possession and belonging)” (Mathiassen 1996: 179).

sesers pinigai [sister:GEN money] ‘(the) sister’s money’
žmogaus koja [man:GEN foot] ‘the man’s foot’.

Binominals: Preference for **gen**: **adj** also common.

12 **der** Base.NMLZ: *puodž.ius* [pot.NMLZ] POTTER
10 **gen** Mod.GEN.Head: *aus.y vaškas* [ear.GEN wax] EARWAX
7 **adj** Mod.ADJZ.Head: *gelež.in.kelis* [iron.ADJZ.way] RAILWAY
5 **gen** Mod.LE.Head: *vor.a.tinklis* [spider.LE.web] SPIDER WEB
The typology and semantics of binominal lexemes

4 der Base.F: *karal.ienė* [king.F] QUEEN
3 der Base.DIM: *spen.elis* [nipple.DIM] NIPPLE OR TEAT
2 der Base.AGT: *šeim.ininkas* [family.AGT] HOST
2 cmp Mod.Head: *šon.kaulis* [side.bone] RIB
1 der Base.COLL: *kaim.ynas* [village.COLL] NEIGHBOUR
1 cmp Head.Mod: *vidur.dienis* [middle.day] MIDDAY

► Non-anchoring identical to anchoring.

(Indo-European) Celtic

Irish (GLE): 100W / 40B / 6C ► gen:27 der:10 cmp:3 Possessives: gen strategy. “A dependent genitive follows the head N (a)... when both Ns are definite, the article may not appear on the first” (Doyle 2001: 63).

teach *Mháire* [house Mary:GEN] ‘Mary’s house’
hata an *fhir* [hat DET man:GEN] ‘the man’s hat’

Binominals: Overwhelming preference for gen.
27 gen Head Mod_GEN: *poll sróine* [hole/pool nose:GEN] NOSTRIL
5 der Base.DIM: *caille.ín* [veil.DIM] GIRL
3 der Base.AGT: *feirm.óir* [farm.AGT] FARMER
3 cmp Mod.Head: *iarn.ród* [iron.road] RAILWAY
1 der Base.NMLZ: *draí.acht* [magician.NMLZ] MAGIC
1 der Base.SUF: *roth.ar* [wheel.SUF] BICYCLE

► Non-anchoring identical to anchoring.

Welsh (CYM): 106W / 63B / 10C ► jxt:40 cmp:8 der:7 prp:6 adj:2 Possessives: jxt strategy. “Basically, the genitive construction involves the ordering of a noun which indicates the thing possessed, which can be labelled possessum, and a noun which indicates the possessor. They are ordered in such a way that the possessum precedes the possessor... It is to be noted that features of definiteness involving definite determiners, such as the definite article, relate only to the possessor... The possessum itself is never modified by a definite marker” (Jones & Thomas 1977: 192-193).1

1 “The possessum is thus always indefinite in genitive constructions. In passing, a distinction can be introduced between a genitive construction and similar-looking nominal compounds which can take up an initially-positioned determiner. An example such as *het plismon* (‘a policeman’s hat’) is ambiguous. We can be referring to an ordinary hat which belongs to a policeman: here we have a genitive construction, and a definite article only occurs medially to give *het y plismon* (‘the policeman’s hat’). Or, we can be referring to a special sort of hat which is part of a policeman’s uniform: in this sense we have a nominal compound and the determiner can occur initially to give *yr het plismon* (‘the policeman’s hat’) – though, of course, in this case the determiner cannot occur medially” (Jones & Thomas 1977: 193).
car yr athro [car DET teacher] ‘the teacher’s car’
het merch [hat girl] ‘a girl’s hat’
brawd Gwil [brother Gwil] ‘Gwil’s brother’

Binominals: Strong preference for jxt; cmp and prp also occur.

Dutch (NLD): 105W / 54B / 8C ► cmp:41 gen:8 der:3 adj:2

Possessives: prp strategy; gen also occurs. “The English possessive ‘s’ is known to Dutch also but is not used extensively in Dutch. Generally speaking it is only commonly used after proper nouns [e.g. Anneke.s boek]. Close relatives preceded by a possessive can employ this s too [e.g. mijn moeder.s keuken]. All other nouns can better employ a van construction, however” (Donaldson 1981: 41-42).

de hoofdstad van Frankrijk [DET capital PREP France] ‘the capital of France’

Binominals: Strong preference for cmp. Some gen that exhibit a linking element derived from case markers.

► Non-anchoring different from anchoring (prp vs. cmp).
The typology and semantics of binominal lexemes

English (ENG): 105W / 44B / 5C ► cmp:26 jxt:13 der:3 adj:2

Possessives: gen and prp strategies. “When a possessor is a noun phrase [there are] two ways of marking it – by suffix ‘s on the possessor (which precedes the possessed) or by the preposition of before the possessor (which follows the possessed)” (Dixon 2005: 318).

- my friend’s sister [my friend.GEN sister]
- the table’s leg [DET table.GEN leg]
- the sister of my friend [DET sister PREP my friend]
- the leg of the table [DET leg PREP DET table]

Binominals: Strong preference for cmp; jxt also common.

25 **cmp** Mod.Head: rail.way RAILWAY
13 **jxt** Mod Head: stone bridge STONE BRIDGE
3 **der** Base.AGT: pot.AGT POTTER
2 **adj** Mod.ADJZ Head: milk.ADJZ way MILKY WAY
1 **cmp** Head.Mod: middle.day MIDDAY

► Non-anchoring different from anchoring (gen/prp vs. cmp).

German (DEU): 131W / 75B / 8C ► cmp:52 gen:11 der:10 jxt:1 adj:1

Possessives: prp and gen strategies: “the genitive indicates possession or the relationship between nouns (a)” but it “is nowadays less common in spoken German, where the use of prepositions tends to be preferred (b)… The so-called Anglo-Saxon genitive with s (c) is found in both spoken and written German” (Whittle et al. 2011: 6, 48).

- (a) das alte Auto des Herrn Zeiler [DET old car DET:GEN Mr. Z] ‘Mr. Z’s old car’
- (b) das alte Auto von Herrn Zeiler [DET old car PREP Mr. Z] ‘Mr. Z’s old car’
- (c) Herrn Zeiler.s alte.s Auto [Mr. Z.GEN old.GEN car] ‘Mr. Zeiler’s old car’

Binominals: Strong preference for cmp. Some gen that exhibit a linking element derived from case markers.

51 **cmp** Mod.Head: eisen.bahn [iron.way] RAILWAY
11 **gen** Mod.LE.Head: nase.n.loch [nose.LE.hole] NOSTRIL
4 **der** Base.DIM: mäd.chen [maid.DIM] GIRL
3 **der** Base.AGT: töpf.er [pot.AGT] POTTER
2 **der** Base.NMLZ: schrein.er [cupboard.NMLZ] CARPENTER
2 **cmp** Head.Mod: mit.tag [middle.day] MIDDAY
1 **der** Base.F: könig.in [king.F] QUEEN
1 **adj** Mod.ADJZ Head: pol.ar.lichter [pole.ADJZ.lights] ARCTIC LIGHTS

► Non-anchoring different from anchoring (gen/prp vs. cmp).

Norwegian (NOR): 100W / 57B / 3C ► cmp:52 gen:5

Possessives: gen strategy. The genitive is used to express possession (a), belonging more broadly (b), in names of institutions (c) and in the expression of weights and measures (d).
Preposisjons are often used instead of the genitive for expressing possession (d, e; cf. a, b) (Golden, Mac Donald & Ryen 2008: 17-18).

(a) *Eva’s bøker* [Eva:GEN books] ‘Eve’s books’
(b) *hus.et.s fasaide* [house.DEF.GEN façade] ‘the façade of the house’
(c) *Norge.s Bank* [Norway:GEN bank] ‘the Bank of Norway’
(d) *to minutter.s stillhet* [two minutes.GEN silence] ‘two minutes’ silence’
(e) *bøkene til Eva* [book:PL:DEF PREP(to) Eva] ‘Eve’s books’
(f) *fasaide.n på hus.et* [façade.DEF PREP(on) house.DEF] ‘the façade of the house’

Binominals: Strong preference for *cmp*. Some *gen* that exhibit a linking element derived from case markers.

51 *cmp* Mod.Head: *jern.bane* [iron.way] RAILWAY
5 *gen* Mod.LE.Head: *øyen.bryn* [eye.LE.brow] EYEBROW
1 *cmp* Head.Mod: *middag* [middle.day] MIDDAY

▶ Non-anchoring different from anchoring (*gen* vs. *cmp*).

Old High German (GOH): 63W / 23B / 5C ▶ cmp:18 der:5

*stimma ruafentes in wuastinну
truhtenis ist diu erđa
theiz allaz sīnes fater was*

Binominals: Strong preference for *cmp*.

16 *cmp* Mod.Head: *spinna.webbi* [spider.fabric] SPIDER WEB
3 *der* Base.AGT: *hafan.ărî* [pot.AGT] POTTER
2 *cmp* Head.Mod: *middag* [middle.day] MIDDAY

▶ Non-anchoring different from anchoring (*gen* vs. *cmp*).

(Indo-European) Greek

Greek (ELL): 100W / 30B / 7C ▶ gen:12 cmp:9 der:5 adj:3 jxt:1

Possessives: *gen* strategy. “When a noun phrase or pronoun is in the genitive it may indicate that the person, thing, etc. which it denotes is the possessor of the person, thing, etc., which is denoted by the noun on which it depends” (Holton et al. 339-340).

to spíti tis Loukiás [DEF house DEF:GEN Lucy.GEN] ‘Lucy’s house’
ta kladiá ton dèntro.n [the branches the:GEN tree:GEN:PL] ‘the branches of the trees’

Binominals: Both *gen* and *cmp* are common. Note that the latter contain a linking element -o- which Ralli (2013) argues is both phonologically and morphologically conditioned. Whereas binominals with a linking element in Germanic languages are coded as *gen* (in
The typology and semantics of binominal lexemes

In order to mark the contrast with binominals of type `cmp`, these Greek binominals are coded as `cmp` in order to mark the contrast with binominals of type `gen`.

	gen	9	Head Mod.GEN: `istos araxni.s` [web spider.GEN] SPIDER WEB
	cmp	9	Mod.LE.Head: `siðir.o.ðromos` [iron.LE.road] RAILWAY
	der	4	Base.SUF: `proi.ino` [morning.SUF] BREAKFAST
	gen	3	Head DEF:GEN Mod.GEN: `keri tu afti.ou` [wax DEF:GEN ear.GEN] EARWAX
	adj	3	Mod.ADJZ Head: `ur.an io tokso` [sky.ADJ bow] RAINBOW
	der	1	Base.DIM: `katsik.aki` [goat.DIM] KID
	jxt	1	Head Mod: `leksi-kliði` [word-key] KEYWORD

► Non-anchoring similar to anchoring (differences are related to the expression of definiteness).

(Indo-European) Indo-Aryan

Assamese (ASM): 87W / 34B / 4C ► gen:17 cmp:12 jxt:5

Possessives: gen strategy. The function of expressing the notion of possession is performed by the genitive which precedes the possessum (Goswami & Tamuli 2003: 419;433).

- `ma.ra.r` [mother.2FAM.GEN] ‘of your mother’
- `ram.vr ei tini.khvn dami kitap` [Ram.GEN this three.DEF costly book] ‘these three costly books of Ram’

Binominals: Preference for gen; cmp also common.

	gen	17	Mod.GEN Head: `nak.ɔr phuta` [nose.GEN hole] NOSTRIL
	cmp	12	Mod.Head: `ram.dhenu` [Lord_Rama.bow] RAINBOW
	jxt	4	Mod Head: `dak sithi` [postal letter] POSTCARD
	jxt	1	Head Mod: `ga.gɔs` [body.tree] TREE TRUNK

► Non-anchoring partly identical to anchoring.

Hindi (HIN): 95W / 30B / 4C ► cmp:13 prp:10 jxt:6 der:1

Possessives: prp strategy. “The postposition का … indicates possession; it agrees in the same way as an adjective in -ा with nouns” (McGregor 1986: 9).

- `us strī kā beṭā` [DEM woman GEN:M:SG son] ‘that woman’s son’
- `us strī ke beṭe` [DEM woman GEN:M:PL sons] ‘that woman’s sons’

Binominals: cmp and prp strategies both common.

	cmp	13	Mod.Head: `karna.mal` [ear.dirt] EARWAX
	prp	10	Mod Gen Head: `makrī kā jālā` [spider GEN web] SPIDER WEB
	jxt	6	Mod Head: `pavan cakkī` [wind mill] WINDMILL
	der	1	Base.AGT: `lohā.r` [iron.AGT] BLACKSMITH

► Non-anchoring partly identical to anchoring (i.e. one strategy, prp, is identical).
Appendix D. Strategies and constructions

Possessives: gen strategy. “Genitive modifiers are marked by the genitive case suffix -ko of nouns… The genitive case markers -ko, -ro and -no show their allomorphs… -kā, -rā and -nā when the genitive modifiers modify the nouns in plural number, or nouns in oblique cases… Since the genitive modifiers function as adjectives, they show inflections not just for number but also for gender. For instance, the genitive case markers -ko, -ro and -no show their allomorphs… -kī, -rī and -nī when they stand in construction with the nouns of feminine gender” (Jayaraj 1990: 112-115).

subhadrā.ko kokha [Subhadra.GEN womb] ‘Subhadra’s womb’
deviramaṇa.kā ākhā [Deviraman.GEN eyes] ‘Deviraman’s eyes’
ghara.kī purānī cākarnī [home.GEN old maid] ‘the old maid at home’

Binominals: gen and cmp strategies both common.

6 gen Mod.GEN Head: mākurā.ko jālo [spider.GEN web] SPIDER WEB
5 cmp Mod.Head: kāne.guji [ear.??] EARWAX

► Non-anchoring partly identical to anchoring (i.e. one strategy, gen, is identical).

Selice Romani (RMC): 88W / 8B / 4C ► der:4 gen:4

Possessives: gen strategy. “The ending marking the ‘possessor’ is formed by adding -kr/-gr- (Sg./Pl.) to the accusative (oblique) ending. The possessive form is marked for gender, [number] and case in agreement with the corresponding noun (the ‘possessum’) like an adjective” (Holzinger 1995: 16 on Sinte Romani RMO).

ko dramaskr.es.kr.i tušni [DEM doctor.OBL.GEN.F bottle] ‘that doctor’s bottle’

Binominals: gen only.

4 gen Mod.GEN Head: kan.en.ger.e khula [ear.OBL.GEN.PL shit.PL] EARWAX
2 der Base.DIM: čha.j.óri [Gypsy_child.F.DIM] GIRL
1 der Base.ABST: čohan.ipe [witch/sorcerer.ABST] MAGIC
1 der Base.F: kirá.ckiňa [king.F] QUEEN

► Non-anchoring identical to anchoring.

(Indo-European) Iranian

Western Farsi (PES): 103W / 47B / 9C ► con:22 jxt:6 adj:6 cmp:5 dbl:5 der:3

Possessives: con strategy. “The suffix known as the ezāfe… is used to connect two nouns in certain relationships… The first such relationship can be called the possessive structure” (Mace 2003: 44).

ketābhā.ye šāgerd [books.EZ pupil] ‘the pupil’s books’
xānē.ye modir [house.EZ director] ‘the director’s house’

Binominals: Strong preference for con. Several other strategies (and orders) also occur.

22 con Head.EZ Mod: čerk.e guš [dirt.EZ ear] EARWAX
The typology and semantics of binominal lexemes

(Indo-European) Romance

French (FRA): 102W / 49B / 10C ► prp:34 der:9 adj:4 jxt:1 cmp:1
le manteau de Patrick [DET coat PREP Patrick] ‘Patrick’s coat’
les cahiers des élèves [DET books PREP:DEF pupils] ‘the pupil’s books’
le cadastre de la Marie [DET land_register PREP DEF town_hall] ‘the land register in/of the Town Hall’

Binominals: Strong preference for prp.

Italian (ITA): 112W / 38B / 9C ► prp:20 der:9 adj:5 cmp:3 jxt:1
Possessives: prp strategy. “In Italian, you indicate the person to whom things belong by using di with the person involved; there is no equivalent of the English possessive form ‘Franco’s car’, ‘Anna’s motorbike’ (Proudfoot & Cardo 2013: 121).

il maglione di Alessandro [DET sweater PREP Alessandro] ‘Alessandro’s sweater’
la macchina di mio cugino [DET car PREP POSS:1SG cousin] ‘my cousin’s car’
le ciabatte dei bambini [DET flip-flops PREP:DEF children] ‘the children’s flip-flops’
Binominals: Strong preference for prp, usually in the indefinite form.

13 prp Head PREP Mod: cucina da campo [kitchen from camp] COOKHOUSE
7 prp Head PREP:DET Mod: dito del piede [finger of:DET foot] TOE
5 der Base.NMLZ: ceram.ista [ceramics.NMLZ] POTTER
5 adj Head Mod.ADJZ: via latt.ea [way milk.ADJZ] MILKY WAY
3 der Base.DIM: capr.etto [goat.NMLZ] KID
2 cmp Head.Mod: capo.tribù [head.clan] CHIEFTAIN
1 der Base.AGT: pesca.tore [fish.er] FISHERMAN
1 jxt Head Mod: parola chiave [word key] KEYWORD
1 cmp Mod.Head: ferro.via [iron.way] RAILWAY

► Non-anchoring similar to anchoring (definiteness only expressed occasionally, cf. TOE).

Romanian (RON): 135W / 41B / 11C ► prp:17 der:14 adj:7 dbl:2 jxt:1

Possessives: dbl strategy. “The following means of encoding [nominal phrase internal] possession are found in Romanian: (a) nouns and pronouns in the genitive case; (b) possessive adjectives (including the possessive affix); (c) the adnominal possessive clitic (traditionally known as the adnominal possessive dative); (d) the prepositions de and a; (e) the definite article” (Nicolae 2013: 335-349). Referencing Koptjevskaja-Tamm (2002), Nicolae states explicitly that type (d) (“de-structures”) may be considered “non-anchoring genitives” (p.347). Thus the only anchoring strategy with for nominal possessors is (a).

(a) cărți.le profesoru:lui [books.DEF professor.DEF:GEN] ‘the professor’s books’ (p.265)
(c) cartea.i [book:DEF=3SG] ‘his/her book’ (pronominal possessors only)
(d) mână de copil [hand PREP child] ‘the child’s hand’
(e) tata [father:DEF] ‘my father’ (kinship and social relation nouns only)

Binominals: Strong preference for prp; adj also common.

17 prp Head PREP Mod: pânză de păianjen [cloth of spider] SPIDER WEB
7 der Base.AGT: o(a)lă.ar [pot.AGT] POTTER
7 adj Head Mod.ADJZ: calea fer.ata [way iron.ADJZ] RAILWAY
2 der Base.F: nepo(a)t.ă [grandson/nephew.F] NIECE
2 dbl Head.DET Mod.DET.GEN: încheietura mâin.ii [joint:DEF hand.DEF:GEN] WRIST
1 der Base.ABST: capitani.e [captain.NMLZ] CHIEFTAIN
1 der Base.AGT.ABST: bucată.ar.ie [piece_of_food.AGT.NMLZ] COOKHOUSE
1 der Base.DIM: mână.uş.ă [hand.SUF.F] GLOVE
1 der Base.NMLZ: brâţ.ară [arm.NMLZ] BRACELET
1 der Base.SUF: gălben.uş [yellow.SUF] YOLK
1 jxt Head Mod: cuvînt cheie [word key] KEYWORD

► Non-anchoring mostly different from anchoring
(Indo-European) Slavic

Croatian (HRV): 100W / 58B / 8C ► der:30 adj:22 prp:4 cmp:1 gen:1

Possessives: *gen* and *adj* strategies. “A possessor can be expressed as a genitive on the possessed phrase (a)… If a possessor is definite, singular, human (or animal) and expressed by one word, it forms an adjective instead of going into the genitive (b)” (Brown & Alt 2004: 67-77).

(a) *knjige Marko.a Marković.a* [books Marko.GEN Marković.GEN] ‘Marko Marković’s books’ (multiword human possessor)

 rep mačk.e [tail cat.GEN] ‘the tail of a cat’ (indefinite possessor)

(b) *Mark.ove knjige* [Marko.ADJZ books] ‘Marko’s books’ (single word human possessor)

 mačk.in rep [cat.ADJZ tail] ‘the cat’s tail’ (definite possessor)

Binominals: *der* and *adj* both common.

22 der Base.NMLZ: *željez.n.ica* [iron.ADJZ.NMLZ] RAILWAY

22 adj Mod.ADJZ Head: *pauk.ova mreža* [spider.ADJZ web] SPIDER WEB

5 der Base.AGT: *lonč.ar* [pot.AGT] POTTER

4 prp Head PREP Mod: *pumpa za bicikl* [pump for bicycle] BICYCLE PUMP

2 der Base.DIM: *janje.tina* [lamb.DIM] LAMB

1 gen Head Mod.GEN: *dlan ruk.e* [palm hand.GEN] PALM OF HAND

1 cmp Head.Mod: *po.dne* [half.day] MIDDAY

► Non-anchoring partly identical to anchoring.

Czech (CES): 98W / 44B / 7C ► adj:22 der:19 prp:2 gen:1

Possessives: *gen* and *adj* strategies. “The genitive case can be used for many of the purposes that English of serves, including the marking of part-whole relationships, possession, etc… [Furthermore] possessive adjectives can be formed from person’s names and kinship terms using -ův for male possessors and -ín for female possessors [and] from the names of animals using -í and its variants -čí and -čí’ (Janda & Townsend 2002: 68, 58).

střecha dom.u [roof house.GEN] ‘the roof of the house’

žena soused.a [wife neighbour.GEN] ‘the neighbour’s wife’

Martin.ův [Martin.ADJZ] ‘Martin’s’
bratr.ův [brother.ADJZ] ‘brother’s’

Alen.in [Alena.ADJZ] ‘Alena’s’
matč.in [mother.ADJZ] ‘Mother’s’

krav.čí [cow.ADJZ] ‘cow’s’
prase.čí [pig.ADJZ] ‘pig’s’

Binominals: *adj* and *der* both common.

21 adj Mod.ADJZ Head: *nos.ní dírka* [nose.ADJZ hole] NOSTRIL

13 der Base.NMLZ: *želez.n.ice* [iron.ADJZ.NMLZ] RAILWAY

4 der Base.DIM: *kůz.le* [goat.DIM] KID

2 der Base.F: *čaroděj.nice* [wizard.F] SORCERER OR WITCH
Non-anchoring partly identical to anchoring.

Lower Sorbian (DSB): 118W / 43B / 11C ▶ adj:26 der:11 gen:3 prp:2 cmp:1

Possessives: adj and gen strategies. “Both Upper and Lower Sorbian have a strong inclination to express possession by means not of an adnominal genitive but of an adjectival construction. The simplest form of this construction is the possessive adjective, derived from a noun by means of the suffix -owy (for masculines, including a-stems) or -iny (-yny) (for feminines) (a)... The use of the adnominal genitive (b) is also possible, but rarer. It either imparts the stylistic connotation of formality or it puts emphasis on the noun in the genitive” (Stone 1993: 671).

(a) *nan.owy dom* [father.ADJZ house] ‘father’s house’
(b) *dom nan.a* [house father.GEN] ‘father’s house’

Binominals: Overwhelming preference for adj.

26 adj Mod.ADJZ Head: *nos.owa žerk* [nose.ADJZ hole] NOSTRIL
4 der Base.NMLZ: *wětš.nik* [wind.NMLZ] WINDMILL
3 der Base.AGT: *gjarnc.ař* [pot.AGT] POTTER
2 prp Head PREP Mod: *taług z wucha* [wax PREP ear] EARWAX
2 gen Mod.GEN Head: *bratša žowka* [brother:GEN daughter] NIECE
1 der Base.ADJZ,NMLZ: *zelez.n.ica* [iron.ADJZ,NMLZ] RAILWAY
1 der Base.F: *kral.owka* [king.F] QUEEN
1 der Base.LOC: *wogni.šćo* [fire.LOC] FIREPLACE
1 der Base.SUF: *ruka.j* [hand.SUF] GLOVE
1 gen Head Mod.GEN: *kašćik rěd.a* [box tool.GEN] TOOLBOX
1 cmp Head.Mod: *pol.dnjo* [half.day] MIDDAY

► Non-anchoring partly identical to anchoring.

Polish (POL): 104W / 54B / 11C ▶ der:28 adj:19 gen:3 prp:4

Possessives: gen strategy; adj also occurs. “A nearly defunct possessive adjective with a short Nsg. masc. form can be derived from male nouns and first names (a)... The Genitive is possibly the Polish case most diversified as to use. It is the most frequently occurring of the cases after the Nominative and Accusative. Its basic use is to express various meanings of ‘of’ in noun-to-noun relations, including most importantly the notion of possession broadly speaking (b)” (Swan 2002: 137,329).

(a) *Michał.ów dom* [Michael.ADJZ house] ‘Michael’s home’
(b) *ksiąžka student.a* [book student.GEN] ‘a/the student’s book’

Binominals: der and adj both common.

16 adj Head Mod.ADJZ: *kolej želaz.na* [course iron.ADJZ] RAILWAY
The typology and semantics of binominal lexemes

8 der Base.AGT: *garnc.arz* [pot.AGT] POTTER
8 der Base.DIM: *kol.czyk* [thorn.DIM] EARRING
6 der Base.F: *pajęcz.yna* [spider.F] SPIDER WEB
4 prp Head PREP Mod: *palec u nogi* [finger PREP leg] TOE
3 der Base.NMLZ: *wiatr.ak* [wind.NMLZ] WINDMILL
3 gen Head Mod.GEN: *brzeg morz.a* [shore sea.GEN] SHORE
3 adj Mod.ADJZ Head: *kamieñ.y ny most* [stone.ADJZ bridge] STONE BRIDGE
1 der Base.ADJZ.DIM: *poczt.ów.ka* [post.ADJZ.DIM] POSTCARD
1 gen Head.LE.Mod: *pol.u.dnie* [half.LE.day] MIDDAY
1 gen Mod.LE.Head: *kręg.o.słup* [vertebra.LE.pole] SPINE

► Non-anchoring partly identical to anchoring

Russian (RUS): 103W / 43B / 10C ► adj:20 der:16 gen:4 cmp:2 prp:1

Possessives: *gen* and *adj* strategies. “Most nouns can be possessed. Possessors that are nouns are expressed in the genitive, and are placed after the possessed noun… A very old option for expressing possession for nouns that specify unique people – first names or nouns identifying familial roles – is possessive adjectives” (Timberlake 2004: 205-206).

дом брат.a *dom brat.a* [house brother.GEN] ‘(my) brother’s house’ (Wade 2011: 106)
член партии *chlen parti.i* [member party.GEN] ‘a member of the party’
крыша дома *krysha dom.a* [roof house.GEN] ‘the roof of the house’

Binominals: adj and der both common; gen rather rare.

20 adj Mod.ADJZ Head: *želez.naja doroga* [iron.ADJZ road] RAILWAY
7 der Base.DIM: *dev.uška* [maiden.DIM] GIRL
4 der Base.RLT: *plot.nik* [fence.AGT] CARPENTER
4 gen Head Mod.GEN: *palec nog.i* [finger/toe foot.GEN] TOE
3 der Base.F: *korol.eva* [king.F] QUEEN
1 der Base.AGT: *sapož.nik* [boot.AGT] SHOEMAKER
1 der Base.M: *vdov.ec* [widow.M] WIDOWER
1 prp Head PRP Mod: *jaščik dlja instrument.ov* [box for tools.GEN] TOOLBOX
1 cmp Head.Mod: *pol.den’* [half.day] MIDDAY
1 cmp Mod.LE.Head: *golen.o.stop* [shank.LE.foot] ANKLE

► Non-anchoring mostly different from anchoring.

Slovak (SLK): 100W / 57B / 10C ► der:33 adj:21 prp:2 gen:1

Possessives: *gen* and *adj* strategies. “To say ‘of’ you use the genitive case on its own, typically feminine -y, masculine/neuter -a. We could call it the ‘of’ form… Personal nouns can form possessives that are like ’s (e.g. ‘Anna’s’) in English. Males have possessive forms ending in -ov, females in -in. They work as adjectives… Only a single proper noun can form a possessive. Otherwise you just use the genitive case…” (Naughton 1997: 50,187).

Petr.ov dom [Peter.ADJZ house] ‘Peter’s house’
Appendix D. Strategies and constructions

salka kav.y [cup coffee.GEN] ‘a cup of coffee’

Binominals: adj and der both common; gen rare.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>adj</td>
<td>Mod.ADJZ Head: nos.ná dierka</td>
<td>nose.ADJZ hole</td>
</tr>
<tr>
<td>18</td>
<td>der</td>
<td>Base.SUF: po.brež.ie</td>
<td>LOC.shore/waterside.SUF</td>
</tr>
<tr>
<td>5</td>
<td>der</td>
<td>Base.AGT: hrnč.iar</td>
<td>pot.AGT</td>
</tr>
<tr>
<td>4</td>
<td>der</td>
<td>Base.DIM: kozľa</td>
<td>goat:DIM</td>
</tr>
<tr>
<td>2</td>
<td>der</td>
<td>Base.LOC: ohn.isko</td>
<td>fire.LOC</td>
</tr>
<tr>
<td>2</td>
<td>der</td>
<td>Base.NMLZ: ná.uš.nica</td>
<td>on.ear.NMLZ</td>
</tr>
<tr>
<td>2</td>
<td>prp</td>
<td>Head PREP Mod: pumpa na bicykel</td>
<td>pump for bicycle</td>
</tr>
<tr>
<td>1</td>
<td>der</td>
<td>Base.ADJZ.NLMZ: želez.n.ica</td>
<td>iron.ADJZ.NMLZ</td>
</tr>
<tr>
<td>1</td>
<td>der</td>
<td>Base.F: kráľ.ovná</td>
<td>king.F</td>
</tr>
<tr>
<td>1</td>
<td>gen</td>
<td>Head Mod.GEN: kmeň strom.u</td>
<td>trunk.tree.GEN</td>
</tr>
</tbody>
</table>

► Non-anchoring partly identical to anchoring.

(Japonic) Japanese

Japanese (JPN): 130W / 82B / 4C ► cmp:68 gen:12 der:2

Possessives: gen strategy. “The particle no links two nouns into a noun phrase, in which the preceding noun modifies the following noun. The meaning varies depending on the relationship between the two nouns, such as possessor, content, location, or source” (McGloin et al. 2014: 38).

先生の本 sensei no hon [teacher POSTP book] ‘teacher’s book’

Binominals: Overwhelming preference for cmp; gen also occurs.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>cmp</td>
<td>Mod.Head: tetsu.dō</td>
<td>iron.road</td>
</tr>
<tr>
<td>12</td>
<td>gen</td>
<td>Mod.GEN Head: kumo.no.su</td>
<td>spider.GEN.web</td>
</tr>
<tr>
<td>2</td>
<td>der</td>
<td>Mod Head: gyo.fu</td>
<td>fish.man</td>
</tr>
<tr>
<td>1</td>
<td>cmp</td>
<td>Head.Mod: mi.ki</td>
<td>body.tree</td>
</tr>
</tbody>
</table>

► Non-anchoring partly identical to anchoring.

Koreanic

Korean (KOR): 144W / 63B / 2C ► cmp:59 gen:4

Possessives: gen strategy; omission of the genitive particle results in a jxt strategy. “The genitive particle -ny is said to express possession… Possession, however, is only one of the roles that the genitive particle encodes. The range of roles or meanings that the genitive particle covers is, in fact, so wide that it is not incorrect to say that the function of the genitive particle is to mark the modifier-modified relationship between two noun phrases, the exact nature of which is to be determined in the light of the context of use or the general
knowledge of the world. Moreover, it is not uncommon to leave out the genitive particle and rely on the simple juxtaposition of two noun phrases” (Song 2005: 116).

yenghi.uy chayk [Yonghee.GEN book] ‘Yonghee’s book’

Kim.paksa.uy atul [Kim.PhD.GEN son] ‘Dr. Kim’s son’ (Sohn 1994: 174)

hankwukin.uy sako.pangsik [Korean.GEN thinking.way] ‘Korean way of thinking’ (ibid.)

Binominals: Overwhelming preference for **cmp**. Archaic genitive (**gen**) in -s- occasionally preserved.

59 **cmp** Mod.Head: *chel.kil* [iron.road] **RAILWAY**

4 **gen** Mod.GEN Head: *kho.s.kwumeng* [nose.GEN.hole] **NOSE**

► Non-anchoring different from anchoring.

(Nakh-Daghestanian) Avar-Andic-Tsezic

Bezhta (KAP): 93W / 35B / 8C ► **gen:**26 **cmp:**3 **adj:**2 **der:**2 **jxt:**1

Possessives: **gen** strategy. “The 1st genitive in -s- and the 2nd genitive in -la differ clearly: the 1st genitive puts a noun in the nominative, while the 2nd genitive puts it in any oblique case… No other functional difference between the 1st and 2nd genitives can be found and they will therefore be discussed as a single case. One type of the genitive’s determinant meaning is to be a general determinant… But the genitive may also have [causal, relative, possessive or correlative] meaning” (Kibrik & Testelets 2004: 232-233).

abo.s žämi [father.GEN plate] ‘father’s plate’

bilo.s càrdäx [house.GEN roof] ‘the house roof / roof of the house’

aga.s mot’o [woman.GEN face] ‘a woman’s face’

Binominals: Strong preference for **gen**.

25 **gen** Mod.GEN Head: *kil.o.s hino* [iron.OBL.GEN way] **RAILWAY**

3 **cmp** Mod.Head: *šayt’an.mašina* [devil.machine] **BICYCLE**

2 **adj** Mod.ATTR Head: *xidalaƛ.ko čür* [snot.ATTR scarf] **HANDKERCHIEF OR RAG**

1 **der** Base.NMLZ: *ƛ’erec’.madi* [(onom).NMLZ] **WATER PUMP**

1 **der** Base.PAUC: *cāⁿ.bo* [star.PAUC] **MILKY WAY**

1 **jxt** Head Mod: *c’uddo c’emuc’* [red egg] **YOLK**

1 **gen** Mod.ABL Head: *loba.ƛ’a.s bešiyoli* [midday.SUP.ABL meal] **LUNCH**

1 **adj** Mod.ADIZ Head: *nucodaq t’ot’* [honey:ADJZ fly] **BEE**

► Non-anchoring identical to anchoring.

(Nakh-Daghestanian) Lezgic

Archi (AQC): 66W / 14B / 3C ► **gen:**9 **jxt:**3 **adj:**2

Possessives: **gen** strategy. “The genitive (marker -n) has attributive and possessive meanings” (Kibrik 1994: 312-313).

diya.n k’oč’o [father.GEN cup] ‘father’s cup’
noL’.li.n harq [house.OBL. GEN roof] ‘the roof of the house’

Binominals: Preference for gen; jxt and adj also occur.

9 gen Mod.GEN Head: muč. li.n klan [nose.OBL. GEN hole] NOSTRIL
3 jxt Mod Head: laenne lo [female child] GIRL
2 adj Mod.ADJZ Head: ak:onnilu.t:ut kummul [in_the_morning.ADJZ food] BREAKFAST

► Non-anchoring identical to anchoring.

(Uralic) Finnic

Estonian (EST): 104W / 65B / 7C ► gen:32 cmp:25 der:6 jxt:1 adj:1

Possessives: gen strategy. “In the … examples, the words Kitzbergi, venna, and etenduse, which correspond to the English possessives (‘Kitzberg’s’, ‘brother’s’, ‘of the beginning’), are in the genitive case” (Oinas 1966). Thus, one binominal strategy (gen) is identical to the possessive construction; the other (cmp) involves reduced morphological complexity of the dependent.

Kitzbergi draama [Kitzberg:GEN drama] ‘Kitzberg’s drama’
venna talu [brother:GEN farm] ‘the brother’s farm’
etenduse algust [performance:GEN beginning] ‘the beginning of the performance’

Binominals: Both gen and cmp are common.

32 gen Mod.GEN Head: ämbliku.võrk [spider:GEN.web] SPIDER WEB
24 cmp Mod.Head: raud.tee [iron:NOM.way] RAILWAY
4 der Base.SUF: pea.lik [head.DER] CHIEFTAIN
2 der Base.GEN.SUF: kuninga.nna [king:GEN.DER] QUEEN
1 cmp Head.Mod: kesk.pääev [middle.day] MIDDAY
1 jxt Mod Head: wc.paber [wc.paper] TOILET PAPER
1 adj Mod.NMLZ Head: mesi.las.vaha [honey.NMLZ.wax] BEESWAX

► Non-anchoring partly identical to anchoring.

Finnish (FIN): 100W / 57B / 5C ► cmp:42 gen:11 der:3 jxt:1

Possessives: gen strategy. “The genitive singular ending is always -n, which is added to the inflectional stem… The genitive often marks the possessor, belonging to someone or something, or origin” (Karlsson 2013: 143;151).

Maj.n velje.n nimi [Maj.GEN brother.GEN name] ‘Maj’s brother’s name’
ihmise.n elämä [man.GEN life] ‘man’s life’
englanni.n kieli [England.GEN language] ‘the English language’

Binominals: Strong preferences for cmp; gen also common.

41 cmp Mod.Head: rauta.tie [iron.road] RAILWAY
11 gen Mod.GEN Head: hämähäki.n.verkko [spider.GEN.net] SPIDER WEB
The typology and semantics of binominal lexemes

2 **der** Base.NMLZ: *isä.ntä* [father.NMLZ] HOST
2 **cmp** Head.Mod: *keski.päivä* [middle.day] MIDDAY
1 **der** Base.F: *kuninga.tar* [king.F] QUEEN

► Non-anchoring partly identical to anchoring.

(Uralic) Hungarian

Hungarian (HUN): 105W / 57B / 6C ► cmp:42 der:6 adj:6 gen:3

Possessives: **dbl** and **con** strategies. “In possessive constructions the possessor noun precedes the possessed noun. The possessor noun is inflected for the DATIVE case and the possessed noun receives a POSSESSIVE/PERSON suffix. The possessed noun/pronoun agrees with the possessor in person. If the possessed noun is plural, it receives the plural possessed version of the POSSESSIVE/PERSON suffix. The noun in the Dative is followed by the definite article *a/az* (a)… It is usual to omit *both* the dative suffix and the following definite article (never just one of them!) (b)” (Törkenczy 2005: 160).

(a) *Péter.nek a könyv.e* [Peter.DAT DEF book.3SG] ‘Peter’s book’
(b) *Péter könyv.e* [Peter book.3SG] ‘Peter’s book’

Binominals: Strong preference for **cmp**.

42 **cmp** Mod.Head: *vas.út* [iron.road] RAILWAY
6 **adj** Mod.ADJZ Head: *észak.i fény* [north.ADJZ light] ARCTIC LIGHTS
3 **der** Base.NMLZ: *asztal.os* [table.NMLZ] CARPENTER
3 **gen** Mod.PROP Head: *kép.es.lap* [picture.PROP.card] POSTCARD
2 **der** Base.PROP: *fazék.as* [pot.PROP] POTTER
1 **der** Base.F: *király.né* [king.F] QUEEN

► Non-anchoring different from anchoring.

(Uralic) Mari

Western Mari (MRJ): 93W / 43B / 4C ► jxt:24 cmp:17 gen:2

Possessives: **dbl** strategy. “When two nouns form a possessive construction (e.g., *the boy’s name*, *the capital of the country*) the first element is the possessor word in the genitive followed by the possessed word marked with the possessive suffix of the third person singular or plural (Riese et al. 2010: 36).

Елу.н эргы.же *Yelu.i erf.ə.že* [Yelu.GEN son.3SG] ‘Yelu’s son’
Серге.н ӱдыр.жӧ *Serge.i üdər.žö* [Serge.GEN daughter.3SG] ‘Serge’s daughter’
Елу ден Серге.н йоча.шт *Yelu dei Serge.i joća.št* [Yelu and Serge.GEN child.3PL] ‘Yelu and Serge’s child’

Binominals: Overwhelming preference for **jxt** and **cmp**.

24 **jxt** Mod Head: *kőrnti kornô* [iron road] RAILWAY
17 **cmp** Mod.Head: *ner.raž* [nose.?] NOSTRIL
Appendix D. Strategies and constructions

1 gen Mod.GEN Head: mɔnən sarə [egg.GEN yellow] YOLK
1 gen Mod.LAT Head: šand.eš pumaga [toilet.LAT paper] TOILET PAPER
► Non-anchoring different from anchoring.

(Uralic) Saami

Kildin Sami (SJD): 87W / 35B / 4C ► jxt:29 gen:3 adj:3

Possessives: gen strategy. “Constituent order is for the most part head-final, including… head-finality in noun phrases with adjective, determiner, noun, and pronoun modifiers… Adnominal possessors are marked for genitive” (Rießler to appear).

muun aahkev [1SG:GEN grandchild:PL] ‘my grandchildren’

Binominals: Overwhelming preference for jxt.

26 jxt Mod Head: rūvv’t čuekas [iron road] RAILWAY
3 jxt Mod.Head.DIM: koass.a.all’k.a [goat.DIM.son.DIM] KID
3 adj Mod.ATTR.Head: jīnc.es’.pierrk [morning.ATTR.meal] BREAKFAST
3 gen Mod.GEN.Head: oaʒ.e sājjm [spider.GEN net] SPIDER WEB
► Non-anchoring mostly different from anchoring.

Yeniseian

Ket (KET): 70W / 29B / 4C ► cmp:14 gen:12 jxt:2 adj:1

Possessives: gen strategy. “The genitive is used to express all kinds of possession” (Vajda 2004: 23).

ām.d ógdèn [mother.GEN ears] ‘mother’s ears’

Binominals: cmp and gen both common.

14 cmp Mod.Head: ekŋ.qoˀt [thunder.path] RAINBOW
12 gen Mod.GEN Head: oln.d qūk [nose.GEN hole] NOSTRIL
2 jxt Mod Head: Alba kàŋ [Alba hunting_trail] MILKY WAY
1 adj Mod.ADJZ Head: sol.tu tǝq.ol [gold.ADJZ finger.covering] GOLD RING
► Non-anchoring partly identical to anchoring.

Oceania/SE Asia

(Austro-Asiatic) Aslian

Ceq Wong (CWG): 38W / 20B / 1C ► jxt:20

Possessives: jxt strategy. “Nominal modifiers typically occur in an associative construction where the nominal compound [NPHEAD NP] denotes a specific relationship between two entities. The associative construction is used to express a range of semantic relations, including possession, kin relations, part-whole, object material and so forth. Associatives
are distinguished from non-compositional compounds by the fact that each constituent retains its original meaning and may be independently modified” (Kruspe & al 2015: 447).

Binominals: Single strategy: **jxt**.

20 **jxt** Head Mod: *daray mɔ̀h* [hole nose] NOSTRIL

► Non-anchoring identical to anchoring.

(Austro-Asiatic) Vietic

Vietnamese (VIE): 85W / 51B / 2C ► jxt:51

Possessives: prp strategy, but the preposition is often dropped, resulting in a **jxt** strategy. “Cùa is used to create the meaning of ownership or responsibility (it forms the genitive). The possessive phrase has this word order: object – cùa – owner… The use of cùa is in some cases optional and it is frequently omitted” (Healy 2003: 82). In Nguyên’s (1997: 162) terms, cùa is a preposition, one of a set of connectives which “express possession, means, direction, etc.”

mẹ cùa tôi [mother PREP 1SG] ‘my mother’
sách cùa tôi [book PREP 1SG] ‘my book(s)’
xe_dap cùa chí Hoa [bicycle PREP miss Hoa] ‘Hoa’s bicycle’

Binominals: **jxt** strategy.

43 **jxt** Head Mod: *durong xe_lòka* [road train] RAILWAY
8 **jxt** Mod Head: *nữ hoàng* [female emperor] QUEEN

► Non-anchoring partly identical to anchoring.

(Austronesian) Formosan

Puyuma (PYU): 54W / 3B / 3C ► der:2 dbl:1

Possessives: dbl strategy. Alienable possession is divided into “two types according to the encoding of the possessor. Basically, the possessor can either be coded as a pronoun (Nmkr) or as an NP_OBL [oblique-marked NP]… If the possessor is manifested as an NP_OBL, the possessor follows the possessum. Usually, the possessor is manifested twice; as a pronoun in the Nmkr slot, and as an NP_OBL following the possessum (a). Sometimes, a third-person possessor only occurs once as an NP_OBL (b); this is only possible when both the possessum and the possessor are indefinite” (Teng 2007: 143-144).

(a) *tu=tiyal kana unan* [3.PSR=belly DEF:OBL snake] ‘the snake’s belly’

tu=walak kan kalikali [3.PSR=child SG.OBL Kalikali] ‘Kalikali’s child’

(b) *Da sa’aD Da kawi* [INDEF.OBL branch INDEF.OBL tree] ‘branches of trees’
Binominals: Binominals appear to be rare (most complex nominals contain action roots). The only non-derivational strategy exhibited in the data is `dbl`, but the data is too sparse to indicate whether this is the preferred strategy.

1 `dbl` 3SG.Head DEF Mod: `tu-biraʔ kana ʔanjiʔa` [3SG-earlobe DEF:OBL ear] EARLOBE
1 `der` Mod.PERF.Head: `d<in>apal-an` [foot<PERF>-LOC] FOOTPRINT
1 `der` TMP.Base.LOC: `ka-ʔauk-an` [TMP-lunch-LOC] MIDDAY
► Non-anchoring identical to anchoring.

(Austronesian) Greater Barito

Malagasy (PLT): 89W / 58B / 7C ► cmp:22 con:18 jxt:9 der:8 prp:1

Possessives: `con` strategy. “If the genitive argument consists of a noun or noun phrase, a number of different scenarios have to be distinguished. In the case of definite noun phrases and personal names functioning as genitive arguments” =n ’ny or =n ’i are used, respectively (a, b). “If the genitive argument is an indefinite (common) noun phrase, the genitive marker is =n (c)” (Rasoloson & Rubino 2005: 468).

(a) `ny boki.n’ny mpampaànatra` [DET book.GEN:DEF teacher] ‘the teacher’s book’
(b) `ny kiràro.n’i Fàly` [DET shoes.GEN Fàly] ‘Fàly’s shoes’
(c) `tràno.n’andriana` [house.GEN’nobleman] ‘a nobleman’s house’

Binominals: Preference for `cmp`; `con` also common.
22 `cmp` Head.Mod: `vàva.òrona` [mouth.nose] NOSTRIL
18 `con` Head.PER.Mod: `lala.m.by` [road.PER.iron] RAILWAY
9 `jxt` Head Mod: `mpanèfy tanimànga` [moulder/maker clay] POTTER
6 `der` AGT.Base: `mpan.dràfitra` [AGT.carpentry] CARPENTER
1 `prp` Head SOC.Mod: `vehivàvy manam.bàdy` [woman with.spouse] MARRIED WOMAN
1 `der` NMLZ.Base: `fi.lòha` [NMLZ.head] CHIEFTAIN
1 `der` NMLZ.Base.CIRC: `fa.mosavì.ana` [NMLZ.witchcraft.CIRC] MAGIC
► Non-anchoring partly identical to anchoring.

(Austronesian) Greater Central Philippine

Possessives: `prp` strategy. “The possessive-`ng`-phrase construction is the most common Tagalog translation equivalent of English possessive modification constructions involving the possessive suffix -‘s, or involving ‘of’” (Schachter & Otness 1972: 136).

`lapis ng bata` [pencil LNK child] ‘a/the child’s pencil’
`ang buntot ng aso` [DET tail POSS dog] ‘the dog’s tail’, ‘the tail of the dog’
The typology and semantics of binominal lexemes

Binominals: Strong preference for **prp**.

19 **prp** Head LK Mod: *daa.ng-bakal* [road.LK-iron] RAILWAY
5 **jxt** Head Mod: *bahay-gagamba* [house-spider] SPIDER WEB
3 **der** Base.LOC: *hapun.an* [afternoon.LOC] DINNER
2 **der** AGT.RED.Base: *mag.sa.saka* [AGT.RED.farming] FARMER
2 **prp** Head LOC Mod: *sipilyo sa ngipin* [brush LOC tooth] TOOTHBRUSH
2 **prp** Mod LK Head: *ginto.ng singsing* [gold.LK ring] GOLD RING
1 **der** CIRC.Base.CIRC: *ka.sangkap.an* [CIRC.belongings.CIRC] TOOL
1 **cmp** Head Mod: *manggaga.way* [worker.sorcery] SORCERER OR WITCH
1 **jxt** Mod Head: *kamay preno* [hand brake] HAND BRAKE

► Non-anchoring identical to anchoring.

(Austronesian) Malayo-Sumbawan

Indonesian (IND): 108W / 50B / 4C ► **jxt:** 48 **der:** 2

Possessives: **jxt** strategy. “A possessor follows the head word. It can be a noun or a pronoun” (Sneddon 1996: 144).

rumah Tomo [house Tomo] ‘Tomo’s house’
nama negeri itu [name country DET] ‘the name of that country’
mobil saya [car 1SG:POSS] ‘my car’

Binominals: Overwhelming preference for **jxt**.

47 **jxt** Head Mod: *jalan keréta api* [road carriage fire] RAILWAY
1 **der** AGT.Base: *peng.sihir* [AGT.sorcery] SORCERER OR WITCH
1 **jxt** AGT.Head Mod: *pem.buluh darah* [AGT.bamboo blood] VEIN OR ARTERY
1 **der** LOC.Base.CIRC: *per.api.an* [LOC.fire.CIRC] FIREPLACE

► Non-anchoring identical to anchoring.

(Austronesian) Oceanic

Äiwoo (NFL): 48W / 14B / 4C ► **jxt:** 5 **prp:** 5 **cls:** 3 **cmp:** 1

Possessives: **con** and **prn** strategies. Äiwoo distinguishes between “direct possessives, where possessor indexing attaches directly to the possessed noun (a), and indirect

1 According to Schachter & Otanes (1972: 107ff.) there are two linkers, *ng/Ø* (used for “nominal compounds”) and *na/-ng* (used for “modification constructions”). These cannot always be distinguished on the basis of form. The choice between *na* and *-ng* is determined by the final consonant of the independent form of the element that precedes the linker. Furthermore, *ng* can be written as a separate word or as a suffix. These facts, along with the rather flexible word order, have two consequences. First, forms using *ng* could be classified as either **gen** or **prp**; for consistency with *na* (which is always written separately) the latter is used here. Second, nominal compounds without an overt marker are classified as **jxt** (or **cmp**), while those with the marker are classified as **prp**.
possessives, where possessor indexing attaches instead to an independent morpheme, typically described as a possessive classifier (b)” (Næss forthc.).

(a) tumwä John [father.3MIN John] ‘John’s father’
 nyimä singedä [hand.3MIN woman] ‘the woman’s hand’
(b) nabe na nubåå [bait POSS(food):3MIN shark] ‘shark bait’

Binominals: jxt and prp are both common.

5 jxt Head Mod: sikonya nugokä [waste ear] EARWAX
5 prp Head PREP Mod: talâu wâ nuu pevaio [meal of place morning] BREAKFAST
3 cls Head BN:Mod: kio mi.sigilâi [hen BN:GNL.male] COCK/ROOSTER
1 cmp Head.Mod: nupo.lea [net.?spider] SPIDER WEB

► Non-anchoring different from anchoring.

Hawaiian (HAW): 91W / 50B / 3C ► jxt:39 cmp:11

Possessives: prp strategy. “The possessive prepositions are a (or ā) and o (or ē), and kā and kō… The use of a and o is one of the most discussed, and most intriguing, of Polynesian problems.” Various dichotomies (including alienable/inalienable) have been proposed, but no terminology “is completely logical; there are always some usages that don’t seem to fit any scheme… Many possessed objects may take either a or o, usually but not always with different meanings” (Elbert & Pukui 1979: 136-139).

nā iwi a Pua [DEF:PL bone PREP Pua] ‘Pua’s bones’ (as the chicken bones she is eating)
(nā iwi o Pua [DEF:PL bone PREP Pua] ‘Pua’s [own] bones’

Binominals: Overwhelming preference for jxt; cmp also common.

38 jxt Head Mod: ‘upena nananana [net spider] SPIDER WEB
11 cmp Head.Mod: ala.hao [path.iron] RAILWAY
1 jxt Mod Head: poho lima [hollow hand] PALM OF HAND

► Non-anchoring different from anchoring.

Takia (TBC): 71W / 24B / 7C ► dbl:11 con:7 jxt:3 prp:2 gen:1

Possessives: con and prp strategies. “The possessor noun phrase is the first constituent of the possession construction. As in other Oceanic languages, a possessor suffix cross-references the possessor in both direct and indirect possession constructions… Most kin terms, and most nouns referring to body parts or to parts of wholes, are directly possessed (a)… Indirect possession: The possessive classifiers in Rigen Takia are sa- and a-. The latter co-varies in other dialects with ane- (occasionally kane-) (b)” (Ross 2002: 228-229).

(a) Madi nao.n [Madi face.3SG] ‘Madi’s face’
 ab ilo.n [inside house.3SG] ‘the inside of the house’
(b) Madi sa.n ab [Madi POSS.3SG house] ‘Madi’s house’

Binominals: Preference for dbl; con also common.

10 dbl Mod.3SG Head.3SG: ydu.n awa.n [nose.3SG mouth.3SG] NOSTRIL
The typology and semantics of binominal lexemes

7 **con** Mod Head.3SG: *su mala.n* [breast eye.3SG] NIPPLE OR TEAT
2 **jxt** Mod Head: *ab mroun* [house owner] HOST
2 **prp** Mod POSS.3SG Head: *graian sa.n anay* [evening POSS.3SG food] DINNER
1 **jxt** Head Mod: *tamol sos* [man Derris_root] WIDOWER
1 **gen** Mod.3SG Head: *graye.n tatu* [side.3SG bone] RIB
1 **dbl** Mod.3SG Head.INAL.3SG: *pao.n tatuw.a.n* [shoulder.3SG bone.INAL.3SG] COLLARBONE

► Non-anchoring partly identical to anchoring.

Hmong-Mien

Hmong Daw (MWW): 86W / 46B / 2C ► jxt:45 cmp:1

Possessives: **jxt** strategy. “Seules, les êtres (esprits, humains ou animaux) sont considérés comme ayant pouvoir de posséder; les choses ne le peuvent pas… Le possesseur précède le possédé, chacun étant accompagné de son classificateur, selon le modèle: Cl + Possesseur + Cl + Possédé” (Mottin 1978: 46).

tus me_nyuam lub kaus_mom [CLF child CLF hat] ‘the child’s hat’

Binominals: Overwhelming preference for **jxt**.

45 **jxt** Head Mod: *kev tsheb nqaj hlau* [way car rail iron] RAILWAY
1 **cmp** Head.Mod: *poj.niam* [female.mother] MARRIED WOMAN

► Non-anchoring similar to anchoring. The difference relates to the absence of classifiers in the non-anchoring (binominal) constructions.

(Sino-Tibetan) Bodic

Manange (NMM): 61W / 22B / 5C ► jxt:16 cmp:3 con:2 gen:1

Possessives: **gen** strategy (Hildebrandt 2004: 66,70).

ju=la mî [village=GEN people] ‘people of the village’
kôla=la kôlâ [child=GEN clothing] ‘the child’s dress’

Binominals: Overwhelming preference for **jxt**.

16 **jxt** Mod Head: *4pʰoli 3tsaŋ* [spider nest/bed] SPIDER WEB
3 **cmp** Mod.Head: *Ina.kʰuy* [nose.hole] NOSTRIL
1 **con** Head.LOC.Mod: *tonko.ri kʰeta* [basement.LOC cattle] STABLE OR STALL
1 **con** Mod.Head.DET: *2mre titi.ko* [door side.DET] DOORPOST
1 **gen** Mod.GEN.Head: *lano.la.tsami* [elder_sister.GEN.daughter] NIECE

► Non-anchoring different from anchoring.
Appendix D. Strategies and constructions

(Sino-Tibetan) Macro-Bai

Caijia (caï): 66W / 31B / 1C ► cmp:31

Possessives: prn strategy. Possessive constructions require a possessive classifier (Shan-shan Lü, p.c.).

\[\text{mō²¹} \text{tsʰo²⁴} \text{nǐ}^{55} \text{hm}^{55} \text{w}^{55} \] [that person CLF POSS clothes] ‘that person’s clothes’

Binominals: cmp is the only strategy.

31 cmp Mod.Head: \(\text{c}^\text{ǐ}^{55} \text{hɔ}^{55}\) [iron.road] RAILWAY

► Non-anchoring different from anchoring.

(Sino-Tibetan) Sinitic

Mandarin Chinese (cmn): 137W / 105B / 4C ► cmp:84 jxt:18 der:3

Possessives: prp strategy. “In Modern Standard Chinese... possessive meanings are formed with the enclitic de, with the constituent order ‘Possessor de Possessee’” (Luo 2013: 187).

\(\text{mūqin de háizi}\) [mother POSS child] ‘the mother’s child’

Binominals: Overwhelming preference for cmp.

84 cmp Mod.Head: \(\text{bì2}.\text{kōng3}\) [nose.hole] NOSTRIL

15 jxt Mod Head: \(\text{tǐe3}.\text{lu4}\) [iron.road] RAILWAY

3 der Base.SUF: \(\text{jiú1}.\text{zi1}\) [foal.SUF] FOAL OR COLT

3 cmp Mod.Head.SUF: \(\text{shōu3}.\text{wan4}.\text{zi1}\) [hand.wrist.SUF] WRIST

► Non-anchoring different from anchoring.

(Tai-Kadai) Kam-Tai

Thai (tha): 103W / 56B / 3C ► cmp:55 jxt:1

Possessives: prp and jxt strategies. “In general, a full possessive construction is represented by a sequence of head noun – possessive marker (PssM) – possessor (Pssr). In this pattern, the possessor is in direct construction with the possessive marker \(\text{khōn}\) ‘of’... Three possessive constructions are distinguished that involve the occurrence of the PssM; optional, obligatory and prohibited... The optional occurrence of the PssM is restricted to a common head noun and an animate possessor, the obligatory occurrence is restricted to a proper head noun, and the prohibition is restricted to a common head noun and a common, inanimate possessor” (Singnoi 2000: 147-150).

\(\text{sǐa (khōn)} \text{ dēk}\) [shirt POSS child] ‘a child’s shirt’

\(\text{phänraya (khōn)} \text{ Somchai}\) [wife POSS Somchai] ‘Somchai’s wife’

\(\text{lāŋkhaa bān}\) [roof house] ‘house’s roof’

\(^1\) Recall that prn denotes the analytic head-marking strategy that was not encountered amongst the binominal data (cf. §5.4.1).
The typology and semantics of binominal lexemes

Binominals: Overwhelming preference for cmp.

? lāykhāa khɔn bāan [roof POSS house] ‘house’s roof’ (“unpreferable”)

Binominals:

50 cmp Head Mod: thaaŋ.rótfay [way.train] RAILWAY
5 cmp Mod Head: kasèettra.kɔɔn [agriculture.doer] FARMER
1 jxt Head Mod: kradûk ḥiplârâ [bone fermented_fish_jar] COLLARBONE

► Non-anchoring partly identical to anchoring.

PNG/Australia

Gunwinyguan

Anindilyakwa (AOI): 47W / 16B / 6C ► con:10 der:5 jxt:1

Possessives: con strategy. “The suffix -lhangwa has a wide range of functions, from grammatical (marking an argument of the verb, glossed DATive), adnominal (indicating relations between NPs, glossed POSSessive), to semantic (indicating the semantic role of an adjunct nominal, glossed ABLative)…” (van Egmond 2012: 284-285).

marluwiya.lhangwa wurri.yukwayuwa [emu.POSS 3a.children] ‘Emu’s children’
emeba amakalyuwakbv.lhangwa [song Bickerton.Island.POSS] ‘Bickerton Island’s song’

Binominals: Strong preference for con.

9 con CLF.INAL. Head Mod: e.me.dhvrra e.mindha [CLF(neut).INAL.hole

CLF(neut).nose] NOSTRIL.

2 der CLF.AL. Mod (Head): e.nv.ng.a.rrvrra [CLF(neut).M.AL.CLF(neut).wind]

BICYCLE PUMP

2 der CLF.INAL. Head (Mod): a.mv.ngina [CLF(neut).INAL.joint] WRIST

1 der CLF.INAL. Head (Mod): n.env.m.alhvka [3SG:M.INAL.foot] FOOTPRINT

1 jxt Head Mod: a.mukwa a.ngura [CLF(neut).source CLF(neut).fire] FIREPLACE

1 con Mod CLF.INAL. Head: yu.kudhukudha yi.nv.ma.dhvrra [CLF(masc).source CLF(masc).M.INAL.foot]

COLLARBONE

► Non-anchoring different from anchoring. Both adnominal possessives and binominals employ a head-marking (con) strategy, but the actual constructions are quite different and unrelated.

Morehead-Wasur

Warta Thuntai (GNT): 31W / 16B / 3C ► jxt:9 cmp:7

Possessives: gen strategy. “Possession is indicated through the use of the genitive case marker -an” (Quinn 2014: 20).

nju ngam.an ngauw.an menk [1SG:GEN mother.GEN father.GEN house] ‘my mother’s father’s house’

Binominals: jxt and cmp both common.
Appendix D. Strategies and constructions

Nuclear Torricelli

Srenge (LSR): 40W / 20B / 3C ► jxt:19 cmp:1

Possessives: **jxt** and **prp** strategies with possessor-possessum order. There is a tendency for the [N+N] construction to signal inalienable meaning. (Lea Brown, p.c.)

- *nimbo talm* [tree branch] ‘the branch of the tree’
- *yimbokakawio* [dog young_of_animal] ‘puppies’
- *einu nendi.Ø sa* (name **PREP.F:SG village**) ‘the name of the village’
- *simi nendi-n Alin* (woman **PREP.M:SG Alin**) ‘Alin’s wives’

Binominals: Overwhelming preference for **jxt**.

18 **jxt** Mod Head: *mupotent* [nose hole] **NOSTRIL**
1 **jxt** Mod Head: **REDUP:** *ala talmtalmo* [leg/foot branch:RED] **TOE**
1 **cmp** Mod Head: *bili.wi* [spirit?.skin] **HANDKERCHIEF OR RAG**

Non-anchoring partly identical to anchoring.

Walman (VAN): 48W / 18B / 1C ► jxt:18

Possessives: **jxt** and **prn** strategy. “Walman has three constructions, one in which the noun for the possessor precedes the noun for the possessed (a), a second in which this order is reversed, where the possessed noun precedes the possessor (b), and a third in which a genitive form of the pronoun agreeing in gender and number with the possessor occurs between the possessed and possessor nouns (c)” (Lea Brown, p.c.).

(a) *mis chei* [cat tail] ‘cat’s tail’
 wlapon chu [older_brother wife] ‘older brother’s wife’
(b) *nakol nyiki* [house woman] ‘the women’s house’
 lasi Kasiel [name Kasiel] ‘Kasiel’s name’
(c) *wolu wru Kasiel* [little_sister **GEN** F Kasiel] ‘Kasiel’s little sister’
 chalien wri Akur [land **GEN.3PL** Akur] ‘land of the Akur people’

Binominals: **jxt** strategy only.

18 **jxt** Mod Head: *nyamayki ra* [nose hole] **NOSTRIL**

Non-anchoring partly identical to anchoring.

(Pama-Nyungan) Desert Nyungic

Gurindji (GUE): 53W / 8B / 5C ► jxt:4 der:3 gen:1

Possessives: No information available.
The typology and semantics of binominal lexemes

Binominals: Clear preference for jxt.

4 jxt Mod Head: jitji jarriny [nose hole] NOSTRIL
1 der Base.INS: warlu.waji [fire.INS] FIREPLACE
1 der Base.SUF: pirnti.yi [side.SUF] RIB
1 der Base.VBLZ.AGT: wuyurrurn.karra.aji [fishing_line.ACT.AGT] FISHERMAN
1 gen Mod.DAT Head: yawarta.wu marru [horse.DAT house] STABLE OR STALL
► No information available.

(Pama-Nyungan) Paman

Wik-Mungkan (WIM): 44W / 25B / 3C ► jxt:24 gen:1

Possessives: gen strategy. The case suffix -antam denotes a source or possessor (Kilham et al. 1986: 412-415).

puk Martha.antam [child Martha.POSS] ‘Martha’s child’
kangk banana.antam [leaf banana.POSS] ‘leaves from the banana tree’

Binominals: Overwhelming preference for jxt.

22 jxt Mod Head: kaa' uuyan [nose hole] NOSTRIL
2 jxt Head Mod: puk wuut [child old_man] BOY
1 gen Head Mod.DAT: yuk mee'.akana [tree/thing eye.DAT] SPECTACLES/GLASSES
► Non-anchoring different from anchoring.

Walio

Tuwari (TWW): 21W / 8B / 1C ► cmp:8

Possessives: gen strategy: the possessor is marked with a possessive suffix -we. There is no alienability distinction (Sylvain Loiseau, p.c.).

Binominals: cmp only.

Andrew.we o [Andrew.POSS house] Andrew’s house
8 cmp Mod.Head: saalu.hon [nose.hole] NOSTRIL
► Non-anchoring different from anchoring.

West Bomberai

Kalamang (KGV): 90W / 57B / 6C ► jxt:26 con:14 cmp:8 gen:6 adj:2 prp:1

Possessives: con strategy (Eline Visser, p.c.).

Malik kewe.un [Malik house.3POSS] ‘Malik’s house’
kewe anggas.un [house door.3POSS] ‘the door of the house’
tumun bal.un [child dog.3POSS] ‘the child’s dog’

Binominals: Strong preference for jxt, but with varying word order; con also common.
Appendix D. Strategies and constructions

16 jxt Head Mod: *uriap kereta api* [street carriage fire] RAILWAY
14 con Mod Head.3POSS: *bustang pos.un* [nose hole.3POSS] NOSTRIL
11 jxt Mod Head: *kalis tanggir* [rain ??] RAINBOW
8 cmp Mod Head: *os.ket* [sand.above?] SHORE
6 gen Head Mod.POSS: *sapi tan.kin* [broom hand.POSS] HANDKERCHIEF OR RAG
2 adj Head Mod.REL: *sontum war.ten* [person sorcery.AD] SORCERER OR WITCH

► Non-anchoring partly identical to anchoring.

North America

Athabaskan-Eyak-Tlingit

Navajo (NAV): 77W / 27B / 5C ► cmp:17 con:9 prp:1

Possessives: con strategy. “If a simple possessive relationship between two nouns is expressed, the possessive prefix is *bi*.” (3SG/PL) (Reichard 1951: 86).

'awéé’ bamá (< *bi-má*) [baby 3SG.mother] ‘the baby’s mother, it is the baby’s mother’

xastiin be. *esdzág*’ [man 3SG.wife] ‘the man’s wife, she is the man’s wife’

tcidí *bi.djáad* [car 3SG.wheel] ‘the car wheel, it is an automobile wheel’

Kii bi.lééchag [Kii 3SG.dog] ‘Kee’s dog’ (Goossen 1995: 99)

Bilagáana bi.zaad [White_man 3SG.language] ‘English language’ (Goossen 1995: 2)

Binominals: Preference for cmp; con also common. “The consonants /s/, /sh/, and /ś/ sometimes appear between the elements of compound nouns, joining a noun with a following component” (Young & Morgan 1980:1-6).

16 cmp Mod Head: *tó.bqgh* [water.edge] SHORE
9 con Mod 3SG.Head: *béésh bí.tiin* [iron 3SG.path] RAILWAY
1 cmp Mod.LIG.Head: *nák’ee.sh.to’* [eye_area.LIG.water] TEAR
1 prp Mod INS Head: *tsé bee na’ni’á* [stone with_it bridge] STONE BRIDGE

► Non-anchoring partly identical to anchoring.

(Eskimo-Aleut) Yupik

Central Yupik (ESU): 70W / 21B / 15C ► der:18 dbi:3

Possessives: dbi strategy. “A relative-case NP, being the dependent in an attributive construction with another NP as the head, refers to a possessor … or a point of reference; the latter nominal, i.e. possessum, must have a third person (possessor) suffix inflection, cross-referencing in number with the former” (Miyaok 2012: 739).

arna.m atr.a [woman.REL name.POSS:ABS] ‘the woman’s name’

qimugt.em pamyu.a [dog.REL tail.POSS:ABS] ‘The dog’s tail’ (Jacobsen 1995: 93)
Binominals: Overwhelmingly preference for *der*, which covers a large range “postbases” whose meanings vary in specificity from “thing of/pertaining to N” (TAQ2) to “device associated with N” (CUUN). The only non-derivational pattern is *dbl*.

3 *der* Base.TAQ2: *ataku.taqa* [evening.TAQ2] DINNER
3 *dbl* Mod.REL Head.POSS:ABS: *imarpi.im ceni.ii* [sea.REL shore.POSS:ABS] SHORE

2 *der* Base.AQ3: *ar nar.aaq* [woman.AQ3] GIRL
2 *der* Base.LLEQ1: *keni.leeq* [fire.LLEQ] FIREPLACE
1 *der* Base.AR(AQ): *cuk.ar(aaq)* [person.AR(AQ)] TOE
1 *der* Base.CENGAQ: *quka.cengaq* [waist.CENGAQ] BEE
1 *der* Base.CUUN: *anuqe.ssuun* [wind.CUUN] WINDMILL
1 *der* Base.ILITAQ: *tayarer ila taq* [wrist.ILITAQ] BRACELET
1 *der* Base.IN: *pingay.irin* [three.IN] WEDNESDAY
1 *der* Base.LEK: *emu.lek* [mother’s milk/breast.LEK] NIPPLE OR TEAT
1 *der* Base.QLIQ: *ela.qliq* [outside?.QLIQ] NEIGHBOUR
1 *der* Base.UAQ: *pacig.uaq* [gills.UAQ] NOSE
1 *der* Base.YAGAQ: *qusngi.yagaq* [reindeer/sheep.YAGAQ] LAMB
1 *der* Base.YAQ: *aglur.yaq* [ridgepole.YAQ] RAINBOW

► Non-anchoring identical to anchoring (if derivations are disregarded).

(Mayan) Core Mayan

Kekché (*KEK*): 101W / 40B / 14C ► con:22 jxt:10 der:5 dbl:2 adj:1

Possessives: *con* strategy. “Ownership (the genitive) is expressed by the prefixing of an ergative pronoun [that refers to the owner N2] to the object owned” (Stone 1976: 69). Note: The sources use different orthographies.

li *š.bo:ls liš Flora* [DET 3ERG.purse DET Flora] ‘Flora’s purse’
li *r.a:q li kwi:nq* [DET 3ERG.pig DET man] ‘the man’s pig’
li *š.tib’el a:q* [DET 3ERG.meat pig] ‘the pig’s meat’

Binominals: Strong preference for *con; jxt* also common.

20 *con* 3ERG.Head Mod: *x k’ot xik* [3ERG.excrement ear] EARWAX
8 *jxt* Head Mod: *sa’ u’uj* [belly nose] NOSE
1 *con* 3ERG.Head M Mod: *x.kem aj am* [3ERG.web M spider] SPIDER WEB
1 *dbl* 3ERG.Head Mod.DER: *x na’ ixaq.ii* [3ERG.mother woman.DER] MOTHER-IN-LAW (OF A MAN)
1 *con* 3ERG.Head.SUF Mod: *x q’an.al mol* [3ERG.yellow.SUF egg] YOLK
1 *der* AGT Base.AGT: *aj k’al.om* [AGT cornfield.AGT] FARMER
1 *der* Base.ANTIP.NMLZ: *awas.in.el* [secret.ANTIP.NMLZ] SORCERER OR WITCH
1 *der* Base.DER: *jolom.il* [head.DER] CHIEFTAIN
Appendix D. Strategies and constructions

1 der Base.INS.NMLZ: k’uub’.leb’.aal [hearthstone.INS.NMLZ] COOKHOUSE
1 der Base.NMLZ: k’oteb’.aal [shit.NMLZ] TOILET
1 dbl Head.NPOS 3ERG.Mod: b’aq.el x.b’een_tel [bone.NPOS 3ERG.upper_arm] SHOULDERBLADE
1 jxt Head.UNPOSS Mod: b’aq.el jolom [bone.UNPOSS head] SKULL
1 jxt Mod Head: asuukr utz’ajl [sugar?] SUGAR CANE
1 adj Mod.ADJZ Head: k’im.al kab’l [straw.ADJZ house] THATCH

► Non-anchoring similar to anchoring (definiteness).

Zinacantán Tzotzil (TZO): 64W / 29B / 3C ► gen:15 jxt:14

Possessives: con and dbl strategies. “A possessed phrase has the form: Object Possessed + Possessor. The possessor follows the possessum, whose possessive prefix cross-indexes its possessor. When the possessor is another noun – another person, for example – the prefix is s- “his/her”” (Haviland 2001:§4.1).

s.k’u` `antz [3SG.blouse/clothing woman] ‘(a) woman’s blouse’
s.na li Xun=e [3SG.house DEF John=DEF] ‘John’s house’

Binominals: Strong preference for gen; jxt also common.

15 gen Head Mod.INAL: niʔ chu’.ul [nose breast.INAL] NIPPLE OR TEAT
12 jxt Head Mod: be sim [road mucous] NOSTRIL
2 jxt Mod Head: shokan na [side house] NEIGHBOUR

► Non-anchoring different from anchoring.

(Otomanguean) Otopamean

Querétaro Otomi (OTQ): 134W / 35B / 4C ► cmp:22 jxt:12 prp:1

Possessives: prn strategy. “La FN que codifica al Poseedor se yuxtapone después de la FN principal que refiere a lo Poseído, pero esta FN no recibe una marca gramatical de posesión. La marca de la relación de posesión entre las dos FFNN se sitúa en la FN núcleo, que expresa lo Poseído” (Palancar 2009: 117).

nór ‘bede ‘nar jö’i [DEF:SG:3POS story IND:SG person] ‘the story of a lord’

Binominals: Preference for cmp; jxt also common.

21 cmp Head.Mod: oku.xiñu [hole.nose] NOSTRIL
12 jxt Head Mod: ‘behñä ndä [woman king] QUEEN
1 prp Head DEF Mod: hai ya mboxita [land DEF:PL ancestor] NATIVE COUNTRY
1 cmp Mod.Head: do.xýmo [stone.bowl] SKULL

► Non-anchoring different from anchoring.

1 The meaning of li is not clear from the source. It is glossed (once) as “of” but referred to as a definite article.
The typology and semantics of binominal lexemes

Seri

Seri (SEI): 61W / 16B / 6C ► dbl:6 jxt:5 con:3 gen:2

Possessives: **con** or **dbl** strategy. “Possessor phrases precede the noun they modify... The noun must be a possessed noun — a body part noun, a kinship term, other personal item, or deverbal noun (object-oriented or action/oblique-oriented type). The possessor phrase therefore has a variety of semantic roles with respect to the possessed noun. With a body part noun, it represents the ‘whole’ (a). With a kinship term, it represents the person who is the point of reference (b). With a personal item, it represents the owner (c)” (Marlett 1981: 256-257).

(a) **xazoj i.lít** [puma 3POSS.head] ‘(a) puma’s head’
(b) **zacaam cop ata cop** [young_woman DET 3P:mother DET] ‘the young woman’s mother’
(c) **zixquisii₇ ctam ticop yaaco cop** [child male DEM 3P:house DET] ‘that boy’s house’

Binominals: Preference for **dbl** strategy; **con** and **jxt** also common. In all the examples of **dbl** the modifier is a body part and thus inalienable; the **dbl** strategy can thus be regarded as a variant of the **con** strategy.

5 **dbl** POSS.Mod POSS.Head: Ø.yanopj i.t [3POSS.fist 3POSS.base] WRIST
4 **jxt** Head Mod: *quihehe cmaam* [chief_person female] QUEEN
3 **con** Mod POSS.Head: *pnaal ii.me* [honey_bee 3POSS.abode] BEEHIVE
1 **dbl** ABS.Mod POSS.Head: *ha.mt i.teen* [ABS.breast 3POSS.opening/mouth] NIPPLE OR TEAT
1 **jxt** Mod Head: *xepe poosj* [sea line] FISHING LINE
2 **gen** POSS.Mod Head: *i.to.cams* [3POSS.eye.??] EYEBROW

► Non-anchoring partly identical to anchoring.

Siouan

Ho-Chunk (WIN): 61W / 20B / 1C ► jxt:14 cmp:3 der:3

Possessives: **con** and **dbl** strategies. “The only way to express a possessive relation between two nominals in a noun phrase in a narrow sense is juxtaposition... The whole possessive noun phrase needs to be specified by a determiner, i.e. the definite article, a demonstrative pronoun, or the indefinite article. The determiner in this position controls the reference of the whole expression. If there is a definite article following the possessor (b), then it is the possession of a specific definite possessor. If the indefinite article follows the possessor (c), it is the possession of an indefinite or unspecific possessor” (Helmbrecht 2003: 12-13)

(a) **hinúŋ hisja.rá** [woman face.DEF] ‘the woman’s face’
(b) **hinúŋ.rá hisja.rá** [woman.DEF face.DEF] ‘the face of the (specific) woman’
(c) **hinúŋ.izq hisja.ra** [woman.INDEF face.DEF] ‘the face of a woman’

Binominals: **jxt** strategy.
Non-anchoring similar to anchoring (differences relate to the expression of definiteness).

(Tupian) Tupi-Guarani

Mbyá Guaraní (GUN): 61W / 33B / 7C ► jxt:16 cmp:7 gen:4 der:3 con:3

Possessives: con strategy. The prefix r- (allomorph Ø-) occur in possessive constructions identifying the possessed element, whenever the possessor (which can be a clitic pronoun or a nominal) is explicitly expressed (Martins 2003: 38-39).

- kivi r.aii [tooth POSS.jaguar] ‘jaguar’s tooth’ (“dente da onça”)
- xe=r.aii [1SG=POSS.dente] ‘my tooth’ (“meu dente”)
- mitã Ø.po [child POSS.hand] ‘child’s hand’ (“mão da criança”)
- xe=Ø-po [1SG=POSS.hand] ‘my hand’ (“minha mão”)

Binominals: Strong preference for jxt; cmp also common. The con strategy employed by three binominals (e.g. COLLARBONE) uses a temporal suffix rather than a possessive prefix and is thus quite different from the possessive strategy.

13 jxt Mod Head: yy rembe [water edge] SHORE
7 cmp Mod Head: py.apê [foot.nail] TOE
4 gen 3.Mod Head: h.uvisa kunha [3.leader woman] QUEEN
3 jxt Mod Head.DIM: kavarra ra'y.i [goat son.DIM] KID
3 con Mod Head.PST: axi'y kâ.gue [shoulder bone.PST] COLLARBONE
2 der Base.DIM: kunha.i'i [woman.DIM] GIRL
1 der 3.Mod ABL.Head: h.exa re.gua [3.eye ABL.NMLZ] SPECTACLES/GLASSES

Non-anchoring different from anchoring.

1 “O prefixo relacional {r-} divide as raízes verbais e nominais em duas grandes classes morfológicas r- φ, que, no caso das raízes nominais, englobam os vocábulos inalienáveis no Mbyá. Essas classes, além de carregar informações sintáticas e morfológicas, parece apresentar alguma motivação fonológica, quando, na maioria dos casos, o alomorfe r- é unido a radicais que apresentam vogal no seu segmento inicial, e o alomorfe φ une-se a vocábulos iniciados por consoante. Contudo, a motivação fonológica parece ser parcial, pois enquanto vocábulos, como akã ‘galho’, são prefixados com o alomorfe r-, outros como o seu homônimo -akã ‘cabeçã’ é unido ao alomorfe φ.

Esses prefixos ocorrem em construções possessivas identificando o elemento possuído, sempre que o possuidor, que pode ser tanto um pronome clítico quanto um nominal, vier imediatamente expresso na locução” (Martins 2003: 38-39).
(Uto-Aztecan) Southern Uto-Aztecan

Yaqui (YAQ): 92W / 20B / 6C ► jxt:15 cmp:3 der:2

Possessives: gen and jxt strategies “A noun that becomes a genitive through Relativization takes on Dependency marking… Dependency marking is also present in genitive constructions that refer to inalienable possessions (b)” (Lindenfeld 1973: 55-56,79).

(a) peo.ta ačai [Peter.DEP father] ‘Peter’s father’
 itom pare.ta kar [our priest.DEP house] ‘our priest’s house’
 Maria.ta sewa.m [Mary.DEP sewa.PL] ‘Mary’s flowers’
(b) in ačai.ta čonim [my father.DEP hair] ‘my father’s hair’

“Il existe plusieurs restrictions à l’usage du suffixe -ta comme marqueur génitif. La première renvoie à la relation entre les deux nominaux qui doit être une relation de possession. Toute autre relation (holonymie, hyponymie par exemple) utilise d’autres ressources… Les autres contraintes sont liées aux caractéristiques du possesseur: ce doit être un possesseur animé et singulier. En effet, à nouveau, si le possesseur est au pluriel, le suffixe –ta ne peut apparaître et il en va de même s’il renvoie à une entité inanimée”1 (Fernández & Gonzalez 2008: 76).

tótoi.ta kába.m [chicken.DEP egg.PL] ‘the chicken’s eggs’

tótoi.m kába.m [chicken.PL egg.PL] ‘the chickens’ eggs’

puéta yábem [door key] ‘the key of the door’

Binominals: Strong preference for jxt; cmp also common.

12 jxt Mod Head: yeka wojo’oria [nose hole] NOSTRIL
3 cmp Mod.Head: pipím.koba [breast.head] NIPPLE OR TEAT
2 jxt DIM Base: ili jamut [DIM woman] GIRL
1 der Base.LOC: sisí’iwoo.chi [iron.LOC] TOOL
1 der Base.POSS.LIG.NMLZ: jo’a.ak.a.me [home.POSS.LE.NMLZ] HOST
1 jxt Mod Head.APPL: mam betala.riam [hand plain.APPL] PALM OF HAND

► Non-anchoring partly identical to anchoring.

1 /There are several restrictions on using the -ta suffix as genitive marker. The first concerns the relationship between the two nominals which must be a possession relation. Any other relationship (e.g. holonymy, hyponymy) uses other resources… The other constraints are related to the characteristics of the possessor: it must be animate and singular… if the possessor is plural, the suffix -ta cannot appear and likewise if it refers to an inanimate entity/ (my translation).
Appendix D. Strategies and constructions

South America

Araucanian

Mapudungun (ARN): 81W / 25B / 6C ► jxt:17 cmp:4 der:3 gen:1

Possessives: prn strategy. “A complex noun phrase contains more than one noun. The relation between the nouns is either subordinative or coordinative. There are various types of subordinative complex noun phrases: possessive, partitive and genitive... The noun phrase which refers to the possessor precedes the noun phrase which indicates the possessed. A possessive pronoun which corefers to the possessor noun phrase stands in between (a)... Genitive constructions are preferred in order to refer to an object which belongs to, forms part of or is connected to something else (b)” (Smeets 2008: 133-136).

(a) *chaw ñi wenüy [father POSS3 friend] ‘father’s friend’
 *tüfa-chi kawellu ñi pilun [this-ADJZ horse POSS3 ear] ‘this horse’s ear’
 *kolü tren ñi chofer [red train POSS3 chauffeur] ‘the engine-driver of the red train’

(b) *namun mesa [leg table] ‘table-leg’
 *tüfa-chi pilun kawellu [this-ADJZ ear horse] ‘this horse ear’

Binominals: Strong preference for jxt.

<table>
<thead>
<tr>
<th>14</th>
<th>jxt</th>
<th>Head Mod: *wechoz yu [hole nose] NOSTRIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>cmp</td>
<td>Mod.Head: *tren.rgbü [train.way] RAILWAY</td>
</tr>
<tr>
<td>3</td>
<td>jxt</td>
<td>Mod Head: *malle ñawe [father’s_brother daughter] NIECE</td>
</tr>
<tr>
<td>2</td>
<td>der</td>
<td>Base.NMLZ: *ruka.fe [house.NMLZ] CARPENTER</td>
</tr>
<tr>
<td>1</td>
<td>der</td>
<td>Base.LOC: *kütral.we [fire.LOC] FIREPLACE</td>
</tr>
<tr>
<td></td>
<td>gen</td>
<td>Mod.ESS.NONF Head: *füta.nge.n zomo [husband.ESS.NONF woman] MARRIED WOMAN</td>
</tr>
</tbody>
</table>

► Non-anchoring different from anchoring. (Note: Smeets uses the term ‘genitive noun phrase’ for non-anchoring constructions.)

Arawakan

Possessives: con or prn strategy. A pronominal possessor is expressed “with a personal prefix. If one wants to specify the identity of the possessor with another noun phrase (NP), the two noun phrases are combined in the following way: NP_{POSSESSEES} NP_{POSSESSOR}... The possessed noun must be marked as possessed (a). If it can not carry a prefix, the relational noun ye’e is used (b)” (Rose 2015: 86-87; my translation).

(a) *to ta.kunara’i to koje [DET 3NH.reflection DET moon] ‘the reflection of the moon’
 *to s.jora psena ’seno [to 3F.wound DEM woman] ‘the wound of that woman’

(b) *to ma.ye’e paku ma mópern [DET 3M.RELN dog DET boy] ‘the boy’s dog’

Binominals: Strong preference for cls strategy; con, cmp and jxt also occur.
The typology and semantics of binominal lexemes

Possessives: **con** strategy. “The most common way to create a possessive form is by suffixation with -ry... a possessive form of a noun is preceded by either a pronominal prefix or a noun unit indicating the possessor... A few dozen nouns use a possessive suffix -ty instead of -ry” (Courtz 2008: 56-57). Note: The sources describe different dialects and use different orthographies based on different phonological analyses (cf. Courtz 2008: 14-16).

X aina.ry [X hand.POSS] ‘hand of X, X’s hand’
X kurijara.ry [X boat.POSS] ‘boat of X, X’s boat’
X py.ty [X wife.POSS] ‘wife of X, X’s wife’

Binominals: **con** and **jxt** strategies are both common.

Galibi Carib (CAR): 65W / 20B / 7C ► jxt:6 con:6 der:4 cmp:2 gen:1 dbl:1

Possessives:

- **jxt** strategy.

X aina.ry [X hand.POSS] ‘hand of X, X’s hand’
X kurijara.ry [X boat.POSS] ‘boat of X, X’s boat’
X py.ty [X wife.POSS] ‘wife of X, X’s wife’

Binominals: **con** and **jxt** strategies are both common.

Chibchan

Cabécar (CJP): 81W / 33B / 2C ► jxt:26 con:7

Possessives:

- **jxt** strategy. “The possessive noun phrase is formed by juxtaposition of possessor and possessed in that order. The possessor phrase can be formed by a noun or a pronoun and can itself be complex, e.g. a possessive noun phrase... Cabécar does not structurally distinguish between different kinds of possessive relations, juxtaposition being the only structural means to indicate a possessive relationship in the nominal domain. The
possessive construction can be lexicalized resulting in a compound…” (Verhoeven 2012: 165-166).

José mǐ̀n̄g [José mother] ‘José’s mother’
ju kò [house door] ‘door (of the house)’

Binominals: Strong preference for **jxt**.

26 **jxt** Mod Head: kòbáékã̀ ŋg [train road] RAILWAY
7 **con** Mod Head.SPEC: kukâ ŋjí [ear excrement:SPEC] EARWAX

► Non-anchoring identical to anchoring.

Harakmbut

Harakmbut (AMR): 76W / 28B / 27C ► **cmp:**17 **cls:**4 **gen:**3 **jxt:**2 **der:**2

Possessives: **gen** strategy. “In Harakmbut the syntactic relation of attributive possession is reflected by dependent marking: (pro)nouns denoting the possessor are marked for genitive case; the possessum is unmarked... The order is that of possessor – possessum. Free and bound nouns show distinct morphosyntactic behaviour. Free possessed nouns, like nã̊ŋ in (a), use the pattern in which the possessor and possessum form two distinct phonological words; stressed syllable nuclei are underlined. Bound possessed nouns have two patterns at their disposal: (i) the default pattern shared with free nouns (b), and (ii) a pattern exclusively available to bound nouns (e)” (Van linden forthc).

(a) ndoʔ.edn nã̊ŋ [1SG.GEN mother] ‘my mother’
(b) ndoʔ.edn wa.nda.po [1SG.GEN NMLZ.CLF(fruit).CLF(round)] ‘my belly’
(c) arakmbut-edn-ndik [people-GEN-name] ‘native word’ (‘name of the people’)

Binominals: Overwhelming preference for **cmp**. Constructions do not distinguish between independent and bound nouns, and consequently the NPOS prefix is disregarded. (Note that this prefix also functions as a nominalizer and is consequently glossed NMLZ in Van linden 2019.) **cls** is only used for binominals in which the head is denoted by a classifier on its own. When this occurs together with a spatial linker, the resulting “in between” word is classified as **cls**; otherwise such linkers give rise to binominals of type **gen** rather than **prp** because they are not independent forms.

18 **cmp** Mod.Head: wã̊ ‘ð.ó.wê [NPOS.nose.liquid] NOSTRIL
2 **cls** Base.CLF: sërã̊.po [honey.CLF(round)] BEE
2 **der** Base.DIM: wettoné.sipo [woman.DIM] GIRL
2 **cls** Base.SPAT.CLF: wa.kmbere.ku.to.pa
[NPOS.forehead.CLF(edge?).SPAT(down).CLF(ROD)] EYEBROW
2 **gen** Mod.SPAT.Head: wa.mba’ta’.meh(po)
[NPOS.hand.SPAT(base).hump.CLF(round)] WRIST
1 **cmp** Head.LOC.Mod: nö.pö.te.menoe [vital_centre.CLF(round).LOC.day] MIDDAY
1 **gen** Mod.GEN Head: amiko.en kutamah [foreigner.GEN bag] BACKPACK

► Non-anchoring mostly different from anchoring.
Huitotoan

Murui Huitoto (HUU): 48W / 18B / 4C ➤ cls:11 jxt:4 con:3

Possessives: *jxt* and *prn* strategies. “Murui lacks the distinction between alienable and inalienable possession. The most frequent marking of possession involves a simple juxta-position of words within the NP that requires the Possessor (R) - Possessed (D) order (a)... Verbless possessive constructions involve the R (and, often, the D) followed by the connective *ie* that refers to the R anaphorically (b)” (Wojtylak 2017: 240).

(a) *lusio yoe.fai* [Lucio metal.CLF] ‘Lucio’s machete’
 maria inti [Maria husband] ‘Maria’s husband’
 konago oma.kai [lizard tail.CLF] ‘the tail of the lizard’

(b) *[moo ie] jafai.ki* [father CON breath.CLF] ‘father’s spirit (belonging to the father)’

Binominals: *Strong preference for cls.*

<table>
<thead>
<tr>
<th>Position</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>cls</td>
<td>Base.CLF: defo [nose:CLF(cavity)] NOSTRIL</td>
</tr>
<tr>
<td>4</td>
<td>jxt</td>
<td>Mod Head: iye fuue [river mouth/edge] SHORE</td>
</tr>
<tr>
<td>3</td>
<td>con</td>
<td>Base ANA.CLF: jefo i.goї [ear:CLF(cavity) ANA.CLF(leather)] EARLOBE</td>
</tr>
<tr>
<td>1</td>
<td>cls</td>
<td>Base.CLF.CLF: taizї.ko.ño [heel.CLF(cover).CLF(FEM)] ANKLE</td>
</tr>
</tbody>
</table>

► Non-anchoring mostly different from anchoring.

Matacoan

Wichi (MZH): 82W / 36B / 9C ➤ jxt:17 cmp:9 der:9 con:1

Possessives: *jxt* strategy. “La relación poseedor-poseído también puede expresarse mediante la yuxtaposición de dos sustantivos, y el núcleo de la construcción posesiva está siempre a la derecha de la frase” (Nercesian 2014: 162).¹

atsinha w’et [woman house] ‘the woman’s house’

Binominals: *Preference for jxt; cmp also common.*

<table>
<thead>
<tr>
<th>Position</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>jxt</td>
<td>INAL.Mod Head: to.ch’ute’ lhits’i [INAL.ear wax] EARWAX</td>
</tr>
<tr>
<td>8</td>
<td>jxt</td>
<td>Mod Head: tewuk lhîp [river part] SHORE</td>
</tr>
<tr>
<td>5</td>
<td>cmp</td>
<td>INAL.Mod.Head: tot.kwe.wu [INAL.hand.neck] WRIST</td>
</tr>
<tr>
<td>4</td>
<td>cmp</td>
<td>Mod.Head: sij.lhîle [side.bone] RIB</td>
</tr>
<tr>
<td>4</td>
<td>der</td>
<td>INAL.Base.LOC: to.nhes.pe’ [INAL.nose.LOC] NOSTRIL</td>
</tr>
<tr>
<td>2</td>
<td>der</td>
<td>Base.AGT: sapatu.wu [shoe.AGT] SHOEMAKER</td>
</tr>
<tr>
<td>2</td>
<td>der</td>
<td>Base.LOC: y’amekw.hi [excrement.LOC] TOILET</td>
</tr>
<tr>
<td>1</td>
<td>der</td>
<td>INAL.Base.AGT: to.lhokwe.wu [INAL.container.AGT] POTTER</td>
</tr>
<tr>
<td>1</td>
<td>con</td>
<td>Mod Head.LOC: hep lhetek.ch’u [hut head.LOC] THATCH</td>
</tr>
</tbody>
</table>

► Non-anchoring partly identical to anchoring.

¹/The possessor-possessed relationship can also be expressed through the juxtaposition of two nouns, and the head of the possessive construction is always to the right of the phrase/ (my translation).
Nadahup

Hupdë (JUP): 61W / 28B / 3C ► jxt:17 cmp:11

Possessives: jxt and prp strategies. “Most Hup nouns are non-inherently (i.e., non-obligatorily) possessed… For nouns of this type, their possession by another entity requires an additional morphological indicator of the possessive relationship, defining the relationship as alienable… In contrast, an inalienable relationship is indicated by the simple juxtaposition of possessor and possessed” (Epps 2008: 224-237).

pedú nih cug’èt [Pedro POSS book] ‘Pedro’s book’ [alienable]
tādây.rip [woman.father] ‘the woman’s father’ [inalienable]

Binominals: Preference for jxt; cmp also common.

17 jxt Mod Head: *toj mőy* [nose hole/house] NOSTRIL
10 cmp Mod.Head: *yɔʔm.ʔih* [power.male] CHIEFTAIN
1 cmp Head.Mod: *tɔp.g’at* [house.leaf] THATCH

► Non-anchoring partly identical to anchoring. The binominal strategy is the same as that for inalienable nouns.

(Quechuan) Quechua II

Imbabura Quechua (ovi): 71W / 18B / 2C ► jxt:18

Possessives: gen strategy. “The possessor is marked by the morpheme -paj, also used for benefactives… There is no marking for possessed nominals in IQ. The possessive suffixes found in non-northern Quechua have been lost in Ecuador” (Cole 1985: 115).

Juzi. paj warmi [José.POSS wife] ‘José’s wife’
chay runa.paj jatun llama [that man.POSS big sheep] ‘that man’s big sheep’ (p.76)

Binominals: jxt strategy only.

17 jxt Mod Head: *singa utuju* [nose hole] NOSTRIL
1 jxt Head Mod: *chaupi puncha* [half day] MIDDAY

► Non-anchoring different from anchoring.

Ticuna-Yuri

Ticuna (TCA): 73W / 20B / 5C ► cmp:17 gen:3

Possessives: gen, cmp and prp strategies. The usual structures are Mod.GEN Head (“if the possesum is a full independent noun”) (a), Mod.Head (“if the possesum is a bound noun”) (b) or Head CON Mod.GEN (“especially if the possessor is a long, complex NP”) (c) (Denis Bertet, p.c.).

(a) *yqr̵.ər̵ yqr̵á* [tamarin.GEN master] ‘the master of the tamarin monkeys’
(b) *kör̵-gá* [white_person-language] ‘Spanish’
(c) *yqr̵á vá yqr̵.ər̵* [master CON tamarin.GEN] ‘the master of the tamarin monkeys’
Binominals: Strong preference for cmp. Some (bound) nouns are obligatorily possessed and prefixed with ná- (Anderson 1962: 23-24):

12 cmp UNPOSS.Head.Mod. ná.‘mā.rāũ [UNPOSS.hole.nose] NOSTRIL
5 cmp Mod.Head: pāwū.chiāũ [spider.web] SPIDER WEB
1 gen UNPOSS.Head.Gen. nā.‘mā̄. rāũ [UNPOSS.roof palm_species.Gen] THATCH

► Non-anchoring partly identical to anchoring.

Pidgins/Creoles

(Pidgins & Creoles) English-based

Saramaccan (SRM): 65W / 32B / 4C ► cmp:25 jxt:4 der:2 prp:1

Possessives: jxt and prp strategies, which tendentially represent an alienability distinction (McWhorter & Good 2012: 80-82).

Djéfi m’má [Jeff Mom] ‘Jeff’s Mom’
dāgu mamá [dog mother] ‘dog’s mother’
di kskụ̃̄ni fūtu [DEF rabbit foot] ‘the rabbit’s foot’
di táfa u Rohit [DEF table POSS Rohit] ‘Rohit’s table’

Binominals: Overwhelming preference for cmp.

25 cmp Mod.Head: nũsú.bāaku [nose.hole] NOSTRIL
4 jxt Mod Head: talán fūtu [train foot] RAILWAY
2 der Base.Agt: koósu.ma [skirt.Agt] GIRL
1 prp Head PREP Mod. fṇ̃g̣̃a u fūtu [finger of foot] TOE

► Non-anchoring mostly different from anchoring.

(Pidgins & Creoles) French-based

Seychelles Creole (CRS): 107W / 21B / 1C ► jxt:21

Possessives: jxt strategy. “Le SN ou N déterminatif correspond aux divers compléments de détermination qui, en français, se joignent au nom à l’aide d’une préposition, surtout à ou de (qui, tous les deux, ne subsistent pas en créole), et, comme en français, ils indiquent des rapports très variés entre le nom principal et le nom déterminatif, p.ex… possession”¹ (Bollée 1977: 46).

¹/The determinative NP or N corresponds to the various complements of determination which, in French, are joined to the noun by means of a preposition, especially à or de (neither of which remain
lerwa zās Zwif [king people Jews] ‘the king of the Jews’
zistwar Sesel [history Seychelles] ‘the history of the Seychelles’
lagel sa sak [mouth his bag] ‘the opening of his bag’

Binominals: jxt strategy only.

21 jxt Head Mod: trou nenner [hole nose] NOSTRIL

► Non-anchoring identical to anchoring.
E. Binominal data set

This appendix lists every binominal lexeme in the database, along with its gloss and meaning, ordered (for ease of comparison with Appendix D) by area, genus and language. Within each language constructions are ordered alphabetically. Glosses are as given by the contributor, with minor adjustments for consistency and in order to accord with the Leipzig Glossing Rules (Comrie, Haspelmath & Bickel 2015).

Afric

(Afro-Asiatic) Berber

Tarifit (75): 96W / 18B / 4C

Head Mod (1)
fr•nu manu [brake hand] HAND BRAKE

Head Mod:CON (3)
tabh•’us t u•m•ż•zun [ring] EARRLOBE

tis• u•fus [bottom hand] PALM OF HAND
ta•q•q•a u•fus [palm] PALM OF HAND

Head PREP Mod:CON (13)
q••p•n•’ ع q•w•s•r•’u [bag] BACKPACK
t•rah•’us t u•m•ż•zun [ring] EARRLOBE

ti•f•n•’ u t•t’ [back of eye] EYELID

tad••nt n wâj [ring of gold] GOLD RING
azyn n mihâ [middle of day] MIDDAY

tis• u•fus [bottom of hand] PALM OF HAND
ta•q•q•a u•fus [palm of hand] PALM OF HAND
abrid n ma••ina [road of train] RAILWAY

ta•r•t•f n woz•’ [bride of rain] RAINBOW
iq••n•’ l•t•n woz•’ u [bride of stone] STONE BRIDGE
ri•y•d•’ n bit••na [paper of toilet] TOILET PAPER

Head 3SG PREP Mod:CON (1)
diy•q••s n umu [daughter] NIECE

(Afro-Asiatic) Chadic

Barain (9): 57W / 21B / 7C

Head Mod (1)
peesi mee [horse woman] MARE

Head Prep Mod:POSS (2)
golmo b•j•l•t [house] TOILET

Head Prep Mod (2)
moos•t•s• p•ye [cow] DAIRY COW
løoø• l•da •l•tø •t• [dirt] EARWAX

Head Rel Mod:POSS (1)
mee• de mer •getti [women] MARRIED WOMAN

Head Rel Prep Mod (7)
ti• de • bøøø• [eat:INF REL:SG:F PREP morning] BREAKFAST

ti• de • bøøø• [eat:INF REL:SG:F PREP night] DINNER

Hausa (33): 100W / 43B / 4C

Base ABST (1)
måti ta [sorcerer] MAGIC

Base (1)
sârì•u nìyya [king] QUEEN

Head LK Mod (40)
kâ•d••n zâ•mâ [wax] BEEF

døø•k•n kâ•f•øø [horse.LK metal] BICYCLE

dø•h•n hâ••n [thing] BRACELET

dø••h•n kâ•ø•a•u•d• [bone] SHOULDER COLLABONE

abî•c•n dâ•øe [meal] LUNCH

ecc•øø •kø•øø [wood] DOORPOST

fï•a•ø F könøø [skin] EARRLOBE

yâ•ø n künøøø [children] EAR EARRING

dû••ø r künøøø [dirty] EAR EARRING

gâ••øø •døø [hair] EYELASH

fï•a•ø r døøø [skin] EYELID

hâ••øøø n wï•ß•øø [tongue] FLAME

bi•ri•n hâ•øø [brake] HAND BRAKE

jø•dü•ø hâ•øø [bag] HAND BAG

dâ•n ø•kwï•øø [son] KID

yâ•rø ø•kwï•øø [daughter] KID

yâ•øø tûøøøøø [daughter] EWE

lâbâ•ø mûøøøøø [number] LICENSE PLATE

abî•c•n rûøøøøø [meal] LUNCH

æk•w•øø •n wâ•ksi•i•øø [box] MAIL BOX

yâ•øø wüøø [daughter.LK elder_brother] NIECE

bâd•øø mûøøøøø [mouth] BREAST
The typology and semantics of binominal lexemes

Head Mod (1) tualo barra [middle day] MIDDAY

Mod.ADJ Head (1) k’ar-name k’ale [sharp blade] ADJZ wheel PADDLE WHEEL

Mod.GEN Head (20) k’oon g’aabbigjo [artic:GEN light] ARTIC LIGHTS budde.te.jogoro [back:GEN sack] BACKPACK
biskilleette.te.boora [bicycle:GEN pump] BICYCLE PUMP
mata’i.k’oon [ear:GEN ??] EARLOBE
k’ul’u/nu.lauyo [fish:GEN line] FISHING LINE
work’e.te.gai.ʧʧ [gold:GEN ring] GOLD RING
langa.te.firene [hand:GEN brake] HAND BRAKE
‘ag.ʧʧu’a.mine [medicine:GEN house] HOSPITAL
barr.u.sagale [day:GEN food] LUNCH
sano.te.giddo [nose:GEN inside] NOSTRIL
baabur.u.dooqo [train:GEN road] ROAD
magan.i.semo [God:GEN virgin] RAINBOW
‘um.u.k’oon [head:GEN calabash] SKULL
k’issane.te.mine [spider:GEN house] SPIDER WEB
lekk’a.te.ʧʧu[foot:GEN finger] GUT RING
dee’n.mine [excrement:GEN house] TOILET
juma.te.dar [urine:GEN leaf] TOILET PAPER
‘uđuunn.u.saat’ine [things:GEN box] TOOLBOX
waa.i.buufa [water:GEN pump] WATER PUMP
ʧʧigile.te.mikit [elbow:GEN joint] WRIST

Somali (84): 95W / 19B / 8C

Base F (2) bogor.ad [king:F] QUEEN
sauxir.ad [wizard:F] SORCERER OR WITCH

Base.OWN (1) dberi.yoo.ley [pot:PL.OWN] POTTER

Head Mod (3) lafadax [bone:head] SKULL
xaub.cauro [sloughed_snakeskin:spider] SPIDER WEB
laf.dhabar [bone:back] SPINE

Head Mod:GEN (5) shundad.dhabar [bag:back:GEN] BACKPACK
guri.shinni [house:GEN] BEEHIVE
bam.bauksiil [pump:bicycle:GEN] BICYCLE PUMP
sanduqu.boosto [box:mail:GEN] MAIL BOX
sanduqu.qalab [box:tool:GEN] TOOLBOX

Head.DEF Mod.DEF (4) bam.ku.bauksiil.ku [pump:DEF bicycle.DEF] BICYCLE PUMP
deequa.na.roo.ku [arch:DEF rain:DEF] RAINBOW
gun.ta.geed.ku [base.DEF tree.DEF] TREE TRUNK
bam.ku.biyo.ha [pump:DEF water.DEF] WATER PUMP

Head.DEF Mod.Gen (2) ilays.qulbihu.wa firepower [light pole.DEF:north:GEN] ARCTIC LIGHTS
dalka.hooyo [land:DEF mother:GEN] NATIVE COUNTRY

Mod Head (1) beer.a.ley [farm:PL.OWNER:PL] FARMER

Mod.DEF Head.POSS (1) geed.ku.gun.tiisa [tree:DEF base.POSS] TREE TRUNK

(Afro-Asiatic) Semitic

Akkadian (1): 61W / 19B / 2C

Head:STC Mod.GEN (18) kisib.disp.im [hukus:STC honey:GEN] BEESWAX
naptan.shir.im [meal:STC moring:GEN] BREAKFAST
naptan.lilat.im [meal:STC night:GEN] DINNER
šur.in.im [[?:STC eye:GEN] EYEBROW
kuppi.in.im [wing:GEN eye:GEN] EYELASH
mar.ikkar.im [son:STC farmer:GEN] FARMER
bēl.bit.im [proprietor:STC house:GEN] HOST
naptan.musali.im [meal:STC midday:GEN] LUNCH
bēl.misr.im [proprietor:STC border:GEN] NEIGHBOUR
mārat.ah.im [daughter:STC brother:GEN] NIECE
piš.piš.app.im [hole:STC nose:GEN] NOSE
sikkat.sēl.im [peg:STC rib:GEN] RIB
ēpiš.šēni.im [maker:STC shoes:OBL] SHOEMAKER
gē.ettil.im [tread:STC spider:GEN] SPIDER WEB
bit.sī.sī [house:STC horses:OBL] STABLE OR STALL
naptan.mūll.im [meal:STC night:GEN] SUPPER
ubān.sēp[foot:GEN feet:GEN] TOE
sīṣī.rim.im [joint:STC hand:GEN] WRIST

Head:STC Mod.OBL (1) bit.bābīb.āti [house:STC bees:OBL] BEEHIVE

Amharic (2): 100W / 47B / 3C

GEN.Mod Head (37) ye.ārītikī mebirat.oč [GEN:artic light:PL] ARCTIC LIGHTS
ye.jeřiba.borisa [GEN:back bag] BACKPACK
ye.nibi.k’efo [GEN:bee nest] BEEHIVE
ye.nibi.senī [GEN:beer wax] BEEPSWAX
ye.bisīkelīt.menīfa [GEN:beehive] BICYCLE PUMP
ye.weteti.lani [GEN:milk cow] DARY COW
ye.beru.mek’āni [GEN:door post] DOORPOST
ye.joro.gēli [GEN:car jewelry] EARRING
ye.joro.senī [GEN:car wax] EARWAX
ye.ajinī.shīfān [GEN:eye lid] EYELID
ye.‘igīrī.āshā [GEN:foot print] FOOTPRINT
ye.werīk’i.eleheti [GEN:gold ring] GOLD RING
ye.‘ijī.fīren [GEN:hand brake] HAND BRAKE
ye.‘ijī.borisa [GEN:hand bag] HANDBAG
ye.possta.sāt’īnī [GEN:post box] MAIL BOX
ye.setī.feres [GEN:female horse] MARE
ye.wendim.līj [GEN:brother child] NIECE
ye.t’ātū.č attent [GEN:breast tip] NIPPLE OR TEAT
ye.‘āfinūk’a.k’edada [GEN:nose hole] NOSTRIL
ye.lij.medāf [GEN:hand palm] PALM OF HAND
ye.baburī.bāddī [GEN:train way] RAILWAY
ye.godīnī.a’tīnī [GEN:rib bone] RIB
ye.bahīrī.darīchs [GEN:sea edge] SHORE
ye.tīkeshā.a’tīnī [GEN:shoulder bone] SHOULDERS
ye.rāsī.k’lī [GEN:head skull] SKULL
ye.dešīgo.čiičii [GEN:breast bone] STONE BRIDGE
ye.sar.kidāni [GEN:glass lid] THATCH
ye.‘igīrī.t’s’ū [GEN:foot finger] TOE
ye.shinnīt.bētī.wērek’ēti [GEN:urine_house paper] TOILET PAPER
ye.nesārva.sāt’īnī [GEN:tool box] TOOLBOX
ye.l’irisī.birashī [GEN:tooth brush] TOOTHPASTE
ye.zafī.gināt [GEN:tree trunk] TREE TRUNK
ye.deṃī.bwamābwa [GEN:blood pipe] VEIN OR ARTERY
ye.weyinī.tekāli [GEN:plant vine] VINE
ye.nifasi.wēf’o’o [GEN:wind mill] WINDMILL
ye.‘ījī.āngwa [GEN:hand joint] WRIST
ye.‘in’k’ulāti.ąskwāli [GEN:egg yolk] YOLK

Head Mod (1) ikud.č’enti [half day] MIDDAY

Mod Head (9) migībī.bēti [food house] COOKHOUSE
sēti.lījī [female child] GIRL
hukim.bet [doctor:house] HOSPITAL
k’ililī.k’al [key word] KEYWORD
shekāla.č’ēri [pottery maker] POTTER
ch’amā.č’ēri [shoe maker] SHOEMAKER
shērētī‘i.dīrī [spider:WEB] SPIDER WEB
shinnīt.bēiti [urine house] TOILET
wiha.menīfā [water pump] WATER PUMP
Head Mod (39)

kiwiko cha mgua [wrist CON foot] ANKLE
kiendo cha mgua [joint foot] ANKLE
miali ya kaskazini ya dania [fames CON north:LOC CON
world] ARCTIC LIGHTS
pampa ya baisikeli [pump CON bicycle] BICYCLE PUMP
mnanchi wa chuma [smith CON iron] BLACKSMITH
chakula cha asubatu [food CON morning] BREAKFAST
ng’ombe wa maziwa [cow CON milk] DAIRY COW
chakula cha jion [food CON evening] DINNER
nhimili wa mlanga [support CON door] DOORPOST
nta ya sikio [wax CON ear] EARWAX
uchafa wa sikio [dirt CON ear] EARWAX
ugwe wa kaulava [line CON fishing:APPL] FISHING LINE
ulimi wa moto [tongue CON fire] FLAME
pete ya dhahabu [ring CON gold] GOLD RING
breki ya mkono [brake CON hand] HAND BRAKE
bamba la namba ya gari [plate CON number CON car] LI-
CENSE PLATE
chakula cha mehana [food CON daytime] LUNCH
sanduku la buruu [box CON mail] MAIL BOX
kundī la nyota [group CON star] MILKY WAY
tundu la pua [hole CON nose] NOSTRIL
mwanzĩ wa pua [bamboo CON nose] NOSTRIL
kadi ya posta [card CON post] POSTCARD
upinde wa mvua [bow CON rain] RAINBOW
kombe la mbega [shell CON shoulder] SHOULDERS
fuu la kichwa [shell CON head] SKULL
bupuru la kichwa [shell CON head] SKULL
utando wa babu [web CON spider] SPIDER WEB
uiti wa mgongo [trunk CON back] SPINE
daraja la mawe [bridge CON stones] STONE BRIDGE
chakula cha asiku [food CON night] SUPPER
kidelane cha gumba [finger CON thumb/big toe] THUMB
kidele cha mgua [finger CON foot] TOE
karatasi ya chooni [paper CON toilet] TOILET PAPER
sanduku la vyombo [box CON tools] TOOLBOX
gari la moshi [car CON smoke] TRANCE
mslipa wa damu [vessel CON blood] VEIN OR ARTERY
pampa ya maji [pump CON water] WATER PUMP
kiwiko cha mkono [wrist CON arm] WRIST
kiini cha vai [core CON egg] YOLK

Head Mod (8)
mwana.farasi [offspring.horse] FOAL OR COLT
dalili mgua [sign foot] FOOTPRINT
mwenyewe [owner.town] HOST
nen.o.ufungano [word.key] KEYWORD
mwana.mbu [offspring-goat] KID
mwana.kondon [offspring-sheep] LAMB
guruduma kaf [wheel paddle] PADDLE WHEEL
kufu.upendo [mill:wind] WINDMILL

Mod Head (1)

jua kati [sun middle] MIDDAY

Wawa (98): 27W / 13B / 3C

Head Mod (3)
mun sombar [child man] BOY
mun nugwech [child woman] GIRL
dajji nugwek [horse woman] MARE

Head Mod:POSS,ASS (9)

erd giri.ɔ [eye foot.POSS,ASS] ANKLE
jak sony.ɔ [house bee.POSS,ASS] BEEHIVE
jag ndab.ɔ [house food.POSS,ASS] COOKHOUSE
nadh b.ɔa.ɔ [fufu ear:LOC,ASS] EARWAX
lemnwl w.ɔo.ɔ [tongue fire.POSS,ASS] FLAME
mun dyer.ɔ [child goat.POSS,ASS] KID
mun tambon.ɔ [child sheep.POSS,ASS] LAMB
katfar nam.ɔ [finger mother.POSS,ASS] THUMB
dyur dyem.ɔ [road blood.POSS,ASS] VEIN OR ARTERY

Mod Head (1)
sangai t’ing’o [sun middle] MIDDAY

(Atlantic-Congo) Gur

Baa (53): 91W / 53B / 6C

Head Mod (34)
g’z! náivi [room.bee] BEEHIVE
rímát.náivi [PL:beam.bee] BEESEWAX
binh!né [horse:iron] BICYCLE
ninák!b!isimnhé [pump.bicycle] BICYCLE PUMP
vá.mvál [child/small:man] BOY
ningá.kákó [food.morning] BREAKFAST
pá.krá [mouth:road] DOORPOST
pá.ní:vi [mouth:ear] EARlobe
rímát.ní:vi [PL:wax:ear] EARWAX
bél.ní [skin:eye] EYELID
g.b!lí:ni [rope:hook] FISHING LINE
dén.1₃ [tongue:fire] FLAME
kpó.nák!wén [piece.clothes] HANDKERCHIEF OR RAG
gbán.kó [hole:medicine] HOSPITAL
vá.mjí:ba [child:goat] KID
ngó.njí:ba [food:evening] SUPPER
vítá.jávi [place?:stomach] TOILET
v’ú.ríjí [bag:PL:thing] TOOLBOX
kí.sá [tree:outside] TRAIN
dbý.kí [?.tree] TREE TRUNK
g’é.jángá [day Yanga] WEDNESDAY
ninwá.jén [man:death] WIDOWER
Un.pí:ni [inside?:egg] YOLK

Head Mod:POSS (11)
kukú.nívi [bone:foot] ANKLE
vúú.nívi [bag:back] BACKPACK
kukú.nívi [bone:throat] COLLARBONE
pén.nívi [mark:eye] EYEBROW
són.nívi [hair:eye] EYELASH
lák [land:father] NATIVE COUNTRY
pá.jívi [mouth:milk] NIPPLE OR TEAT
ná.nívi [?:arm] PALM OF HAND
kukú.njívi [bone:back] SPINE
ná.nívi [eye:leg] TOE
kí.nívi [?:arm] WRIST

Head:GEN:MOD (4)
dékín.dávi [owl:GEN:male] COCK:ROOSTER
mbín.ánárt [ox:GEN:female] DARW COW
vá.lyin [child/small:GEN:horse] FOAL OR COLT
ríná:ná:t [horse:GEN:female] MARE

Head:GEN:MOD (1)
gò.3.3p.kòkí [? GEN:shoulder] SHOULDERBLADE

Head:GEN:MOD (2)
lí:ráyí [ring:GEN:gold] GOLD RING
ná.t.kún [woman:GEN:king] QUEEN

Head:GEN:MOD (1)
vá.kúmí [child:GEN:brother] NIECE

448 Draft. Please do not cite. Comments to: pepper.steve@gmail.com. 2020-04-25
Appendix E. Binominal data set

Chakali (14): 51W / 25B / 5C
Base.AGT (1)
nádau.koɔr [shoe.make] SHOEMAKER
Base.F (2)
ná.nu [cow:F:ADLT] DAIRY COW
pe.lor [sheep:F:YANG] LAMB
Base.M (2)
zim.bal [fowl:M:ADLT] COCK/ROOSTER
bómb.beleer [goat:M:YANG] KID
Head Mod (3)
bí.na cols [child.man] BOY
bí.nu+dáy [child.woman] GIRL
neb.kyankwaw [finger.??] THUMB
Head Mod (17)
náa.tjog [leg.joint?] ANKLE
náa.sii [leg.eye] ANKLE
sii.kiɔ [eye.??] EYEBROW
sii.piɔ [eye.hair] EYELASH
sii.ty [eye.animal_skin] EYELID
dig.tol [fire.flame] FLAME
náa.pu [leg.fat] FOOTPRINT
u.ná [breast.mouth] NIPPLE OR TEAT
mu.bu [nose.hole] NOSTRIL
nu.epatigir [hand.stomach] PALM OF HAND
ku.dbaat [rib.cage.log.part] RIB
mog.ná [sea/big_river.mouth] SHORE
ganta.bang [back.middle] SPINE
sii.n [eye.water] TEAR
náa.bi [leg.seed] TOE
lu.bâu [funeral.man] WIDOWER
ne.fuɔg [arm.joint?] WRIST
(Atlantic-Congo) Kwa
Mamara Senoufo (61): 81W / 27B / 2C
Base.AGT (2)
kul.food [village.AGT] CHEF/TEIN
fuggan.fuɔ [witchcraft.AGT] SACRIFICER OR WITCH
Head Mod (25)
piare.ki [night.meal.CL] DINNER
niki.tummbu [iron.CL] EARING
niki.fî [ear [ear.core.CL],EARWAX
mu.fî [eye.hair.CL] EYELASH
mu.seli.r.i [eye.skin.CL] EYELID
nà.yolo [fire.??] FLAME
kêmj.koɔn [arm.mark] FOOTPRINT
kêmj.peror [hand.brake] HAND BRAKE
dà.kohpox.i [doctor.house] HOSPITAL
jomi.ce [speech.core.CL] KEYWORD
campu.fu [day.meal.CL] LUNCH
fu.coxɔ [horse.female.CL] MARE
lúla.a [marriage.woman] MARRIED WOMAN
mina.wye [nose.hole.CL] NOSTRIL
sama.c [king.woman] QUEEN
tumono.ko [iron.road.CL] RAILWAY
kil.31 [God.knife.CL] RAINBOW
pìmu.koɔ [head.back.CL] SKULL
sèrèkɔ [back.road.CL] SPINE
fukari.kace [sugar.cane.CL] SUGAR CANE
pikelu.fu [night.meal.CL] DINNER
nu.yoɔ [eye.water.CL] TEAR
sìfà.ko [blood.road.CL] VEIN OR ARTERY
yɔɔ.pombo [water.pump] WATER PUMP
kempi.karur [hand.junction] WRIST
(Atlantic-Congo) Mande
Bambara (7): 81W / 39B / 6C
Base.SUF.DIM (1)
misó.man [woman.DIM] GIRL
Head Mod (1)
cé.filyata [man widow] WIDOWER
Head.SUF (1)
bolóyënden.kin.bu [finger.head.AUG] THUMB
Mod GEN Head (1)
Ala ká miur [God GEN knife] RAINBOW
Head.(25)
sënu.k [foot.back] ANKLE
këlì mpalön [back pack] BACKPACK
dil.dën [home.son] BEE
nï̧.nâ [iron.horse] BICYCLE
külô.bu [ear.excrement] EARWAX
nì.ɔ [eye.hair] EYEBROW
nì.ɔ [eye.hair] EYELASH
nì.nolo [eye.skin] EYELID
támشراء [fire.light] FLAME
sò.dën [horse.son] FOAL OR COLT
bëlo.ni [hand.mark] FOOTPRINT
dàgòđòwò.so [doctor.house] HOSPITAL
ba.den [goat.kid] KID
sàqà.den [sheep.kid] LAMB
mobì,plakì [car.plate] LICENSE PLATE
sù.mùso [horse.woman] MARE
tëlê.càmac [sun.middle] MIDDAY
bën.dën [mother_s.parent.kid] NIECE
nù.wî [nose.hole] NOSTRIL
teki.kinmu [hand.interior] PALM OF HAND
sën.sra [train.road] RAILWAY
sâbûgù.mìsû [sorcerer.woman] SACRIFICER OR WITCH
sàkàro.kàla [sugar.stem] SUGAR CANE
pìji [eye.water] TEAR
bëlo.kàn [hand.neck] WRIST
Mod.SUF.Head (10)
bëlo.là.nâ [hand.LOC.iron] BRACELET
sù.là.fàna [night.LOC.meal] DINNER
külô.là.nâ [ear.LOC.iron] EARING
bëlo.là.fërèn [hand.LOC.brake] HAND BRAKE
bëlo.là.mëpàn [hand.LOC.bag] HANDBAG
ngle.là.fàna [day.LOC.meal] LUNCH
pì.là.dùbalen [eye.LOC.mirror] SPECTACLES/GLASSES
kù.là.sà [back.LOC.road] SPINE
sù.là.fàna [night.LOC.meal] SUPPER
jì.là.pɔmbì [water.LOC.pump] WATER PUMP
(Atlantic-Congo) North-Central Atlantic
Bandial (8): 72W / 16B / 3C
CL.Base (3)
ji.pilîy [CL.horse] FOAL OR COLT
ji.âamen [CL.goat] KID
a.yam [CL.sorcery] SACRIFICER OR WITCH
Head CON Mod (4)
(sìnà) sa këbûjòn [rice CON morning] BREAKFAST
(sìnà) sa kërusa [rice CON evening] DINNER
(sìnà) sa tìfînà [rice CON afternoon] LUNCH
(sìnà) sa kërusà [rice CON evening] SUPPER
Head Mod (9)
ji.în e.pilîy [CL.young CL.horse] FOAL OR COLT
bu.ît ko.sén [CL.back CL.hand] HANDBAG
ji.în e.яamen [CL.young CL.goat] KID
ji.în e.яamen e.mànû [CL.young CL.goat AG.mandingue] LAMB
a.peμb a.þi [CL.child CL.same_sex_sibling] NIECE
Bu.lefej ka rê [CL.palm CL.hand] PALM OF HAND
ka.læm'[CL.knife CL.god/sky] RAINBOW
ka.ul ka.band [CL.bone CL.shoulder] SHOULDERBLADE
fu.siih ka.ar [CL-digit CL.foot] TOE

Wolof (97): 64W / 17B / 2C
Head CON Mod (14)
faaj u bêj-gânna [dawn,CON north] ARCTIC LIGHTS
ndambah yamb ["pagnet", CON bee] BEEHIVE
pomp.u.welo [pump,CON bicycle] BICYCLE PUMP
xale bu goêr [child CON male] BOY
njiùt.u.xeet [chief,CON clan] CHIEFTAIN
nbhàa.u.n-bêt [hut,CON CL-eye] EYELID
gone su jìgëen [child CON girl] GIRL
laxeut u loxo [CON hand] HAND BRAKE
fas wu jìgëen [horse CON girl] MARE
goro bu jìgëen [## CON girl] MOTHER-IN-LAW (OF A MAN)
dèkk.k.oosan [country,CON origin] NATIVE COUNTRY
jarbaa bu jìgëen [nephew CON girl] NIECE
pax.u.bakkan [hole,CON nose] NOSTRIL
gëit.k.u.fas [enclosure,CON horse] STABLE OR STALL

Head Mod (3)
fükk.digg-gannaav [bag back] BACKPACK
jauro-nopp [jewelry-ear] EARRING
jauro wurus [ring gold] GOLD RING

(Nilo-Saharan) Nilotic

Datoga (89): 29W / 1B / 1C
Head.SGL.TSG Mod.SG (1)
fùvù.in.dà bùday du [thread.SGLT.SG back.SG] SPINE

Kupsabinë (51): 90W / 43B / 5C
Head PREP Mod (5)
puuòrt ñuòp yëwàu [brake for hand] HAND BRAKE
sootëuùt ñuòp pàròòpùndù [box for mail] MAIL BOX
ankauring ñuòp mëkwànnû [leaves for toilet] TOILET PAPER
sootëuùt ñuòp karënnàak [box for metals] TOOLBOX
tiùntët ñuòp yoomëet [machine for air] WINDMILL

Head REL Mod (2)
loolët nyëè cëëkkàënej [bag REL.SG back] BACKPACK
mûrûn nyëè musûk [man REL.SG part] WIDOWER

Head.POSS Mod (34)
koowëë.t.aap nywoonyoo [bone.POSS ankle] ANKLE
taariënke.t.aatìc [lamps.POSS Arctic] ARCTIC LIGHTS
mwaayt.aap skaamûuk [oil.POSS bees] BEESWAX
paampuut.aap poosikilí [pump,POSS bicycle] BICYCLE PUMP
ämik.aap kërûûn [food.POSS morning] BREAKFAST
koowëë.t.aap kaat [bone.POSS neck] COLLARBONE
itét.aap këreet [cow.POSS DOWRY] DAIRY COW
ämik.aap kàësëlnû [food.POSS evening] DINNER
kit.aap yêitì [thing.POSS ear] EAR RING
mwaayt.aap yìitì [oil.POSS ear] EARWAX
puûtëë.t.aap koonta [hairs.POSS eye] EYEBROW
puûtoeyoontëë.t.aap koontà [hair,POSS eye] EYELASH
peýt.aap koonta [meat,POSS eye] EYELID
reepenintëë.t.aap purpëenëë [fisherman,POSS fish] FISHERMAN
lëëkkëë.t.aap faraussiit [child.POSS horse] FOAL OR COLT
peluùyooet.aap kereenkëët [sign,POSS leg] FOOTPRINT
kamoomooloteet.aap koootìt [ring,POSS gold] GOLD RING
tauampaarit.aap yeewuut [rag,POSS hand] HANDKERCHIEF OR RAG
lëëkkëë.t.aap këëcìrëë.t.aap [child.POSS sheep] LAMB
ämik.aap per [food.POSS day] LUNCH
ceexpit.aap sìkìryo [girl/daughter.POSS donkey] MARE
ceepyeoosyeet.aap ñìpp.ooy [woman.POSS people.distant_place] MOTHER-IN-LAW (OF A MAN)
lëëkkëë.t.aap lëëkkëë.t.aap [child.POSS child] NIECE

Kootëet.aap kiiuntuût [mouth.POSS breast] NIPPLE OR TEAT
areet.aap karïttùuù [road.POSS train] RAILWAY
fuuntìiit.aap këwëëyûk [carpenter.POSS shoe,PL:DEF] SHOE-MAKER
kôôt.aap ntoroomøyøt [house.POSS spider] SPIDER WEB
rooteet.aap pàtøu [spine.POSS back] SPINE
kôôt.aap sìkìryøt [house.POSS donkey] STABLE OR STALL
ämik.aap komìì [food.POSS night] SUPPER
mooreent.aap karëenëet [finger,POSS leg] TOE
paampuut.aap peeko [pump.POSS water] WATER PUMP

Mod REL Head (1)
rwaanteet.aap taraca [stone.POSS bridge] STONE BRIDGE

(Nilo-Saharan) Saharan

Kanuri (49): 83W / 39B / 7C
Base.AGT (6)
kâyû.mà [anvil,OWN] BLACKSMITH
bârê.mà [farming,OWN] FARMER
bôñìy.mà [fish,OWN] FISHERMAN
njê.mà [pot,OWN] POTTER
kôàlì.mà [shoemaking,OWN] SHOEMAKER
kàrà.mà [witchcraft,OWN] SORCERER OR WITCH

Base.LOC (5)
mûsûkù [hand,LOC] BRACELET
kànnù.ràm [fire,LOC] COOKHOUSE
seмо.ràm [ear,LOC] EARRING
liìtù [doctor,LOC] HOSPITAL
kàñù.ràm [spinal,LOC] SPINE

Base.NMLZ (1)
kàñù.mà [honey,NMLZ] BEESWAX

Head Mod (1)
kûlì.kàñù.mà [insect, honey] BEE

Head Mod.ADJZ (1)
kàñù miyù.a [woman.marriage,ADJZ] MARRIED WOMAN

Head Mod.GEN (23)
shùm.shù.bè [eye foot,GEN] ANKLE
fùsù.kàñù.kàñù.mà [house bee,GEN] BEEHIVE
bàrì kàñùjìì [meal afternooN,GEN] DINNER
kàñù.çàmù.bè [tree door,GEN] DOORPOST
fùsù.kàñù.mà [root ear,GEN] EARLOBE
káñù.dùmù.bè [dirt ear,GEN] EARWAX
kàñù.dùmù.bè [hair ear,GEN] EYEBROW
fùsù.kàñù.mà [root eye,GEN] EYELID
olàm.kàñù.bè [tongue fire,GEN] FLAME
làmpà mòùù.bè [number ear,GEN] LICENSE PLATE
bàrì kàñùjìì.bè [meal noon,GEN] LUNCH
sìwàlìt.kàñù.bè [opening nose,GEN] NOSTRIL
șìlìlìa sìtì.bè [bone side,GEN] RIB
çì nìjì.ì [mouth water,GEN] SHORE
bàwò khálì.bè [cover head,GEN] SKULL
jë itààùù.bè [rope,GEN] SPIDER WEB
bàrì bânè.bè [meal afternoon,GEN] SUPPER
ngàlòòdùù bìì [finger foot,GEN] TOE
kàñù dììjìì.bè [things work,GEN] TOOL
mùùùùìì.dìì.bè [vehicle ground,GEN] TRAIN
nàr.bà.bè [root blood,GEN] VEIN OR ARTERY
dàwà màsûkù.bè [neck hand,GEN] WRIST
céì ngìwùìlwù [red egg,GEN] YOLK

Mod Head (2)
fùsù.kàñùjìì [horse female] MARE
kàñùlì dàwà [sun middle] MIDDAY
Eurasia

(Altaic) Tungusic

Orogen (69): 60W / 24B / 7C
Base.AGT (2)
targan.ten [farm_land.AGT] FARMER
ada.tine [domestic_animal.AGT] HERDSMAN

Base.DIM (5)
tar.go.kon [vehicle.DIM] BICYCLE
je.kan [ear.DIM] EARRING
unu.dy.kan [young_woman.DIM] GIRL
ima.kan [goat.DIM] KID
ko.nir.kan [sheep.DIM] LAMB

Base.REC (1)
amo.rok [stool.REC] TOILET

Head Mod (1)
inay dulun [day middle] MIDDAY

Mod Head (5)
amana.n kakara [father chicken] COCK/ROOSTER
asad boyo [master person] HOST
inaydulun bilga [midday food] LUNCH
gok moran [female horse] MARE
duty ona.dy [nephew girl] NIECE

Mod.GEN Head (3)
tma.yi bilga [morning GEN food] BREAKFAST
unokon.yi firotka [fishhook GEN thread] FISHING LINE
fikpo.yi bilga [evening GEN food] SUPPER

Mod.GEN Head.POSS (7)
dyu.go.yi dzu.n [bee:GEN house:3SG:POSS] BEEHIVE
eye.ya.wu.n [eye:GEN up:3SG:POSS] EYELID
oppik.yi dzu.n [nose:GEN inside:3SG:POSS] NOSTRIL
dalay.ya.yo.ko.n [sea:GEN bank:3SG:POSS] SHORE
dil.yi grama.n [head:GEN bone:3SG:POSS] SKULL
ata.kci.yi adi.n [spider:GEN net:3SG:POSS] SPIDER WEB
unoku.yi fiyur.n [egg:GEN yellow:3SG:POSS] YOLK

(Altaic) Turkic

Turkish (92): 100W / 65B / 5C
Base.AGT (6)
demir.ci [iron.AGT] BLACKSMITH
gift.ci [yoke.AGT] FARMER
balci.ci [fish.AGT] FISHERMAN
cümlek.ci [pot.AGT] POTTER
kunduru.ca [shoe.AGT] SHOEemaker
boyu.ca [spel.AGT] SORCERER OR WITCH

Base.F (1)
kral.ice [king.F] QUEEN

Base.SUF (1)
göw.lick [eye.SUF] SPECTACLES/GLASSES

Mod Head (10)
erek cocuk [male child] BOY
esas yemek [base food] DINNER
altun yuzlik [gold ring] GOLD RING
anahat sozk [key word] KEYWORD
kyan.valide [brother-in-law-mother] MOTHER-IN-LAW (OF A MAN)
anavatn [mother.country] NATIVE COUNTRY
kz usgen [girl nephew/niece] NIECE
tas kopr [stone bridge] STONE BRIDGE
bag.parmak [head.finger] THUMB
dul erkek [widen/widower man] WIDOWER

Mod.Head.3SG (47)
ayak bilegi [foot wrist] ANKLE
kazey fecir [north dawn] ARCTIC LIGHTS

sirt çanta.si [back bag] BACKPACK
bal arsi [honey bee] BEE
arti kovani [bee hive] BEEHIVE
bal mumu [honey wax] BEEWAX
bisiklet pompa.si [bicycle pump] BICYCLE PUMP
kalv.aiti [coffee bottom] BREAKFAST
dable reis [tribe head] CHIEFTAIN
koprucik kemigi [collarbone bone] COLLARBONE
süt içeli [milk cow] DAIRY COW
kapi pervazi [door border] DOORPOST
kalak meme.si [ear breast] EARLOBE
kalak kiri [ear dirt] EARWAX
göz kapağı [eye cover] EYELID
bit pazari [house market] FLEA MARKET
ayak izi [foot track] FOOTPRINT
el freni [hand brake] HAND BRAKE
el çanta.si [hand bag] HANDBAG
ev sahibi [house master] HOST
keçi yavrusu [goat child] KID
ögle yemeği [noon food] LUNCH
mektup kutusu [letter box] MAIL BOX
ögle vakı [noon time] MIDDAY
saman yolu [straw road] MILKY WAY
mene bağı [breast head] NIPPLE OR TEAT
burun deliği [nose hole] NOSTRIL
el avasi [hand palm] PALM OF HAND
demir yol [iron road] RAILWAY
gök kuşağı [sky sash] RAINBOW
kaburga kemigi [rib bone] SHOULDERBLADE
kofa tasi [head bowl] SKULL
örmücek ağ [spider net] SPIDER WEB
bel kemigi [waist bone] SPINE
şeker kemisi [sugar reed] SUGAR CANE
pazar günü [bazaar day] SUNDAY
açma yemeği [evening food] SUPPER
göz yüzü [eye wetness] TEAR
ayak parmağı [foot finger/toe] TOE
tuvalet kığız [toilet paper] TOILET PAPER
takım çanta [set bag] TOOLBOX
diş firça [tooth brush] TOOTHBRUSH
ağac gövde [tree body] TREES TRUNK
su pompa [water pump] WATER PUMP
yel.çevirmen [wind mill] WINDMILL
yumurta sar ($) [egg yellow] YOLK

Yakut (79): 109W / 39B / 7C
Base.AGT (4)
silgi hit [horse.AGT] HERDSMAN
inag sit [cow.AGT] HERDSMAN
kuus.çit [pot.AGT] POTTER
sappiki hit [boots.AGT] SHOEemaker

Base.NMLZ (2)
bah.lik [bas.NMLZ] CHIEFTAIN
yos.ploy [room.NMLZ] COOKHOUSE

Base.PROP (1)
ap.ta [magic:PROP] SORCERER OR WITCH

Mod Head (9)
timir ar [iron horse] BICYCLE
tul oyo [boy child] BOY
bilagi iro [lea market] FLEA MARKET
kis oyo [girl child] GIRL
tarbag atalik [finger mitten] GLOVE
löye klin [mother wife’s relations] MOTHER-IN-LAW (OF A MAN)
yoton ira:ta:yi [lady tsar:king] QUEEN
timir suol [iron path] RAILWAY
tu:s ku:re [stone bridge] STONE BRIDGE

2020-04-25 Draft. Please do not cite. Comments to: pepper.steve@gmail.com.
The typology and semantics of binominal lexemes

Basque

Basque (25): 102W / 55B / 6C

Base:LOC (2)

erlu.tegi [bee.LOC] BEEHIVE
be.koki [eye.LOC] EYEBROW

Base:AGT (4)

errement.ari [tool.AGT] BLACKSMITH
ostal.ari [host.AGT] HOST
buztin.lari [mud.AGT] POTTER
zapat.ari [shoe.AGT] SHOEMAKER

Base:SUF (1)

gox.ari [morning.SUF] BREAKFAST

Head Mod (1)

er.puru [finger.head] THUMB

Mod Head (41)

ipar-argi [north-light] ARCTIC LIGHTS
bikzar.zorro [back purse] BACKPACK
erle.aragiri [bee wax] BEESWAX
su.arotz [fire.carpenter] BLACKSMITH
oil.arru [chicken.male] COCK/ROOSTER
lepa.uats [neck.ring] COLLARBONE
suk.a.de [fire zone] COOKHOUSE
esne.beri [milk cow] DAIRY COW
ate.zango [door stilt] DOORPOST
elarri-totula [ear-lobe] EARLOBE
bet.ile [eye.hair] EYELASH
bet.azial [eye.skin] EYELID
su.ptzter [fire.corner] FIREPLACE
zaldi.kume [horse.child] FOAL OR COLT
esku.larru [hand.fur] GLOVE
goko-hit [key-word] KEYWORD
antx.ume [goat.child] KID
ar.kume [sheep.child] LAMB
post.ontzi [post.container] MAIL BOX
eseg.eri [day.half] MIDDAY
esne.bide [milk.way] MILK WAY
tititu [teat.head] HIPPO OR TEAT
sudur.tzulo [nose.hole] NOSETRIL
arraun-gurplu [paddle-wheel] PADDLE WHEEL
esku.barru [hand.inside] PALM OF HAND

**posta-xartel [post.card] POSTCARD
tren.bide [train.way] RAILWAY
burdin.bide [iron.way] RAILWAY
ortz.adar [sky.horn] RAINBOW
itsas bazter [sea corner] SHORE
sorbaldu-beku [shoulder.bone] SHOULDERBLADE
bur.ezar [head.bone] SKULL
bizkar.rezar [back.bone] SPINE
azkue kainabera [sugar cane] SUGAR CANE
be.hatz [bottom.finger] TOE

tresna.kutxa [tool-box] TOOLBOX
zuhaitz.enbor [tree trunk] TREE TRUNK
mahats.ondo [grape.tree] VINE

ar.pu [water.pump] WATER PUMP
hatz.eerru [wind.mill] WINDMILL
esku.mutur [hand.end] WRIST

Mod.ADJZ Head (6)

arr.ezko.ezurun [gold.ADIZ ring] GOLD RING
esku.zalo.balatsu [hand.ADIZ brake] HAND BRAKE
esku.ko.poltsa [hand.ADIZ bag] HANDBAG
harri.zko.ubiti [stone.ADIZ bridge] STONE BRIDGE
lasto.zko.teilatu [straw.ADIZ roof] THATCH
komune.ko.papir [tool.ADIZ paper] TOILET PAPER

Dravidian

Malayalam (57): 100W / 45B / 5C

Head:Mod (1)

kanai.kal [part.foot] ANKLE

Mod Head (2)

en.kutti [female.child] GIRL
pen.kutira [female.horse] MARE

Mod:GEN.Head (1)

att.in.kutti [goat.GEN.child] LAMB

Mod:Head (32)

ēni.īncu [honey.fly] BEE
ēnila.melgo [bee.wax] BEESWAX
saikkil.pimm [bicycle pump] BICYCLE PUMP
prabhāta.ṭṭ [foot.mark] FOOTPRINT
svarna.mātorī [gold ring] GOLD RING
kai.sanci [hand.back] HANDBACK
ucca.bhaksanāi [morning food] BREAKFAST
kalatt.ello [neck.bone] COLLARBONE
kan.pili [eye.lash] EYELASH
kan.pōla [eye.lid] EYELID
kī.jāla [fire.flame] FLAME
kāl.pālo [foot.mark] FOOTPRINT
am.māyai.yan [aur.mother] MOTHER-IN-LAW (OF A MAN)
tula.calakam [paddle-wheel] PADDLE WHEEL
ma.ja.villo [rain.bow] RAINBOW
vārī.ello [??bone] RIB

**tōl.palaka [shoulder.blade] SHOULDERBLADE
tula.yotī [head.shell] SKULL
cilant.īn [spider.web] SPIDER WEB
kutira.pattii [horse.rough] STABLE OR STALL
kalū.pāla [stone.bridge] STONE BRIDGE
hāyag.āda [sun.day] SUNDAY
ka.nūro [eye.water] TEAR

tula.viral [mother.finger] THUMB
kāl.virāl [leg.finger] TOE

mātrā.purā [urine.house] TOILET
ī.vanātī [fire.vehicle] TRAIN
māyam [mother.tree] TREE TRUNK
muntiri.valī [grape.string] VINE
nīr.parm [water.pump] WATER PUMP
budhan.āda [Mercury.day] WEDNESDAY

Mod:LE.Head (9)

tēnīcuncu.ka [bee.LE.nest] BEEHIVE
The typology and semantics of binominal lexemes

arm.band [arm.ribbon] BRACELET
dor.stolpe [door.post] DOORPOST
zimmer.mann [timber.man] CARPENTER
vore.flipp [ear.??] EARLOBE
vore.dobb [ear.button] EARRING
dore.voks [ear.wax] EARWAX
eye.vipp [eye.??] EYELASH
eye.lok [eye.lid] EYELID
ld.sted [fire.place] FIREPLACE
lopp.marked [lea.market] FLEA MARKET
collar.bone [collar.bone] COLLAR BONE
ør.ring [ear.ring] EARRING
ør.lope.marked [lea.market] FLEA MARKET
arm.band [arm.band] BRACELET
bre.voks [collar.bone] COLLAR BONE
side.rod [fire.place] FIREPLACE

Norwegian (67): 100W / 57B / 3C

Head Mod (1)
middag [middle.day] MIDDAY

Mod.Head (51)
nord.lys [north.light] ARCTIC LIGHTS
rygg.sekk [back.sack] BACKPACK
bi.kube [bee.cube] BEEHIVE
bi.voks [bee.wax] BEESWAX
sykkel.pumpe [bicycle.pump] BICYCLE PUMP
arm.bånd [arm.band] BRACELET
krage.bein [collar.bone] COLLAR BONE
eld.hus [fire.house] COOKHOUSE

New Old High German (29): 63W / 23B / 5C

Base.AGT (3)
hirti [herd.AGT] HERDSMAN
hafan.år [pot.AGT] POTTER
zoober.år [magic.AGT] SORCERER OR WITCH

Base.DIM (1)
zickin [goat:DIM] KID

Base.F (1)
kunig.in [king.SUF] QUEEN

Head Mod (2)
mittil.tag [middle.day] MIDDAY
mitte.wehua [midweek] WEDNESDAY

Mod Head (16)
bikur [bee.container] BEEHIVE
zimbar.man [timber.man] CARPENTER
turi.stuaoddal [door.post] DOORPOST
or.lappa [ear.cloth] EARLOBE
or.ring [ear.ring] EARRING
or.smere [ear.wax] EARWAX
Appendix E. Binominal data set

akkār.man [field.man] FARMER
fuī stars [fire.place] FIREPLACE
fuōc.ī.num [foot.trace] FOOTPRINT
hant.suōh [hand.shoe] GLOVE
regan.ūgo [rain.bow] RAINBOW
hirn.ī.sula [brain.bowl] SKULL
spinna.webbi [spider.fabrics] SPIDER WEB
ruggī.ī.googlei [back.spine] SPINE
sumā.nus [sun.day] SUNDAY
ābānd.ī.myō [evening.meal] SUPPER

(Indo-European) Greek

Greek (21): 100W / 30B / 7C
Base.DIM (1)
katsik.īki [goat.DIM] KID
Base.SUF (4)
proi.ī.nos [morning.SUF] BREAKFAST
vlefar.īs [eyelid.SUF] EYELASH
mesimer.īliano [noon.SUF] LUNCH
vrāņ.īnus [night.SUF] SUPPER

Head DEF Mod.Gen (3)
kolōna tis por.īs [post DEF door.GEN] DOORPOST
lovos tu ați.īou [lobe DEF ear.GEN] EARLOBE
keri tu ați.īou [wax DEF ear.GEN] EARWAX

Head Mod (1)
leksi-klōi [word-key] KEYWORD

Head Mod.Gen (9)
ayelēda yalaktōs [cow.dairy.GEN] DAIRY COW
spasimō beri.ou [brake.hand.GEN] HAND BRAKE
tsanta heiroīs [bag.hand.GEN] HANDBAG
pinakidē kiklofori.īs [sign.traffic.GEN] LICENSE PLATE
istos araxis.īs [web.spider.GEN] SPIDER WEB
charti yia.īs [paper.hygien.GEN] TOILET PAPER
katē ergyal.īo [box.tool.GEN] TOOLBOX
kormos dent.īr [trunk.tree.GEN] TREE TRUNK
adliā ner.īr [pump.water.GEN] WATER PUMP

Mod.AdjZ Head (3)
vorio selas [north:AdjZ lights] ARCTIC LIGHTS
uram.īo toksos [sky:AdjZ bow] RAINBOW
petr.īni șe.īra [stone.AdjZ bridge] STONE BRIDGE

Mod.LE.Head (9)
kilī.ō.kokolā [collar.LE.bone] COLLARBONE
ik.ō.despotīs [house.LE.lord] HOST
yrammō.ō.kivovō [letters.LE.box] MAIL BOX
sīhr.ō.bromos [iron.LE.road] RAILWAY
om.ō.plašt [shoulder.LE.blade] SHOULDERBLADE
zachar.ō.kalamo [sugar.LE.cane] SUGAR CANE
achīr.ō.skēpi [straw.LE.cover] THATCH
ōdō.ō.vurtsa [tooth.LE.brush] TOOTHBRUSH
anem.ō.milos [wind.LE.mill] WINDMILL

(Indo-European) Indo-Aryan

Assamese (6): 87W / 34B / 3C
Head Mod (1)
gū.gūs [body.tree] TREE TRUNK

Mod Head (16)
mou.makhī [honey.bee] BEE
mou.sak [beehive] BEEHIVE
kath.mistri [wood.carpenter] CARPENTER
kan.phuli [ear.flower] EARRING
sor bza.ār [thief.market] FLEA MARKET
hat.moca [hand.sock] GLOVE
sikitsa.īo [treatment.place] HOSPITAL
xuc.ī.xbod [index word] KEYWORD
smugya.śtre [license.plate/certificate] LICENSE PLATE
dak sitī [postal letter] POSTCARD
ram.dhēna [Lord_Rama.bow] RAINBOW
kami.har [chest.bone] RIB
xīl.sako [stone.bridge] STONE BRIDGE
soku.puni [eye.water] TEAR
mutra.loi [urine.place] TOILET
budh.bar [Mercury.day] WEDNESDAY

Mod.Gen Head (17)
sock.īhr bāwa [cycle.GEN gas] BICYCLE PUMP
ratūp.īr ahr [morning.GEN food] BREAKFAST
rat.īr ahr [night.GEN food] DINNER
duwār.īr khta [door.GEN post] DOORPOST
kān.īr loti [ear.GEN lobe] EARLOBE
kān.īr mō [ear.GEN dirt] EARWAX
sokū.nom [eye.GEN hair] EYELASH
sokū.ō.pū [eye.GEN lid] EYELID
ghōr.ī pōwali [horse.GEN call] FOAL OR COLT
bhōrī.ī r xap [foot.GEN print] FOOTPRINT
son.īr anguhiti [gold.GEN ring] GOLD RING
sīthī.ī rakōs [letter.GEN box] MAIL BOX
nij.īr dēx [self.GEN country] NATIVE COUNTRY
nak.īr phāta [nose.GEN hole] NOSTRIL
hat.īr tōlava [hand.GEN backside] PALM OF HAND
hat.īr būrha.anguli [hand.GEN old.finger] THUMB
bhōrī.ī būrha.anguli [leg.GEN old.finger] TOE

Hindi (36): 95W / 30B / 4C
Base.AGT (1)
lōh.ār [iron.AGT] BLACKSMITH

Mod.Gen Head (3)
rāt kā khānā [evening.GEN meal] DINNER
ghora bāccā [horse.GEN child] FOAL OR COLT
suəc kā kāgāz [purification GEN paper] TOILET PAPER

Mod Head (19)
madhuv.ā.īm [honey.wax] BEESWAX
karvā.φūl [ear.flower] EARRING
karvā.μal [ear.dirt] EARWAX
kābūrī bāzār [scrap.merchant market] FLEA MARKET
unugū pēr [license.place] LICENSE PLATE
jādī-tōnā [magic-charm] MAGIC
dāk-bākās [post-box] MAIL BOX
dākāī gāṅga [sky.Ganges] MILKY WAY
mārū bhāmī [mother.earth] NATIVE COUNTRY
bhām.ʒ [sister.daughter] NIECE
bhātu.ʒ [brother.daughter] NIECE
post.kārd [post.card] POSTCARD
indrā.dhamu [Indra.bow] RAINBOW
ghur.śāl [horse.hall] STABLE OR STALL
suəc aṭāy [purification.area] TOILET
yantra.πēt [instrument.box] TOOLBOX
rel.γāṛt [rail.cart] TRAIN
jōλ pum [water pump] WATER PUMP
pavan cakkī [wind.mill] WINDMILL

Mod.Gen Head (7)
pair kā cint(att) [foot GEN sign] FOOTPRINT
sone kā āgāhā [gold GEN ring] GOLD RING
dopahār kā khānā [noon.GEN food] LUNCH
nakārī jālā [spider.GEN web] SPIDER WEB
rāt kā khānā [night.GEN food] SUPPER
pāṃy kā āgāhā [foot.gen finger] TOE
dēṃtā kā brāṣ [tooth.GEN brush] TOOTHBRUSH

Nepali (68): 66W / 11B / 3C
Mod Head (1)
māṭīr.ḥūmī [mother.land] NATIVE COUNTRY

Mod.Gen Head (6)
kukhārā ko bhāle [hen.GEN cock] COCK/ROOSTER
sun.kō _gateway [gold.GEN ring] GOLD RING
dudh.ko mūnī [milk.GEN head] NIPPLE OR TEAT
The typology and semantics of binominal lexemes

Selice Romani (76): 88W / 8B / 4C

Base.ABST (1)
- còhan.i.pe [witch/sorcerer.ABST] MAGIC

Base.DIM (2)
- čav.oro [Gypsy_child.DIM] BOY
- ča.j.ori [Gypsy_child.F.DIM] GIRL

Base.F (1)
- kirá.chiha [king.F] QUEEN

Mod.Gen Head (4)
- kən.en.gə.ə khuła [ear.OBL:GEN:PL shit.PL] EARWAX
- prəl.es.ker.i čhaj [brother.OBL:GEN:SG:F daughter] NIECE
- phə.hə.ker.i čhaj [sister.OBL:GEN:SG:F daughter] NIECE
- čučć.en.gə.o səmo [breast.OBL:GEN:SG:M grain] NIPPLE OR TEAT

French (27): 102W / 49B / 10C

Base.DIM (4)
- bruc.elet [arm.DIM] BRACELET
- chevr.eau [goat.DIM] KID
- mamel.on [breast.DIM] NIPPLE OR TEAT
- poing.et [fist.DIM] WRIST

Base.F (1)
- sorcière.e [sorcerer.F] SORCERER OR WITCH

Base.NMLZ (4)
- ferm.ier [farm.NMLZ] FARMER
- pêch.eur [fish.NMLZ] FISHERMAN
- pot.ier [pot.NMLZ] POTTER
- écuy.rie [horseman.NMLZ] STABLE OR STALL

Head Mod (1)
- mot-clé [word-key] KEYWORD

Head Mod.AdJZ (4)
- aurore boréa.le [light north.ADJZ] ARCTIC LIGHTS
- voile lactée [way milk:ADJZ] MILK WAY
- carte post.ale [card post.ADJZ] POSTCARD
- colonne vertebra.e [column vertebra.ADJZ] SPINE

Head Prep Mod (2)
- lobe de l'oreille [lobe of DEF:ear] EARLOBE
- paume de la main [palm of the hand] PALM OF HAND

Head Prep Mod (17)
- ruche d'abeille.s [hive of:bee:PL] BEEHIVE
- cire d'abeille [wax of:bee] BEESWAX
- chef de clan [chief of clan] CHIEFTAIN
- cuisine de chantier [kitchen of worksite] COOKHOUSE
- jambage de porte [jamb of door] DOORPOST
- boucle d'oreille [ring of:ear] EARRING
- cire d'oreille [wax of:ear] EARWAX
- ligne de pêche [line of fishing] FISHING LINE
- bague en or [ring of gold] GOLD RING
- jardin de troupeau [guard of herd] HERDSMAN
- chemin de fer [road of iron] RAILWAY
- toile d'araignée [web of:spider] SPIDER WEB
- pont en pierre [bridge of stone] STONE BRIDGE
- doigt de pied [finger of foot] TOE
- papier (de) toilette [paper (of) toilet] TOILET PAPER
- tronc d'arbres [trunk of:tree] TREE TRUNK
- jaune d'œuf [yellow of:egg] Yolk

Head Prep2 Mod (14)
- sac à dos [bag to back] BACKPACK
- pompe à vélo [pump to bicycle] BICYCLE PUMP
- vache à lait [cow to milk] DAIRY COW
- ligne à pêche [line to fish] FISHING LINE
- marché aux puces [market to:DEF:PL flea:PL] FLEA MARKET
- sac à main [bag to hand] HANDBAG
- boîte aux lettres [box to:DEF:PL letter:PL] MAIL BOX
- roue à aube.s [wheel to paddle:PL] PADDLE WHEEL
- canne à sucre [cane to sugar] SUGAR CANE
- boîte à outils [box to tool:PL] TOOLBOX
- brosse à dent.s [brush to teeth:PL] TOOTHPASTE
- pompe à eau [pump to water] WATER PUMP
- moulin à vent [mill to wind] WINDMILL

Head Prep3 Mod (1)
- arc-en-ciel [bow-in-sky] RAINBOW

Mod Head (1)
- omo.plate [shoulder-plate] SHOULDERBLADE

Italian (41): 112W / 38B / 8C

Base.AGT (1)
- pesce.tore [fish:ER] FISHERMAN

Base.DIM (3)
- camin.etto [fireplace/chimney.DIM] FIREPLACE
- bors.etta [goat.DIM] HANDBAG
- capr.etto [goat.NMLZ] KID

Base.NMLZ (5)
- orecch.ino [ear.NMLZ] EARRING
- ceram.ista [ceramics.NMLZ] POTTER
- streg.one [witch.NMLZ] SORCERER OR WITCH
- occhi.ali [eye.NMLZ] SPECTACLES/GLASSES
- spazzol.ino [brush.NMLZ] TOOTHPASTE

Head Mod (3)
- capo.tribù [head.clan] CHIEFTAIN
- parola chiave [word key] KEYWORD
- mezzo.giorno [half.day] MIDDAY

Head Mod.AdJZ (5)
- aurora borea.le [light north.ADJZ] ARCTIC LIGHTS
- via latt.ea [way milk:ADJZ] MILK WAY
- spina dors.ale [bone back:ADJZ] SPINE
- carta igien.ica [paper hygiene:ADJZ] TOILET PAPER
- pompa idraul.ica [pump water:ADJZ] WATER PUMP

Head Prep Mod (13)
- cera d'api [wax of:bee:PL] BEESWAX
- cucina da campo [kitchen from camp] COOKHOUSE
- mucca da latte [cow from milk] DAIRY COW
- anello d'oro [ring of:gold] GOLD RING
- freno a mano [brake to hand] HAND BRAKE
- padrone di casa [owner of house] HOST
- paese d'origine [country of:origin] NATIVE COUNTRY
- ruota a pale [wheel to blade:PL] PADDLE WHEEL
- ponte di piatra [bridge of stone] STONE BRIDGE
- canna da zucchero [cane from sugar] SUGAR CANE
- tetto di paglia [roof of straw] THATCH
- mulino a vento [mill to wind] WINDMILL
- rosso d'uovo [red of:egg] Yolk

Head Prep:Det Mod (7)
- pompa della bicicletta [pump of:DET bicycle] BICYCLE PUMP
- mercato delle pulci [market of:DET flea:PL] FLEA MARKET
- cassetta delle lettere [box of:DET letter:PL] MAIL BOX
- dito del piede [finger of:DET foot] TOE
- cassetta degli attrezzi [box of:DET tools:PL] TOOLBOX
- tronco dell'albero [trunk of:DET:tree] TREE TRUNK
- pompa dell'acqua [pump of:DET:water] WATER PUMP

Mod Head (1)
- ferro.via [iron.way] RAILWAY
Appendix E. Binomial data set

Romanian (77): 135W / 41B / 11C
Base.ABST (1) capităn.ie [captain,NMLZ] CHIEFTAIN
Base.AGT (7) fier.ar [iron,AGT] BLACKSMITH
potoa(v)a)ar [tool,AGT] BLACKSMITH
us(o)ar [door,SUF] DOORPOST
țar.an [earth,AGT] FARMER
păst.or [pasture,AGT] HERDSMAN
oafa(ă)ar [pot,AGT] POTTER
cizmă.ar [shovel,AGT] SHOEMAKER
Base.AGT.ABST (1) bucătăria.ar.ie [piece_of_food,AGT,NMLZ] COOKHOUSE
Base.DIM (1) mânu.ăus [hand,SUF,F] GLOVE
Base.F (2) soacăr.ă [father_in_law,F] MOTHER-IN-LAW (OF A MAN)
nepo(a)t.ă [grandson/nephew,F] NIECE
Base.NMLZ (1) brătară [arm,NMLZ] BRACELET
Base.SUF (1) gălben.uș [arm,NMLZ] BRACELET
Base.DIM (1) mână.uș.ă [hand,NMLZ] WRIST
Base.AGT (7) capitan.ie [captain,NMLZ] CHIEFTAIN

Czech (12): 98W / 44B / 7C
Base.DIM (4) chlap.ec [man,DIM] BOY
kabel.ká [wire,DIM] HANDBAG
klíc.le [key,DIM] KEY
lopat.ká [shovel,DIM] SHOULDERBLADE
Base.F (2) čaroděj nice [wizard,F] SORcerer OR WITCH
střed.a [middle,F] WEDNESDAY

Base.NMLZ (13) kov.ár [iron,NMLZ] BLACKSMITH
večer.e [evening,NMLZ] DINNER
náuš.nice [ear,NMLZ] EARRING
farm.ár [farm,NMLZ] FARMER
vy.ár [fish,NMLZ] FISHERMAN
raka.vice [hand,NMLZ] GLOVE
kapes.nik [pocket,NMLZ] HANDSCHOF-Chief OR RAG
nemoc.nice [illness,NMLZ] HOSPITAL
hrn.čit [pot,NMLZ] POTTER
královna [king,GENTMLZ?] QUEEN
zelez.nie [iron,ADJ,NMLZ] RAILWAY
pavu.čina [spider,NMLZ] SPIDER WEB
zá.pěst.i [after,fist,NMLZ] WRIST

Head PREP Mod (2) pumpička na kolo [pump on bicycle] BICYCLE PUMP
karaček na zuby [brush,DIM on teeth] TOOTHBRUSH

Head.L.E. Mod (1) půl.e.dne [half.LE.day] MIDDAY

Mod.ADJZ Head (21) polarní záře [polar,ADJZ lights] ARCTIC LIGHTS
včel.í na [on.back,ADJZ] BEESWAX
kříč.í kost [key,ADJZ bone] COLLABONE
dvět.ní sloupek [door,ADJZ post] DOORPOST
uš.ní lalůček [ear,ADJZ lobe] EARLOBE
uš.ní maz [ear,ADJZ wax] EARDROP
och.ř.ní rasa [eye,ADJZ lash] EYELASH
blech.í trh [flea,ADJZ market] FLEA MARKET
žal.ý prsten [gold,ADJZ ring] RING RING
ruč.ní bradá [hand,ADJZ bristles] HAND BRAKE
kříč.č.čel.í [key,ADJZ word] KEYWORD
post.č.čel.í [mail,ADJZ box] MAIL BOX
mlč.ní dřáhu [milk,ADJZ track] MILK WAY
rod.né zem [clan,ADJZ land] NATIVE COUNTRY
nos.ní dirka [nose,ADJZ hole] NOSTRIL
vod.ní kolo [water,ADJZ wheel] PADDLE WHEEL
kamen.ý most [stone,ADJZ bridge] STONE BRIDGE
vakr.č.čel.í [key,ADJZ hive] BEEHIVE
včel.ní úl [beehive] BEEHIVE
klíč.ní kov [iron,ADJZ] BLACKSMITH
hoř.č.čel.í [key,ADJZ word] KEYWORD
kříč.č.čel.í [key,ADJZ word] KEYWORD

Lower Sorbian (20): 118W / 43B / 11C
Base.ADJZ,NMLZ (1) zelec.n.ica [iron,ADJZ,NMLZ] RAILWAY

Base.AGT (3) vy.ár [fish,AGT] FISHERMAN
gősz.inair [guest,AGT] HOST
gjarn.čar [pot,AGT] POTTER

Base.F (1) kralowka [king,F] QUEEN

Base.LOC (1) wogni.čko [fire,LOC] FIREPLACE

Base.NMLZ (4) na.kšebjat.nik [on.back,NMLZ] BACKPACK
do.j.ka [milch,NMLZ] DAIRY COW
 cuk.n.ina [sugar,NMLZ] SUGAR CANE
wet.čilik [wind,NMLZ] WINDMILL

Base.SUF (1) ruka.ćiv [hand,SUF] GLOVE

Head Mod (1) pol.činjo [half.day] MIDDAY

Head Mod.GEN (1) kačik rěd.a [box,tool,GENT] TOOLBOX
Head PREP Mod (2)

\(\text{talug z wuchu} \) [wax PREP ear] EARWAX
\(\text{lapka na woku} \) [flap on eye] EYELID

Mod.ADJZ Head (26)

\(\text{płonicze zorza} \) [north.ADJZ glow] ARCTIC LIGHTS
\(\text{piolkowy wisk} \) [beck.ADJZ wax] BEESWAX
\(\text{pówietrza wampa} \) [air.ADJZ pump] BICYCLE PUMP
\(\text{żurny słup} \) [door.ADJZ post] DOORPOST
\(\text{wichowy łapka} \) [ear.ADJZ flap] EARLOBE
\(\text{wizerka skońo} \) [norm.ADJZ line] FISHING LINE
\(\text{tionerowy warkų} \) [junk.ADJZ market] FLEA MARKET
\(\text{złośny peryczy} \) [gold.ADJZ ring] GOLD RING
\(\text{ręczne spadekło} \) [hand.ADJZ brake] HAND BRAKE
\(\text{ręczne tobołek} \) [hand.ADJZ small_bag] HANDBAG
\(\text{kluczowy słowo} \) [key.ADJZ word] KEYWORD
\(\text{cyslowska toft.lica} \) [number.ADJZ plate.DIM] LICENSE PLATE
\(\text{numery toft.lica} \) [number.ADJZ plate.DIM] LICENSE PLATE
\(\text{listowy kaśkik} \) [mail.ADJZ box] MAIL BOX
\(\text{paśnikowy wosk} \) [bird.ADJZ road] MILKY WAY
\(\text{psychodowy maś} \) [future.ADJZ mother] MOTHER-IN-LAW (OF A MAN)
\(\text{wośćowy kraj} \) [ancestor.ADJZ country] NATIVE COUNTRY
\(\text{noszowy zérka} \) [nose.ADJZ hole] NOSEHOLE
\(\text{postowy kórka} \) [post.ADJZ card.DIM] POSTCARD
\(\text{kamieniowy móst} \) [stone.ADJZ bridge] STONE BRIDGE
\(\text{slomiane kływo} \) [straw.ADJZ roof] THATCH
\(\text{toiletowy papier} \) [toilet.ADJZ paper] TOILET PAPER
\(\text{zuba na śćkotku} \) [tooth.ADJZ brush] TOOTHBRUSH
\(\text{winowy kw} \) [vine.ADJZ bush] VINE
\(\text{woldowy wampu} \) [water.ADJZ pump] WATER PUMP
\(\text{ręczne zsák} \) [hand.ADJZ joint] WRIST

Mod.GEN Head (2)

\(\text{sotówy żówka} \) [sister.GEN daughter] NIECE
\(\text{bratśa żówka} \) [brother.GEN daughter] NIECE

Polish (72): 104W / 54B / 11C

Base.ADJZ.DIM (1)

\(\text{poczówka} \) [post.ADJZ.DIM] POSTCARD

Base.AGT (8)

\(\text{chłopak} \) [farmer.AGT] BOY
\(\text{stolarcz} \) [table.AGT] CARPENTER
\(\text{rolnik} \) [farmland.AGT] FARMER
\(\text{rybak} \) [fish.AGT] FISHERMAN
\(\text{gospolarcz} \) [inn.AGT] HOST
\(\text{gurmacz} \) [pot.AGT] POTTER
\(\text{czarnoksięży} \) [black.ADJZ.prince.AGT] SORCERER OR WITCH
\(\text{wodnokrwisty} \) [widow.AGT] WIDOWER

Base.DIM (8)

\(\text{kostka} \) [bone.DIM] ANKLE
\(\text{kolczyk} \) [thorn.DIM] EARRING
\(\text{kominek} \) [chimney.DIM] FIREPLACE
\(\text{rykawiczka} \) [sleeve.DIM] GLOVE
\(\text{torebką} \) [bag.DIM] HANDBAG
\(\text{chusteczka} \) [scarf.DIM] HANDKERCHIEF OR RAG
\(\text{lopata} \) [shovel.DIM] SHOULDBLADE
\(\text{żidzik} \) [yellow.DIM] YOLK

Base.F (6)

\(\text{meżata} \) [husband.F] MARRIED WOMAN
\(\text{telęściwa} \) [father_in_law.F] MOTHER-IN-LAW (OF A MAN)
\(\text{bratanica} \) [nephew.F] NIECE
\(\text{siostrowica} \) [nephew.F] NIECE
\(\text{królówka} \) [king.F] QUEEN
\(\text{pajęczyna} \) [spider.F] SPIDER WEB

Base.NMLZ (3)

\(\text{plecak} \) [back.NMLZ] BACKPACK
\(\text{woskowina} \) [wax.LE.NMLZ] EARWAX
\(\text{wiatrak} \) [wind.INS] WINDMILL

Head.ADJZ (16)

\(\text{zorza polarna} \) [dawn pole.ADJZ] ARCTIC LIGHTS
\(\text{wosk pszczeła} \) [wax bee.ADJZ] BEESWAX
\(\text{pompka rowerowa} \) [pump bicycle.ADJZ] BICYCLE PUMP
\(\text{kuchnia polowa} \) [kitchen field.ADJZ] COOKHOUSE
\(\text{krowa mleczna} \) [cow milk.ADJZ] DAIRY COW
\(\text{żyłka wędzarska} \) [line fishing rods.ADJZ] FISHING LINE
\(\text{hamulec ręczny} \) [brake hand.ADJZ] HAND BRAKE
\(\text{slowko klucze} \) [word.ADJZ keyword] KEYWORD
\(\text{skrzynka pocztowa} \) [box post.ADJZ] MAIL BOX
\(\text{droga mleczna} \) [road milk.ADJZ] MILKY WAY
\(\text{kolo lopatka} \) [wheel shovel.ADJZ] PADDLE WHEEL
\(\text{kartka pocztowa} \) [card post.ADJZ] POSTCARD
\(\text{kolej żelazna} \) [course iron.ADJZ] RAILWAY
\(\text{trzecia cukrowa} \) [reed sugar.ADJZ] SUGAR CANE
\(\text{papier toaletowy} \) [paper toilet.ADJZ] TOILET PAPER
\(\text{pompa wodna} \) [pump water.ADJZ] WATER PUMP

Head.GEN (3)

\(\text{platek ucha} \) [lobe ear.GEN] EARLOBE
\(\text{slad stopy} \) [print foot.GEN] FOOTPRINT
\(\text{brzeg morza} \) [shore sea.GEN] SHORE

Head PREP Mod (4)

\(\text{skrzynka na listy} \) [box PREP letter] MAIL BOX
\(\text{palec u nogi} \) [finger PREP leg] TOE
\(\text{skrzynka na narzędzia} \) [toolbox implements] TOOLBOX
\(\text{szczoteczki do zębów} \) [brush PREP tooth] TOOTHBRUSH

Head.LE.Mod (1)

\(\text{poludnie} \) [half.LE.day] MIDDAY

Mod.ADJZ Head (3)

\(\text{pchlil Project} \) [Flea MARKET] FLEA MARKET
\(\text{złoty pierścionek} \) [gold.ADJZ ring] GOLD RING
\(\text{kamieniowy most} \) [stone.ADJZ bridge] STONE BRIDGE

Mod.LE.Head (1)

\(\text{kręg o słup} \) [shore sea.GEN] SHORE

Russian (78): 103W / 43B / 10C

Base.AGT (1)

\(\text{saopoznik} \) [tool.AGT] SHOEMAKER

Base.DIM (7)

\(\text{kluźica} \) [key.DIM] COLLARBONE
\(\text{żebrenok} \) [coat.DIM] FOAL OR COLT
\(\text{devuska} \) [maiden.DIM] GIRL
\(\text{platok} \) [piece_of_cloth.DIM] HANDKERCHIEF OR RAG
\(\text{koźlenok} \) [goat.DIM] KID
\(\text{jugenok} \) [sheep.DIM] LAMB
\(\text{lopata} \) [shovel/spade.DIM] SHOULDBLADE

Base.F (3)

\(\text{teść a} \) [father_in_law.F] MOTHER-IN-LAW (OF A MAN)
\(\text{plemianina} \) [nephew.F] NIECE
\(\text{korolowa} \) [king.F] QUEEN

Base.M (1)

\(\text{vdovę} \) [widow.M] WIDOWER

Base.RLT (4)

\(\text{plotnik} \) [fence.AGT] CARPENTER
\(\text{rybak} \) [fish.AGT] FISHERMAN
\(\text{piezwoonik} \) [spinal_bone.SUF] SPINE
\(\text{konjušna} \) [horseman.LOC] STABLE OR STALL

Head Mod (1)

\(\text{polden} \) [half.day] MIDDAY

Head Mod.GEN (4)

\(\text{mokrá uhá} \) [lobe ear.GEN] EARLOBE
\(\text{palec nogi} \) [finger/toe foot.GEN] TOE
\(\text{nabor instrumentów} \) [kit tools:GEN] TOOLBOX
\(\text{stvol dereva} \) [trunk tree:GEN] TREE TRUNK

Head PRP Mod (1)

\(\text{jaśńcik} \) [dia instrument:ov] [box for tools.GEN] TOOLBOX
The typology and semantics of binominal lexemes

Korean (50): 144W / 63B / 2C

Mod Head (59)

Koreanic

(50): 144W / 63B / 2C

Mod Head (59)

Bezhta (44): 93W / 35B / 8C

Base.NMLZ (1)

Mod Head (3)

Mod Head (1)

Mod.HEAD (1)

Mod.HEAD (2)

Mod.HEAD (25)

(Nakh-Daghestanian) Avar-Andic-Tsezic

2020
ixš’ as bešiyoł [morning:GEN meal] BREAKFAST
wanus ustar [wood:GEN expert] CARPENTER
q’eyes kőwa [shoulder:GEN bone] COLLARBONE
q’eyas t’yø [shoulder:GEN bridge] COLLARBONE
nįšę bešiyoł [in_evening:GEN meal] DINNER
ňyłλaλи k’ [ear:GEN] EARLOBE
hət’ c’ic’ [eye:GEN] EYELASH
hąɣ k’ąg e [eye:GEN roof] EYELID
c’oys mic [fire:GEN tongue] FLAME
kel’ic’ c’a q’ay.bas bazay [old,new:OBJ.thing PL GEN market] FLEA MARKET
mexes.ʃ.i s’ 튼 [gold:GEN ring] GOLD RING
ıyla ląs bıço [woman:PL GEN bag] HANDBAG
yling.ʃ.ə sumk’a [woman:PL GEN bag] HANDBAG
mašículas nozermə [car:GEN number:PL] LICENSE PLATE
poč.ʃ.i s’ q’ati [mail:OBJ.thing GEN box] MAIL BOX
ləba’ə’as mes [noon:super:GEN time] MIDDAY
nawı.ʃ.i habo [boat:OBJ.thing wheel] PADDLE WHEEL
kil.ʃ.i s’hino [iron:GEN way] RAILWAY
l’ə s’i t’yø [stone:OBJ.thing GEN bridge] STONE BRIDGE
c’állı k’amu [reed:COLL:GEN roof] THATCH
tuelt.ʃ.i kibo [toilet:OBJ.thing GEN leaf] TOILET PAPER
ləbi-muq’a s’q’ati [hammer-nail:OBJ.thing box] TOOLBOX
sil.əs s’toka [tooth:OBJ.thing GEN brush] TOOTHBRUSH
zaku.i.s haboy [wind:OBJ.thing GEN mill] WINDMILL

(Nakh-Daghestanian) Lezgic

Arch (4): 66W / 14B / 3C

Mod Head (3)
meke lo [male child] BOY
l’ennə lo [female child] GIRL
qibimin kumul [lunch food] LUNCH

Mod. ADJZ Head (2)
ak.onm.ʃ.u tu kummul [in_the_morning:ADJZ food] BREAKFAST
’a’rub:ə.tut iq [on_wednesday:ADJZ day] WEDNESDAY

Mod. GEN Head (9)
lacu.t:e:n ustar [iron:OBJ.GEN master] BLACKSMITH
c’a:nha:n ni:n ustar [wood:OBJ.GEN master] CARPENTER
lul.ʃ.in cal [eye:OBJ.GEN wing] EYELASH
lul.ʃ.in dorkį [eye:OBJ.GEN top] EYELID
q’üybi.ʃ.in k’ar [fish:OBJ.GEN thread] FISHING LINE
us.mu.n lo [brother:OBJ.OBL.gen child] NIECE
mu:li:n klan [nose:OBJ.GEN hole] NOSTRIL
k’o’tę’q’arli.n ni yal [claw worm:OBJ.GEN nest] SPIDER WEB
eqiša.mi:kummul [in_the_evening:OBJ.GEN food] SUPPER

Nuclear Torricelli

Sreng (56): 40W / 20B / 2C

Mod Head (19)
ala yøto [leg/foot eye] ANKLE
bibilǝn wasono [bee testicles] BEEHIVE
ape aku [stomach mouth] BREAKFAST
karkara bants [chicken male_non human] COCK/ROOSTER
ape aku [stomach mouth] DINNER
yunyo pi [ear excreta] EARWAX
yolto wals [eye hair/fur/feather] EYEBROW
yolto ʔa [eye ??] EYELID
ala mleko [leg/foot scar] FOOTPRINT
sreno suku [child water] GIRL
bilwix [spirit?skin] HANDKERCHIEF OR RAG
ape aku [stomach mouth] LUNCH
sreno suku [child water] MARRED WOMAN
mapo tño [nose hole] NOSTRIL
wando bniŋi [head bone] SKULL
bili wira [spirit initiated_man] SORCERER OR WITCH
ape aku [stomach mouth] SUPPER

nunq yotim [hand/thumb/big toe] THUMB
nunq awaʔ [hand knot] WRIST

Mod Head: REDUP (1)
alaa talatalmə [leg/foot branch:RED TOE]

Walman (94): 48W / 16B / 1C

Mod Head (16)
kayal chikuel [foot eye] ANKLE
oputo nyukuel [thing food] DINNER
trait tai [fruit ear] EARLOBE
NA NA EARWAX
NA NA EYEBROW
ləŋ mi [body_hair eyebrow] EYELASH
NA NA EYELID
bəa ʔən trəa [meal eat noon] LUNCH
mə yə [mother wife] MOTHER-IN-LAW (OF A MAN)
lə mə [hole nose] NOSTRIL
nganu oto [sun flat_leaf] RAINBOW
duə ʔəc [head brain] SKULL
oputo nyukuel [thing food] SUPPER
motu chuto [finger/digit female] THUMB
ngən chän [finger foot] TOE
cə tay [neck hand] WRIST

(Uralic) Finnic

Estonian (23): 104W / 65B / 6C

Base.GEN.SUF (2)
karja.ne [herd:GEN DER] HERDSMAN
kuuninga.nna [king:GEN DER] QUEEN

Base.SUF (4)
mesi.lane [honey:GEN.DER] BEE
pea.lik [head:DER] CHEF TAIN
tala.nik [farm:DER] FARMER
sörm.ik [finger:DER] GLOVE

Head Mod (1)
kesk.päev [midday] MIDDAY

Mod Head (25)
pakkl.luu [knot:Nom bone] ANKLE
mesi.πuu [honey:Nom tree] BEEHIVE
mesi.taru [honey:Nom hive] BEEHIVE
jalg.ratas [foot:Nom wheel] BICYCLE
puu.sepp [tree:smith] CARPENTER
rung.luu [?? bone] COLLARBONE
tala.mees [farm:man] FARMER
kala.mees [fish:man] FISHERMAN
kuld.sörnus [gold:Nom ring] GOLD RING
tasku.rätt [pocket:toe] HANDKERCHIEF OR RAG
märk.sõna [mark:Nom word] KEYWORD
orum.sõik [noon:meal] LUNCH
post.kast [post:NOm box] MAIL BOX
abelu.ainen [marriage:woman] MARRIED WOMAN
nina.sõör [nose:circle] NOSTRIL
sőu.ratas [paddle:wheel] PADDLE WHEEL
post.koart [post:NOm card] POSTCARD
pott.sepp [pot:Nom smith] POTTER
raud.ter [iron:Nom way] RAILWAY
vikeraa.kar [?? arc] RAINBOW
king.ʃeep [shoe:Nom maker] SHOEMAKER
aba.luu [?? bone] SHOULDER BLADE
ölg.katu [straw:Nom roof] THATCH
wc.paber [wc paper] TOILET PAPER
töö.riist [work tool] TOOL

Mod GEN Head (32)
seλa.kott [back:Gen bag] BACKPACK
jalgratta.pump [bicycle:Gen pump] BICYCLE PUMP
käe.võru [head:Gen ring] BRACELET
hommi.plu [morning:GEN meal] BREAKFAST
The typology and semantics of binominal lexemes

piima.lehm [milk:GEN,cow] DAIRY COW
öhna.söök [evening:GEN,meal] DINNER
uksi.piit [door:GEN,post] DOORPOST
körva.nibu [ear:GEN,lobe] EARLOBE
körva.röngas [ear:GEN,ring] EARRING
körva.vauha [ear:GEN,wax] EARWAX
silbma.luaug [eye:GEN,lid] EYELID
küte.kolle [heating:GEN,hearth] FIREPLACE
önge.nöör [hook:GEN,cord] FISHING LINE
kirbu.turg [lea:GEN,market] FLEA MARKET
sörme.jälj [finger:GEN,print] FOOTPRINT
käe.kott [hand:GEN,bag] HANDBAG
vöime.sööma [key:GEN,word] KEYWORD
kitse.tall [goat:GEN,kid] KID
numbrit.märk [number:GEN,mark] LICENSE PLATE
linnu.tee [bird:GEN,way] MILK WAY
iss.maa [father:GEN,land] NATIVE COUNTRY
vanna.tittar [brother:GEN,dughter] NIECE
peo.pesa [palm:GEN,nest] PALM OF HAND
ämbläa.vörk [spider:GEN,web] SPIDER WEB
kivi.sild [stone:GEN,bridge] STONE BRIDGE
suhrka.roogi [sugar:GEN,cane] SUGAR CANE
öhna.söök [evening:GEN,meal] SUPPER
tööristä.kast [tool:GEN,box] TOOLBOX
hamba.hari [tooth:GEN,brush] TOOTHBRUSH
puu.tävi [tree:GEN,trunk] TREE TRUNK
vee.pump [water:GEN,pump] WATER PUMP
tuule.veski [wind:GEN,mill] WINDMILL
Mod.NMLZ Head (1)

mesi.las.vaha [honey:NMLZ,wa] BEESEWAX

Finnish (26): 100W / 57B / 6C
Base.F (1)
kuning.ta [king:GEN] QUEEN
Base.NMLZ (2)
kivi.ne [hand:NMLZ] GLOVE
isä.ntä [father:NMLZ] HOST
Head Mod (1)
keski.päivä [middle:day] MIDDAY
Head Mod (1)
keski.viikko [middle:week] WEDNESDAY

Mod.NMLZ Head (11)
revoo.n.tufer [fox:GEN,fire:PL] ARCTIC LIGHTS
pyörä.n.pumpu [bicyle:GEN,pump] BICYCLE PUMP
ove.n.pieli [door:GEN,post] DOORPOST
korva.n.nipukka [ear:GEN,tip] EARLOBE
jala.n.jälki [foot:GEN,trace] FOOTPRINT
linnu.n.rata [bird:GEN,track] MILKY WAY
velje.n.tytär [brother:GEN,dughter] NIECE
sateen.kauri [rain:GEN,bow] RAINBOW
hännähäki.n.verkko [spider:GEN,net] SPIDER WEB
puu.n.runko [tree:GEN,branch] TREE TRUNK
muna.n.keituaunen [egg:GEN,duck] YOLK

Mod.Head (41)
selkä.reppu [back:bag] BACKPACK
mehiläis.pesu [bee:nest] BEEHIVE
mehiläis.vaha [bee:wa] BEESEWAX
ranne.rengas [wrist:ring] BRACELET
puu.seppä [tree:smith] CARPENTER
solis.buu [??:bone] COLLARBONE
tentä.ketitö [field:kitchen] COOKHOUSE
korva.rengas [ear:RING] EARRING
korvaa.vaikke [ear:waax] EARWAX
kulma.karvaa [brow:hair] EYEBROW
silmä.ripsi [eye:lash] EYELASH
silmä.luomi [eye:lid] EYELID
kirppu.tori [lea:market] FLEA MARKET
kulta.sormus [gold:ring] GOLD RING
käsi.jarra [hand:brace] HAND BRAKE
käsi.laukku [hand:bag] HANDBAG
nenä.liina [nose:kerchief] HANDKERCHIEF OR RAG
avain.sano [key:word] KEYWORD
postil.thalikko [post:box] MAIL BOX
koti.maa [home:land] NATIVE COUNTRY
siipti.ratas [blade:wheel] PADDLE WHEEL
postil.kortti [post:card] POSTCARD
rauta.tie [iron:road] RAILWAY
ykli.luu [side:bone] RIB
lapa.luu [shoulder:bone] SHOULDERBLADE
pää.kallo [head:skull] SKULL
silinä.lasti [eye:glass:PL] SPECTACLES/GLASSES
selkä.ranka [back:stem] SPINE
bevos.tall [horse:stall] STABLE OR STALL
kivi.siltä [stone:bridge] STONE BRIDGE
sokeri.ruoka [sugar:can] SUGAR CANE
iltu.pala [evening:piece] SUPPER
okki.katto [straw:roof] THATCH
vessa.paperi [toilet:paper] TOILET PAPER
pyö.kala [work:thing] TOOL
työkala.pakkü [tool:case] TOOLBOX
hammas.harja [tooth:brush] TOOTHBRUSH
veri.suoni [blood:vein] VEIN OR ARTERY
viini.kiynnös [wine:creep] VINE
vesi.pumpu [water:water] WATER PUMP
tuuli.nelly [wind:mill] WINDMILL

(Uralic) Hungarian
Hungarian (37): 105W / 57B / 6C
Base.F (1)
király.nő [king:GEN] QUEEN
Base.NMLZ (3)
asztal.os [table:NMLZ] CARPENTER
balász [Fish:NMLZ] FISHERMAN
cipő.esz [shoe:NMLZ] SHOEMAKER
Base.PROP (2)
csorda.s [herd:PROP] HERDSMAN
facét.as [pot:PROP] POTTER

Mod.Head (42)
meh.kas [bee:carriage] BEEHIVE
meh.viasz [bee:waax] BEESEWAX
bicikli.pumpa [bicyle:GEN,pump] BICYCLE PUMP
törzs.föönök [tribe:chief] CHIEFTAIN
kucsl.csoró [key:bone] COLLARBONE
ajt.keret [door:frame] DOORPOST
ful.cimna [ear:pinna] EARLOBE
ful.osó [ear:ear] EARL
szem.öldök [eye:??] EYEBROW
szem.pilla [eye:??] EYELASH
szem.bőr [eye:shell] EYELID
tázhely [fire:place] FIREPLACE
bolha.piac [lea:market] FLEA MARKET
láb.nyom [leg:trace] FOOTPRINT
arvany.gyövü [gold:ring] GOLD RING
zseb.kendő [pocket:shawl] HANDKERCHIEF OR RAG
kör.húc [disease:house] HOSPITAL
kucsl.szo [key:word] KEYWORD
kescs.gida [goat:kid] KID
rendszám.tábla [license:license plate] LICENSE PLATE
posta.tálás [post:box] MAIL BOX
tef.át [milk:way] MILK WAY
szilüöldös [parent:earth] NATIVE COUNTRY
unoka.búg [grandchild:son] NIECE
mell.bimbó [brest:breast] NIPPLE OR TEAT
orr.lyuk [nose:hole] NOSETRIL
király.nő [king:woman] QUEEN
vas.át [iron:road] RAILWAY
Appendix E. Binominal data set

(szem.úveg [eye.glass] SPECTACLES/GLASSES
pók.háló [spider.web] WEB SPIDER WEB
kö.híd [stone.bridge] STONE BRIDGE
cukor.nád [sugar.cane] SUGAR CANE
vásár.nap [market.day] SUNDAY
könyv.cs jeep [car.drop] TEAR
nád.tető [can.roof] THATCH
húvelyk-uj [inch.finger] THUMB
lid.uj [foot.finger] TOE
véce.papír [toilet.paper] TOILET PAPER
fog.kész [toothbrush] TOOTHBRUSH
fa.törzs [tree.trunk] TREE TRUNK
szélmalom [wind.mill] WINDMILL
tójás.sárga [egg.yellow] YOLK
Mod.ADJZ Head (6)
ez'ak.ín [north.ADJZ light] ARCTIC LIGHTS
hát.i.sók [back.ADJZ.sack] BACKPACK
kér.i.iska [hand.ADJZ.brake] HAND BRAKE
tés.i.iska [hand.ADJZ.bag] HANDBAG
ház.i.gzada [house.ADJZ.owner] HOST
víz.i.kerek [water.ADJZ.wheel] PADDLE WHEEL

Mod.PROP Head (3)
feri.es.asszyony [husband.PROP married_woman] MARRIED WOMAN
kép.es.lap [picture.PROP.card] POSTCARD
szerszám.os.láda [tool.PROP.box] TOOLBOX

(Uralic) Mari

Western Mari (59): 93W / 43B / 3C

Mod Head (41)
kid.sol [hand.?] BRACELET
ir kackši [morning meal] BREAKFAST
ekelda.la [seine.bone] COLLARBONE
vadó kackši [evening meal] DINNER
amasa kósk [door post] DOORPOST
pőlée mičui [ear end] EARLOBE
pőlée.täng [ear.coin] EARRING
pőlée kis [ear.wax] EARWAX
sőnča.xal [eye.brow] EYEBROW
sőnča.pőn [eye.hair] EYELASH
sőnča.komčiš [eye.cover] EYELID
től vacak [fire.place] FIREPLACE
angör.törö [river.thread] FISHING LINE
től salhm [fire flame] FLAME
körtni.kérgš [gold.ring] GOLD RING
kis.morm [hand.brace] HAND BRACE
kesši is [goat.baby.animal] KID
kečšvál kacší [midday meal] LUNCH
kekombó kornš [bird goose road] MILKY WAY
ner.raz [nose.?] NOSTRIL
kild.lapa [hand.pad] PALM OF HAND
koršok mastar [pot.master] POTTER
kőrtűn kornš [iron.road] RAILWAY
őrlő ki [side.bone] RIB
kem.śrőc [shoemaker] SHOEMAKER
pušši.savala [shoulder.spoon] SHOULDERBLADE
vaj.karka [head.scoop] SKULL
angšemő.field [spider.cauldron] SPIDER WEB
tup.őrdő [back.core] SPINE
imni saraj [horse.barn] STABLE OR STALL
kő.köver [stone.bridge] STONE BRIDGE
saxar.tronš [sugar.cane] SUGAR CANE
vadó kackši [evening meal] SUPPER
sőnča.vőd [eye.wear] TEAR
jal.varna [foot.finger] TOE
šőštöl.xádör koropšla [make.NMLZ thing box] TOOLBOX
pűššo.ţing [tree. trunk] TREE TRUNK
vör.ször [blood.?] VEIN OR ARTERY
vinograd.padrengš [grape.vine] VINE

Mod.Gen Head (1)
mõč.n sarš [egg.GEN yellow] YOLK

Mod.LAT Head (1)
sand.es pumaga [toilet.LAT paper] TOILET PAPER

(Uralic) Saami

Kildin Sami (82): 87W / 35B / 4C

Mod Head (26)
still.k vuss [back.sack] BACKPACK
vezvukk.piess' [wasp.nest] BEEHIVE
vezvukk-sãr'v [wasp.tar] BEESWAX
vuell.'ka-taxši [shoulder.bone] COLLARBONE
piejš-vevar [day.soup] DINNER
piejj-kiediš'k [ear. stone] EARLOBE
šall.'r-rümäns [eye.brin] EYELID
koall'surša [gold.ring] GOLD RING
kõši vuss [hand.bag] HANDBAG
noso-rrip es' [nose.kerchief] HANDBKERCH OR RAG
piejš-pierkr [day.meal] LUNCH
počši åhkš [post.box] MAIL BOX
nýkkës jëh'eš' [female horse] MARE
piejš-këšš [day.middle] MIDDAY
ässš.tõll [star.fire] MILKY WAY
rëvvičeskas [iron.road] RAILWAY
nër.'ëš 'jëkkš [thunder.bow] RAINBOW
jërřh.'tæsš [hank.bone] RIB
vëjyj.šàjšš [head.cap] SKULL
kiedd'k mosšt [stone.bridge] STONE BRIDGE
saxar.kórě [sugar.cane] SUGAR CANE
jüll.'k-čësš [foot.toe] TOE
vërr-säũn [blood.threads] VEIN OR ARTERY
vë L. 'mür [vine.tree] VINE
lesšk-källš [widow.old.man] WIDOWER
kõši-lõpp [hand.so] WRIST

Mod.Head.Dim (3)
jëb eš' all.k.a [horse.son.DIM] FOAL OR COLT
koass.a.all.k.a [goat.DIM.son.DIM] KID
tämm're all.k.a [sheep.DIM.LAMB]

Mod.ATTR.Head (3)
jinc.es. pìerkr [morning.ATTR.meal] BREAKFAST
mäjjet'es'llíjìm [milk.ATTR cow] DAIRY COW
jëk.es. pìerkr [evening.ATTR.meal] SUPPER

Mod.Gen.Head (3)
ër, pücčch 'm [fire.GEN.SG.tongue] FLAME
mašina nõ'mer [car.GEN number] LICENSE PLATE
005.e sájšš [spider.GEN net] SPIDER WEB

Yeniseian

Ket (47): 70W / 29B / 3C

Mod Head (16)
ëk.âtš [male.child] BOY
ëk.tib [arm.ring] BRACELET
okë,kib [ear.point.end] EARLOBE
bul.sej [leg.place] FOOTPRINT
bul.quş [leg.way] FOOTPRINT
qim.sej [woman.child] GIRL
hay.köö [female.horse] MARE
Alba kän [Alba.hunting.trail] MILKY WAY
qima.am [grandmother.mother] MOTHER-IN-LAW (OF A MAN)
qım.qım [khan.woman] QUEEN
eqb.qo' [thunder.path] RAINBOW
dö'qo'[brain.covering] SKULL
se'n.qu's [reindeer.PL:tent] STABLE OR STALL
ho'q.d.oks ba'ñ [excrement.POSS.stick place] TOILET

2020-04-25 Draft. Please do not cite. Comments to: pepper.steve@gmail.com. 465
The typology and semantics of binominal lexemes

Oceania/SE Asia

(Austro-Asiatic) Asian

Vietnamese (95): 85W / 49B / 2C

Vietnamese Head Mod (41)
cọ ch’un [neck leg] ANKLE
tọ ong [nest bee] BEEHIVE
sáp ong [wax bee] BEESWAX
thị rẹc [skilled_laborer forge] BLACKSMITH
tọ con [child boy] BOY
vọng tay [circle hand] BRACELET
thọ móc [skilled_laborer wood] CARPENTER
gà tròng [chicken male] COCK/ROOSTER
xuồng dörn [bone lever] COLLABORONE
nhẹ bếp [house stove] COOKHOUSE
giọng cọa [scaffolding door] DOORPOST
trái t’ai [fruit ear] EARLOBE
họa t’ai [flower ear] EARRING
lọng mị [body_hair eyebrow] EYELASH
ngọn là[peak fire] FLAME
dịu ch’un [mark foot] FOOTPRINT
gọ ong [child female] GIRL
bọ tay [bag hand] GLOVE
khịn tọy [small cloth hand] HANDKERCHIEF OR RAG
chụ nhá [master house] HOST

(Austronesian) Vietnamese

Malagasy (71): 89W / 58B / 6C

AGT. Base (6)
mpan.dríafrira [AGT.carpentry] CARPENTER
mpan.jono [AGT.bait] FISHERMAN
mπ.híca [AGT.game/produce_of_hunting] FISHERMAN
mpan.intiana [AGT.fishhook] FISHERMAN
mpan.ővo [AGT.fishtrap] FISHERMAN
mpa.mosávvy [AGT.witchcraft] SORCERER OR WITCH

Mod Head (31)
 çev t’onté [mother,honey] BEE
mpaňény vy [moulder/maker iron] BLACKSMITH
zaza.láhy [child male] BOY
sakafo maraína [meal morning] BREAKFAST
akohö láhy [chicken male] COCK/ROOSTER
mánjá, máso [?.eye] EYEBROW
volo, máso [hair.eye] EYELASH
hitirá, máso [skin.eye] EYELID
leño.táfo [tongue.blade:fire] FLAME
zaka.soávly [child:young horse] FOAL OR COLT
zaza.vávy [child:female] GIRL
zavakň’.ávy [offspring:goat] KID
zaka,óndry [offspring:goat] LAMB
sakafo antoándro [meal noon] LUNCH
soávly vávy [horse female] MARE
rafozana.vávy [parent_in:law:female] MOTHER-IN-LAW (OF A MAN)

(Austronesian) Greater Barito

Mod.PERF (1)
d’<in>napí-an [foot<PERF>-LOC] FOOTPRINT

AGT. Base (6)
mpan.dríafrira [AGT.carpentry] CARPENTER
mpan.jono [AGT.bait] FISHERMAN
mπ.híca [AGT.game/produce_of_hunting] FISHERMAN
mpan.intiana [AGT.fishhook] FISHERMAN
mpan.ővo [AGT.fishtrap] FISHERMAN
mpa.mosávvy [AGT.witchcraft] SORCERER OR WITCH

Mod Head (31)
 çev t’onté [mother,honey] BEE
mpaňény vy [moulder/maker iron] BLACKSMITH
zaza.láhy [child male] BOY
sakafo maraína [meal morning] BREAKFAST
akohö láhy [chicken male] COCK/ROOSTER
mánjá, máso [?.eye] EYEBROW
volo, máso [hair.eye] EYELASH
hitirá, máso [skin.eye] EYELID
leño.táfo [tongue.blade:fire] FLAME
zaka.soávly [child:young horse] FOAL OR COLT
zaza.vávy [child:female] GIRL
zavakň’.ávy [offspring:goat] KID
zaka,óndry [offspring:goat] LAMB
sakafo antoándro [meal noon] LUNCH
soávly vávy [horse female] MARE
rafozana.vávy [parent_in:law:female] MOTHER-IN-LAW (OF A MAN)

Draft. Please do not cite. Comments to: pepper.steve@gmail.com. 2020-04-25
zānaka.anabāy [offspring,sister_of_a_man] NIECE
zānaka.raha.avy [offspring,sister/female_cousin,woman] NIECE
loha.nono [head,breast] NIPPLE OR TEAT
viyā.ironu [mouth,nose] NOSESTIRL
fela.tanana [palm,hand] PALM OF HAND
kāra.traphuta,pastrāy [card,postal] POSTCARD
mpanēša tanimanga [moulder,maker clay] POTTER
mōrona.rāno [border,edge,water] SHORE
solo.māso [substitute,eye] SPECTACLES/GLASSES
rāno.māso [water,eye] TEAR
tāfo bōzaka [roof,grass,straw] THATCH
ranāsana.longtōra [branch,foot] TOE
vānā.hāço [munk,tree,wood] TREE TRUNK
vēe.bōhok [fruit,grape] VINE
hātōka.tanana [neck,hand] WRIST
Head SOC.Mod (1) vehīvāy manam.bādy [woman with,spouse] MARRIED WOMAN
Head.PER.Mod (18) fehī.y.n.tanana [tying,knot,PER,hand] BRACELET
tuola.n.punāy [bone,PER,charm] COLLARBONE
tān.n.sofina [dirt,shit,PER,ear] EARWAX
tādy.n.finiāna [line,rope,PER,fishhook] FISHING LINE
dia.n.tōngtōra [print,PER,footprint] FOOTPRINT
gō.n.tanana [glove,PER,hand] GLOVE
tompo.n.trano [owner,lord,PER,house] HOST
nimerāiso.n.aotomobīla [number,PER,car] LICENSE PLATE
tān.n.rāzana [land,PER,ancestor] NATIVE COUNTRY
lala.m.by [road,PER,iron] RAILWAY
āntsibē.n.andriamāntśa [knife,big,PER,God] RAINBOW
tωlānana.tehēzana [bone,PER,rib_side] RIB
kārāna.n.loha [shell,coral,PER,head] SKULL
trānā.n.hāla [house,PER,spider] SPIDER WEB
hāço.n.lamīsina [wood,tree,PER,back] SPINE
trānā.n.imby [house,PER,bovine] STABLE OR STALL
fiara.n.lakambī [vehicle,PER,railway] TRAIN
lālā.n.rru [road,PER,bridge] VEIN OR ARTERY
NML.Z.Base (1) fl.loha [NMLZ,head] CHIEFTAIN
NML.Z.Base.CIRC (1) fa.mosavi.ana [NMLZ,witchcraft,CIRC] MAGIC
(Austronesian) Greater Central Philippine
Tagalog (90): 92W / 36B / 8C
AGT.RED.Base (2) mag.sa.saka [AGT.RED,farming] FARMER
mang.ing.isda [AGT.RED,fish] FISHERMAN
Base.LOC (3) hapun.an [afternoon,LOC] DINNER
tanghali.an [midday,LOC] LUNCH
hapun.an [afternoon,LOC] SUPPER
CIRC.Base.CIRC (1) ka.sangkap.an [CIRC,belongings,CIRC] TOOL
Head LK Mod (19) panghangin ng bisikleta [wind?,LK,bicycle] BICYCLE PUMP
bata.ng.lalak [child,LK,boy] BOY
talakos ng mata [eyelid,LK,eye] EYELID
bakas ng paa [remains,LK,foot] FOOTPRINT
bata.ng.babae [child,LK,female] GIRL
bata.ng.kambing [child,LK,goat] KID
bata.ng.tupa [child,LK,shoep] LAMI
babai.ng.kabayo [female,LK,horse] MARE
pulo.ng-bituin [island,LK,star] MILKY WAY
biyana.ng.babae [parent,in-law,LK,female] MOTHER-IN-LAW
(of a MAN)
butas ng ilong [hole,LK,nose] NOSTIRL
palad ng kumay [palm,LK,hand] PALM OF HAND
manggagawa ng palayok [worker,LK,pot] POTTER
dua.ng-bakal [road,LK,iron] RAILWAY
tabi.ng-dagat [edge,LK,sea] SHORE
tulay na bato [bridge,LK,stone] STONE BRIDGE
daliri ng paa [digit,LK,foot] TOE
bomba ng tubig [pump,LK,water] WATER PUMP
pula ng utok [red,LK,egg] YOLK
Head LOC Mod (2) salamin sa mata [mirror,LOC,eye] SPECTACLES/GLASSES
sipilo sa ngipin [brush,LOC,tooth] TOOTHBRUSH
Head Mod (6) bahay-pukyutan [house,bee] BEEHIVE
pilk-mata [lashes,eye] EYELASH
pamangking babae [nephew,niece,female] NIECE
manggaga,way [worker,ceremony] SACRIFER OR WITCH
bahay-gagamba [house,spider] SPIDER WEB
bato tulay [stone,bridge] STONE BRIDGE
Mod Head (1) kamay preno [hand,brake] HAND BRAKE
Mod LK Head (2) ginto.ng,singsing [gold,LK,ring] GOLD RING
kasal na babae [wedding,LK,woman] MARRIED WOMAN

(Austronesian) Malayo-Sumbawan
Indonesian (39): 108W / 49B / 3C
AGT.Base (1) peng.sihir [AGT,sorcery] SORCERER OR WITCH
Head Mod (47) mata kaki [eye,foot] ANKLE
tukang besi [craftsman,iron] BLACKSMITH
tukang kayu [craftsman,wood] CARPENTER
kepala adat [head,custom] CHIEFTAIN
kepala suku [head,tribe] CHIEFTAIN
ayam jago [chicken,rooster] COCK/ROOSTER
nulang selangka [bone,collarbones] COLLARBONE
iāng pinta [post door] DOORPOST
kotoran telinga [dirtiness,ear] EARWAX
tahi kuping [excrement,ear] EARWAX
alis (mata) [eyebrow,eye] EYEBROW
bula mata [body,head,eye] EYELASH
kelopak mata [sheath,eye] EYELID
tali kail [cord,hook] FISHING LINE
ilah apī [tongue,fire] FLAME
nyala (API) [flame,fire] FLAME
sarung tangan [cover,hand] GLOVE
kain kap [cloth,rags] HANDKERCHEF OR RAG
sapu tangan [broom,hand] HANDKERCHEF OR RAG
tuhan rumah [master,house] HOST
plat (mobil) [plate,car] LICENSE PLATE
kotak pos [box,post] MAIL BOX
tengah hari [middle,day] MIDDAY
tanah-air [land,water] NATIVE COUNTRY
rongga hidung [cavity,head] NOSTIRL
lubang hidung [hole,nose] NOSTIRL
lapak/kotak tangan [palm,hand] PALM OF HAND
kartu pos [card,mail] POSTCARD
tukang tembakar [craftsman,earthenware] POTTER
jalan kereta apī [road,carriage,fire] RAILWAY
tukang sihir [craftsman,magic] SORCERER OR WITCH
kaca mata [glass,eye] SPECTACLES/GLASSES
bulang belakang [bone,back] SPINE
jembutan batu [bridge,stone] STONE BRIDGE
hari Minggu [day,Sunday] SUNDAY
air mata [water,eye] TEAR
ibu jari [mother,thumb] THUMB
jari kaki [finger,foot] TOE
kertas kaku [paper,toilet] TOILET PAPER
peti perkakas [case,tools] TOOLBOX
The typology and semantics of binominal lexemes

(Tai-Kadai) Kam-Tai

Thai (91): 103W / 56B / 2C

Head Mod (51)

Thai

MOD HEAD.SUF (1)
jiao.wan4.zi1 [foot.wrist/joint.SUF] ANKLE

Mod.Head.SUF (2)
chê1.pai2.er [car.plate.SUF] LICENSE PLATE
shou3.wan4.zi1 [hand.wrist.SUF] WRIST
West Bomberai
Kalamang (48): 90W / 56B / 6C
Head DEM Mod (1)
los (wane) yar [bridge PROX stone] STONE BRIDGE
Head Mod (14)
pompa sepeda [pump bike] BICYCLE PUMP
tuman canam [child male] BOY
tukan ror [worker wood] CARPENTER
kepala suku [head tribe] CHIEFTAIN
koko canam [chicken male] COCK/ROOSTER
sontum amdir [person garden] FARMER

tumun pas [child female] GIRL
tanggarangara maran [ring gold] GOLD RING
maup yuon:nawa:ririn [food midday] LUNCH

ketaran pas [horse female] MARE

kedan.an [inlaw.1SG:POSS female] MOTHER-IN-LAW (OF A MAN)

leit pas [king female] QUEEN

jaring puselet [web spider] SPIDER WEB

pompa air [pump water] WATER PUMP

Head Mod.POSS (6)
maup gosaukin:kin [food evening.POSS] DINNER
nika war:kin [line fish.POSS] FISHING LINE
tas tan:kin [bag hand.POSS] HANDBAG

sapan tan:kin [broom hand.POSS] BROOM

kotak surat:kin [box letter.POSS] MAIL BOX

maup gosaukin:kin [food evening.POSS] SUPPER

Head Mod.REF (2)
kokok jago:ten [chicken cock,ADIZ] COCK/ROOSTER

sontum war:ten [person sorcery,ADIZ] SORCERER OR WITCH

Mod Head (19)
kor kasir [foot ??] ANKLE

wenavena ewm [bee nest] BEEHIVE

saun maup [evening food] DINNER

kanggir nenen [eye hair] EYELASH

din paras [fire embers] FLAME

kor:kom [foot ??] FOOTPRINT

tan sarong [hand cover] GLOVE
goyou maup:et [afternoon food ??] LUNCH

kalis tangger:in [rain ??] RAINBOW

kin:ang [side.bone] RIB

os:ket [sand.above ??] SHORE

bekiem.kang [shoulder bone] SHOULDERBLADE

nakal tak:q [head shell??] SKULL

som:kan:q [person:bone~RED] SKULL

suol:kang [back:bone] SPINE

ter:tan [water:drops] TEAR

kor:parok [foot ??] TOE

ror evun [tree base:trunk] TREE TRUNK

tan kasir [hand ??] WRIST

Mod Head.3POSS (14)
aknar kung:un [chest bone,3POSS] COLLARBONE

anggas ror:un [door wood,3POSS] DOORPOST

kelkam eluo:un [ear ear,3POSS] EARLOBE

kolok kit:un [ear poop,3POSS] EARWAX

kanggir pal:un [eye skin,3POSS] EYEBROW

kanggir pal:un [eye skin,3POSS] EYELID

din tompat:un [fire place,3POSS] FIREPLACE

kuda tunam:un [horse child,3POSS] FOAL OR CULT

eewe nara:un [house old,person,3POSS] HOST

domba tunam:un [sheep child,3POSS] LAMB

mobil pelat:un [car plate,3POSS] LICENSE PLATE

am bel:un [breast ??,3POSS] NIPPLE OR TEAT

bustang pos:un [nose hole,3POSS] NOSTRIL

tan el:un [hand under,3POSS] PALM OF HAND

North America

Athabaskan-Eyak-Tlingit
Navajo (63): 77W / 27B / 5C
3SG.Mod.Head (1)
'a.k'é.ts'în [3SG,foot.bone] ANKLE

Mod 3SG.Head (9)
tsis'na bi.ghan [beee 3SG,home] BEEHIVE

tsis'na bi:yeek [3eek 3SG,ring] BEESWAX

naa'ahóóhái bi:ka'ji [chicken 3SG,male,NFE] COCK/ROOSTER

li:ó' _ _bee_hahadleehé bi:tl't:óól [fishing_rod 3SG,rope] FISHING LINE

bëesoo bi:zis [money 3SG,bag] HANDBAG

bëésh bi:tin [iron 3SG,pat] RAILWAY

na'ashjé'bi ti:tl't:óól [spider 3SG,string] SPIDER WEB

lij' bi:ghan [horse 3SG,stable] STABLE OR STALL

tsin bi:tsisin [tree 3SG,handle] TREE TRUNK

Mod INS Head (1)

tèe bee na'n'iá [stone with it bridge] STONE BRIDGE

Mod.Head (15)

'ajjééh.t'íizh [ear,ear,ear] EARWAX

'ani.ts'în [eye:bone] EYEBONE

'ani.diz [eye.??] EYELASH

'ani:ts [eye不可缺少/bag] EYELID

ki:k'eh [fire place] FIREPLACE

kë.ë.k'eh [foot,place] FOOTPRINT

'álá.jish [hand:bag] GLOVE

lij.t'sá 'i [horse:female] MARE

'abe'.láthah.á [breast tip,NFE] NIPPLE OR TEAT

'álá.t'dåh [hand:bottom] PALM OF HAND

'átsq'q.ts'în [ribs,bone] RIB

to:baq'q [water:edge] SHORE

'aggis.tsisin [??,bone] SHOULDERBLADE

tsis'în [head,head,head] SKULL

'álá.tsisin [hand:bone] WRIST

Mod.L.E.Head (1)
nák 'ee.sh.to' [eye_area,LIG,water] TEAR

(Eskimo-Aleut) Yupik

Central Yupik (24): 70W / 21B / 15C
Base.AQ3 (2)
tallir:aq [arm,AQ3] BRACELET

arnar:aq [woman,AQ3] GIRL

Base.AAR(AQ) (1)
cuk:artaq [person,AR(AQ)] TOE

Base.CENGAQ (1)
quka:engaq [waist,CENGAQ] BEE

Base.CUUN (1)
amuq:swuun [wind,CUUN] WINDMILL

Base.I.LITAQ (1)
tayarner.litâq [wrist,I.LITAQ] BRACELET

Base.IRIN (1)
pingay:irin [three,IRIN] WEDNESDAY

Base.LEK (1)
emâ:lek [mother's milk/breast.LEK] NIPPLE OR TEAT

Base.LEQ1 (2)
cingi:leq [bootstrap,LEQ1] ANKLE

eken:leq [fire,LEQ1] FIREPLACE

Base.QLIQ (1)
ela:qliq [outside? QLIQ] NEIGHBOUR

Base.QUQ (1)
epul:quq [shaft,QUQ] TREE TRUNK

472 Draft. Please do not cite. Comments to: pepper.steve@gmail.com. 2020-04-25
The typology and semantics of binominal lexemes

Tupian

Mbya Guaraní (31): 61W / 33B / 6C

3.Mod ABL.Head (1)
be.xa.re.guwa [3.eye ABL-NMLZ] SPECTACLES/GLASSES

3.Mod Head (4)
be.xa.y [3.eye.water] TEAR

Base.DIM (2)
ava.i [male.DIM] BOY
kuha.i [woman.DIM] GIRL

Mod Head (20)
po.apí [hand.piece] ANKLE
ei.ru [honey.father] BEE
ei.rapú.a [honey sphere] BEEHIVE

Base:LOC (1)
sisí 'wóochi [iron.LOC] TOOL

Base:NMLZ (1)
jò'aka.me [home.PNS.L.NMLZ] PLACE

DIM Base (2)
ili.kabá 'i [DIM horse] FOAL OR COLT
ili.jamut [DIM woman] GIRL

Mod Head (15)
mamúmu jà'aru [bee house] BEEWAX
pueta Mayou [door edge] DOORPOST
naka.bwú [ear secretion] EARWAX
mám.bosam [hands.bags] GLOVE
kabá 'i/jamut [horse female] MARE
bwía.toosu [land next] NATIVE COUNTRY
pipí.mobu [breast.head] NIPPLE OR TEAT
yeka wojo 'orìa [nose hole] NOSE
bawe Mayou [sea edge] SHORE
koba Ota [head bone] SKULL
joo'o ota [back bone] SPINE
mám.pusiam [hand.finger] THUMB
bwe'uri wokì.pusiam [big feet.finger] TOE
ojo wíí [blood threat] VEIN OR ARTERY
kaba.ji.pí [egg heart] YOLK

Mod Head.APPL (1)
mam.betala.riam [hand plain.APPL] PALM OF HAND

(Over-Aztecan) Southern Uto-Aztecan

Yaqui (99): 92W / 20B / 5C

Base:LOC (1)
sisí 'wóochi [iron.LOC] TOOL

Base:NMLZ (1)
jò'aka.me [home.PNS.L.NMLZ] PLACE

DIM Base (2)
ili.kabá 'i [DIM horse] FOAL OR COLT
ili.jamut [DIM woman] GIRL

Mod Head (15)
mamúmu jà'aru [bee house] BEEWAX
pueta Mayou [door edge] DOORPOST
naka.bwú [ear secretion] EARWAX
mám.bosam [hands.bags] GLOVE
kabá 'i/jamut [horse female] MARE
bwía.toosu [land next] NATIVE COUNTRY
pipí.mobu [breast.head] NIPPLE OR TEAT
yeka wojo 'orìa [nose hole] NOSE
bawe Mayou [sea edge] SHORE
koba Ota [head bone] SKULL
joo'o ota [back bone] SPINE
mám.pusiam [hand.finger] THUMB
bwe'uri wokì.pusiam [big feet.finger] TOE
ojo wíí [blood threat] VEIN OR ARTERY
kaba.ji.pí [egg heart] YOLK

Mod Head.APPL (1)
mam.betala.riam [hand plain.APPL] PALM OF HAND

South America

Araucanian

Mapudungun (5): 81W / 25B / 5C

Base:LOC (1)
kítural.wé [fire.LOC] FIREPLACE

Base:NMLZ (1)
raka.fe [house.NMLZ] CARPENTER
chullwá.fe [fish.NMLZ] FISHERMAN

Head Mod (14)
we.chewenéra [new.person man] BOY
Appendix E. Binominal data set

(Cariban) Guianan

Galibi Carib (11): 65W / 20B / 7C

Base.DEV (1)

kamisa.npo [piece of tissue.DEV] HANDKERCHIEF OR RAG

Base.DIM (1)

kapilina.meso [goat.DIM] KID

Base.DIM.DEV (2)

kawale.me.npo [horse.DIM.DEV] FOAL OR COLT

Kapala.me.npo [sheep.DIM.DEV] LAMB

Mod Head (8)

wana we’i [bee excrement] BEESWAX
amedukum [an] [an]]+ 0268 [wrist.base] BRACELET
emulupa.pipo [eye.skin] EYELID
wato apo [fire place] FIREPLACE
ime nori [son grandmother] MOTHER-IN-LAW (OF A MAN)
moayowai etawenini [spider web] SPIDER WEB
aina yumi [hand father] THUMB
weve uniti [base tree] TREE TRUNK

Mod Head.POSS (6)

panya seple [ear.lobe.POSS] EARLOBE
manu poi.lit [breast tip.POSS] NIPPLE OR TEAT
aina la.lit [hand flat.POSS] PALM OF HAND
upupu kowaiyi [head calabash.POSS] SKULL
pupu sikili [foot little_end.POSS] TOE
i’mo kami.lit [egg yellow.POSS] YOLK

Mod.POSS Head (1)

pana lit [ear.POSS dirtiness] EARWAX

Mod.POSS Head.POSS (1)

emo.lit sakila [nose.POSS aperture.POSS] NOSTRIIL

Chibchan

Cab (13): 81W / 31B / 2C

Mod Head (24)

kla talik [foot spur] ANKLE
bukal la [bee house] BEEHIVE
belum hu [bee excrement] BEESWAX
oshkori jiyiri [chicken male] COCK/ROOSTER
wa ka [face hair] EYEBROW
wabla ka [eye hair] EYELASH
wa kja [eye skin] EYELID

Shkglh ḥgl [smoke road] FIREPLACE
bikolé kicha [hook liana] FISHING LINE
yokó wá [fire fruit/ball] FLAME
kalwa yabo [horse child] FOAL OR COLT
yaba alákí [child woman] GIRL
due yaba [goat child] KID
vejía yabo [sheep child] LAMB
kalwa alákí [horse female] MARE
kíwa mokjí [sun half] MIDDAY
jáyi yak [man mother_in_law] MOTHER-IN-LAW (OF A MAN)
tsa bata [teat tip] NIPPLE OR TEAT
jula já [hand underside] PALM OF HAND
kóbáki ḥgí [train road] RAILWAY
wa ri [eye liquid] TEAR
jutasa mokí [finger grandmother] THUMB
tebéli yakí [knife mass] TOOL
pi kichu [blood liana] VEIN OR ARTERY

Mod Head.SPEC (7)
kuku hí [ear excrement:SPEC] EARWAX
bák chiché [shoulder bone:SPEC] SHOULDERBLADE
tšékú chiché [head bone:SPEC] SKULL
kalwa jú.i [horse house:SPEC] STABLE OR STALL
hé jú.i [excrement house:SPEC] TOILET
kal wákúchí [tree trunk:SPEC] TREE TRUNK
uva kal.i [grape tree:SPEC] VINE

Huitotoan

Murui Huitoto (38): 48W / 18B / 4C

Base.CL (10)
uí’trái [eye.CL(hair)] EYELASH
jitaí.ho [adolescent.CL(fem)] GIRL
jitaí.ho [in Clan(CL)M.FEM] MOTHER-IN-LAW (OF A MAN)
enate.ho [grandson/nephew.CL(FEM)] NIECE
debo [nose.CL(fem)] NOSTRIIL
muó ripe [Father.CL(DAY)] SUNDAY
ráño.kali [woman.CL(stem)] THUMB
ei.kali [foot.CL(stem)] TOE
ra.o [thing.CL(flex)] VINE
ono.yi [hand.CL(cluster)] WRIST

Base.CL.CL (1)
taizí ko.ho [heel.CL(cover).CL(FEM)] ANKLE

Mod ANAPH.Head (3)
jofo i.goí [ear.CL(cavity) ANAPH.CL(leaf)] EARWAX
ono.yi ko [hand ANAPH.CL(cover)] GLOVE
joi.go i.koraí [head.CL(veal) ANAPH.CL(skull)] SKULL

Mod Head (4)
trái fuñe [fire mouth] FIREPLACE
rañe nac.ma [celebration owner.CL(masc)] HOST
ono.jere í [hand inside] PALM OF HAND
íye fuñe [river mouth/edge] SHORE

Matacoan

Wichi (62): 82W / 36B / 8C

Base.AGT (2)
ithotywu [animals.AGT] HERDSMAN
sapatuswu [shoe.AGT] SHOE MAKER

Base.LOC (2)
kán.hu [needle.LOC] SUGAR CANE
y’amekwo.ho [excrement.LOC] TOILET

IPOSS.Base.AGT (1)
to.ihokwu.wu [IPOSS.container.AGT] POTTER

IPOSS.Base.LOC (4)
to.fíuswu [IPOSS.finger.PL.LOC] GLOVE
to.nhes.pe’ [IPOSS.nose.LOC] NOSTRIIL
tot.kwe.chu [IPOSS.hand.LOC] PALM OF HAND

2020-04-25 Draft. Please do not cite. Comments to: pepper.steve@gmail.com.
The typology and semantics of binominal lexemes

(Quechuan) Quechua II

Imbabura Quechua (74): 71W / 18B / 2C

Head Mod (1)
chaupi puncha [half day] MIDDAY

Mod Head (17)
mishiki puru [bee hole] BEEHIVE
mishiki wira [bee grease] BEESWAX
rinia kara [ear skin] EARLOBE
rinia mapa [ear filth] EARWAX
hawi milma [face wood] EYEBROW
hawi milma [face wool] EYELASH
hawi kara [eye skin] EYELID
wa'wa chita [child goat] KID
mama llaka [mother land] NATIVE COUNTRY
chuca uma [breakfast] NIPPLE OR TEAT
singa atuy [nose hole] NOSE
maki tabla [hand table] PALM OF HAND
una tullu [head bone] SKULL
washa tullu [back bone] SPINE
ugsha kata [straw cover] THATCH
maki muku [hand joint] WRIST
lulan killu [egg yellow] YOLK

Ticuna-Yuri

Ticuna (88): 73W / 20B / 6C

Head Mod:GEN (1)
ânérun óriä,àř [ring gold:GEN] GOLD RING

Head Mod:PURP (1)
pé,mg'e,ñàũ [cover hand/finger.PURP] GLOVE

Mod Head (5)
bejäré,ũ [honeybee.excrement] BEESWAX
pe'wo,kâñä [hook.string] FISHING LINE
ñâ,é mâ [fire.floating_untouchable_substance] FLAME
ñâ,é mâ [star.floating_untouchable_substance] MILKY WAY
pâwê,çhî[ũ [spider.web] SPIDER WEB

POSS Head:Mod (10)
ná.pl.m'ę [POSS.??.hand/finger] BRACELET
ná,1'ënñá [POSS.hole outer.ear] EARRING
ná,1'ëkài [POSS.??forehead] EYEBROW
ná,çhîn'ë [POSS.??.eye] EYELASH
ná,çhîp',ël [POSS.cup_like_shape.eye] EYELID
ná,çhî,çhe [POSS.clothes.rag] HANDKERCHIEF OR RAG
ná,çhî,âŋ [POSS.living_place.space] NATIVE COUNTRY
ná,1'më [POSS.hole.rose] NOSE
ná,tàrë.m'ë [POSS.??hand/finger] PALM OF HAND
ná.pl.m'ę [POSS.??hand/finger] WRIST

POSS Head:Mod:GEN (1)
ná,çhîp',ñàš [POSS.roof palm_species.GEN] THATCH

POSS Mod:Head (2)
ná,çhîp',ñàš [POSS.roof palm_species.GEN] THATCH
ná,çhîp',ñàš [POSS.living_place.space] HEAVEN

Pidgins/Creoles

(Pidgins & Creoles) English-based

Saramaccan (85): 65W / 32B / 3C

Base:AGT (2)
kamina.mà [loincloth.AGT] BOY
kolu.mà [skirt.AGT] GIRL

Head Of Mod (1)
finga ñá [finger of foot] TOE

Mod Head (29)
hönì.wósù [bee.honey:PL] BEEHIVE
Appendix E. Binominal data set

(Pidgins & Creoles) French-based
Seychelles Creole (16): 107W / 21B / 1C

Head Mod (21)

banan lalimyer artik [PL light arctic] ARCTIC LIGHTS
mous dimyel [fly honey] BEE
kaka zorey [feces ear] EARWAX
lapo lizye [skin eye] EYELID
met lakour [master home] HOST
plak nimero [plate number] LICENSE PLATE
bout tete [end breast] NIPPLE OR TEAT
trou nennen [hole nose] NOSTRIL
plak lannen [plate hand] PALM OF HAND
kart postal [card postal] POSTCARD
bor-lannmer [edge-see] SHORE
plak zepol [plate shoulder] SHOULDERBLADE
bonnom dibwa [man woods] SORCERER OR WITCH
lakaz bib [house spider] SPIDER WEB
tezo leren [bone kidney] SPINE
kollon vertebral [string spinal] SPINE
twa fey [roof straw] THATCH
ledwa lipye [finger foot] TOE
pous lipye [thumb foot] TOE
pye rezen [tree grape] VINE
zonn dizef [yellow egg] YOLK

höni.káká [bee.excrement] BEESWAX
wómi.ganía [man.chicken] COCK/ROOSTER
dôó.páu [door.tree] DOORPOST
jésti.búka [ear.mouth] EARLOBE
wójo.kókóo [eye.shell] EYELID
fájá.kamian [fire.place] FIREPLACE
fájá.tõngó [fire.tongue] FLAME
ási.míí [horse.child] FOAL OR COLT
góótu andélú [gold ring] GOLD RING
koósu.písii [cloth.piece] HANDKERCHIEF OR RAG
háti.wósu [pain.house] HOSPITAL
síkúpú.míí [sheep.child] LAMB
sónu.háti [sun.heart] MIDDAY
deiwei pási [dairy path] MILKY WAY
bôni.búka [breast.mouth] NIPPLE OR TEAT
nüsa.áakú [nose.hole] NOSTRIL
mújëj.kónu [woman.king] QUEEN
kúnu.mújë [king.woman] QUEEN
talán fútu [train foot] RAILWAY
téla.búka [land.mouth] SHORE
hédí.bónu [head.bone] SKULL
ándsí.wóssá [spider.house] SPIDER WEB
búka.míndí [back.middle] SPINE
mbéti.wóssá [animal.house] STABLE OR STALL
ndéti.táfa [night.table] SUPPER
wójo.wáta [eye.water] TEAR
mamá.fínga [mother.finger] THUMB
tánda bósó [tooth brush] TOOTHPASTE

2020-04-25 Draft. Please do not cite. Comments to: pepper.steve@gmail.com.
F. Database structures

This appendix contains a summary of the database structures. Each table is shown here in the form of the corresponding data frame in R. The source code (available from https://dataverse.no/dataverse/trolling) shows how the latter are constructed from the original tables exported from Microsoft Excel.

word (w) and binominal (nn)

The data frame *w* contains the complete data set, including information merged from the data frame 1 (see below); *nn* is a subset of *w* (minus two variables not needed for the data analysis), consisting of binominal data only. The structure of *nn* is the more instructive, so it is shown here. Note that four of the last five variables are merged from the data frames *m* and *s* (see below), and that the last variable is generated by concatenating *ftype* and *headPos*. Most variables are self-explanatory, given the name and examples. Thus, *ftype* represents the eight-way formal classification developed in Chapter 5, with values such as *cmp*, *prp*, *gen*, etc. The two semantic types, *semType* and *semTypeH*, represent my revision of the system proposed by Hatcher and the original, respectively (see page 76).

```r
> str(nn)
'data.frame': 3556 obs. of 24 variables:
  $ meaning    : Factor w/ 100 levels "ankle","arctic lights",...
  $ stype      : Factor w/ 27 levels "TAX","TAX2","COOR",...
  $ language   : Factor w/ 99 levels "Äiwoo","Akkadian",...
  $ word       : chr  "mata kaki" "'akéts'iin" "kla¨´ta¨li´k"...
  $ gloss      : chr  "[eye foot]" "'a.ké.ts'iin [3SG.foot.bone]" ...
  $ construction: chr  "Head Mod" "3SG.Mod.Head" "Mod Head" ...
  $ headPos    : Factor w/ 2 levels "L","R": 1 1 2 2 2 2 2 2 ...
  $ head       : chr  "eye" "bone" "spur" "joint" ...
  $ mod        : chr  "foot" "foot" "foot" "foot" ...
  $ ftype      : Factor w/ 8 levels "cmp","prp","gen",...
  $ language2  : Factor w/ 99 levels "Äiwoo","Akkadian",...
  $ area       : Factor w/ 7 levels "A","E","O",...
  $ iso639     : Factor w/ 99 levels "akk","amh",...
  $ glottocode : Factor w/ 99 levels "akka1240","amha1245",...
  $ family     : Factor w/ 37 levels "Afro-Asian",...
  $ genus      : Factor w/ 66 levels "Adamawa-Ubangi",...
  $ latitude   : chr  ".7.33458" ".36.2106" "9.67031" ".8.25605" ...
  $ longitude  : chr  ".109.716" "-110.082" "-83.4102" "37.624" ...
  $ area2      : Factor w/ 7 levels "Africa","Eurasia",...
  $ htype      : Factor w/ 5 levels "Mish","HinM",...
  $ semField   : Factor w/ 16 levels "Agriculture and vegetation",...
  $ semType    : Factor w/ 7 levels "person","animal",...
  $ semTypeH   : Factor w/ 6 levels "person","animal",...
  $ ftype2     : Factor w/ 16 levels "adjL","adjR",...
```
language (l)

The data frame l contains information relating to each of the languages in the sample, including some administrative data not included here. The variable language2 is contains abbreviated language names used for reasons of space in some figures in Chapter 7 (e.g. “Seych. Creole”).

```r
> str(l)
'data.frame': 99 obs. of 11 variables:
$ language : Factor w/ 99 levels "Äiwoo","Akkadian",..: 1 2 3 4 5 6 7 8 9 10 ...
$ language2 : Factor w/ 99 levels "Äiwoo","Akkadian",..: 1 2 3 4 5 6 7 8 9 10 ...
$ area : Factor w/ 7 levels "A","E","O","G",..: 3 1 1 4 2 2 1 1 1 1 ...
$ iso639 : Factor w/ 99 levels "akk","amh","aoi",..: 64 1 2 3 4 6 53 7 8 9 ...
$ glottocode : Factor w/ 99 levels "akka1240","amha1245",..: 7 1 2 3 4 6 48 8 9 ...
$ family : Factor w/ 37 levels "Afro-Asiatic",..: 7 1 1 1 13 22 16 5 5 5 1 ...
$ genus : Factor w/ 66 levels "Adamawa-Ubangi",..: 47 54 27 37 32 28 40 ...
$ latitude : chr  "-10.2302" "33.1000" "11.7082" "-13.999" ...
$ longitude : chr  "166.21" "44.1000" "39.5435" "136.641" ...
$ sample : Factor w/ 2 levels "P","W": 1 1 1 1 2 1 1 1 1 1 ...
$ area2 : Factor w/ 7 levels "Africa","Eurasia",..: 3 1 1 4 2 2 1 1 1 1 ...
```

meaning (m)

The data frame m contains information relating to the 100 meanings. See above for the difference between semType and semTypeH.

```r
> str(m)
'data.frame': 100 obs. of 4 variables:
$ meaning : Factor w/ 100 levels "ankle","arctic lights",..: 1 2 3 4 5 6 7 8 9 ...
$ semField: Factor w/ 16 levels "Agriculture and vegetation",..: 12 14 8 2 2 2 8 ...
$ semType : Factor w/ 7 levels "person","animal",..: 4 5 6 2 5 5 7 7 1 1 ...
$ semTypeH: Factor w/ 7 levels "person","animal",..: 3 3 2 3 3 3 1 1 ...
```

semantic relation (s)

The data frame s contains information relating to the two classifications of semantic relations (cf. Table 31 on page 236), with “B” and “H” standing for Bourque and Hatcher, respectively. Somewhat inconsistently, stype contains the codes for the Bourque2 classification and htype those for the Hatcher2 classification. The variable atype maps these two systems to the three classic associative relations identified by Aristotle.

```r
> str(s)
'data.frame': 27 obs. of 7 variables:
$ B2 : Factor w/ 16 levels "Cause","Composition",..: 13 13 4 11 15 3 3 8 ...
$ stype : Factor w/ 27 levels "CAUS","CAUS2",..: 21 22 7 18 25 5 6 13 14 11 ...
$ atype : Factor w/ 3 levels "caus","cont",..: 3 3 3 3 2 2 2 2 2 2 ...
$ H2icon : Factor w/ 5 levels "M≈H","M←H","M→H",..: 1 1 1 4 5 4 4 5 5 ...
$ htype : Factor w/ 5 levels "MisH","HinM",..: 1 1 1 3 2 3 3 2 2 ...
$ B2template : chr  "(an) M is a kind of H" "(an) H is a kind of M" ...
$ B2example : chr  "oak tree" "bear cub" "boy king" "lion ant" ...
```
G. Questionnaire

Instructions (formatted for A4 or Letter)

Contact
pepper.steve@gmail.com

Slide show
SLE 2016 presentation

Description
Project description

Dear Contributor,

Thank you for volunteering to supply data for my PhD project on the typology of binominal lexemes. You will of course be credited for your work. Please fill out the Data sheet after carefully reading the following instructions. Contact me if you have any questions.

DATABASE FIELDS

Meaning (ENG)
This is the meaning to be translated. Also given in Russian, Spanish and French.

Translation equivalent
1. For each meaning give the canonical translation equivalent (TE) using the Latin script (or IPA); if no equivalent exists, leave the field blank
2. Choose the most common translation equivalent
3. If two translation equivalents are equally common, supply either one but prefer one that is analysable to than one that is mono-morphemic

TE (non-Latin script)
4. For non-Latin writing systems, provide the word in the native script (see the RUSSIAN example)

Gloss (complex words only)
5. For TEs consisting of more than one morpheme provide a gloss.
6. If the TE does not contain any polymorphemic words, simply supply the gloss: e.g. for FRENCH 'railway' (chemin de fer) enter "way of iron"
7. For TEs in which one or more words are polymorphemic, repeat the translation with word-internal morpheme breaks indicated by a period, and add the gloss in square brackets: e.g. for GERMAN 'railway' (Eisenbahn) enter "eisen.bahn [iron.way]"
8. Only words that are synchronically analysable should be glossed
9. Use recommended abbreviations from the Leipzig Glossing Rules wherever possible, except:
10. Use a colon instead of a period when a single object-language element is rendered by several metalanguage elements (see the BEZHTA example)
11. Use a colon instead of a period when a single object-language element is rendered by several metalanguage elements (see the BEZHTA example)

Notes
12. Put any comments regarding the source of loans, calques, etc. in this column

EXAMPLES

<table>
<thead>
<tr>
<th>Meaning (ENG)</th>
<th>Translation equivalent</th>
<th>TE (non-Latin script)</th>
<th>Gloss (complex words only)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>railway</td>
<td>kil.os hinu</td>
<td>iron.OBL:GEN way</td>
<td></td>
<td>BEZHTA</td>
</tr>
<tr>
<td>railway</td>
<td>chemin de fer</td>
<td>way of iron</td>
<td></td>
<td>FRENCH</td>
</tr>
<tr>
<td>railway</td>
<td>eisenbahn</td>
<td>eisen.bahn [iron.way]</td>
<td></td>
<td>GERMAN</td>
</tr>
<tr>
<td>railway</td>
<td>železnaja doroga</td>
<td>želez.naja doroga [iron.ADJZ road]</td>
<td></td>
<td>RUSSIAN</td>
</tr>
<tr>
<td>railway</td>
<td>reli</td>
<td>-</td>
<td></td>
<td>SWAHLIL</td>
</tr>
<tr>
<td>railway</td>
<td>železnica</td>
<td>želez.n.ica [iron.ADJZ.NMLZ]</td>
<td></td>
<td>SLOVAK</td>
</tr>
</tbody>
</table>

Many thanks for your help,

Steve
<table>
<thead>
<tr>
<th>RUS</th>
<th>SPA</th>
<th>FRA</th>
<th>Meaning (ENG)</th>
<th>Translation equivalent</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>лодыжка</td>
<td>tobillo</td>
<td>cheville</td>
<td>ankle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>северное сияние</td>
<td>aurora boreal</td>
<td>aurore boréale</td>
<td>arctic lights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>рюкзак</td>
<td>mochila</td>
<td>sac à dos</td>
<td>backpack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>пчела</td>
<td>abeja</td>
<td>abeille</td>
<td>bee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>улей</td>
<td>colmena</td>
<td>ruche d'abeilles</td>
<td>beehive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>воск</td>
<td>cera de abejas</td>
<td>cire d'abeille</td>
<td>beeswax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>велосипед</td>
<td>bicicleta</td>
<td>vélo</td>
<td>bicycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>налесник</td>
<td>bomba de bicicleta</td>
<td>pompe à vélo</td>
<td>bicycle pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>кузнец</td>
<td>herrero</td>
<td>forgeron</td>
<td>blacksmith</td>
<td></td>
<td></td>
</tr>
<tr>
<td>мальчик</td>
<td>chico</td>
<td>garçon</td>
<td>boy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>браслет</td>
<td>pulsera</td>
<td>bracelet</td>
<td>bracelet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>завтрак</td>
<td>desayuno</td>
<td>petit déjeuner</td>
<td>breakfast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>плотник</td>
<td>carpintero</td>
<td>charpentier</td>
<td>carpenter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>вождь</td>
<td>cacique</td>
<td>chef de clan</td>
<td>chieftain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>петух</td>
<td>gallo</td>
<td>coque</td>
<td>cock/rooster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ключица</td>
<td>clavícula</td>
<td>clavicule</td>
<td>collarbone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>камбуз</td>
<td>cocina</td>
<td>cuisine de chantier</td>
<td>cookhouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>дойная корова</td>
<td>vaca lechera</td>
<td>vache à lait</td>
<td>dairy cow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ужин</td>
<td>cena</td>
<td>dîner</td>
<td>dinner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>дверной косяк</td>
<td>jamba de puerta</td>
<td>jambage de porte</td>
<td>doorpost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>мочка уха</td>
<td>lóbulo de oreja</td>
<td>lobe de l'oreille</td>
<td>earlobe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>серьга</td>
<td>arete, pendiente</td>
<td>boucle d'oreille</td>
<td>earring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ушная сера</td>
<td>cera de oído</td>
<td>cire d'oreille</td>
<td>earwax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>бровь</td>
<td>ceja</td>
<td>sourcil</td>
<td>eyebrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ресница</td>
<td>pestaña</td>
<td>cil</td>
<td>eyelash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>веко</td>
<td>párpado</td>
<td>paupière</td>
<td>eyelid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>фермер</td>
<td>agricultor</td>
<td>fermier</td>
<td>farmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>камин</td>
<td>chimenea</td>
<td>cheminée</td>
<td>fireplace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>рыбак</td>
<td>pescador</td>
<td>pêcheur</td>
<td>fisherman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>леска</td>
<td>sedal</td>
<td>ligne de pêche</td>
<td>fishing line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>пламя</td>
<td>llama</td>
<td>flamme</td>
<td>flame</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
H. Additional tables

This appendix contains various tables that would have taken up too much space in the body of the text.

Morbo/Comp database structure

Cf. §2.1.3 on page 32. The structural description is adapted from Guevara et al. (2006) for readability and to conform with the subset of the database kindly made available to me by Sergio Scalise. This table only shows fields for two constituents but the database was designed to accommodate more, as in tel δeka.pend.a.silavos [ten.five.LE.syllable] ‘fifteen-syllable metre’. The second “linking element” field was also used to record the POSS:3SG suffix of the Turkish izafet construction, as in kaldırım mühendi.si [pavement engineer.POSS:3SG] ‘unemployed person’.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value set</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>language</td>
<td>2-letter code</td>
<td>FI (FIN)</td>
</tr>
<tr>
<td>compound</td>
<td>orthographic form (Latin script)</td>
<td>kuusi+puu</td>
</tr>
<tr>
<td>category</td>
<td>N, V, A, P, Adv, etc.</td>
<td>N</td>
</tr>
<tr>
<td>structure</td>
<td>[N+N], [N+A], [V+N], etc.</td>
<td>[N+N]</td>
</tr>
<tr>
<td>classification</td>
<td>SUB</td>
<td>CRD</td>
</tr>
<tr>
<td>syntactic head</td>
<td>right</td>
<td>left</td>
</tr>
<tr>
<td>semantic head</td>
<td>right</td>
<td>left</td>
</tr>
<tr>
<td>1st const (C₁)</td>
<td>root form</td>
<td>kuusi</td>
</tr>
<tr>
<td>category of C₁</td>
<td>N, V, A, P, Adv, etc.</td>
<td>N</td>
</tr>
<tr>
<td>1st linking element</td>
<td>additive/subtractive morpheme</td>
<td>-</td>
</tr>
<tr>
<td>2nd const (C₂)</td>
<td>root form</td>
<td>puu</td>
</tr>
<tr>
<td>category of C₂</td>
<td>N, V, A, P, Adv, etc.</td>
<td>N</td>
</tr>
<tr>
<td>2nd linking element</td>
<td>additive/subtractive morpheme</td>
<td>-</td>
</tr>
<tr>
<td>plural marking</td>
<td>C₁</td>
<td>C₂</td>
</tr>
<tr>
<td>gender</td>
<td>m</td>
<td>f</td>
</tr>
<tr>
<td>gloss</td>
<td>English gloss (C₁+C₂=COMP)</td>
<td>spruce+tree = spruce</td>
</tr>
</tbody>
</table>

Table 66: Morbo/Comp database structure
The typology and semantics of binominal lexemes

Štekauer et al’s language sample

Cf. §2.2.2 on page 43. The genetic groupings given here are from Glottolog, not WALS. The 15 languages listed under the heading Eurasia 2 were excluded from the study sample.

<table>
<thead>
<tr>
<th>Africa (A) 14</th>
<th>Eurasia (E) 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dangaleat DAA (Chadic)</td>
<td>Udihe UDE (Tungusic)</td>
</tr>
<tr>
<td>Hausa HAU (Chadic)</td>
<td>Tatar TAT (Turkic)</td>
</tr>
<tr>
<td>Amharic AMH (Semitic)</td>
<td>Malayalam MAL (Dravidian)</td>
</tr>
<tr>
<td>Hebrew HEB (Semitic)</td>
<td>Tamil TAM (Dravidian)</td>
</tr>
<tr>
<td>Ganda LUG (Bantoid)</td>
<td>Telugu TEL (Dravidian)</td>
</tr>
<tr>
<td>Swahili SWH (Bantoid)</td>
<td>Breton BRE (Celtic)</td>
</tr>
<tr>
<td>Zulu ZUL (Bantoid)</td>
<td>English ENG (Germanic)</td>
</tr>
<tr>
<td>Jola-Fonyi DYO (Central Atlantic)</td>
<td>Greek ELL (Greek)</td>
</tr>
<tr>
<td>Yoruba YOR (Defoid)</td>
<td>Marathi MAR (Indo-Aryan)</td>
</tr>
<tr>
<td>Konni KMA (Gur)</td>
<td>Spanish SPA (Romance)</td>
</tr>
<tr>
<td>Ga GAA (Kwa)</td>
<td>Slovak SLK (Slavic)</td>
</tr>
<tr>
<td>Kua TYU (Non-Khoekhoe)</td>
<td>Japanese JPN (Japanese)</td>
</tr>
<tr>
<td>Datooga TCC (Nilotic)</td>
<td>Georgian KAT (Kartvelian)</td>
</tr>
<tr>
<td>Luo LUO (Nilotic)</td>
<td>Estonian EST (Finnic)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>North America (N) 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave SCS (Athapaskan-Eyak-Tlingit)</td>
</tr>
<tr>
<td>Kalaallisut KAL (Eskimo-Aleut)</td>
</tr>
<tr>
<td>Zinacantán Tzotzil TZO (Core Mayan)</td>
</tr>
<tr>
<td>Clallam CLM (Salishan)</td>
</tr>
<tr>
<td>Lakota LKT (Siouan)</td>
</tr>
<tr>
<td>Totonac TKU (Totonacan)</td>
</tr>
<tr>
<td>Pipil PPL (Southern Uto-Aztecan)</td>
</tr>
<tr>
<td>Kwakiutl KWK (Wakashan)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>South America (S) 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maipure MAIP1246 (Arawakan)</td>
</tr>
<tr>
<td>Jaqarú QJR (Aymara)</td>
</tr>
<tr>
<td>Wichí MZH (Matacoan)</td>
</tr>
<tr>
<td>Movima MZP (Movima)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Southeast Asia & Oceania (O) 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vietnamese VIE (Vietic)</td>
</tr>
<tr>
<td>Anejom ATY (Eastern Malayo-Polynesian)</td>
</tr>
<tr>
<td>Kumak NEE (Eastern Malayo-Polynesian)</td>
</tr>
<tr>
<td>Maori MRI (Eastern Malayo-Polynesian)</td>
</tr>
<tr>
<td>Indonesian IND (Malayo-Sumbawan)</td>
</tr>
<tr>
<td>Iloko ILO (Northern Luzon)</td>
</tr>
<tr>
<td>Karao KYJ (Northern Luzon)</td>
</tr>
<tr>
<td>Tibetan BOD (Bodic)</td>
</tr>
<tr>
<td>Mandarin Chinese CMN (Sinitic)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eurasia 2 (E) 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrikaans AFR (Germanic)</td>
</tr>
<tr>
<td>Dutch NLD (Germanic)</td>
</tr>
<tr>
<td>German DEU (Germanic)</td>
</tr>
<tr>
<td>Swedish SWE (Germanic)</td>
</tr>
<tr>
<td>Trinidadian Creole English TRF (Germanic)</td>
</tr>
<tr>
<td>Hindi HIN (Indo-Aryan)</td>
</tr>
<tr>
<td>Catalan CAT (Romance)</td>
</tr>
<tr>
<td>French FRA (Romance)</td>
</tr>
<tr>
<td>Italian ITA (Romance)</td>
</tr>
<tr>
<td>Portuguese POR (Romance)</td>
</tr>
<tr>
<td>Romanian RON (Romance)</td>
</tr>
<tr>
<td>Belarusian BEL (Slavic)</td>
</tr>
<tr>
<td>Russian RUS (Slavic)</td>
</tr>
<tr>
<td>Serbian SRP (Slavic)</td>
</tr>
<tr>
<td>Ukrainian UKR (Slavic)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Australia / New Guinea (G) 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bardi BCI (Nyulnyulan)</td>
</tr>
<tr>
<td>Kalkutung KTG (Galgadungic)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pidgins & Creoles (P) 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amele AYE (Madang)</td>
</tr>
</tbody>
</table>

Table 67: Language sample (Štekauer, Valera & Körtvélyessy 2012)
Alphabetical list of the initial 201 meanings

Cf. §3.1.3 and §3.1.4 on page 69ff.

This table lists the full set of 201 meanings in alphabetical order, together with the frequency of their occurrence as binominals in the 50 language sample.

Table 68: The original 201 meanings (alphabetical order)

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>afternoon</td>
<td>12</td>
</tr>
<tr>
<td>airplane</td>
<td>9</td>
</tr>
<tr>
<td>ancestors</td>
<td>8</td>
</tr>
<tr>
<td>anger</td>
<td>2</td>
</tr>
<tr>
<td>ankle</td>
<td>36</td>
</tr>
<tr>
<td>anxiety</td>
<td>4</td>
</tr>
<tr>
<td>arctic lights</td>
<td>65</td>
</tr>
<tr>
<td>armpit</td>
<td>14</td>
</tr>
<tr>
<td>arson</td>
<td>9</td>
</tr>
<tr>
<td>baby</td>
<td>11</td>
</tr>
<tr>
<td>backpack</td>
<td>26</td>
</tr>
<tr>
<td>bad luck</td>
<td>4</td>
</tr>
<tr>
<td>bark</td>
<td>17</td>
</tr>
<tr>
<td>bee</td>
<td>21</td>
</tr>
<tr>
<td>beehive</td>
<td>46</td>
</tr>
<tr>
<td>beeswax</td>
<td>58</td>
</tr>
<tr>
<td>beggar</td>
<td>9</td>
</tr>
<tr>
<td>beginning</td>
<td>2</td>
</tr>
<tr>
<td>bicycle</td>
<td>21</td>
</tr>
<tr>
<td>bicycle pump</td>
<td>33</td>
</tr>
<tr>
<td>birth certificate</td>
<td>11</td>
</tr>
<tr>
<td>blacksmith</td>
<td>22</td>
</tr>
<tr>
<td>bow tie</td>
<td>20</td>
</tr>
<tr>
<td>boy</td>
<td>28</td>
</tr>
<tr>
<td>bracelet</td>
<td>34</td>
</tr>
<tr>
<td>breakfast</td>
<td>25</td>
</tr>
<tr>
<td>bruise</td>
<td>2</td>
</tr>
<tr>
<td>calf</td>
<td>19</td>
</tr>
<tr>
<td>capital city</td>
<td>16</td>
</tr>
<tr>
<td>captive</td>
<td>13</td>
</tr>
<tr>
<td>carpenter</td>
<td>31</td>
</tr>
<tr>
<td>cave</td>
<td>15</td>
</tr>
<tr>
<td>chieftain</td>
<td>21</td>
</tr>
<tr>
<td>cock/rooster</td>
<td>33</td>
</tr>
<tr>
<td>collarbone</td>
<td>50</td>
</tr>
<tr>
<td>cookhouse</td>
<td>22</td>
</tr>
<tr>
<td>cousin</td>
<td>23</td>
</tr>
<tr>
<td>crowd</td>
<td>5</td>
</tr>
<tr>
<td>dairy cow</td>
<td>28</td>
</tr>
<tr>
<td>darkness</td>
<td>0</td>
</tr>
<tr>
<td>dawn</td>
<td>3</td>
</tr>
<tr>
<td>deceit</td>
<td>4</td>
</tr>
<tr>
<td>defeat</td>
<td>0</td>
</tr>
<tr>
<td>defendant</td>
<td>7</td>
</tr>
<tr>
<td>descendants</td>
<td>9</td>
</tr>
<tr>
<td>dinner</td>
<td>42</td>
</tr>
<tr>
<td>disease</td>
<td>4</td>
</tr>
<tr>
<td>divorce</td>
<td>0</td>
</tr>
<tr>
<td>doorpost</td>
<td>46</td>
</tr>
<tr>
<td>drink</td>
<td>2</td>
</tr>
<tr>
<td>earlobe</td>
<td>71</td>
</tr>
<tr>
<td>earring</td>
<td>37</td>
</tr>
<tr>
<td>earwax</td>
<td>65</td>
</tr>
<tr>
<td>earthquake</td>
<td>2</td>
</tr>
<tr>
<td>east</td>
<td>4</td>
</tr>
<tr>
<td>election</td>
<td>2</td>
</tr>
<tr>
<td>end</td>
<td>5</td>
</tr>
<tr>
<td>envy</td>
<td>6</td>
</tr>
<tr>
<td>eyebrow</td>
<td>29</td>
</tr>
<tr>
<td>eyelash</td>
<td>42</td>
</tr>
<tr>
<td>eyelid</td>
<td>56</td>
</tr>
<tr>
<td>farmer</td>
<td>36</td>
</tr>
<tr>
<td>fireplace</td>
<td>37</td>
</tr>
<tr>
<td>firewood</td>
<td>19</td>
</tr>
<tr>
<td>fisherman</td>
<td>33</td>
</tr>
<tr>
<td>fishing line</td>
<td>33</td>
</tr>
<tr>
<td>flame</td>
<td>30</td>
</tr>
<tr>
<td>flea market</td>
<td>28</td>
</tr>
<tr>
<td>foal or colt</td>
<td>29</td>
</tr>
<tr>
<td>food</td>
<td>2</td>
</tr>
<tr>
<td>footprint</td>
<td>40</td>
</tr>
<tr>
<td>freeman</td>
<td>3</td>
</tr>
<tr>
<td>girl</td>
<td>32</td>
</tr>
<tr>
<td>glove</td>
<td>54</td>
</tr>
<tr>
<td>gold ring</td>
<td>46</td>
</tr>
<tr>
<td>grief</td>
<td>3</td>
</tr>
<tr>
<td>guard</td>
<td>12</td>
</tr>
<tr>
<td>hand brake</td>
<td>29</td>
</tr>
<tr>
<td>handbag</td>
<td>30</td>
</tr>
<tr>
<td>handkerchief</td>
<td>25</td>
</tr>
<tr>
<td>herdsman</td>
<td>22</td>
</tr>
<tr>
<td>horseshoe</td>
<td>22</td>
</tr>
<tr>
<td>hospital</td>
<td>21</td>
</tr>
<tr>
<td>host</td>
<td>40</td>
</tr>
<tr>
<td>hummingbird</td>
<td>8</td>
</tr>
<tr>
<td>idea</td>
<td>2</td>
</tr>
<tr>
<td>intention</td>
<td>9</td>
</tr>
<tr>
<td>itch</td>
<td>0</td>
</tr>
<tr>
<td>judgment</td>
<td>7</td>
</tr>
<tr>
<td>keyword</td>
<td>25</td>
</tr>
<tr>
<td>kid</td>
<td>41</td>
</tr>
<tr>
<td>lamb</td>
<td>29</td>
</tr>
<tr>
<td>license plate</td>
<td>60</td>
</tr>
<tr>
<td>lipstick</td>
<td>20</td>
</tr>
<tr>
<td>lunch</td>
<td>27</td>
</tr>
<tr>
<td>magic</td>
<td>19</td>
</tr>
<tr>
<td>mail box</td>
<td>35</td>
</tr>
<tr>
<td>mare</td>
<td>39</td>
</tr>
<tr>
<td>married man</td>
<td>10</td>
</tr>
<tr>
<td>married woman</td>
<td>20</td>
</tr>
<tr>
<td>meal</td>
<td>5</td>
</tr>
<tr>
<td>meeting house</td>
<td>15</td>
</tr>
<tr>
<td>merchant</td>
<td>15</td>
</tr>
<tr>
<td>---------------</td>
<td>----</td>
</tr>
<tr>
<td>midday</td>
<td>39</td>
</tr>
<tr>
<td>milky way</td>
<td>46</td>
</tr>
<tr>
<td>mistake</td>
<td>2</td>
</tr>
<tr>
<td>mother-in-law</td>
<td>29</td>
</tr>
<tr>
<td>murder</td>
<td>4</td>
</tr>
<tr>
<td>native country</td>
<td>46</td>
</tr>
<tr>
<td>necklace</td>
<td>17</td>
</tr>
<tr>
<td>neighbour</td>
<td>18</td>
</tr>
<tr>
<td>niece</td>
<td>51</td>
</tr>
<tr>
<td>nipple or teat</td>
<td>50</td>
</tr>
<tr>
<td>nostril</td>
<td>77</td>
</tr>
<tr>
<td>nurse</td>
<td>6</td>
</tr>
<tr>
<td>nut</td>
<td>11</td>
</tr>
<tr>
<td>old woman</td>
<td>5</td>
</tr>
<tr>
<td>older sister</td>
<td>6</td>
</tr>
<tr>
<td>paddle wheel</td>
<td>26</td>
</tr>
<tr>
<td>palm of hand</td>
<td>68</td>
</tr>
<tr>
<td>parents</td>
<td>2</td>
</tr>
<tr>
<td>perjury</td>
<td>6</td>
</tr>
<tr>
<td>pestle</td>
<td>12</td>
</tr>
<tr>
<td>pity</td>
<td>2</td>
</tr>
<tr>
<td>plaintiff</td>
<td>3</td>
</tr>
<tr>
<td>postage stamp</td>
<td>24</td>
</tr>
<tr>
<td>postcard</td>
<td>55</td>
</tr>
<tr>
<td>potter</td>
<td>51</td>
</tr>
<tr>
<td>praise</td>
<td>0</td>
</tr>
<tr>
<td>prostitute</td>
<td>11</td>
</tr>
<tr>
<td>pupil</td>
<td>9</td>
</tr>
<tr>
<td>quarrel</td>
<td>0</td>
</tr>
<tr>
<td>queen</td>
<td>53</td>
</tr>
<tr>
<td>railway</td>
<td>39</td>
</tr>
<tr>
<td>rainbow</td>
<td>33</td>
</tr>
<tr>
<td>rape</td>
<td>2</td>
</tr>
<tr>
<td>razor</td>
<td>8</td>
</tr>
<tr>
<td>remains</td>
<td>0</td>
</tr>
<tr>
<td>rib</td>
<td>26</td>
</tr>
<tr>
<td>roof</td>
<td>24</td>
</tr>
<tr>
<td>school</td>
<td>3</td>
</tr>
<tr>
<td>screwdriver</td>
<td>4</td>
</tr>
<tr>
<td>sculptor</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of 201 meanings (binominality order)

Cf. §3.1.3 and §3.1.4 on page 69ff.

This table lists the full set of 201 meanings in binominality order, i.e. the frequency (in percent) of the meaning’s occurrence as a binominal in the 50 language sample.

Table 69: The original 201 meanings (“binominality” order)

<table>
<thead>
<tr>
<th></th>
<th>meaning</th>
<th>frequency</th>
<th></th>
<th>meaning</th>
<th>frequency</th>
<th></th>
<th>meaning</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nostril</td>
<td>77</td>
<td>32</td>
<td>footprint</td>
<td>40</td>
<td>63</td>
<td>handbag</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>earlobe</td>
<td>71</td>
<td>33</td>
<td>stone bridge</td>
<td>40</td>
<td>64</td>
<td>flame</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>palm of hand</td>
<td>68</td>
<td>34</td>
<td>supper</td>
<td>40</td>
<td>65</td>
<td>Wednesday</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>arctic lights</td>
<td>65</td>
<td>35</td>
<td>midday</td>
<td>39</td>
<td>66</td>
<td>shore</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>earwax</td>
<td>65</td>
<td>36</td>
<td>railway</td>
<td>39</td>
<td>67</td>
<td>hand brake</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>spider web</td>
<td>63</td>
<td>37</td>
<td>thatch</td>
<td>39</td>
<td>68</td>
<td>water pump</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>license plate</td>
<td>60</td>
<td>38</td>
<td>mare</td>
<td>39</td>
<td>69</td>
<td>eyebrow</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>beeswax</td>
<td>58</td>
<td>39</td>
<td>fireplace</td>
<td>37</td>
<td>70</td>
<td>lamb</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>eyelid</td>
<td>56</td>
<td>40</td>
<td>earring</td>
<td>37</td>
<td>71</td>
<td>mother-in-law</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>Sunday</td>
<td>56</td>
<td>41</td>
<td>ankle</td>
<td>36</td>
<td>72</td>
<td>stable or stall</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>postcard</td>
<td>55</td>
<td>42</td>
<td>farmer</td>
<td>36</td>
<td>73</td>
<td>foal or colt</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>glove</td>
<td>54</td>
<td>43</td>
<td>toothbrush</td>
<td>36</td>
<td>74</td>
<td>dairy cow</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>queen</td>
<td>53</td>
<td>44</td>
<td>vine</td>
<td>36</td>
<td>75</td>
<td>flea market</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>spine</td>
<td>52</td>
<td>45</td>
<td>mail box</td>
<td>35</td>
<td>76</td>
<td>boy</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>toe</td>
<td>52</td>
<td>46</td>
<td>sorcerer or witch</td>
<td>35</td>
<td>77</td>
<td>lunch</td>
<td>27</td>
</tr>
<tr>
<td>16</td>
<td>potter</td>
<td>51</td>
<td>47</td>
<td>bracelet</td>
<td>34</td>
<td>78</td>
<td>vein or artery</td>
<td>27</td>
</tr>
<tr>
<td>17</td>
<td>niece</td>
<td>51</td>
<td>48</td>
<td>bicycle pump</td>
<td>33</td>
<td>79</td>
<td>backpack</td>
<td>26</td>
</tr>
<tr>
<td>18</td>
<td>nipple or teat</td>
<td>50</td>
<td>49</td>
<td>cock/rooster</td>
<td>33</td>
<td>80</td>
<td>paddle wheel</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>collarbone</td>
<td>50</td>
<td>50</td>
<td>rainbow</td>
<td>33</td>
<td>81</td>
<td>rib</td>
<td>26</td>
</tr>
<tr>
<td>20</td>
<td>milky way</td>
<td>46</td>
<td>51</td>
<td>toilet paper</td>
<td>33</td>
<td>82</td>
<td>breakfast</td>
<td>25</td>
</tr>
<tr>
<td>21</td>
<td>beehive</td>
<td>46</td>
<td>52</td>
<td>toolbox</td>
<td>33</td>
<td>83</td>
<td>handkerchief</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>doorpost</td>
<td>46</td>
<td>53</td>
<td>fisherman</td>
<td>33</td>
<td>84</td>
<td>keyword</td>
<td>25</td>
</tr>
<tr>
<td>23</td>
<td>gold ring</td>
<td>46</td>
<td>54</td>
<td>fishing line</td>
<td>33</td>
<td>85</td>
<td>postage stamp</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>native country</td>
<td>46</td>
<td>55</td>
<td>shoulder blade</td>
<td>33</td>
<td>86</td>
<td>roof</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>skull</td>
<td>45</td>
<td>56</td>
<td>thumb</td>
<td>32</td>
<td>87</td>
<td>cousin</td>
<td>23</td>
</tr>
<tr>
<td>26</td>
<td>wrist</td>
<td>43</td>
<td>57</td>
<td>windmill</td>
<td>32</td>
<td>88</td>
<td>shoemaker</td>
<td>23</td>
</tr>
<tr>
<td>27</td>
<td>dinner</td>
<td>42</td>
<td>58</td>
<td>girl</td>
<td>32</td>
<td>89</td>
<td>herdsman</td>
<td>22</td>
</tr>
<tr>
<td>28</td>
<td>eyelash</td>
<td>42</td>
<td>59</td>
<td>train</td>
<td>31</td>
<td>90</td>
<td>horseshoe</td>
<td>22</td>
</tr>
<tr>
<td>29</td>
<td>tree trunk</td>
<td>42</td>
<td>60</td>
<td>carpenter</td>
<td>31</td>
<td>91</td>
<td>blacksmith</td>
<td>22</td>
</tr>
<tr>
<td>30</td>
<td>kid</td>
<td>41</td>
<td>61</td>
<td>spectacles/glasses</td>
<td>31</td>
<td>92</td>
<td>cookhouse</td>
<td>22</td>
</tr>
<tr>
<td>31</td>
<td>host</td>
<td>40</td>
<td>62</td>
<td>tear</td>
<td>31</td>
<td>93</td>
<td>womb</td>
<td>22</td>
</tr>
</tbody>
</table>
The typology and semantics of binominal lexemes

<table>
<thead>
<tr>
<th>94</th>
<th>sugar cane</th>
<th>130</th>
<th>prostitute</th>
<th>166</th>
<th>screwdriver</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>tool</td>
<td>131</td>
<td>spring or well</td>
<td>167</td>
<td>teacher</td>
</tr>
<tr>
<td>96</td>
<td>widower</td>
<td>132</td>
<td>servant</td>
<td>168</td>
<td>bad luck</td>
</tr>
<tr>
<td>97</td>
<td>hospital</td>
<td>133</td>
<td>nut</td>
<td>169</td>
<td>murder</td>
</tr>
<tr>
<td>98</td>
<td>chieftain</td>
<td>134</td>
<td>wedding</td>
<td>170</td>
<td>deceit</td>
</tr>
<tr>
<td>99</td>
<td>bicycle</td>
<td>135</td>
<td>married man</td>
<td>171</td>
<td>east</td>
</tr>
<tr>
<td>100</td>
<td>sculptor</td>
<td>136</td>
<td>sibling</td>
<td>172</td>
<td>disease</td>
</tr>
<tr>
<td>101</td>
<td>bee</td>
<td>137</td>
<td>younger brother</td>
<td>173</td>
<td>school</td>
</tr>
<tr>
<td>102</td>
<td>lipstick</td>
<td>138</td>
<td>yolk</td>
<td>174</td>
<td>grief</td>
</tr>
<tr>
<td>103</td>
<td>married woman</td>
<td>139</td>
<td>beggar</td>
<td>175</td>
<td>dawn</td>
</tr>
<tr>
<td>104</td>
<td>bow tie</td>
<td>140</td>
<td>airplane</td>
<td>176</td>
<td>freeman</td>
</tr>
<tr>
<td>105</td>
<td>magic</td>
<td>141</td>
<td>descendants</td>
<td>177</td>
<td>plaintiff</td>
</tr>
<tr>
<td>106</td>
<td>firewood</td>
<td>142</td>
<td>pupil</td>
<td>178</td>
<td>election</td>
</tr>
<tr>
<td>107</td>
<td>calf</td>
<td>143</td>
<td>intention</td>
<td>179</td>
<td>rape</td>
</tr>
<tr>
<td>108</td>
<td>neighbour</td>
<td>144</td>
<td>arson</td>
<td>180</td>
<td>earthquake</td>
</tr>
<tr>
<td>109</td>
<td>necklace</td>
<td>145</td>
<td>whetstone</td>
<td>181</td>
<td>parents</td>
</tr>
<tr>
<td>110</td>
<td>toilet</td>
<td>146</td>
<td>young woman</td>
<td>182</td>
<td>drink</td>
</tr>
<tr>
<td>111</td>
<td>bark</td>
<td>147</td>
<td>hummingbird</td>
<td>183</td>
<td>twins</td>
</tr>
<tr>
<td>112</td>
<td>stepfather</td>
<td>148</td>
<td>ancestors</td>
<td>184</td>
<td>mistake</td>
</tr>
<tr>
<td>113</td>
<td>capital city</td>
<td>149</td>
<td>razor</td>
<td>185</td>
<td>west</td>
</tr>
<tr>
<td>114</td>
<td>meeting house</td>
<td>150</td>
<td>waterfall</td>
<td>186</td>
<td>bruise</td>
</tr>
<tr>
<td>115</td>
<td>whirlpool</td>
<td>151</td>
<td>tailor</td>
<td>187</td>
<td>stranger</td>
</tr>
<tr>
<td>116</td>
<td>cave</td>
<td>152</td>
<td>judgment</td>
<td>188</td>
<td>pity</td>
</tr>
<tr>
<td>117</td>
<td>merchant</td>
<td>153</td>
<td>defendant</td>
<td>189</td>
<td>beginning</td>
</tr>
<tr>
<td>118</td>
<td>stepmother</td>
<td>154</td>
<td>young man</td>
<td>190</td>
<td>idea</td>
</tr>
<tr>
<td>119</td>
<td>armpit</td>
<td>155</td>
<td>stepson</td>
<td>191</td>
<td>food</td>
</tr>
<tr>
<td>120</td>
<td>younger sister</td>
<td>156</td>
<td>envy</td>
<td>192</td>
<td>anger</td>
</tr>
<tr>
<td>121</td>
<td>widow</td>
<td>157</td>
<td>nurse</td>
<td>193</td>
<td>darkness</td>
</tr>
<tr>
<td>122</td>
<td>stepdaughter</td>
<td>158</td>
<td>older sister</td>
<td>194</td>
<td>defeat</td>
</tr>
<tr>
<td>123</td>
<td>captive</td>
<td>159</td>
<td>perjury</td>
<td>195</td>
<td>divorce</td>
</tr>
<tr>
<td>124</td>
<td>guard</td>
<td>160</td>
<td>end</td>
<td>196</td>
<td>itch</td>
</tr>
<tr>
<td>125</td>
<td>pestle</td>
<td>161</td>
<td>old woman</td>
<td>197</td>
<td>praise</td>
</tr>
<tr>
<td>126</td>
<td>afternoon</td>
<td>162</td>
<td>meal</td>
<td>198</td>
<td>quarrel</td>
</tr>
<tr>
<td>127</td>
<td>weapons</td>
<td>163</td>
<td>thief</td>
<td>199</td>
<td>remains</td>
</tr>
<tr>
<td>128</td>
<td>birth certificate</td>
<td>164</td>
<td>crowd</td>
<td>200</td>
<td>swelling</td>
</tr>
<tr>
<td>129</td>
<td>baby</td>
<td>165</td>
<td>anxiety</td>
<td>201</td>
<td>victory</td>
</tr>
</tbody>
</table>

Draft. Please do not cite. Comments to: pepper.steve@gmail.com. 2020-04-25
Lost constructions (84 meaning sample)

Cf. §3.1.4 on page 69ff.

This table contains the complete list of constructions that would be lost from the 50-language data set if the number of meanings were to be reduced from the original 201 to 84. There are 55 in all. A subset of this table is reproduced in the text of §3.1.4 as Table 16 (page 74). Constructions marked with a dagger (†) did not make it into the final data set based on 100 meanings.

Table 70: Constructions lost with a sample of 84 meanings

<table>
<thead>
<tr>
<th>Bezhta</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>† Base.SUP.ATTR</td>
<td>māhā.ƛ’ā.kō [door_frame.SUP.ATTR] SERVANT</td>
<td>c’uddo c’emuc’ [red egg] YOLK</td>
<td>mucodaq t’ot’ [honey:ADJZ fly] BEE</td>
<td></td>
</tr>
<tr>
<td>Head Mod</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mod.ADJZ Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base.M</td>
<td>weduwn.aar [widow.M] WIDOWER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hausa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hindi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base.AGT</td>
<td>lōhā.r [iron.AGT] BLACKSMITH</td>
<td>havā.ī jahāz [air.ADJZ ship] AIRPLANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Mod.ADJZ Head</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Mod Head</td>
<td>satpam < satuan pengamanan [security unit] GUARD</td>
<td>mata air [water eye] SPRING OR WELL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base.NMLZ</td>
<td>draí.acht [magician.NMLZ] MAGIC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Head Mod</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanuri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head Mod.ADJZ</td>
<td>kwôngà nyiyá.à [man marriage.ADJZ] MAN</td>
<td>kámú nyiyá.à [woman marriage.ADJZ] MARRIED WOMAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ket</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Mod.PRIV Head</td>
<td>saan.an.ke’d [squirrels.PRIV.person] DEFENDANT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuanian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Base.ABST</td>
<td>žmogžud.ystė [murderer.ABST] MURDER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base.COLL</td>
<td>kaim.ynas [village.COLL] NEIGHBOUR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Sorbian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Base.ABST</td>
<td>lut.osč [sorrow.ABST] PITTY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Base.DIM</td>
<td>göle.tko [child.DIM] BABY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Base.INST</td>
<td>šrub.owak [screw.INST] SCREWDRIVER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Base.VBLZ.AGT</td>
<td>wik.owa.ř [market.VBLZ.AGT] MERCHANT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Malagasy

Head SOC.Mod	lehilàhy manaN.vàdy [man with.spouse] MARRIED MAN
NMLZ.Base	vehivàvy manaN.vàdy [woman with.spouse] MARRIED WOMAN
NMLZ.Base.CIRC	fi.lòha [NMLZ.head] CHIEFTAIN

NMLZ.Base	fanambakàna < faN.ambàka.ana [NMLZ.deceit.CIRC] DECEIT
NMLZ.Base.CIRC	fijidìmana < fi.fidy.(an)ana [NMLZ.choice.CIRC] ELECTION
NMLZ.Base.CIRC	fialònana < fi.àlona.ana [NMLZ.jealousy.CIRC] ENVY OR JEALOUSY
NMLZ.Base.CIRC	fikasàna < fi.kàsa.ana [NMLZ.aim/purpose.CIRC] INTENTION
NMLZ.Base.CIRC	famosavìana < faN.mosàvy.ana [NMLZ.witchcraft.CIRC] MAGIC

Mapudungun

| Mod.VBLZ.AGT Head | kure.nge.n wentru [wife.ESS.NON:F3 man] MARRIED MAN |
| Mod.VBLZ.AGT Head | füta.nge.n zomo [husband.ESS.NON:F3 woman] MARRIED WOMAN |

Old High German

| † Base.DIM | kindi.lîn [child.DIM] BABY |

Orogen

| Base.REC | amo.rok [stool.REC] TOILET |
| † Base.VBLZ.AGT | mayma.la.rí [business.VBLZ.AGT] MERCHANT |

Otomi

| † Head Mod LIM | jwädä bâtsi.tho [brother child.LIM] YOUNGER BROTHER |
| † Head Mod LIM | nju bâtsi.tho [sister child.LIM] YOUNGER SISTER |

Polish

| † Base.AUG | maco.cha [mother.AUG] STEPMOTHER |

Kekchí

† AGT Base	aj limoox [AGT alm] BEGGAR
Base.DER	aj tz’am [AGT prison] CAPTIVE OR PRISONER
Base.INST.NMLZ	jolom.il [head.DER] CHIEFTAIN
Base.INST.NMLZ	k’uub’leb’.aal [hearthstone.INST.NMLZ] COOKHOUSE
Base.PL.NMLZ	ch’ut.leb’.aal [group.INST.NMLZ] MEETING HOUSE
† Base.SUF	k’ot.eb’.aal [shit.NMLZ] TOILET
opaque	sum.la.jik [mate.DER.SUF] WEDDING
opaque	b’aqlaq ch’iich’ [corncob iron] BICYCLE

Romanian

Base.ABST	capitán.ie [captain.NMLZ] CHIEFTAIN
Base.AGT.ABST	cunun.ie [crown.SUF] WEDDING
Base.AGT.ABST	bucată.ar.ie [piece_of_food.AGT.NMLZ] COOKHOUSE
Base.VBLZ.AGT.ABST	vrăj.i.tor.ie [magic.VBLZ.AGT.ABST] MAGIC

Selice Romani

Base.ABST	čohán.i.pe [witch/sorcerer.ABST] MAGIC
† Mod.ADJZ Head	phivli džuvli [widow.ADJZ woman] WIDOW
† Mod.ADJZ Head	özvédni džuvli [widow.ADJZ woman] WIDOW
Seychelles Creole

<table>
<thead>
<tr>
<th>† Base.AGT</th>
<th>prizon.nyen [prison.AGT] CAPTIVE OR PRISONER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bazar.dye [market.AGT] MERCHANT</td>
</tr>
</tbody>
</table>

Takia

<table>
<thead>
<tr>
<th>Head Mod</th>
<th>tamol sos [man Derris_root] WIDOWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>† Head Mod LOC</td>
<td>nanuk swa te [child breast at] BABY</td>
</tr>
<tr>
<td>Head Mod.3SG COM PFV</td>
<td>tamol iwo.n da ya [man spouse.3SG COM PFV] MARRIED MAN</td>
</tr>
<tr>
<td></td>
<td>pein iwo.n da ya [woman spouse.3SG COM PFV] MARRIED WOMAN</td>
</tr>
</tbody>
</table>

Welsh

<table>
<thead>
<tr>
<th>Base.NMLZ</th>
<th>pen.aeth [chief.NMLZ] CHIEFTAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base.SUF</td>
<td>carchar.or [prison.SUF] CAPTIVE OR PRISONER</td>
</tr>
<tr>
<td></td>
<td>cwmwd.og [district.SUF] NEIGHBOUR</td>
</tr>
</tbody>
</table>

Wichí

<table>
<thead>
<tr>
<th>Base.AGT</th>
<th>tshotoy.wu [animals.AGT] HERDSMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tiena.wu [market.AGT] MERCHANT</td>
</tr>
<tr>
<td></td>
<td>sapatu.wu [shoe.AGT] SHOEMAKER</td>
</tr>
<tr>
<td>Base.LOC</td>
<td>kanu.hi [needle.LOC] SUGAR CANE</td>
</tr>
<tr>
<td></td>
<td>y’mekw.hi [excrement.LOC] TOILET</td>
</tr>
</tbody>
</table>

Yakut

<table>
<thead>
<tr>
<th>Base.NMLZ</th>
<th>bah.ilik [bas.NMLZ] CHIEFTAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>† Base.VR.NMLZ</td>
<td>uot.taː.h [fire.VR.NMLZ] ARSON</td>
</tr>
<tr>
<td>† Base.VR.REFL.NMLZ</td>
<td>sanaː.ryːː.hin [thought.VR.NMLZ] GRIEF</td>
</tr>
<tr>
<td></td>
<td>saya.la.n:i [time.VR.REFL.NMLZ] BEGINNING</td>
</tr>
<tr>
<td></td>
<td>iːs.te.nː [handicraft.VR.REFL.NMLZ] TAILOR</td>
</tr>
</tbody>
</table>

Yaqui

<table>
<thead>
<tr>
<th>Base.LOC</th>
<th>sisi’iwoo.chi [iron.LOC] TOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>† Base.NMLZ</td>
<td>ko’oko.a [pain.NMLZ] DISEASE</td>
</tr>
<tr>
<td></td>
<td>ju–ụbi.wa.me [RDP~wife.PASS.NMLZ] WEDDING</td>
</tr>
<tr>
<td>† Mod:PL Head</td>
<td>waim asoa [sister/brother:PL daughter] STEPDAUGHTER</td>
</tr>
<tr>
<td></td>
<td>waim marat [sister/brother:PL father] STEPFATHER</td>
</tr>
<tr>
<td></td>
<td>waim achai [sister/brother:PL mother] STEPMOTHER</td>
</tr>
</tbody>
</table>

Zinacantán Tzotzil

<table>
<thead>
<tr>
<th>Mod Head</th>
<th>shokin na [side house] NEIGHBOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hmulavi ḋantz [sinner woman] PROSTITUTE</td>
</tr>
<tr>
<td></td>
<td>meʔanal ḋantz [poverty/misery/grief woman] WIDOW</td>
</tr>
<tr>
<td></td>
<td>meʔanal vinik [poverty/misery/grief man] WIDOWER</td>
</tr>
<tr>
<td>opaque</td>
<td>k’op ḋoʔon [word/argument heart] ANXIETY</td>
</tr>
<tr>
<td></td>
<td>kachimpa pom [pipe incense] BEE</td>
</tr>
<tr>
<td></td>
<td>mishik’ pom [belly_button incense] BEE</td>
</tr>
<tr>
<td></td>
<td>ton pom [stone incense] BEE</td>
</tr>
</tbody>
</table>
Name index

Abraham, Roy Clive, 347, 384
Adams, Valerie, 183, 196, 224, 347
Adelaar, Alexander, 347, 369, 386
Ahlgqvist, Anders, 347, 385
Ahmad, Mustapha, 347, 384
Aikhenvald, Alexandra Y., 21, 41, 42, 43, 45, 46, 60, 147, 148, 267, 297, 347, 363
Akdikmen, Resuhi, 67, 347, 388
Allan, Keith, 147, 347
Allen, Margaret Reece, 183, 347, 359
Amberber, Mengistu, xxii, 383
Ambrazas, Vytautas, 347, 386
Anderson, Doris G., 111, 347, 388, 442
Arcodia, Giorgio Francesco, 121, 347
Arends, Jacques, 348, 387
Argus, Reili, xxii, 384
Aristotle, 191, 207, 208, 213, 214, 279, 314, 322, 480
Arnaud, Pierre J.L., xxi, 21, 29, 30, 31, 32, 60, 66, 81, 87, 186, 196, 201, 202, 203, 204, 205, 207, 209, 213, 214, 215, 222, 328, 348, 352, 361
Aronoff, Mark, 9, 348, 357
Artiagoitia, Xabier, 348, 383
Asher, R. E., 348, 386, 404
Askedal, John Ole, 348, 386
Atkinson, Bill, 4
Atoyebi, Joseph Dele, 252, 262, 348
Awagana, Ari, 348, 384
Awbery, Gwen, xxii, 67, 262, 348, 388
Awbery, Gwenllian Mair, xxii, 67, 262, 348, 388
Baker, Mark C., 348, 386
Bakker, Dik, 56, 84, 85, 86, 87, 98, 348, 349, 365, 369, 387
Bao, Sokhna, xxii, 388
Bareggi, Cristina, 349, 385
Barker, Chris, 309, 349
Baron, Irène, 224, 267, 349
Barthelemy, Hauke, xxii, 349, 386
Bauer, Laurie, xxi, 8, 14, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 34, 36, 37, 41, 48, 50, 51, 60, 86, 111, 112, 134, 163, 173, 181, 183, 185, 186, 188, 190, 201, 214, 215, 237, 238, 245, 250, 253, 254, 255, 256, 289, 325, 335, 349, 361, 367
Bauer, Winifrid, 349
Bélzéja, Z., 349, 386
Bergsten, Nils, 183, 349
Bernal, Tim, 4
Bertet, Denis, xxii, 388, 441
Bisetto, Antonietta, 7, 21, 33, 34, 35, 36, 38, 295, 335, 349, 357, 370
Blank, Andreas, 191, 218, 315, 321, 322, 323, 324, 329, 331, 349, 350
Bloomfield, Leonard, 34, 59, 350
Bollée, Anne greit, 350, 387, 442
Booij, Geert, 9, 34, 162, 335, 350, 352, 367, 372, 384
Booth, Trudie Maria, 350, 384
Borer, Hagit, 350, 385
Borg, Albert, 350, 355, 386
Brdar, Mario, 191, 350
Brékele, Herbert E., 183, 350
Brindle, Jonathan, xxii, 350, 384, 398
Brown, Cecil H., xxii, 38, 163, 350, 376, 386, 387, 388, 414, 429
Brown, Lea, xxii, 38, 163, 350, 376, 386, 387, 388, 414, 429
Bush, Vannevar, 4, 5, 350
Butnariu, Cristina, 186, 351
Bybee, Joan L., 142, 351
Carlson, Robert, 351, 399
Carr, Charles Telford, 183, 185, 186, 351
Cauquelin, Josiane, 351, 387
Ceccagno, Antonella, 33, 208, 214, 262, 351, 386
Cetnarowska, Bożena, 259, 351, 387
Chihuaicura, Antonio, xxii, 386
Chumakina, Marina, 38, 350, 351, 383
Cicin-Sain, Višnja, xxii, 384
Cole, Peter, 351, 362, 385, 441
Corne, Chris, 352, 387
Coulibaly, Sekou, xxii, 383, 386, 399
Courtz, Henk, 352, 384, 438
Coyos, Jean-Baptiste, 352, 383
Craig, James Patrick, 352, 385
Creissels, Denis, 132, 142, 156, 159, 352
Croft, William, xxii, 1, 12, 15, 16, 18, 19, 25, 97, 100, 102, 104, 108, 109, 131, 132, 133, 134, 135, 136, 137, 138, 139, 144, 159, 174, 269, 330, 335, 346, 352
Cyffer, Norbert, 352, 385
Dinh, Dien, 28, 353, 388
Dion, Jean-Léopold, 353, 388
Dixon, R. M. W., 104, 142, 156, 267, 297, 347, 353, 363, 384, 408
Dokulil, Miloš, 10, 12, 353
Dombrowsky-Hahn, Klaudia, 353, 399
Don, Jan, 353, 365, 376, 384
Donaldson, Bruce C., 353, 384, 407
Donohue, Mark, xxii, 84, 357, 387
Dooley, Bob, xxii, 386
Downing, Pamela, 183, 193, 219, 353
Dressler, Wolfgang U., 173, 349, 350, 353, 372
Dryer, Matthew S., 8, 34, 56, 58, 84, 85, 86, 87, 160, 254, 353, 354, 358, 379
Dumestre, Gérard, 354, 383
Echols, John M., 354, 385
Egmond, Marie-Eline van, 354, 383, 428
Eiesland, Eli-Anne, 182, 186, 201, 221, 354
Elbert, Samuel H., 354, 368, 385, 425
Elšík, Viktor, 354, 361, 387
Engelbart, Doug, 4
England, Nora C., 137, 317, 354, 419
Epps, Patience, xxii, 354, 374, 385, 441
Evans, H. Meurig, 67, 354
Faarlund, Jan Terje, 354, 386
Fabri, Ray, 354, 355, 386, 396
Fal, Arame, 355, 388
Fang Ching Teng, Stacy, xxii, 387
Fellbaum, Christiane, 303, 355
Fengxiang Li, 183, 355, 362, 387
Fernández, Zarina Estrada, 355, 388, 436
Foolen, Ad, 13, 355
Foroodi-Nejad, Farzaneh, 355, 388
Fortescue, Michael D., 29, 355
Fragkopoulou, Katerina, xxii, 384
Gagné, Christina L., 173, 355
Garai, Koldo, xxii, 383
Georg, Stefan, 355, 386
Girju, Roxana, 186, 355, 365
Giurgea, Ion, 355, 387
Givón, Talmy, 160, 356
Glinert, Lewis, 356, 385, 396
Göksel, Asli, 356, 388, 403
Goldberg, Adele E., 355, 356
Golden, Anne, 356, 386, 409
Golluscio, Lucia, 356, 386
González Campos, Guillermo, xxii
Good, Jeff, xxii, 356, 365, 387, 442
Goossen, Ivry W., 356, 386, 431
Goswami, G. C., 356, 383, 410
Grant, Anthony, 356, 384
Greenberg, Joseph H., 86, 173, 253, 356, 374
Grimm, Jacob, 182, 356
Grossmann, Maria, 356, 387
Grubišić, Vinko, 356, 384
Guevara, Emiliano, 7, 17, 21, 32, 33, 34, 37, 38, 39, 40, 181, 254, 335, 357, 483
Gürer, Aslı, xxii, 388
Hacken, Pius ten, 182, 183, 348, 357, 359, 363, 372
Hagen Kaldhol, Nina, xxii, 387
Hammarström, Harald, xxv, 84, 357
Harmelink, Bryan, 277, 357
Harms, Robert T., 357, 384
Hartmann, Iren, xxii, 385
Hasegawa, Yoko, 68, 357, 385
Haviland, John, 358, 388, 433
Healy, Dana, 355, 358, 388, 422
Heath, Jeffrey, 28, 358
Heimbach, Ernest E., 358, 385
Heine, Bernd, 267, 357, 358
Helmbrecht, Johannes, 358, 385, 434
Hernaiz, Rodrigo, xxii, 383
Hildebrandt, Kristine A., 358, 359, 386, 426
Hinds, John, 68, 359, 385
Holton, David, 359, 384, 409
Holzinger, Daniel, 359, 387, 411
Hutchison, John P., 359, 385, 402
Iwasaki, Shoichi, 359, 388
Jackendoff, Ray, 16, 181, 183, 185, 186, 194, 196, 219, 222, 229, 335, 359
Jacobson, Steven A., xxiii, 192, 359, 384
Jaggar, Philip J., 359, 384
Jakobson, Roman, 191, 322, 359
Jayarat, Acharya, 359, 386, 411
Jensen, Bård Uri, xxi
Jespersen, Otto, 48, 184, 185, 186, 196, 197, 199, 200, 219, 346, 359
Johnston, Michael, 183, 359
Jones, ‘Ōiwi Parker, 360, 385, 388, 406
Kachru, Yamuna, 360, 385
Kageyama, Taro, 68, 360, 385
Karlsson, Fred, 360, 384, 419
Kawachi, Kazuhiro, xxii, 360, 386, 387, 394
Keenan, Edward L., 86, 360
Khalilov, Madzhid, xxii, 351, 383
Kibrik, Aleksandr E., 16, 155, 360, 383, 418
Kiefer, Ferenc, 155, 360
Kilham, Christine, 360, 388, 430
King, Gareth, 360, 388
Kirtchuk-Halevi, Pablo I., 361, 385
Kittilä, Seppo, 323, 361
Koch, Peter, 9, 56, 191, 267, 278, 279, 280, 301, 315, 321, 322, 324, 328, 329, 343, 361
Kornfilt, Jaklin, 67, 361, 388, 403
Körtvéllyessy, Lívia, 7, 10, 21, 43, 47, 87, 166, 361, 367, 372, 484
Kossmann, Maarten, xxii, 154, 361, 362, 387, 391
Kövecses, Zoltan, 316, 362
Krause, Anne, xxii, 384
Kruspe, Nicole, xxii, 362, 384, 388, 422
Lang, Margaret, 362, 384, 412
Langacker, Ronald W., xxi, 6, 12, 37, 113, 183, 294, 306, 335, 346, 362
Lees, Robert B., 183, 362
Lesage, Jakob, xxii, 362, 385, 397
Leslau, Wolf, 362, 383, 395
Levi, Judith N., 14, 21, 48, 60, 183, 184, 185, 188, 193, 194, 215, 216, 362, 385
Levshina, Natalia, xxi, 272, 362
The typology and semantics of binominal lexemes

Libben, Gary, 173, 182, 353, 355, 363
Liberman, Marc, 232
Lieber, Rochelle, 7, 8, 24, 36, 111, 183, 295, 348, 350, 351, 353, 357, 359, 360, 363, 370, 373, 374
Lindenfeld, Jacqueline, 363, 388, 436
Lipkind, William, 363, 385
Löbner, Sebastian, 309, 363
Lodrup, Helge, xxi
Löhr, Doris, 363, 385
Loiseau, Sylvain, xxii, 388, 430
Lovestrand, Joey, xxii, 265, 363, 383, 392
Lovestrand, Joseph, xxii, 265, 363, 383, 392
Lü, Shanshan, xxii, 384, 427
Lukas, Johannes, 363, 385
Luo, Yongxian, 363, 386, 427, 484
Lysvik, Julian, xxii, 385
MacAindir, Cormac, xxii, 385, 388
Mace, John, 363, 388, 411
Mahieu, Marc-Antoine, 364, 384
Mahootian, Shahrzad, 364, 388
Maiden, Martin, 364, 385
Maksunova, Zoya, 364, 386
Mallinson, Graham, 364, 387
Manzelli, Gianguido, 267, 364
Marchand, Hans, 34, 103, 111, 183, 364
Marino, Mary Carolyn, 364, 385
Marlett, Stephen A., xxii, 364, 387, 434
Marlett, Steve, xxii, 364, 387, 434
Martin, Marieke, xxii, 364, 388
Martins, Marci Fileti, 364, 386, 435
Masini, Francesca, xxii, 13, 45, 51, 335, 354, 364, 366, 385
Mathiesius, Vilém, 9, 364
Mathiassen, Terje, 364, 386, 405
Matthews, P.H., 162, 364
Mätzner, Eduard, 48, 182, 197, 199, 365
McConvell, Patrick, 365, 384
McGlone, Naomi Hanaoka, 365, 385, 417
McGregor, Ronald Stuart, 365, 385, 410
McGregor, William, 267, 351, 376
McWhorter, John, 365, 387, 442
Meyer, Ronny, xxii
Michaelis, Susanne, 365, 387
Miestamo, Matti, xxii, 85, 87, 98, 365, 370, 384
Mihatsch, Wiltrud, 13, 365
Mistrfk, Jozef, 365, 387
Mitchell, Alice, xxii, 384, 401
Miyaoka, Osahito, 365, 384, 431
Moldovan, Dan, 186, 355, 365
Möller Nwadigo, Mirjam, xxii, 365, 383, 398
Montgomery, Christine Anne, 365, 386, 401
Mottin, Jean, 365, 385, 426
Mourigh, Khalid, xxii, 387
Mous, Maarten, 365, 385
Munroe, Randall, 232
Næss, Åshild, xxii, xxii, 163, 366, 383, 425
Nagórkó, Alicja, 145, 366, 387
Nakov, Preslav, 186, 351, 376
Nagórkó, Alicja, 145, 366, 387
Nakov, Preslav, 186, 351, 376
Naughton, James, 366, 384, 387, 416
Navickaitė-Klišauskienė, Agnė, xxii, 366, 386
Nedjalkov, Igor, 366, 387, 388, 402
Nefedov, Andrey, xxii, 374, 386
Nelson, Ted, 4
Nercesian, Verónica, 366, 375, 388, 440
Newman, Paul, 159, 366, 384, 392
Newman, Roxana Ma, 366
Ngom, Fallou, 366, 388, 400
Nguyen, Dinh-Hoà, 28, 259, 366, 388
Nichols, Johanna, 58, 85, 86, 136, 140, 366
Nicolae, Alexandru, 366, 387, 413
Noailly, Michèle, 201, 204, 366
Nordbustad, Frøydis, 367, 385, 393
Novgorodov, Innokentij, xxii, 388
Ó Séaghdha, Diarmuid, 186, 351, 367
O’Brien, Richard J., 367, 386, 401
Oinas, Felix J., 367, 419
Olsen, Susan, 37, 348, 366, 367, 368, 369, 372, 373
Osarby, David, xxii, 388
Packard, Jerome L., 262, 367
Palancar, Enrique, 367, 387, 433
Panther, Klaus-Uwe, 321, 349, 355, 361, 367
Parajuli, Krishna Prasad, xxii, 386
Parker, G. W., 96, 360, 367
Patgiri, Bipasha, xxii, 383
Peirman, Yves, 21, 191, 315, 316, 317, 324, 328, 367
Pepper, Steve, 2, 3, 4, 5, 6, 10, 25, 26, 27, 28, 37, 52, 67, 68, 182, 186, 193, 215, 252, 264, 266, 272, 273, 274, 290, 293, 294, 324, 325, 326, 327, 328, 336, 342, 354, 366, 367, 368, 386, 510
Perkins, Revere D., 85, 368
Pešková, Pavlína, xxii, 384
Petegham, Marleen Van, 368, 387
Plank, Frans, 267, 333, 361, 368, 372
Pleschak, Polina, 368, 388
Polomé, Edgar Charles, 368, 387, 397
Prauliš, Dace, 368, 386
Proudfoot, Anna, 368, 385, 412
Pukui, Mary Kawena, 354, 368, 385, 425
Pustejovsky, James, 183, 310, 368
Putten, Marijn van, 368, 387
Quesada, Juan Diego, 368, 383
Quinn, Kyla, xxii, 368, 388, 428
R Core Team, xxv, 368
Raghunathan, Arathi, xxii, 386
Rai, Frank, 14, 21, 48, 49, 60, 190, 348, 349, 350, 366, 368, 369, 372, 373
Ralli, Angela, 163, 263, 368, 384, 409
Rasoloson, Janie, 369, 386, 423
Ratliff, Martha, xxii, 369, 385
Ravindran, P.N., 369, 386
Reichard, Gladys A., 369, 386, 431
Renault-Lescure, Odile, 369, 384
Rendón, Jorge A. Gómez, 369, 385
Rhine, J. R., 369
Richardson, James, 96, 369
Riese, Timothy, 369, 388, 420
Rießler, Michael, xxii, 369, 386, 421
Rijf, Rudolf P. G. de, 369, 383, 404
Rijkhoff, Jan, 56, 85, 86, 98, 267, 369
Rose, Françoise, xxii, 369, 388, 437
Ross, Malcolm, xxii, 370, 387, 425
Rottland, Franz, 370, 384, 401
Rounds, Carol H., 370, 385
Russell, Joan, 148, 370, 373, 374
Ryder, Mary Ellen, 182, 183, 184, 185, 215, 370
Saade, Benjamin, xxii, 386
Sadock, Jerrold M., 29, 173, 370
Saeed, John, 370, 387, 395
Saltarelli, Mario, 370, 383
Saulwick, Adam, 88, 370
Saussure, Ferdinand de, 120, 370
Scalise, Sergio, 7, 21, 32, 33, 34, 35, 36, 37, 38, 39, 40, 108, 109, 110, 142, 181, 208, 214, 254, 262, 295, 335, 349, 351, 357, 364, 370, 385, 483
Schaaik, Gerjan van, 67, 370, 403
Schachter, Paul, 42, 370, 387, 423, 424
Schadeberg, Thilo, 370, 387
Schäfer, Martin, 186, 370
Schmidt, Christopher K., 371, 385
Schön, Zsofia, xxii, 385
Schußmann, Roland, 371, 387
Schulte, Kim, 371, 387
Schuster-Šewc, Heinz, 371, 386
Seiler, Hansjakob, 267, 371
Shadbolt, Nigel, 5, 371
Sijs, Nicoline van der, 371, 384
Singhnoi, Unchalee, 371, 388, 427
Smeets, Ineke, 105, 360, 371, 386, 437
Smith, Benjamin C., 363, 371, 386, 387
Smyth, David, 371, 388
Sneddon, James Neil, 371, 385, 424
Snyder, William, 40, 371
Søgaard, Anders, 183, 185, 201, 202, 371
Sohn, Ho-min, 371, 386, 418
Sokolova, Svetlana, xxii, 387
Song, Jae Jung, 18, 43, 86, 348, 371, 386, 418
Spencer, Andrew, 45, 372
Stachowski, Marek, 372, 388, 403
Stassen, Leon, 129, 267, 372
Štékauer, Pavol, xxi, xxii, 7, 8, 9, 10, 11, 21, 43, 44, 45, 46, 47, 60, 87, 111, 112, 114, 335, 348, 350, 351, 353, 357, 359, 360, 361, 363, 367, 370, 372, 373, 374, 387, 484
Štichauer, Pavel, 372, 384
Stone, Gerald, 372, 385, 386, 415, 432
Stundžia, Bonifacas, 372, 386
Sulkala, Helena, 372, 384
Suthiwian, Titima, xxii, 372, 388
Sveen, Andreas, xxi
Swan, Oscar E., 372, 387, 415
Szubert, Andrzej, 182, 186, 372
The typology and semantics of binominal lexemes

Szymanek, Bogdan, 373, 387
Takada, Hareo, 41, 373
Tarasova, Elizaveta, 14, 19, 21, 48, 50, 51, 60, 185, 186, 188, 190, 214, 215, 349, 373
Tauli, Valter, 373, 384
Taylor, John R., 296, 360, 373
Tehranisa, Seyed Hassan, 138, 262, 373, 388
Teng, Stacy Fang-Ching, 373, 387, 422
Ternes, Elmar, 262, 373
Theil Endresen, Rolf, 67, 373, 387
Thorne, David, 373, 388
Timberlake, Alan, 373, 387, 416
Tomlin, Russell S., 373
Tompa, József, 373, 385
Toquero, Luis Miguel, 182, 186, 373
Törkenczy, Miklós, 373, 420
Tosco, Mauro, xxii, 373, 384, 393
Tratz, Stephen, 10, 186, 374
Treis, Yvonne, xxii, 374, 385, 394
Tuggy, David, 162, 182, 183, 335, 374
Tulu, Geberew, 374, 384, 393
Turkina, E., 374, 386
Tzoc, Juan, 374, 385
Ullmann, Stephen, 120, 322, 374
Ultan, Russell, 267, 374
Ungnad, Arthur, 374, 383, 395
Urban, Matthias, xxi, 21, 55, 56, 57, 58, 59, 60, 64, 69, 84, 110, 146, 321, 374
Urbanik, Pavel, xxii, 387
Vajda, Edward J., xxii, 374, 386, 421
Van de Velde, Mark, 374, 387
Van Egmond, Marie-Elaine, xxii, 161, 383
Van linden, An, xxii, 163, 374, 384, 439
Vanderwende, Lucy, 186, 196, 219, 375
Vaovao, Andro, 95, 375
Veenstra, Tonjes, 375, 387
Vennemann, Theo, 208, 375
Verhoeven, Elisabeth, 375, 383, 439
Verveckken, Katrien Dora, 13, 375
Vidal, Alejandra, 375, 388
Villena, Belén, xxii, 386
Visser, Eline, xxii, 375, 385, 430
Wade, Terence, 375, 387, 416
Wälchli, Bernhard, 9, 239, 370, 375
Warren, Beatrice, 48, 183, 184, 193, 219, 325, 375
Watson, Rachel, xxii, 148, 150, 375, 383, 400
Whaley, Lindsay J., 355, 387
Whittle, Ruth, 375, 384, 408
Wichmann, Søren, 375, 385
Wiebusch, Thekla, 376, 386
Williams, David-Antoine, 232
Williams, Edwin, 39, 111, 376
Wojtylak, Kasia, xxii, 376, 386, 440
Wojtylak, Katarzyna I., xxii, 376, 386, 440
Worthington, Martin, 248, 376, 383
Wotango, Deginet, xxii, 385
Wu, Shuqiong, xxii, 386
Wurm, Stephen A., 376, 383
Yeon, Jaehoon, 163, 376, 386
Yip, Po-ching, 376, 386
Young, Robert W., 376, 386, 431
Yri, Kjell-Magne, xxi, xxii, 387
Zimmer, Stefan, 67, 376
Zoller, Claus Peter, xxii, 51, 385
Zúñiga, Fernando, xxii, 252, 277, 323, 361, 376, 386
Zwicky, Arnold M., 40, 111, 376
Language index

Äiwoo (nfl, Austronesian, Oceanic),
xxv, 89, 104, 149, 163, 169, 170, 220, 256, 273, 275, 276, 284, 366, 380, 383, 424, 479, 480

Akkadian (akk, Afro-Asiatic, Semitic),
89, 119, 157, 158, 170, 172, 175, 248, 274, 275, 284, 374, 379, 383, 395, 446, 479, 480

Amharic (amh, Afro-Asiatic, Semitic),
89, 169, 170, 275, 284, 310, 311, 362, 379, 383, 394, 395, 446, 479, 480, 484

Anindilyakwa (aoi, Gunwinyguan), 89, 161, 170, 274, 275, 283, 284, 354, 379, 383, 428, 471, 479, 480

Aravela (arl, Zaparoan), 147

Arbore (arv, Afro-Asiatic, Cushitic),
166

Archi (aqc, Nakh-Daghestanian, Lezgić), 52, 54, 62, 72, 89, 114, 155, 170, 275, 284, 351, 360, 379, 383, 418, 463

Assamese (asm, Indo-European, Indo-Aryan), 89, 126, 170, 176, 244, 275, 284, 379, 383, 410, 457

Baa (kwb, Atlantic-Congo, Gur), 89, 121, 145, 169, 170, 275, 284, 302, 365, 380, 383, 398, 448

Bambara (bam, Atlantic-Congo, Mande), 30, 89, 145, 157, 170, 275, 284, 379, 383, 399, 446, 449

Bandial (bqj, Atlantic-Congo, North-Central Atlantic), 89, 148, 149, 150, 170, 256, 275, 284, 379, 383, 400, 449

Barain (bva, Afro-Asiatic, Chadic), 89, 153, 156, 157, 170, 261, 263, 264, 265, 275, 284, 313, 379, 383, 392, 444

Basque (eus, Basque), 22, 30, 31, 33, 89, 90, 170, 275, 284, 348, 352, 369, 370, 379, 383, 404, 452

Bezhta (kap, Nakh-Daghestanian, Avar-Andic-Tsezic), 14, 48, 52, 55, 56, 73, 74, 89, 131, 140, 154, 155, 170, 187, 220, 275, 284, 351, 360, 380, 383, 418, 447, 462, 489

Bora (boa, Boran), 11, 49, 147

Cabécar (cjcp, Chibchan), 89, 144, 170, 275, 284, 375, 379, 383, 438

Caijia (cai, Sino-Tibetan, Macro-Bai), xxv, 89, 144, 170, 171, 172, 228, 275, 284, 379, 384, 427, 469

Cantonese (yue, Sino-Tibetan, Sinitic), 253

Central Yupik (esu, Eskimo-Aleut, Yupik), xxiii, 88, 89, 96, 125, 157, 169, 170, 175, 192, 275, 284, 379, 384, 431, 472

Ceq Wong (cwg, Austro-Asiatic, Aslian), 52, 72, 89, 119, 144, 170, 172, 275, 362, 379, 384, 421, 466

Chakali (cli, Atlantic-Congo, Gur), 89, 170, 275, 283, 350, 379, 384, 398, 449

Cora (crn, Uto-Aztecan), 113

Croatian (hrv, Indo-European, Slavic), 33, 39, 89, 155, 170, 274, 275, 356, 380, 384, 414

Czech (ces, Indo-European, Slavic), 8, 10, 33, 89, 131, 140, 145, 148, 150, 155, 170, 175, 191, 192, 275, 284, 359, 366, 372, 379, 384, 414, 459

Datooga (tcc, Nilo-Saharan, Nilotic), 89, 119, 121, 144, 170, 172, 247, 275, 370, 381, 384, 401, 450, 484

Dutch (nld, Indo-European, Germanic), 33, 39, 52, 72, 73, 74, 89, 93, 94,
The typology and semantics of binominal lexemes

162, 170, 260, 275, 283, 317, 350, 353, 371, 381, 384, 407, 454, 484, 489
Estonian (est, Uralic, Finnic), 42, 89, 155, 170, 196, 201, 225, 260, 275, 357, 367, 368, 373, 379, 384, 419, 436, 463, 484
Fijian (fij, Austronesian, Oceanic), 57
Finnish (fin, Finnish, Uralic), 24, 260
Finnish (fin, Uralic, Finnic), 22, 33, 89, 170, 190, 221, 271, 275, 360, 364, 372, 379, 384, 419, 464, 473, 483, 484
Gawwada (gwd, Afro-Asiatic, Cushitic), 52, 71, 72, 89, 145, 146, 148, 149, 170, 261, 275, 373, 374, 380, 384, 393, 445
German (deu, Indo-European, Germanic), xxv, 1, 8, 14, 23, 30, 31, 33, 39, 42, 49, 51, 70, 71, 72, 73, 89, 131, 140, 146, 162, 163, 164, 170, 177, 182, 186, 190, 192, 260, 275, 283, 317, 375, 379, 384, 408, 455, 484
Greek (ell, Indo-European, Greek), 33, 89, 154, 163, 164, 170, 176, 178, 197, 255, 259, 261, 263, 275, 317, 320, 359, 368, 375, 379, 384, 409, 410, 457, 483, 484
Gurindji (gue, Pama-Nyungan, Desert Nyungic), 89, 170, 247, 275, 365, 380, 384, 429, 435, 474
Harakmbut (amr, Harakmbut), 89, 90, 149, 151, 152, 163, 170, 256, 275, 374, 379, 384, 439
Hausa (hau, Afro-Asiatic, Chadic), 52, 57, 72, 89, 92, 93, 145, 150, 156, 157, 159, 160, 170, 192, 274, 275, 347, 348, 359, 366, 380, 384, 392, 444, 484, 489
Hawaiian (haw, Austronesian, Oceanic), 52, 72, 89, 93, 145, 150, 170, 221, 224, 239, 275, 310, 311, 354, 360, 368, 380, 385, 425, 468
Hixkaryána (hix, Cariban), 28, 253
Hmong Daw (mwv, Hmong-Mien), 9, 52, 71, 72, 89, 170, 239, 275, 380, 385, 426, 468
Ho-Chunk (win, Siouan), 70, 89, 144, 170, 275, 381, 385, 434, 460
Hungarian (hun, Uralic, Hungarian), 30, 31, 33, 49, 70, 72, 89, 145, 155, 166, 170, 275, 360, 367, 370, 373, 380, 385, 420, 464, 484
Hupdë (jup, Nadahup), 52, 72, 89, 170, 239, 275, 380, 385, 441, 476
<table>
<thead>
<tr>
<th>Language Name (Code, Family, Subgroup)</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imbabura Quechua (qvi, Quechuan, Quechua II)</td>
<td>22, 72, 89, 144, 170, 172, 175, 311, 351, 369, 381, 385, 441, 476</td>
</tr>
<tr>
<td>Indonesian (ind, Austronesian, Malayosumbawan)</td>
<td>52, 70, 72, 89, 93, 170, 260, 275, 354, 371, 380, 385, 424, 467, 484, 489</td>
</tr>
<tr>
<td>Iraqw (irk, Afro-Asiatic, Cushitic)</td>
<td>52, 71, 72, 89, 93, 96, 169, 170, 220, 275, 283, 365, 367, 380, 385, 393, 445</td>
</tr>
<tr>
<td>Irish (gle, Indo-European, Celtic)</td>
<td>70, 72, 74, 76, 89, 145, 154, 166, 170, 176, 178, 257, 260, 261, 275, 347, 352, 353, 380, 385, 406, 454, 489</td>
</tr>
<tr>
<td>Japanese (jpn, Japonic, Japanese)</td>
<td>xxv, 24, 33, 39, 41, 47, 49, 52, 66, 68, 72, 89, 93, 121, 131, 134, 138, 139, 145, 146, 164, 170, 220, 275, 357, 359, 360, 365, 371, 380, 385, 417, 461, 484</td>
</tr>
<tr>
<td>Kalamang (kgv, West Bomberai)</td>
<td>89, 105, 154, 157, 170, 261, 275, 283, 297, 298, 299, 300, 313, 375, 380, 385, 430, 472</td>
</tr>
<tr>
<td>Kam (kdx, Atlantic-Congo, Adamawa-Ubangi)</td>
<td>22, 89, 170, 275, 313, 362, 380, 381, 385, 397, 427, 447, 470</td>
</tr>
<tr>
<td>Kambaata (ktb, Afro-Asiatic, Cushitic)</td>
<td>89, 105, 157, 170, 275, 374, 380, 385, 394, 445</td>
</tr>
<tr>
<td>Kanuri (knc, Nilo-Saharan, Saharan)</td>
<td>22, 26, 28, 52, 71, 72, 75, 89, 93, 125, 155, 170, 253, 261, 275, 283, 352, 359, 363, 380, 385, 402, 450, 489</td>
</tr>
<tr>
<td>Kankan (knc, Saharan, Kanuric)</td>
<td>22, 26, 28, 52, 71, 72, 75, 89, 93, 125, 155, 170, 253, 261, 275, 283, 352, 359, 363, 380, 385, 402, 450, 489</td>
</tr>
<tr>
<td>Kekchi (kek, Mayan, Core Mayan)</td>
<td>52, 72, 89, 155, 157, 170, 275, 380, 385, 432, 465, 473, 490</td>
</tr>
<tr>
<td>Ket (ket, Yeniseian)</td>
<td>52, 71, 72, 73, 89, 155, 170, 221, 239, 244, 275, 283, 313, 355, 364, 371, 374, 380, 386, 421, 431, 465, 472, 484, 489</td>
</tr>
<tr>
<td>Khmer (khm, Austroasiatic, Khmeric)</td>
<td>22, 24, 30, 81, 353</td>
</tr>
<tr>
<td>Khoekhoe (naq, Khoe)</td>
<td>57, 484</td>
</tr>
<tr>
<td>Kildin Sami (sjd, Uralic, Saami)</td>
<td>14, 52, 57, 89, 144, 154, 155, 170, 275, 313, 381, 386, 421, 465</td>
</tr>
<tr>
<td>Kupsabiny (kpz, Nilo-Saharan, Nilotic)</td>
<td>89, 153, 157, 170, 175, 275, 380, 386, 401, 450</td>
</tr>
<tr>
<td>Latvian (lav, Indo-European, Baltic)</td>
<td>89, 170, 178, 275, 349, 364, 366, 368, 374, 380, 386, 405, 453</td>
</tr>
<tr>
<td>Lenakel (tnl, Austronesian, Oceanic)</td>
<td>57</td>
</tr>
<tr>
<td>Lower Sorbian (dsb, Indo-European, Slavic)</td>
<td>52, 71, 72, 89, 153, 154, 155, 169, 170, 192, 274, 275, 349, 379, 386, 415, 459, 489</td>
</tr>
<tr>
<td>Malagasy (plt, Austronesian, Greater Barito)</td>
<td>48, 52, 72, 73, 74, 75, 89, 95, 96, 97, 126, 140, 142, 145, 157, 170, 256, 275, 283, 313, 347, 367, 369, 375, 381, 386, 423, 466, 490</td>
</tr>
<tr>
<td>Malayalam (mal, Dravidian)</td>
<td>89, 170, 275, 313, 348, 369, 380, 386, 404, 410, 452, 457, 462, 484</td>
</tr>
<tr>
<td>Mamara Senoufo (myk, Atlantic-Congo, Kwa)</td>
<td>89, 124, 170, 380, 386, 399, 449</td>
</tr>
<tr>
<td>Manange (nmm, Sino-Tibetan, Bodic)</td>
<td>52, 72, 89, 154, 170, 275, 358, 359, 381, 386, 426, 469</td>
</tr>
</tbody>
</table>
The typology and semantics of binominal lexemes

Mandarin Chinese (cmn, Sino-Tibetan, Sinitic), 33, 34, 52, 72, 89, 110, 124, 170, 221, 283, 312, 351, 363, 376, 379, 386, 427, 469, 484

Mapudungun (arn, Araucanian), 52, 72, 75, 89, 105, 145, 146, 170, 252, 261, 262, 263, 275, 277, 278, 284, 297, 348, 356, 376, 379, 386, 437, 474, 490

Marra (mec, Mangarrayi-Maran), 22, 26, 28, 253

Mbyá Guaraní (gun, Tupian, Tupi-Guarani), 89, 170, 239, 275, 380, 386, 395, 435, 446

Minangkabau (min, Austronesian, Malayic), 147, 148

Murui Huitoto (huu, Huitotoan), 14, 89, 119, 121, 131, 138, 140, 149, 151, 170, 190, 256, 275, 284, 380, 437, 647, 490

Navajo (nav, Athabaskan-Eyak-Tlingit), 88, 89, 96, 170, 192, 221, 275, 356, 376, 380, 386, 431, 472

Nepali (npi, Indo-European, Indo-Aryan), 89, 165, 170, 176, 257, 275, 359, 381, 386, 411, 457

Nizaa (sgi, Atlantic-Congo, Mambiloid), 5, 6, 7, 37, 66, 67, 68, 87, 110, 186, 215, 252, 260, 262, 264, 266, 277, 278, 293, 294, 296, 297, 298, 313, 314, 367, 373

Northern Kurdish (kmr, Indo-European, Iranian), 166, 271

Oko (okoo1245, Atlantic-Congo, Oko-Eni-Osayen), 252, 262

Old High German (goh, Indo-European, Germanic), 52, 73, 89, 119, 170, 177, 371, 380, 387, 409, 456, 490

Oroqen (orh, Altaic, Tungusic), 52, 72, 89, 157, 170, 248, 275, 313, 355, 381, 387, 402, 403, 451, 490

Portuguese (por, Indo-European, Romance), 33, 42, 484

Puyuma (pyu, Austronesian, Formosan), 88, 89, 121, 169, 170, 175, 247, 275, 351, 373, 381, 387, 422, 466

Querétaro Otomi (otq, Otomanguean, Otopamean), 52, 89, 124, 170, 192, 381, 387, 433, 473

Rama (rma, Chibchan), 57, 410, 457

Romanian (ron, Indo-European, Romance), 52, 89, 93, 106, 170, 257, 261, 275, 355, 356, 366, 371, 381, 387, 413, 459, 484, 490

Russian (rus, Indo-European, Slavic), xxv, 1, 8, 14, 33, 39, 89, 94, 95, 125, 131, 140, 155, 161, 164, 165, 170, 187, 191, 192, 270, 271, 274, 275, 283, 359, 364, 368, 373, 375, 381, 387, 416, 460, 484

San Mateo del Mar Huave (huv, Huavean), 57

Saramaccan (srm, Pidgins & Creoles, English-based), 52, 72, 89, 91, 144, 170, 275, 283, 313, 356, 365, 381, 387, 442, 476

Selice Romani (rmc, Indo-European, Indo-Aryan), 52, 89, 121, 169, 170, 175, 176, 247, 273, 275, 276, 354, 381, 387, 411, 458, 490

Seri (sei, Seri), 89, 90, 157, 170, 248, 275, 283, 364, 381, 387, 434, 474

Seychelles Creole (crs, Pidgins & Creoles, French-based), 52, 72, 74, 76, 89, 91, 124, 144, 170, 172, 365, 379, 387, 442, 477, 491

Sidamo (sid, Afro-Asiatic, Cushitic), 89, 145, 154, 155, 170, 275, 283, 284, 360, 381, 387, 394, 445

Slovak (slk, Indo-European, Slavic), 10, 11, 14, 49, 89, 155, 165, 170, 175, 187, 275, 365, 366, 381, 387, 416, 461, 484
<table>
<thead>
<tr>
<th>Language index</th>
<th>89, 157, 158, 170, 275, 356, 370, 381, 387, 395, 446, 472</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somali (som, Afro-Asiatic, Cushitic), Spanish (spa, Indo-European, Romance), Srenge (Isr, Nuclear Torricelli), Swahili (swh, Atlantic-Congo, Bantu),</td>
<td>89, 119, 170, 275, 380, 387, 429, 463, 471</td>
</tr>
<tr>
<td>Tagalog (tgl, Austronesian, Greater Central Philippine), Takia (tbc, Austronesian, Oceanic), Thai (tha, Tai-Kadai, Kam-Tai), Ticuna (tca, Ticuna-Yuri), Toaripi (tqp, Eleman), Trinitario (trn, Arawakan), Trukal (tkm, extinct isolate), Tz'utujil (tzj, Mayan, Core Mayan), Vietnamese (vie, Austro-Asiatic, Vietic), Wawa (www, Atlantic-Congo, Bantoid), Tz'utujil (tzj, Mayan, Core Mayan)</td>
<td>89, 119, 170, 275, 313, 364, 388, 398, 448</td>
</tr>
<tr>
<td>Welsh (cym, Indo-European, Celtic), Western Farsi (pes, Indo-European, Iranian), Western Mari (mrj, Uralic, Mari), Wichi (mzh, Matacoan), Wik-Mungkan (wim, Pama-Nyungan, Paman), Wolof (wol, Atlantic-Congo, North-Central Atlantic), Yakut (sah, Altaic, Turkic), Yaqi (yaq, Uto-Aztecan, Southern Uto-Aztecan), Yimas (yee, Lower Sepic Ramu), Zinacantán Tzotzil (tzo, Mayan, Core Mayan)</td>
<td>89, 170, 275, 313, 364, 388, 406, 454, 491</td>
</tr>
<tr>
<td>Turkish (tur, Altaic, Turkic), Tuwari (tww, Walio), Tuareg (tqo, Eleman), Tuareg (tqo, Eleman), Tuareg (tqo, Eleman), Tz'utujil (tzj, Mayan, Core Mayan), Vietnamese (vie, Austro-Asiatic, Vietic), Wawa (www, Atlantic-Congo, Bantoid), Tz'utujil (tzj, Mayan, Core Mayan)</td>
<td>52, 71, 89, 170, 275, 310, 311, 366, 380, 388, 440, 475, 484</td>
</tr>
<tr>
<td>Yaqi (yaq, Uto-Aztecan, Southern Uto-Aztecan), Yimas (yee, Lower Sepic Ramu), Zinacantán Tzotzil (tzo, Mayan, Core Mayan)</td>
<td>170, 275, 283, 360, 381, 388, 430, 471</td>
</tr>
<tr>
<td>Yakut (sah, Altaic, Turkic), Yaqi (yaq, Uto-Aztecan, Southern Uto-Aztecan), Yimas (yee, Lower Sepic Ramu), Zinacantán Tzotzil (tzo, Mayan, Core Mayan)</td>
<td>52, 72, 74, 75, 89, 170, 220, 275, 283, 355, 363, 381, 388, 432, 436, 473, 474, 491</td>
</tr>
<tr>
<td>Yimas (yee, Lower Sepic Ramu)</td>
<td>22, 24</td>
</tr>
<tr>
<td>Zinacantán Tzotzil (tzo, Mayan, Core Mayan), Vietnamese (vie, Austro-Asiatic, Vietic), Wawa (www, Atlantic-Congo, Bantoid), Tz'utujil (tzj, Mayan, Core Mayan)</td>
<td>52, 72, 73, 74, 89, 124, 170, 350, 381, 388, 433, 473, 484, 491</td>
</tr>
</tbody>
</table>
Subject index

action-affix, 12, 99, 106, 127
action-morph, 100, 251
action-root, 12, 48, 70, 99, 100, 105, 106, 110, 121, 127, 226
affixoid, 102, 135, 162, 188
association, 2, 3, 4, 5, 10, 21, 47, 51, 55, 58, 59, 216, 225, 278, 280, 281, 282, 296, 322, 324, 325, 327, 374
association type, 2, 3, 216, 325, 327
binominal fingerprint, 165, 167, 175, 178, 257, 344
binominal lexeme (definition), 9, 13
binominal quantifier constructions, 13, 320
binominal type
cls, 140, 141, 143, 146, 147, 148, 149, 158, 162, 163, 167, 169, 170, 174, 181, 190, 192, 242, 247, 248, 251, 256, 261, 275, 283, 284, 289, 345, 397, 398, 400, 424, 425, 437, 438, 439, 440

gen, 139, 140, 141, 142, 143, 152, 153, 154, 156, 158, 159, 163, 164, 165, 166, 167, 169, 170, 171, 172, 176, 187, 188, 192, 242, 248, 255, 257, 259, 263, 274, 275, 283, 284,
The typology and semantics of binominal lexemes

blend, 24, 51, 396

Bourque2 classification, 223, 233, 234, 235, 236, 296, 480
classifier, xxiii, 11, 12, 13, 14, 49, 51, 131, 132, 133, 138, 140, 141, 146, 147, 148, 149, 151, 152, 163, 208, 251, 374, 425, 427, 439

CLDF (Cross-Linguistic Data Formats), 91

CLLD (Cross-Linguistic Linked Data), 323

Cognitive Grammar, 6, 13, 113, 182, 183, 184, 294, 362, 373, 374
colour terms, 12, 104

compound types
aggregative, 23
appositional, 197, 201, 206, 207, 208, 209, 213, 214, 234, 248, 250, 282, 293, 345, 358
attributive, 7, 35, 36, 40, 262
avyayibhava, 23

copulative, 23, 45, 206
determinative, 7, 10, 23, 29, 196, 197, 200, 202, 214, 237, 329, 442
dvandva, 23
det er minative, 35, 36, 39, 41, 42, 50, 188
exocentric, 23, 35, 36, 39, 40, 42, 45, 110, 221
non-appositional, 76, 83, 196, 200, 206, 207, 213, 214, 234, 328
possessive, 130, 133, 266
prepositional, 8, 13, 14, 212
root, 8, 14, 24, 40
subordinate, 7, 10, 35, 36, 38, 40, 41, 202, 262, 277, 278, 295, 298, 301, 348, 437
synthetic, 10, 11, 12, 13, 14, 23, 24, 42, 43, 53, 130, 131, 139, 140, 255, 268, 329, 363, 375
tatpurua, 23, 24, 237
verbal-nexus, 23, 35
contiguity, 6, 57, 58, 59, 191, 192, 207, 208, 213, 279, 314, 316, 322, 323, 324, 325, 328, 331, 361

convenience sample, 84, 86, 88

CSV (comma-separated values), 63, 91, 92, 93

expressive binominal NPs, 13
ezāfe, 138, 411

flag, 136, 257
genetic grouping, 85, 484

genotypical area, 25, 46, 58, 84, 86, 87, 91, 168, 176, 256, 285, 286, 289, 342, 344
glotto code, xxv, 384, 479, 480

Glottolog, xxv, 22, 87, 357, 379, 484

Hatcher2 classification, 235, 236, 252, 296, 480

head (of a binominal), 5, 6, 7, 8, 10, 19, 23, 24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 46, 67, 68, 74, 76, 82, 99, 102, 103, 104, 107,

ICM (Idealized Cognitive Model), 316
index, xxv, 6, 133, 135, 136, 137, 138, 139, 154, 156, 159, 257, 271, 346, 355, 365, 457, 493, 499, 505
intralingual competition, 167, 168, 172, 175, 178, 272
JSON (JavaScript Object Notation), 91
Leipzig Glossing Rules, xxv, 54, 94, 97, 444
 linker, 42, 133, 136, 137, 138, 139, 152, 153, 156, 158, 159, 164, 311, 392, 393, 424, 439
Lucca, 2, 326
Madame Butterfly, 2
metaphor, 36, 39, 207, 208
Morbo/Comp project, 21, 32, 33, 34, 37, 39, 40, 60, 61, 62, 87, 254, 255, 256, 289, 483
motivational grid, 21, 279, 280, 290, 296, 297, 298, 321, 322, 328, 331, 343, 346
nominal modification construction, 14, 48, 50, 186, 188, 251
non-anchoring, 21, 268, 269, 270, 361, 391, 413, 426, 437
typifying, 268, 269, 271, 272, 329
nonperson index, 137, 156, 157, 159
occurrence, 2, 81, 97, 167, 175, 324, 368, 391, 402, 427, 485, 487
onomasiological base, 10, 11, 65, 111, 112, 114
onomasiological mark, 10, 11, 14, 112
Onomasiological Types, 10, 11, 12, 24, 50, 65, 70, 100, 106, 112, 126, 221, 321, 329, 330
Pepper scale, 273, 274, 290, 336, 342
person index, 136, 137, 156, 157, 159
phrasal lexeme, 45, 47, 57, 335
possessive noun phrase, 129, 130, 131, 132, 160, 266, 268, 272, 346, 403, 434, 438
Principal Components Analysis (PCA), 176
probability sample, 84, 85, 86, 87, 90
property-affix, 12, 99, 106, 107, 127
property-morph, 127
property-root, 12, 83, 99, 106, 127, 214
Puccini, 2, 324, 326, 328
Steve Pepper

The typology and semantics of binominal lexemes

Noun-noun compounds and their functional equivalents