Science for the children?

Report from the SAS-project,
A cross-cultural study of factors of relevance for the teaching and learning of science and technology

Svein Sjøberg
E-mail: svein.sjoberg@ils.uio.no
Home page: http://folk.uio.no/sveinsj/

Department of Teacher Education and School Development
University of Oslo
P.O.Box 1099 Blindern - 0316 Oslo Norway

Revised, enlarged and updated version, June 2002
Science for the children?

Report from the SAS-project, a cross-cultural study of factors of relevance for the teaching and learning of science and technology

Contents

Summary of findings.. 3
Introduction .. 5
The SAS-study: Science And Scientists.. 5
Results: "What I have done" .. 19
Results: Things to learn about .. 42
Results: "Science is …" .. .6
Results: Draw a scientist.. 67
Results: Writing about "Me as a scientist" ... 77
Results: Important factors for future job .. 88
Some paradoxes and surprises.. 91
Some conclusions and recommendations ... 95
References ... 98
Appendix A: Participating researchers.. 100
Appendix B: Some publications based on the SAS project ... 101
Appendix C: ROSE: The Relevance Of Science Education A brief introduction........... 102
Appendix D: The SAS questionnaire.. 104

1 This report is a revised and considerably extended version of the preliminary report (Sjøberg 2000a)
Summary of findings
This publication is a documentation of the SAS-project: "Science And Scientists", an investigation of interests, experiences and perceptions of children in many countries that might be of relevance for the learning of science and technology (S&T). The project involved some 30 researchers from 21 countries. Some 9,300 children at the age of 13 answered a questionnaire with closed and open-ended questions. The results are meant to be used for an informed debate over contents and priorities in the S&T curriculum and classroom teaching. Among the results presented in this report are the following:

S&T-related Experiences
- Children in all countries have a wealth of experience that may be of relevance for the learning of S&T, but there are great variations between countries and between girls and boys.
- In all countries, boys have considerably more experience that is related to mechanics and electricity.
- Children in developed countries have more experience with (costly) new technologies. In these areas gender differences are rather small.
- Children in all countries have considerable experiences with household technologies (preservation and storage of food, knitting, sewing, making mats and baskets) – although the contents varies. Most activities are girl-dominated.
- Boys have somewhat more experience with S&T-related tools.
- Girls and boys have similar experience with reading scales and using measuring devices.
- Children in the Nordic countries have more experience with outdoor-life (making fire, setting up tents, using binoculars etc.) than children in other parts of the world.
- Experiences with animals are male-dominated in developing counties, girl-dominated in developed countries.
- The use of guns and rifles is strongly boy-dominated, and with the Nordic countries on top.

S&T-related Interests
- Children in developing countries express an interest in learning almost all topics related to S&T, while children in developed countries have less interest and are more selective.
- Children in Japan are less interested in S&T topics than children in other countries. Their lack of interest in cars and modern technology is striking.
- Girls in all countries are more interested than boys in learning about health, nutrition and most aspects of biology.
• Girls and boys in all countries are interested in learning about earth science, the weather and natural phenomena.
• The difference in interests between girls and boys vary from topic to topic, but are generally largest in the Nordic countries and Japan.
• In developed countries, the least popular things to learn about seem to be issues relating to plants and animals in their immediate surroundings and neighbourhood.
• The most popular S&T items are often spectacular or relating to natural phenomena (life in the universe, extinction of dinosaurs, earthquakes and volcanoes).
• The interest in particular science content vary strongly with the context in which it is presented, and this may be a key to a gender fair S&T curriculum.

Perceptions of Science and scientists

• Children in developing countries have a very positive image of scientists, and this expressed in a variety of ways.
• Many children in developed countries have a negative and stereotyped image of scientists. ('The crazy scientists')
• Children in all countries consider science to be useful for everyday life and for society – although children in developing countries are far more positive. Gender differences are small.
• Few children in developed countries seldom consider scientists to be kind or helpful – while this view prevails among children in developing countries.
• Very few children, in particular girls, consider science to be easy to learn.
• Japanese children find science less interesting and more difficult than children in other countries. (But they score higher on international tests!)

Job priorities

• Girls in all countries are more person-oriented (helping people, working with people etc.) than boys.
• Boys in all countries are more ego-oriented (earn money, become famous etc.) than girls.
• Girls and boys have similar priorities related to 'self-development' and 'time and job security'.
• Children in the Nordic countries are more gendered in their priorities than children from other parts of the world.
• In developing countries, many children want to be scientists.
• The popularity of possible areas for future work varies. The most popular is biology (for girls), earth science (for both) and technology (for boys). The least popular is physics.
Introduction
International comparisons put national situations, contexts and educational choices in a wider perspective – a perspective from which one may better be able to see one's own situation and priorities with new eyes and with a more open mind for alternatives. In this way, the comparisons may open up the potential for greater variety and for possible inspiration from outside. But international comparisons may also have the opposite effect. They may – often indirectly or unintentionally – have the effect of restricting choices and of providing a pressure to harmonize science teaching towards universal standards for content as well as teaching methods and assessment. This kind of criticism may be raised against the large-scale studies by IEA (International Association for the Evaluation of Educational Achievement.) The most recent IEA-study is TIMSS (Third International Mathematics and Science Study, reported in for instance TIMSS 1996, 1997 and 1998). Such studies do, of course, provide a wealth of information that may be used for critical reflection.

The ongoing OECD PISA study (Programme for International Student Assessment) is an attempt to widen the scope of such large-scale studies. The underlying framework for PISA is, in contrast to TIMSS, not bound to the school curricula, but focuses on competencies that are considered important for participation in modern society. The publication of the first results from PISA (OECD 2001) indicates that the PISA studies will meet some of the criticism raised against the IEA-based studies like TIMSS.

Smaller and less ambitious comparative studies may supplement the large-scale studies. Such studies may provide other sorts of information that may give clues and ideas for the improvement of science education. This report will present some results from a study of this kind, the SAS-study – "Science And Scientists".

The SAS-study: Science And Scientists
Rationale and aims
The SAS-study builds on the rationale that science curricula should be meaningful and relevant for children in different cultures, and that the contents of school science and technology needs to be adapted to culture and context. It is our hope that data from the project may form an empirical basis for local and national adaptations of the science curriculum. A more focused study addressing these issues is under development under the acronym ROSE: The Relevance of science Education (see Appendix C)
Science curricula and textbooks in different countries have striking similarities. Science teachers from very different backgrounds easily feel at home when they open textbooks from other countries in the world, in rich as well as poor countries, in the West as well as in the East. Even when the letters or the script is unknown, like in Russian, Japanese, Chinese or Thai, science educators can often recognize the contents, examples and the organization of the material presented.

This similarity may be interpreted in different ways. Some people take this to be an indication of the universality of science; for them it demonstrates that science in independent of culture, or even "culture-free". Others will interpret the observed similarities in a different way. They will argue that this demonstrates that science curricula reflect a western domination of the contents of education across the world. They will say that western science curricula are exported and imposed on pupils in other countries. They will argue that the observed similarity and homogeneity demonstrates a kind of educational and cultural imperialism.

The issue of the possible universality and culture-independence of science as an academic discipline per se is an important philosophical debate, and the views differ. However, there seems to be a much greater consensus in the debate about school science. Regardless of philosophical positions, most educators would agree that school science cannot be "deduced" from the science in research and universities (whether this is labelled "western", "modern", "academic" or "real" science). Among educators there is broad agreement that each society has to construct their own science curricula to fit their own needs and their own purposes for schooling. Academic science is only one of the possible inputs in this process of selection and construction. (see for instance Cobern and Aikenhead, 1998)

There is also broad agreement that all teaching should "build on" the interests and experiences of the child. In particular, everybody who subscribes to (some version of) educational constructivism will take such a stance for granted. For the educational contents to be meaningful for the learner, it must have some sort of relevance, and it must fit into the personal or societal context of the child.

But the simple and obvious fact is that children are different. They do not have the same experiences when they meet school science, nor do they have the same interests. There are differences between pupils in the same class, in the same school or the same nation. And there may be systematic differences between girls and boys. And there are certainly large differences between children in different countries. Growing up in rural Africa is different from growing up in London. And growing up in Tokyo is different from growing up in New York.
Not only do experiences and interests among the learners vary. It is also evident that there are similar variations in what can be said to be "relevant" and useful knowledge for children coming from such different life situations. Learning to cope with the daily challenges and preparing for a meaningful life varies according to the different backgrounds of the children.

In the light of such obvious facts, the great similarity of science curricula becomes doubtful, whatever stance one may have on the more philosophical questions about the possible universality of scientific theories per se.

Other aspects of pupils' "mental luggage" may also be of importance for their learning of science, or for their overall approach to or attitude to science. Pupils always develop some sort of idea about what science is all about, how scientists are as persons, what they actually do and how this relates to society, the environment and the lives of themselves and other people.

Children's ideas about the nature of science, the personalities of scientists and the purpose and meaning of their activities may have different sources. They may emerge from the media and out-of-school influence, or they may arise from their encounter with school science and the science teachers. Some ideas may arise from their own culture and its prevailing world-views, ideologies, religious or other sorts of beliefs. These factors are of a more affective nature; they are related to feelings, ideals and values. They may influence the pupil's eagerness, motivation or interest to learn science. Maybe they are even more important than the "pure" cognitive factors.

Considerations like these are part of the rationale behind the study that is presented here. Debates over curricular contents and of curriculum emphasis (Roberts 1982 and 1988) are important. However, they often take place on a general or theoretical level, based on generalisations and assumptions about different cultures. The discussion may be facilitated if one could refer to more concrete data and evidence. This is the basis for our research.

Background and context of the study
The intention of the SAS study is to shed light on some of the issues that may be important for an informed discussion of priorities in science education that is sensitive towards the background of children, with emphasis on culture and gender.

Another purpose of the study is *networking* and *capacity building*, with a special focus on engaging female researchers from developing countries in joint research. These aims emerge from the context of the development of the study.
The three researchers, Jane Mulemwa from Uganda, Jayshree Mehta from India and Svein Sjøberg from Norway are jointly involved in international cooperation and development. The contexts are the following.

- **FEMSA** (Female Education in Mathematics and Science in Africa), a project aiming at stimulating girls' access to and achievement in science and mathematics in African countries. The project was sponsored by NORAD (Norwegian Agency for Development Cooperation) and other donor agencies. The first phase of FEMSA (1995-98) involved four countries (Ghana, Tanzania, Cameroon and Uganda), and resulted in the production of "country profiles" that describes factors relating to girls' access to and interest in science—and how to address these challenges. National action plans to address the challenges were also developed. At the end of 1998, the FEMSA project entered a second and more action-oriented phase, headed by a FEMSA centre that was established in each country. Eight new African countries joined the second phase of FEMSA (Burkina Faso, Mali, Malawi, Mozambique, Senegal, Zambia, Kenya and Swaziland). (And Ghana has left the project.) The three SAS coordinators have been with the FEMSA project from its inception, where they produced the first project documents and plans. They were members of the "FEMSA Consultative Group" in the second phase. The FEMSA project enabled us to meet regularly in connection with FEMSA project meetings. A rich variety FEMSA material is available from the regional FEMSA office².

- **GASAT** (Gender And Science And Technology), an international association with a broad range of activities, among them bi- or triennial international conferences, starting in 1981. All the three project coordinators have a long-term involvement in GASAT, Jayshree Mehta has been chair of the GASAT association.

- **IOSTE** (International Organization for Science and Technology Education) is an international organization that promotes science education, with an emphasis on "science for all". IOSTE hosts bi- or triennial international conferences. IOSTE has also a network of researchers and activists with a regular newsletter, special interests groups etc. (Information is available at http://www.ipn.uni-kiel.de/projekte/ioste/ioste.htm All three SAS project coordinators are or have been board members of IOSTE.

² From 2002 FEMSA has been merged into the activities of FAWE Forum for African Women Educationalists in Nairobi, Kenya, http://www.fawe.org/
Activities related to these initiatives have brought the three researchers, coming from three continents, together with regular intervals. We decided to use these opportunities as a vehicle also for joint research and thereby also to promote the goals of the above-mentioned organisations. Support from NORAD (Norwegian Agency for Development Cooperation) provided a financial base for many of the meetings as well as for refunding some costs for participants from developing countries. NORAD grants have also made it possible for participants from developing countries to attend conferences and discuss the joint research.

The SAS project has been a cooperative effort, involving researchers from a wide variety of cultures in all continents. The names are listed in Appendix A. Many researchers have written national reports or used the study in national efforts in teacher training as well as for critical deliberations about teaching, learning and the curriculum. Some of these publications are listed in appendix B.

The development of instruments

The research instrument is a questionnaire (see Appendix D) consisting of 7 items, meant to tap into aspects relating to the interests of children, their experiences, their perceptions of science, their hopes, priorities and visions for the future. The questions cover aspects of relevance for the science curriculum. A questionnaire to be filled in by the researcher was also developed, and a short guide for the administration and collection of data was developed.

The items in the pupils' questionnaire were based on research instruments used in research before, by this author and by others. Previously, these items have been used in only one country or in comparisons between similar countries in the North. We went through a long process of adapting the instruments to this new and wider cross-cultural context. We produced an "original" in English, and used translations in the different countries. Piloting of the instruments was done in the countries of the three researchers, hence translations of preliminary versions of the instruments was made into Norwegian and Gujarati (an Indian language with its own script). In Uganda the English version was used.

The pilot testing gave experiences from three different continents, and was the basis for the process of refining and finalizing the items. We had in mind to make an instrument that could in principle be used in all parts of the world. Therefore, in each culture, there will be words, phrases and even contexts in the final instrument that may seem strange for the kids. For instance, few kids in industrialized countries have experience with "making bricks" or "carrying water on the head". Similarly, few kids in developing countries are likely to have much experience with computer games and video recorders. Hence, the final instrument is a compromise, and it should be seen and understood in this light. We also tried to keep the wording of instructions simple (but yet precise
enough) and provide few response alternatives (instead of exhausting all alternatives, like "I do not know", or "I do not understand the question"). In short, there were lengthy discussions behind most of the decisions behind the final instrument, and arguments pointing in different directions had to be balanced. The following is a brief description and discussion of the items, in the order they occur in the questionnaire.

The SAS questionnaire

The front page of the SAS instrument (also on the front page of this report) has a drawing of playing children from many parts of the world, and the term "scientist" is introduced like this:

A scientist is a person who is curious and tries to find out about new things. Sometimes they also try to invent and make new things or find new ways of solving problems.

The setting of the investigation is then presented like this:

This booklet contains questions about science and scientists. The questions are answered by children in many countries. (That is why some of the questions may seem strange to you!) The questions have no "right answers", but your views may help us to understand how children in different countries think, and in making science in schools better.

The following pages of the instrument contain the following 7 items. (The full version is given in Appendix D.)

1. Scientists as person.

This is an item meant to elicit what children think "real scientists" are like. Two opposite human traits are put up on each side of a 5-point Likert scale, and the response is given by indicating a position on this scale. The "direction" of the different traits is varied. Hence, what may be considered a "positive trait" may occur at both ends of the scale. We distinguish between a person working with physics or engineering (abbr.: "a physicist") and a person working with biology or medicine (abbr.: "a biologist"), since previous research has indicated that the perceptions of these two "types" of scientists may be quite different.

This item is close to the one used by this author in previous research, and it was included in the Norwegian version of the SISS-test (Second International Science Study). Results are reported in Sjøberg 1986. Some results are presented in English in Sjøberg and Imsen 1987. An English translation of the questionnaire was published (Sjøberg 1990) and later used in Korea and
Singapore with strikingly different results (Kim 1994). This was one reason for including the item in this investigation.

2. Out of school experiences: What I have done.
This item is an inventory of 80 activities that may have bearing on the teaching and learning of science. This item has also been used in previous research in a slightly different form. (Lie and Sjøberg 1984, Whyte, Kelly and Smail 1987). The item was also included in the Norwegian version of SISS and is reported in Sjøberg 1986 and Sjøberg and Imsen 1987. Care was taken to sample a large variety of activities, and with a cultural diversity. There are three possible responses to each activity: "Often (Many times)"; "Seldom (Once or twice)" and "Never".

3. Things to learn about.
This item is a similar list to the one above, and is used in some of the above-mentioned studies. It is an inventory of possible topics for inclusion in the science curriculum. 60 topics are listed. Care has been taken to put similar scientific contents into different contexts. The rationale behind this is to explore whether different contexts or different perspectives appeal differently to different groups of pupils or different cultures. The pupil's responses are simply to tick a Yes to each topic they like.

4. Important for a future job.
The rationale behind this item is that pupils have different hopes and priorities for their future, and that this may be an important element in their approach towards learning. Different preferences may also indicate that different curricular emphasises may appeal to different groups of pupils. (Like stressing the "other-oriented" or "person-oriented" aspects of science and technology versus stressing the "ego-centred" or "instrumental" aspects, or possibly the "intellectual" aspect of the subject.)

The item consists of a list of aspects that might be important for the choice of a future job (if such a choice exists!). The pupil is invited to judge the personal relevance of each of these factors. Previous research has indicated interesting differences between girls and boys on such factors. (E.g. Sjøberg and Imsen 1987). There may also be interesting cultural differences. The responses are given on a three-point scale: "Very important", "Of some importance" and "Not important"

5. Science in action.
"Science" may mean different things for different pupils, and the word may trigger different emotions, or give different associations. This item is a list of such possible word associations, and the pupil is invited to indicate the ones that
they find suitable. This item is meant to elicit some attitudes to science and some perceptions about what science may or may not contribute to.

6. Scientists at work.
The "Draw-a-Scientist" task has been used in research for a long time in different formulations and with slight modifications. (Mead and Metraux 1957, Krajkovich and Smith 1982, Chambers 1983, Kahle 1987, Kjærnsli 1989, Matthews 1996) The purpose of this item is to elicit the image of scientists held by the learner. It may be argued that this item simply begs the stereotype to be presented; the respondents may concentrate on what distinguishes a "stereotype" of a researcher form other "normal" people. In the research, different approaches are used to counteract this. (Like drawing two scientists, or by sorting cards with drawings etc.) In our version, we ask the respondents to draw a scientist at work, and to add something in writing on what they do and issues they work on. This may be a story or just a list of key words.

7. Writing: "Me as a scientist". This last item may be seen as an extension of the previous one. Pupils are invited to put themselves in the position of being a scientist, being free to work and to do research on what they find important and interesting. Here, they may express their own interests, concerns and priorities. Previous research has indicated interesting differences between the priorities of girls and boys (Kjærnsli 1989).

Translations and adaptations
In many countries, translations were necessary. The national researchers were provided with a diskette with the original English version, and most of the translations were done by simply replacing text and keeping the formatting. The instructions given were these:

"In countries where translations are necessary, please follow the same format and stick accurately to the order of items within each question! (Otherwise, common coding and comparisons will be difficult.) A project that intends to make comparisons across cultures from different continents, including the very rich and the very poor, has to make several compromises in the selection of items. We have tried hard to do so. This will, of course, mean that in each country, pupils may find some of the items somewhat strange. In spite of this, we kindly ask you to include all elements of all items, and to keep the order etc. as in the original" (SAS guide to the researcher)

Some instructions regarding translation were also given, like this one:
"In translation, be aware of the different translations of key word like "science". (In our context, we of course mean what may be called "the natural sciences". For some activities, comparable activities are mentioned (like "Knitted, made baskets or mats"). In such cases, you may omit the alternatives that are unknown in your culture." (SAS guide to the researcher)

The SAS instrument now exists in the following languages: English, Portuguese, Spanish, Hungarian, Icelandic, Swedish, Norwegian, Gujarati (India), Japanese, Korean, Sudanese.

Participation and organisation of the study

The study was announced through different professional channels (The IOSTE and the GASAT newsletter, the NARST e-mail network, UNESCO's newsletter Connect etc.) The project was also publicized on meetings and conferences in Africa and Asia.) Interested researchers were offered a little booklet, the questionnaire and a diskette with the English version of the questionnaire (in different formats). At a later stage, this diskette also contained the codebook and empty data files for data entry in Excel or SPSS.

The booklet described the rationale of the project and gave practical details on procedures etc. Participation was open, and limited support was available for researchers from developing countries to cover actual expenses for collecting data. In some countries, translation had to be made of the questionnaire, as indicated before. For countries using the same language, the organisers helped in sharing translations.

Since the involvement of new researchers from developing countries was an important aim, the project group decided that it was unrealistic to be very strict on sampling, since this requires both the existence of reliable educational statistics plus resources for travel and other forms of communication. Hence, care should be taken in attempts to generalise to national populations. However, *interpreted with caution*, results may shed light on important aspects regarding differences and similarities based on culture as well as gender. Since none of the results involve pupil assessment, judgements of quality or ranking of countries in term of performance, the results do not run the risk of being misused.

In the initial phase, participants were asked to return the filled-in pupils' questionnaires and their own questionnaire to the project coordinator in Oslo. When participation increased, this procedure proved to be both costly and impractical. For the last part of data collection, the participants entered the data in either Excel or SPSS-format, using empty data files provided by the project. They did, however, send the last two items, drawings and free writings, since
these had not been coded. These pages were provided with the identification number of the pupil to allow for later data entry.

Target population, sampling and administration

It was decided that the test should be administered to the class level with the most 13-year-old children. In most countries, this is towards the end of the primary stage, which often means that a large proportion of the age cohort is still at school. In most countries it is also at an age before selection, curricular choices and streaming have taken place.

The intended target population is the whole age cohort. In industrialised countries nearly 100% of the age cohort is still in school at the age of 13, but in many developing countries, the proportion is much lower. Actual school enrolment is also lower for girls than boys in most developing countries. Actual enrolment data are given in e.g. the annual UNDP Human Development Reports (i.e. UNDP 2001). In interpreting the data, one should bear in mind that the school children in developing countries may not be representative of the national age cohort. For reasons already mentioned, we did not make a more refined statistical sampling a condition for participation.

The booklet with guidelines etc. contained some instructions on sampling and administration. The following is an excerpt from this:

"The target population are the **13 year olds**. Sample sizes should be at a minimum 300. We cannot expect you to use elaborate sampling techniques, especially in developing countries. It is, however, important not to draw unwarranted conclusions from the study. Therefore, we ask you to take care in describing the basis for sampling and the nature of the sample. If you are able to work with larger samples, please do so. Since the minimum sample is rather small, we suggest that the researcher in each country is present when the test is administered by the teacher, to ensure "standard" conditions, and to be able to write a brief description on the sampling and administration.

The whole questionnaire is expected to last **two school lessons**. The more time-consuming drawing and writing exercises have deliberately been put at the end to avoid the possibility of some children being stuck in these items. We therefore hope to get complete data sets for most of the participating pupils.

You are *not* supposed to send us the questionnaires, but rather to enter data yourselves in a format provided by us. On request we send you a "SAS-diskette" with empty data files, ready for data entry in either SPSS or
Excel. A codebook with details for data entry is also included. Please also send the notes from the researcher to the project organiser in Oslo, preferably with the diskette.

Note: The drawings and free writing items (items 6 and 7) have not been put in the codebook because of obvious complications in coding. *We ask you to send these pages to us* (and keep a copy if you like). Put the same identification number on these pages that you use in the coded data. That will make it possible for us to add data at a later stage, when these qualitative data have been coded. We will come back to this at a later stage if funding is available.

Any local reporting (that is: of your own national or local data) must give reference to the project and the source of the material and with a copy sent to the project for information.

All comparative reporting (that is: including more than one country) should be done by the organisers, unless other arrangements are agreed. Participants will of course be paid credit with names etc. in such reporting, and will receive the publications. ."

(all quotes above from the SAS guide to the researcher)

Coding and data handling

In the period 1996 to 2000, the project received data from the participants in various formats. Some sent the whole questionnaire for coding, others sent data files in Excel or SPSS as indicated above. For some countries, more than one researcher had asked to do the research, and all were accepted. This means that there is more than one sample from quite a few countries. (4 from Nigeria, 3 from India and England etc.) The names of the researchers are given in Appendix A.

A considerable amount of time was necessary to "clean" the data files before they could be merged into one file for analysis. The initial coding was kept as simple as possible. The coding followed the position on the questionnaire: 1 for the first possibility, 2 for next etc. blank for missing data.

Data were later recoded for easier interpretation. The general rule was that responses were converted to be on a scale from 0 to 1 (or 100, to give percentages), or from -1 to 1 where negative responses around a "neutral point" have meaning. "Negative" items were converted to give the same "positive" direction.
Status and future plans
The project was from its beginning meant to be a rather modest and exploratory
study, but it has grown. More than 60 researchers from nearly 30 countries have
shown an interest in the study, and today (spring 2002) we have clean data files
from 21 countries, collected by some 30 researchers. The total number of pupils
in the data files is 9350. (53% girls, 47% boys). The map and the graph below
show the geographical spread and the number of participants in each country,
sorted by sample size.
Many researchers from other countries have shown an interest in the study and have used the questionnaire to collect national data. Some researchers have written national studies in their own language (Chile, Spain, Nigeria, India, USA, Iceland, Sweden, and Norway). A list of publications based on the SAS project is given in Appendix B.

Some people have used the SAS instrument in teacher training for raising awareness about curricular issues etc. Students in science education in many countries have used the national studies as a basis for dissertations and degree work. Two Norwegian studies have been published as Master thesis in science education. One is an analysis of Norwegian data, contrasting the significance of social background and gender (Myrland 1997). The other study is a comparison of factors that operate against participation and achievement of girls in science in developing countries (exemplified by Uganda) and in developed countries (exemplified by Norway) (Sinnes 1998). Results from the SAS study have been utilised in national discussions about curricular reforms in several countries.

The SAS data have not yet been fully analysed, but some Norwegian students use them in their Master studies in science education. The future of the project is
uncertain, largely depending on the availability of funding. New data are still coming in, and the project is in principle still open for new participants, although support cannot be expected. The full questionnaire is reproduced in Appendix D. Other language versions are also available from this author. A diskette with a codebook in Excel and SPSS format for data entry is also available. There are plans to use the SAS project as a platform for further cross-cultural studies of science education in the future. This project, ROSE; The Relevance of Science Education, is briefly presented in Appendix C.

Generalisability and uncertainty

As indicated before, the sampling could, for practical reasons, not follow strict rules. The quality of the sample varies from one country to another. In some countries, independent samples from different regions are pooled to make a national sample. The sample size from each country varies strongly, as can be seen in the graph above. These facts call for caution when one tries to draw conclusions. It also indicates that it is difficult to give measures of uncertainty and to judge the statistical significance of differences. In the following reporting, numbers are therefore reported without such statistical information. As a rule, only relatively large differences should be seen as educationally interesting. The observed similarity between countries with comparable cultural contexts lends credibility to the results. It will for instance become clear that there seems to be groupings of countries that come out as rather clustered on many items. (For instance the African countries and the Nordic countries.)
Results: "What I have done"

S&T-relevant experiences: The overall picture
For this item (Item 2) we tried to sample activities from a wide range of contexts that we found might be of value for learning science. We tried to balance relevant activities from different continents and cultures, and we tried to find activities that would be fair to girls as well as to boys. A test for the degree of success in this respect is to look the total picture that emerges from the data. We therefore made a composite score with the sum of all responses. The results are given in the graph below, country by country and separately for girls and boys.

As we can see, all country means fall within a rather narrow range from 42 % (Korea) to 56 % (Sweden). Furthermore, there is no systematic difference between types of countries. Developing and developed countries come out with similar values and in a rather mixed order. This indicates that we have been successful in sampling activities from different sorts of cultures. For all countries, however, there is a difference in favour of the boys. The difference is, however, not very large, but may indicate that we have been better in sampling boys' activities. (Or possibly that typical boys' activities more often can be considered to have relevance for science learning.)
The background activities can be analysed separately or grouped in various ways. In the following, we present only some selected results from single activities, but grouped in categories. The data are given for girls and boys (Girls always at the left side, boys on the right side), and the countries are sorted according to the total frequency.

In the following, we have, somewhat arbitrarily, grouped the activities in the following categories.

- Mechanics; pulleys, jacks, pumps
- Electricity, batteries, bulbs and motors
- Modern technology
- Household technology
- Animals and care
- Human health
- Measuring devices
- Tools
- Outdoor life
- Arms and weapons?
S&T Experiences – some examples

Mechanics: pulleys, jacks, pumps etc.

Below are the results from some of the many listed activities that may give pupils experiential background for learning of classical mechanics (forces, levers, gears, torque, balance, work, energy etc.).
Experience: "Used a car jack or changed wheels on a car"
SAS-data, sorted by total frequency

Experience: "Walked while balancing a load on your head"
SAS-data, sorted by total frequency
Experience: "Mended a bicycle tube"
SAS-data, sorted by total frequency

<table>
<thead>
<tr>
<th>Country</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>81</td>
</tr>
<tr>
<td>Korea</td>
<td>78</td>
</tr>
<tr>
<td>Japan</td>
<td>74</td>
</tr>
<tr>
<td>Uganda</td>
<td>72</td>
</tr>
<tr>
<td>Philipines</td>
<td>72</td>
</tr>
<tr>
<td>India</td>
<td>71</td>
</tr>
<tr>
<td>Mozambique</td>
<td>69</td>
</tr>
<tr>
<td>Australia</td>
<td>63</td>
</tr>
<tr>
<td>USA</td>
<td>60</td>
</tr>
<tr>
<td>Sudan</td>
<td>57</td>
</tr>
<tr>
<td>Lesotho</td>
<td>57</td>
</tr>
<tr>
<td>Trinidad</td>
<td>53</td>
</tr>
<tr>
<td>Hungary</td>
<td>53</td>
</tr>
<tr>
<td>Chile</td>
<td>52</td>
</tr>
<tr>
<td>Iceland</td>
<td>52</td>
</tr>
<tr>
<td>England</td>
<td>50</td>
</tr>
<tr>
<td>Sweden</td>
<td>49</td>
</tr>
<tr>
<td>Norway</td>
<td>45</td>
</tr>
<tr>
<td>Spain</td>
<td>43</td>
</tr>
</tbody>
</table>

Experience: "Made a windmill or water wheel"
SAS-data, sorted by total frequency

<table>
<thead>
<tr>
<th>Country</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>43</td>
</tr>
<tr>
<td>Sudan</td>
<td>37</td>
</tr>
<tr>
<td>India</td>
<td>36</td>
</tr>
<tr>
<td>Lesotho</td>
<td>35</td>
</tr>
<tr>
<td>Australia</td>
<td>34</td>
</tr>
<tr>
<td>Norway</td>
<td>33</td>
</tr>
<tr>
<td>Mozambique</td>
<td>33</td>
</tr>
<tr>
<td>USA</td>
<td>30</td>
</tr>
<tr>
<td>Uganda</td>
<td>30</td>
</tr>
<tr>
<td>Philippines</td>
<td>28</td>
</tr>
<tr>
<td>Spain</td>
<td>28</td>
</tr>
<tr>
<td>Chile</td>
<td>28</td>
</tr>
<tr>
<td>Hungary</td>
<td>28</td>
</tr>
<tr>
<td>England</td>
<td>26</td>
</tr>
<tr>
<td>Sweden</td>
<td>26</td>
</tr>
<tr>
<td>Mozambique</td>
<td>26</td>
</tr>
<tr>
<td>Tanzania</td>
<td>25</td>
</tr>
</tbody>
</table>

Note: The data shows the frequency of certain experiences among different countries, sorted by total frequency. The bars represent the number of individuals who have had the experience.
In general, we see a very strong male dominance on all these activities in all countries. (The only striking exception in "Walk while carrying a load on your head", which is dominated by girls – but not to a very strong degree). The male dominance on the other activities is extreme, and the pattern is the same across cultures. A typical example is "Lifting heavy things with ropes and pulleys." Activities like this are probably a very relevant activity for understanding simple mechanics. We note that in all countries, boys have considerably more experience with this that do girls. For an activity like using a car jack, the male dominance is even more striking, often a factor of 3–4 times.

As for the spread among countries, we note that, with some exceptions, children from Korea and Japan have (surprisingly?) modest experience in this category. Another important observation is that, taken as a whole, there is rather little spread between rich and poor countries. Children in most countries seem to get some experience of relevance for the learning of mechanics. (But the textbooks and the classroom teaching do not necessarily build on these experiences.)
Electricity, batteries, bulbs and motors

Below are the results from some activities that may give pupils experiential background for learning about electricity.

![Chart 1: Experience: "Changed fuse or attached electric lead to a plug"
SAS-data, sorted by total frequency]

![Chart 2: Experience: "Played with electric batteries, bulbs and motors"
SAS-data, sorted by total frequency]
We note that all these 'electrical' activities, in all countries, are dominated by boys. We also note that Japanese children have the least experience of all with "Charged a car battery or other battery". We remember from above that the same was the case with another car-related activity, "Using a car jack". We shall later come back to this surprisingly low interest in cars among Japanese children.
Modern technology
Below are the results from some activities that may give pupils experiential background with newer technologies like PCs, video recorders etc.

Experience: "Used a PC"
SAS-data, sorted by total frequency

Experience: "Recorded on video recorder"
SAS-data, sorted by total frequency
We note the great divide between pupils in rich and poor countries on these activities. An obvious explanation is that such technologies are rather expensive and hence out of reach for most children in poor countries. More surprising is probably that these experiences are not strongly gendered: Although there is a difference in favor of the boys, the difference is not very marked.
Household technology

We see that children in (some) poorer countries have much experience with technologies for preserving food that children in richer countries. A likely explanation is that in richer countries, people are more likely to buy ready-made food or food to be stored in a freezer. Gender differences are rather small.
Using needle and thread for sewing seems to be an activity dominated by girls in all countries, but the gender difference seems to be greatest in more developed countries. Moreover, there is not a very strong divide between children in rich and poor countries.

The response for this item shows great variations between countries, but not a strong divide between poor and wealthy countries. (Spain with the lowest frequency, Iceland with the highest!) In most countries, these activities are rather strongly dominated by girls.
Animals and care

Below are the results from some activities relating to first hand experience with animals.

Experience: "Watched an egg hatching or an animal being born"

![Bar chart showing the experience of watching an egg hatching or an animal being born, sorted by total frequency.](chart1)

Experience: "Watched an animal feeding their babies"

![Bar chart showing the experience of watching an animal feeding their babies, sorted by total frequency.](chart2)
We note that the general pattern is that children in developing countries have more first-hand experience with animals than children in richer countries. The Nordic countries also in general come out quite high. We note that children in Korea and Japan come out quite low on most of these activities.
Some of the 'animal-related' experiences are linked to farming and primary industry, which of course is more common in developing countries than in more developed economies. In developed countries, the relationship to animals is more linked to leisure. A typical example is shown above. The countries are here sorted by the difference between girls' and boys' score to illustrate the following point: (The column to the right is the arithmetic difference between the values for boys and girls).

In developed countries, caring for animals is a girl-dominated activity. In developing countries, where farming is a basic income-generating activity, such activities are more are more male.
We see that the frequency for this activity does not follow a rich-poor divide. It is also noticeable that Japanese children are the absolutely highest on this activity (and with Korea near the bottom end). Gender differences are rather small.
Measuring devices

Below are the results from some activities that indicate experience with measuring devices, activities that are of great importance in order to do experiments in science.
Being able to use and read thermometers and to read and understand scales are crucial in experimental science. We note that girls in most countries have more experience in this area than boys. We note, however, that the experience with such activities vary considerable between countries, with Norway and Sweden being on top.
Tools
Experience with the use of various tools may be important in the teaching and learning of S&T: Familiarity with the tools may be of practical use in experiments, and the function of the tools may enhance an understanding of mechanics and other S&T issues.

For these tools, there seems to be strong male dominance in most countries. Similar results appear for other tools, like hammer and nail.
Some outdoor life experiences

In many countries, there is a strong emphasis on outdoor life. It may be seen as a 'teaching arena' or 'laboratory' for science teaching. In some countries, respect and love for nature are important curricular aims in themselves. Below are some activities that indicate the degree of prior experience with outdoor life close to nature.

Experience: "Collected edible berries, mushrooms or plants"

SAS-data, sorted by total frequency

<table>
<thead>
<tr>
<th>Country</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korea</td>
<td>27</td>
</tr>
<tr>
<td>Trinidad</td>
<td>32</td>
</tr>
<tr>
<td>Japan</td>
<td>39</td>
</tr>
<tr>
<td>Sudan</td>
<td>37</td>
</tr>
<tr>
<td>Philippines</td>
<td>38</td>
</tr>
<tr>
<td>USA</td>
<td>37</td>
</tr>
<tr>
<td>England</td>
<td>41</td>
</tr>
<tr>
<td>India</td>
<td>43</td>
</tr>
<tr>
<td>Nigeria</td>
<td>49</td>
</tr>
<tr>
<td>Lesotho</td>
<td>56</td>
</tr>
<tr>
<td>Mozambique</td>
<td>61</td>
</tr>
<tr>
<td>Spain</td>
<td>63</td>
</tr>
<tr>
<td>Uganda</td>
<td>65</td>
</tr>
<tr>
<td>Iceland</td>
<td>68</td>
</tr>
<tr>
<td>Chile</td>
<td>67</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>74</td>
</tr>
<tr>
<td>Sweden</td>
<td>82</td>
</tr>
<tr>
<td>Norway</td>
<td>84</td>
</tr>
</tbody>
</table>

Experience: "Making a fire using wood or charcoal"

SAS-data, sorted by total frequency

<table>
<thead>
<tr>
<th>Country</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korea</td>
<td>21</td>
</tr>
<tr>
<td>Japan</td>
<td>28</td>
</tr>
<tr>
<td>Iceland</td>
<td>30</td>
</tr>
<tr>
<td>Philippines</td>
<td>37</td>
</tr>
<tr>
<td>India</td>
<td>48</td>
</tr>
<tr>
<td>Trinidad</td>
<td>43</td>
</tr>
<tr>
<td>England</td>
<td>44</td>
</tr>
<tr>
<td>Sudan</td>
<td>49</td>
</tr>
<tr>
<td>Australia</td>
<td>57</td>
</tr>
<tr>
<td>Lesotho</td>
<td>60</td>
</tr>
<tr>
<td>Spain</td>
<td>69</td>
</tr>
<tr>
<td>Chile</td>
<td>72</td>
</tr>
<tr>
<td>USA</td>
<td>73</td>
</tr>
<tr>
<td>Uganda</td>
<td>74</td>
</tr>
<tr>
<td>Hungary</td>
<td>74</td>
</tr>
<tr>
<td>Nigeria</td>
<td>75</td>
</tr>
<tr>
<td>Mozambique</td>
<td>76</td>
</tr>
<tr>
<td>Sweden</td>
<td>80</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>87</td>
</tr>
<tr>
<td>Norway</td>
<td>87</td>
</tr>
</tbody>
</table>
Svein Sjøberg: The SAS-study: Science And Scientists

Experience: "Put up a tent or other shelter"
SAS-data, sorted by total frequency

Experience: "Made a flute of straw, branches or wood"
SAS-data, sorted by total frequency
The most striking aspect with these results is the high frequency of outdoor-related activities among the Nordic children. Norway, Sweden and Iceland are close to the top on all such activities, and with rather small gender differences. This is stark contrast to other types of experiences, where the gendering in Nordic countries is strikingly high.

Outdoor life has traditionally been a strong element in the Nordic way of life, but there is a widespread concern that this part of culture is disappearing. The SAS results indicate that they are still quite alive, at least compared to many other parts of the world.
Arms and weapons?

This experience is put in a category alone, but it may be seen as an extension of the category above, i.e. out-door-life. We see that Norway and Sweden come out with the highest proportion of 'gun-users'. A probable interpretation is that this is due to the above mentioned outdoor life tradition, where fishing and hunting is part of the national culture. It should be noted that although weapons are found in many homes, the cases of violent use of arms is not higher that in other countries! (But the availability of arms in many homes is now considered to be an issue of political significance, also in the Nordic countries!)

We also note a rather extreme gendering in most countries: the use of guns and rifles are 'boys activities'.
Results: Things to learn about

Learn about: The overall picture

Item 3 consists of a list of 60 possible topics to learn about in S&T lessons. Pupils simply tick the ones they like to learn about. These topics have been assembled to show different ways of approaching science content, keeping in mind different cultures as well as possible gender differences. The results may be presented one by one or grouped in a variety of ways. As a start, we may look at the overall picture. Also for this item, we made a composite score, the mean of all topics listed. The results are given below, the countries being sorted by the total frequency.

As can be seen, the variation on this sum is much larger than on the question about experiences. Country means range from only 30 % (Japan) to more than 80 % for several countries, in particular developing countries.

We note an interesting grouping of countries. Children in rather rich countries indicate a low or moderate interest in learning science topics, with the Nordic countries Norway, Sweden and Iceland among the lowest – but considerably higher than Japan! Children in developing countries, on the other hand, appear to be interested in a very high proportion of the science items on the list.

The gender differences on the total are not large in any country, with Korea as an exception. But there seems to be an interesting pattern: In most of the
developed countries, the difference is "in favour" of boys, while the difference in most developing countries is in favour of girls.

A tentative explanation for these observations may be the following: In developing countries, education is a "luxury" and a privilege, a resource that only a few children have access to. The motivation to learn and to study is high for both girls and boys. But, since the access to education is often denied the girls, for them education and learning may be perceived as being a luxury. Hence, they may indicate an eagerness to want to learn about most things on our list! The above noted overall picture may be supplemented by responses on item 5. For the questions "Science is: Interesting, exiting?" We get the following results:

This item reinforces the impression that Japanese pupils indicate a remarkable low interest in science, in particular the girls. In fact, the Japanese girls' response to this item (25 %) is much less than the half of any other group in the study! Similarly, the Japanese boys' response is also less than the boys' response in any other country.

It is interesting to note that also on this item, the average responses for children in most rich countries is considerably lower than the interest expressed by children in developing countries. We also note the same gender profile as above: In developed countries, the boys' responses are much higher than the girls', while the opposite pattern (to a weaker degree) is the case in developing countries. The explanation for these differences may be same as suggested above.
The response to this question (from item 5) shows that only 10% of Japanese children find science easy to understand. This response is interesting in the light of the fact that Japanese children usually come out on the top in international comparisons on science achievement. A short discussion of the "Japanese paradox" is given later. We also note that in most rich countries, children do not find science to be very easy, and that girls in particular seem not to find it easy. Again we have rather high scores from most developing countries; the children indicate that they find science easy to learn. It is hard to judge whether this is a realistic assessment of their own learning, or whether it is a reflection of their positive attitude towards learning science.
Learn about: – some examples
On the following pages, we give a few selected results for some separate topics before commenting on the emerging pattern.

Cars and Technology

![Bar chart showing frequency of learning about cars and technology by country]
The striking pattern here is that the interest in cars and technology is extremely male dominated in all countries. In no other area is the difference between girls and boys so striking! One also notes that in Japan, the interest in cars and new technology is the lowest of all countries, and with the strongest gender difference. For a country like Japan, which is so economically dependent on this domain, this may give rise to some concern. It is also noteworthy to see that Sweden, another producer of cars and high technology, have similar results.
Health and nutrition

Learn: "What to eat to be healthy"
SAS-data, sorted by total frequency

Learn: "AIDS: What it is and how it spreads"
SAS-data, sorted by total frequency

For these items, as well as for others in same domain, there is a strong female domination in all countries.
Science, environment and society

Learn: "The pollution and dangers of traffic"
SAS-data, sorted by total frequency

Learn: "How we can protect air, water and the environment"
SAS-data, sorted by total frequency
The three topics presented above are related to protection of the environment and the use and misuse of S&T in society. It is often said that these are girls' area of interest. The data presented above does not give strong support for this assertion. The first two topics have slightly higher response among girls, while the third, presented above, has the opposite tendency: Boys indicate a higher interest. A possible explanation for this may be the wordings: Only the last item contain the words "science and technology". It may be that simply the occurrence of these words turn (some of) the girls off.
Biology in the neighbourhood

Learn: "Plants and animals in my neighbourhood"
SAS-data, sorted by total frequency

Learn: "How plants grow, and what they need"
SAS-data, sorted by total frequency
Learn: "How to improve the harvest in gardens and farms"
SAS-data, sorted by total frequency

The general observation is that these topics are not very popular among children in developed countries. This may be seen as somewhat surprising, since educators often assume that children like to learn about issues that are close to themselves and their immediate experience. These results indicate the opposite, in particular for developed countries.
Girls' and boys' S&T?
This item provides a wealth of data that may be of value for a discussion on how to construct a S&T curriculum that meets the interests of different learners in different cultures. To illustrate this point, we give one example; we compare Japan and Norway. In the following two tables, we present the items for the two countries where the gender differences are the highest (Gender difference as measured by the arithmetic difference between the means for girls and boys.)

"What I want to learn about"
Data from Norway and Japan.
The list is sorted by the difference between boys and girls.
The list contains the topics with gender difference more than 10% 'in favour' of girls.

<table>
<thead>
<tr>
<th>"Girls' S&T" Norway</th>
<th>M-F</th>
<th>"Girls' S&T" Japan</th>
<th>M-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS: What it is and how it spreads</td>
<td>-24</td>
<td>How to heat and cook food the best way</td>
<td>-26</td>
</tr>
<tr>
<td>The rainbow, what it is and why we can see it</td>
<td>-22</td>
<td>The rainbow, what it is and why we can see it</td>
<td>-26</td>
</tr>
<tr>
<td>Why people in different parts of the world look different and have different colours of the skin</td>
<td>-19</td>
<td>Why the sky is blue and why the stars twinkle</td>
<td>-18</td>
</tr>
<tr>
<td>What we should eat to be healthy</td>
<td>-18</td>
<td>What are colours and how do we see different colours?</td>
<td>-17</td>
</tr>
<tr>
<td>Why the sky is blue and why the stars twinkle</td>
<td>-17</td>
<td>Music, instruments and sounds</td>
<td>-16</td>
</tr>
<tr>
<td>Birth control and contraceptives</td>
<td>-16</td>
<td>Sounds and music from birds and other animals</td>
<td>-15</td>
</tr>
<tr>
<td>What are colours and how do we see different colours?</td>
<td>-15</td>
<td>Plants and animals in my neighbourhood</td>
<td>-13</td>
</tr>
<tr>
<td>Sounds and music from birds and other animals</td>
<td>-12</td>
<td>How birds and animals communicate</td>
<td>-12</td>
</tr>
<tr>
<td>How birds and animals communicate</td>
<td>-12</td>
<td>How science and technology may help disabled persons (blind, deaf, physically handicapped etc.)</td>
<td>-11</td>
</tr>
<tr>
<td>How we can protect air, water and the environment</td>
<td>-11</td>
<td>What we should eat to be healthy</td>
<td>-9</td>
</tr>
</tbody>
</table>
"What I want to learn about".
Data from Norway and Japan.
The list is sorted by the difference between boys and girls.
The list contains the topics with highest gender difference more than 10% 'in favour' of boys.

<table>
<thead>
<tr>
<th>Boys' S&T Norway</th>
<th>Boys' S&T Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>The car and how it works</td>
<td>The car and how it works</td>
</tr>
<tr>
<td>Latest development in technology</td>
<td>Latest development in technology</td>
</tr>
<tr>
<td>Satellites and modern communication</td>
<td>Lightning and thunder</td>
</tr>
<tr>
<td>Electricity, how it is produced and used in the home</td>
<td>X-rays and ultrasound in medicine</td>
</tr>
<tr>
<td>How a nuclear power plant functions</td>
<td>Electricity, how it is produced and used</td>
</tr>
<tr>
<td>Rockets and space travel</td>
<td>How a nuclear power plant functions</td>
</tr>
<tr>
<td>Chemicals and their properties</td>
<td>Atoms and molecules</td>
</tr>
<tr>
<td>What an atomic bomb consists of and how they are made</td>
<td>Computers, PCs and what we can do with them</td>
</tr>
<tr>
<td>Computers, PCs and what we can do with them</td>
<td>What an atomic bomb consists of and how they are made</td>
</tr>
<tr>
<td>Atoms and molecules</td>
<td>Important inventions and discoveries</td>
</tr>
<tr>
<td>Acoustics and sound</td>
<td>Rockets and space travel</td>
</tr>
<tr>
<td>Light and optics</td>
<td>The possible dangers of science and technology</td>
</tr>
<tr>
<td>How things like telephone, radio and television work</td>
<td>How things like telephone, radio and television work</td>
</tr>
<tr>
<td>How science and technology may help us to get a better life</td>
<td>New sources of energy: from the sun, from the wind etc.</td>
</tr>
<tr>
<td>Important inventions and discoveries</td>
<td>The origin and evolution of the human being</td>
</tr>
<tr>
<td>New sources of energy: from the sun, from the wind.</td>
<td>How science and technology may help us to get a better life</td>
</tr>
<tr>
<td>The possible dangers of science and technology</td>
<td>Satellites and modern communication</td>
</tr>
<tr>
<td>How radioactivity affects life and my own body</td>
<td>The possibility of life outside earth</td>
</tr>
</tbody>
</table>
The list of possible S&T topics in this item consists of 60 items, and only the top and bottom parts of the list are shown in the preceding tables. In this table, only the difference between girls' and boys' score is shown. We note that the actual gendered differences at the ends of 'the spectrum' are extreme. This means that in both countries there are topics in S&T that stand out as exceptionally gendered in the favour of girls (the top of the list), and even more topics with a very strong boys' profile (the bottom of the list). We also note that there are strong similarities between the lists for the two countries, in spite of the large cultural difference between these countries. For both countries, girls show a greater interest than boys in aspects of biology, health and nutrition. They are also more interested in aspects with a possible aesthetic dimension (colours, sound, music, blue sky, twinkling stars etc.) Boys in both countries, however, express much greater interest than girls do in cars, technology, PCs, rockets, nuclear power plant, electricity etc.

Some of these results are hardly surprising; they actually fit well with what one stereotypically calls girls' and boys' interests. The surprise is, however, that the actual difference is so extreme. Take learning about "The car and how it works" as an example (also given for other countries in a previous graph). In Norway, 76% of the boys and 33% of the girls are interested. Japan is even more extreme, although the actual numbers are much smaller: 36% of the boys, and only 6% of the girls are interested! Similar details can be noted at the other extreme of the spectrum.

What we can learn from this is that the 'ideal' S&T curriculum for girls and boys are indeed very different – although they may both be considered good and valid S&T contents! Data like these should be kept in mind when curricula are written and textbooks produced. If one puts early emphasis on the technological aspects of science, one will definitely turn off the potential interests that girls might have in the subject!

The data also contains some surprises compared with what one might stereotypically expect. Boys are in most countries more interested than girls on topics like
- The possible dangers of science and technology
- How science and technology may help us to get a better life
- How science and technology may help handicapped
- New sources of energy, from the sun, from wind etc.
- How radioactivity affects life and my own body
- Famous scientists and their lives

These results run contrary to what is often assumed, e.g. that girls are more interested in the possible misuses of S&T, that they are interested in the human
and historical aspects of science and that they are interested in how science and
technology may improve life and help people. The SAS data do not give support
to these claims, at least not as general claims.

In spite of the great gender disparities, some topics seem to be high on the list
for girls as well as boys in most countries. (Then we focus on actual
percentages, and not on differences in score!)

Most popular among girls *and* boys in most countries are the following topics:

- The possibility of life outside earth
- Computers, PC, and what we can do with them
- Dinosaurs and why they died out
- Earthquakes and volcanoes
- Music, instruments and sounds
- The moon, the sun and the planets

Similarly, one can identify a list of the **least popular** (for girls and boys) in most
(mainly the rich) countries:

- How to improve the harvest in gardens and farms
- How plants grow and what they need
- Plants and animals in my neighbourhood,
- Detergents, soap and how they work
- Food processing, conservation and storage
- Famous scientists and their lives

From this list we see that the concern to make S&T more relevant by
concentrating on what is "concrete, near and familiar" is not necessarily meeting
the interests of the children. They may, in fact, be more interested in learning
about the possibility of life in the universe, extinct dinosaurs, planets,
earthquakes and volcanoes!
Things to learn about: further analysis

The wealth of information in the SAS-material may be used in many different ways. The following is an indication of how one may go a little beyond the mere data. The examples show how we have used the data in the national context of Norway.

Two aspects of equity: social class and gender

A dominating political and educational concern in Norway, as in other Scandinavian countries, is gender equity. Another key concern is equity based on geographical background or social class, two concerns that often coincide. (The concern about cultural equity has only recently become a concern, since Norway until recently has been a country with a rather small proportion of the population coming from other cultures. This picture is, however, rapidly changing.)

There is a national concern to make curricula that are fair to the various concerns mentioned above. In particular, there is a strong concern for a local curriculum, and for a gender fair curriculum. (In science this means for a curriculum that does not favour boys). Concerns about class and gender equity may in practice be in conflict with each other, and they also have different interest groups promoting them. We can use the Norwegian SAS-data to shed light on at least some aspects of this issue.

In the Norwegian study, we therefore sampled pupils from two very different sub-populations: One population was the pupils in the richest part of the country, the rich suburbs Asker and Bærum of the capital, Oslo. The other area was the county of Finnmark in the extreme north. In most respects, these two parts of the country are extremes on most statistical indicators, like education level, income, occupational pattern etc. (Personal income as well as personal capital is more the double in the South.) Also geographically they represent extremes. The first region is urban and with a population density about 500 per sq. km, Finnmark is very rural and with a population density of less than 2 inhabitants per sq. km. The climate in the South is comfortable, with moderate winters and mild summers, lots of sunshine, and seldom any extremes like storms etc. The climate in the North is extremely harsh, including a long winter with permanent darkness and temperatures down to – 40 degrees Celsius (The lowest recorded is about –51 degrees)

Growing up in these two places represents extremes in a Norwegian context. One might expect that children in these areas would get very different life experiences, hopes and aspirations. It is also to be expected that they may
demonstrate very different interest profiles when it comes to learning science. We wanted to shed light on the relative importance of the geographical (i.e. in part the social) and the gender aspect for the discussion of the science curriculum.

We therefore analysed the data on pupils' interests from these two perspectives (Myrland 1997). The total sample of pupils (N = 1 483) was divided in four groups: Girls and boys in the south, and girls and boys in the north. Details are not given here, only an indication of the rather surprising result: Gender is more important than the geographical (and hence social) background. Let us illustrate this point with some results from item 3, "Learn about". The first two graphs are typical "boys' interests":

These are, as indicated earlier, boys' interests, and we recognize the pattern discussed earlier. Finnmark as well as Asker/Bærum follows the overall, strongly gendered pattern. For both items, however, we see that the children in the rich and more educated region of Asker/Bærum are more gender stereotyped than in the much poorer Finnmark. Let us now turn to some typical girls' interests of the type that we have identified earlier.
In general, we were surprised by the results. Although there were some differences between pupils in the south and north, these differences are very small compared to the differences between girls and boys. We also noted that on many items, the children in the relatively poorer and less educated area of Finnmark were more 'advanced' with respect to gender equity than the much wealthier Asker/Bærum region. On the particular topics as well as on different aggregates of data, this was the overall pattern.

When it comes to the interests in science topics, it seems that "girls are girls" and "boys are boys" – rather independent of their backgrounds. And stereotypes do not seem to decrease with wealth and education, most often it seems to be the contrary.

This result is a strong indication that a debate over equity in the science curriculum should focus more on the gender differences and less on other aspects. It is of course important not to over-generalize from this conclusion; the results are from Norway and they relate to science contents only!
Same science – different approaches

Let us take the gender perspective a step forward. It is evident from the data presented above that there are some dramatic differences between the interests of girls and boys. It may even seem that one might conclude that biology is a girls' subject, physics is a boys' subject. Such a conclusion is not very productive, and it will certainly not help us in making all sorts of science knowledge attractive to all sorts of learners. Below is a possible way to approach the concern about a more gender fair curriculum.

In the list of possible topics to learn about, "the same " science content is put in different contexts. A topic like "acoustics" may be approached in different ways in a school setting. Possible topics may be: "Acoustics and sound", "How the ear can hear", "Music, instruments and sounds", "Sound and music from birds and other animals". Below is graph that shows the popularity of these topics among Norwegian pupils. The results are sorted by the difference between girls and boys. As we can see, the first topic come out as "male", the last as "female", with the in the middle as rather gender neutral.

![Graph of "Acoustics" Popularity of different approaches](image-url)
In the following three graphs, a similar approach is used for topics that may be classified as "optics", "environment" and some aspects of "science and society". The important point is that a change in context may change the "gender profile" of the science content.

"Optics".. Popularity of different approaches
Norwegian data (N=1500), sorted by gender difference

- **Light and optics**
 - Boys: 37
 - Girls: 16
 - Boys-Girls: 21

- **How the eye can see**
 - Boys: 42
 - Girls: 40
 - Boys-Girls: 2

- **How animals and plants use colours to hide, attract and scare**
 - Boys: 48
 - Girls: 48
 - Boys-Girls: 0

- **What are colours and how can we see different colours?**
 - Boys: 33
 - Girls: 48
 - Boys-Girls: 15

- **Why the sky is blue and the stars twinkle**
 - Boys: 58
 - Girls: 41
 - Boys-Girls: 17

- **The rainbow, what it is and how we can see it**
 - Boys: 55
 - Girls: 34
 - Boys-Girls: 21

"Environment": Popularity of different approaches
Norwegian data (N=1500), sorted by gender difference

- **New sources of energy, from the wind, from the sun etc**
 - Boys: 38
 - Girls: 22
 - Boys-Girls: 16

- **The greenhouse effect and how it might be affected by humans**
 - Boys: 57
 - Girls: 27
 - Boys-Girls: 30

- **How to get clean and safe drinking water**
 - Boys: 54
 - Girls: 47
 - Boys-Girls: 7

- **How we can protect air, water and the environment**
 - Boys: 51
 - Girls: 40
 - Boys-Girls: 11
Several comments can be made to such data (of which only examples are given above): For all these science areas, we see that the "popularity" varies strongly with the context indicated, for girls as well as for boys. The contexts seem to appeal more to girls when they may be related to life (human or animal), aesthetics and personal experiences. Aspects that relate to earth science are also popular among the girls. This picture is, however, not always clear-cut and simple: In the examples classified as "Science and society" in the illustration above, we note that several topics with a "human touch" are in fact more popular among the boys than among girls. ("How science and technology may help us to get a better life", "The possible dangers of science and technology" and "Famous scientists and their lives"). Only for the last item, the girls are in majority: "How science and technology may help disabled persons (deaf, blind, physically handicapped et.)"
The general trend in the results given above is not very surprising. They support general statements about the interest profiles of girls and boys in very many countries. The advantage of this study is, however, that the data are concrete and take us beyond the general statements. In this way, they may actually be productively used in debates about the curriculum. Or they may be communicated to textbook authors, who in most countries have some freedom in choosing different approaches, even within a given national curriculum. Results like the ones presented may of course be of value for student teachers or practising teachers. Data may sensitise them to the fact that children can be rather different, and that they, as teachers have different options and possibilities in their teaching of science concepts and ideas. If student teachers get involved in collecting data themselves, the ownership may of course be much stronger.
Results: "Science is …"

Item 5 consisted of a list of expressions or key words, and the pupils were asked to tick the ones they associated with science. Some results (for "Interesting, exciting!" and "Easy to understand!" have been given earlier. Here follows some more, in the same format, sorted by the total frequency for the countries, and with data given for girls and boys separately.

Let us first look at two aspects of the perceived "relevance" or usefulness of science. The first considers the individual level:

![Science: Useful for everyday life!](image)

Although there are exceptions, the general pattern is that children It is noteworthy that the children in Sweden, Japan and Norway are the countries where the children consider science to be of least importance to everyday life. These countries also show the greatest gender difference. Of all groups, the girls in these countries are the groups that consider science least useful for everyday life.
The other aspect of importance or relevance is the societal level. The responses are shown on the following graph.

![Science: Important for society!](image)

The overall pattern is as on the previous graph. Children in developing countries consider science to be of high importance to society. Gender differences are in general rather small. It is interesting to note that children in the most industrialized countries, which depend so much on science and technology, do not consider science to be of very high importance for society.
The last aspect concerns the "social profile" of science, whether or not it is seen to operate in the interest of the poor.

Here the division of countries is very clear. Children in the developing countries rate science very high on this dimension, while children in the richer countries to a rather small degree associate "science" with the notion of "helping the poor". In fact, the frequencies for these countries are amazingly low on this aspect. The gendered nature of the responses is also noteworthy, especially for the rich countries. In most developed countries, less than about 20% of the girls think of science as "Helping the poor!" while the number for boys is often close to the double!

This is not the place to judge whether or not the girls' perception of science is "correct" or not. Findings like these may, however, be part of the explanation for why so few girls in the developed world choose science education or careers. Such findings give reason to critically examine examples and curricular contents in school science.
Results: Draw a scientist

As can be seen from the description of coding etc., the organizers (in Oslo) now have available the drawings and writings from the 9350 participating pupils. These have not yet been fully coded or analysed.

The last two items do not lend themselves to straightforward coding. In item 6, the pupils make drawings of scientists at work and they complement this by some writing about what they think they do. In item 7 they are free to write about what they would like to do themselves, if they were scientists. Since responses have been made in many different languages, the project as such has not been able to code and interpret this material in a thorough way. Some national studies have, however, been published in different languages.

An example of the exotic nature of these data (and the difficulty in interpretation by the Norwegian researcher) is given here: The drawing below is made by a girl in the state of Gujarat in India.

![Drawing of a scientist by a girl from the state of Gujarat, India](image-url)
One is also struck by the great difference in the quality of drawings. Two extremes are given below to indicate the degree of variation. These also seems to be "systematic" variations. Children from some countries or regions seem to be much more confident and able in making drawings and using these as a means of expression. It falls beyond the scope of this report (and the qualifications of this author) to in detail on this issue.

Boy, Uganda

Girl, Lesotho
The following is therefore a more qualitative and tentative description of the impressions from looking through the material. Here is a collection of drawings as an indication of the kind of data that is collected. The pupils' written explanation is given below each drawing.

Text: "Scientists work with the ozone layer and the greenhouse effect, and maybe they make dinner like everybody else." (Girl, Norway)
"I think scientists try to improve our way of living. They do this by improving how we live" (Girl, England)

"Scientists helps people regained their health. They help those that are sick or ill to get well. They are fund of discoveries. They are also kept in the hospital to take care of those that are not healthy." (Girl, Nigeria)
Text:
1. They are always thinking
2. They always have ideas
3. They (most) are brilliant people.
4. They are always making experiments new discoveries
5. If scientists were not here we ordinary people wouldn't know anything.
 (Girl Trinidad)

For the rich, industrial countries, the data seem to support findings from similar published research (references are given earlier). The researcher is drawn mainly as male. Only girls (but not many!) seem to think of the scientist as female. The researcher is often placed in stereotypical laboratory contexts and is depicted as an often bald-headed, bearded man with a lab coat, test tubes and other symbols of research.

As many researchers have noted, the Draw-a-scientist-test actually begs for stereotypes of this nature, so care should be taken not to overgeneralize from the mere drawings. But the free writing that accompanies the drawings adds some information. An analysis of the Norwegian sample (Kind 1996) showed that practically only boys' drawings and writing might be classified as "science
fiction" (Boys: 6%, 1% girls). Some pupils envisage the scientist as cruel and gruesome (boys 11%, girls 2%). Among the examples given are cruel experiments on animals. From the writing about "me as a scientist", the Norwegian data show the clearest difference for topics classified as "technology": (Boys 36%, none of the girls!). Twice as many girls, however, see themselves doing research in medicine and health: girls: 37% boys: 18%. Also for the topic of "environment/ pollution", the girls dominate: Girls: 15%, boys 9%.

These results are rather similar to Norwegian findings a decade ago (Kjærnsli 1989). She also noted that 18% of the girls and only 2% of the boys would do research that could help other people.

A similar pattern seems to emerge from drawings and writings in other industrialized countries. The image is rather stereotypical as indicated above, also with a certain (but not very high) percentage of the crazy or mad scientist. It is, however, interesting to note that very few pupils in western countries explicitly write that they want to help other people – or that they think scientists actually help other people.

Most of these observations are in a stark contrast to writings and drawings from pupils in developing countries. They see the scientist as a very heroic person. Scientists are often seen to be brave and intelligent, they are seen as helping other people, curing the sick, improving the standard of life for everybody. They are also often seen as helping the poor and underprivileged, aspects that are never mentioned on responses from pupils in the West. The scientists are seen to be the servants of humanity and the heroes of society.

This means the image of the scientist is indeed very different in the developed and the developing parts of the world. This is not the place to discuss whether the views of the children are "correct" or not. But this image – real or fantasy – surely influences the motivation and willingness to engage in science. To a certain extent it surely also determines what kind of pupils who feel at home with the culture of science – and who will feel alienated or even hostile. This may also indicate that the perceived "values of science" or "sub-culture" of science may be seen very different in different parts of the world. Although school science often is characterised as "western science", and based on a western "world-view", these data indicate that children from poor non-western countries have a much more positive image of the culture of science than most children in the west have. This paradox may be a challenge for discussions about the possible match or mismatch between the sub-culture of science and indigenous (as well as western) cultures. As indicated before, this issue has become an area of great concern to science educators in recent years.
The crazy scientist?
The well-known cartoon image of the crazy scientist is found on some drawings, but the proportion is rather low, and it only occurs in the richer countries. And boys only draw it! Below are some examples of such drawings.

A cruel scientist – inspired by Frankenstein? (Boy, Norway)

Text on drawing: "I think they do experiments on animals and kill them! And they develop new poisonous gases and atomic bombs!" (Boy, Norway)
Here are some more examples of the weird and crazy scientist, typical in some of the drawings from children in richer countries, mainly boys.

Text on drawing: "Danger! Crazy research going on" (Boy, Norway)

Boy, England
What do scientists do? Some quotes

The free writing on Item 6 "What do scientists do?" and item 7 "What would you do if you were a scientist?" allows pupils to express views on different aspects of science. The writings show a great variation in themes and perspectives. Some reveal how they perceive the nature of science, other describe scientists as persons. Some examples are given below the drawings above. The following is a small collection of other statements from item 6 about "what scientists do and what issues they work on."

"Scientists travel around and collect facts. They write all facts in a report." (Boy, Norway)

"Scientists use chemicals and try and save people and other's just look at them." (Girl, England)

"Some scientists do experiments. Others use their brains." (Boy, England)

"I think scientists usually carry out researches and then make experiments. After doing so they go and discuss what they have done and show their fellow scientists. If there needs to be a change anywhere they try to see how and reason why. When all is finished it is taken to a much better person than them and also examines the research they have carried out or experiment." (Girl, Uganda)

"Scientists divide many things out of particular thing. He study and finds out more about it, like for example if a scientist want to study about animals without backbones he may divide animal in two parts. One is animal without backbone and another is animal with backbone." (Boy, Papua New Guinea)

"Scientists do many things for people in the whole world. Scientists help people on the world because they can tell what is bad and what is write, even what is going to happen in the feature." (Boy, Lesotho)

"Scientists work hard long hours every single day for a whole week." (Girl, England)

"I think scientists are nuts because they say they have a cure but it never works." (Boy, England)

"Most scientists are just doing completely stupid things." (Boy, Norway)

"They research on animals. Very stupid."(Boy, Norway)
"They try to blow up the world with an atomic bomb." (Boy, Norway)

"Scientists make tests on chemicals and test perfume on helpless rabbits and rats." (Boy, England)

"Scientists work on issues to improve the standard of living. They also work on medicines for diseases that cannot be cured and to help feed the world. Sometimes science is used in crimes and pollution but the future hopefully will bring an end to it. So scientists can help to make this world a better place." (Boy, Trinidad)

"I think scientists are always trying to find a solution for everything, e.g. the drinking of milk by Shiva. Scientists always want to know more. Some issues they probably work on are: about saving the earth, wanting people to live longer and look younger, researching bacteria and viruses to find cures for diseases. I picture scientists always reading some book trying to analyse problems like on the movie X-files. (Girl, Trinidad)

"I think scientists are creative as well as destructive. They are creative in the sense that they invent new things and destructive in the sense that they experiment with things they don't know about and this may cause widespread damage." (Girl, Trinidad)

Most scientists look dull and boring, but looks are deceiving. Scientists are very brilliant people. They are important to society, without them there would be no television, radio etc. Although some of their topics are boring they are needed and we should appreciate them." (Girl, Trinidad)

"Scientists discover petroleum in Nigeria and other parts of Africa. They killed the Our (?) from the Earth." (Boy, Nigeria)

"Scientists find out about things. They are very curious people but they help in inventing things and they have modernized the world and have made things easier for us to." (Boy, Nigeria)

"They may work on experiments. Like I always read in some story books that sometimes their lives are in danger. Like when they want to make things that would benefit the whole world, some criminal may also want to get them. (Girl, Nigeria)
Results: Writing about "Me as a scientist"

The very last item (no 7) in the questionnaire is a kind of follow-up on the drawing and writing about scientists. Here they express their own research priorities. A group of Norwegian students have analysed a selection of these writings as part of their studies. They chose to look at a selection of responses from England, Nigeria and Norway. A total of 828 pupils' writing was analysed. Details are given in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Girl</th>
<th>Boy</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>194</td>
<td>95</td>
<td>289</td>
</tr>
<tr>
<td>Norway</td>
<td>159</td>
<td>167</td>
<td>326</td>
</tr>
<tr>
<td>Nigeria</td>
<td>126</td>
<td>87</td>
<td>213</td>
</tr>
<tr>
<td>Total</td>
<td>479</td>
<td>349</td>
<td>828</td>
</tr>
</tbody>
</table>
Length of writing
One is immediately struck by the great variation in the length as well as the quality of the writing. This is a parallel to the variety we noted in the quality of drawings.

Some children did not write anything. They are omitted from the analysis. All children who wrote more than one word are analysed. Of these, less than 5% of the responses were classified as "not serious" or "not readable". The histogram below demonstrates the variety of the length of the free writing. (A few of the responses were even more than 200 words and are outside the range of the displayed histogram.)
In addition to the enormous variation between individuals, one is also struck by some general trends: Children in Nigeria write more than children in England and Norway. In all countries, girls on the average give longer responses than boys do. The averages are displayed on the following graph.

Writing: "Me as a scientist" average number of words

<table>
<thead>
<tr>
<th></th>
<th>Girl</th>
<th>Boy</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>27.7</td>
<td>20.9</td>
</tr>
<tr>
<td>Norway</td>
<td>26.8</td>
<td>17.5</td>
</tr>
<tr>
<td>Nigeria</td>
<td>53.7</td>
<td>37.9</td>
</tr>
</tbody>
</table>

Categories for content analysis were developed collectively by the group of students. This proved to be rather difficult due to the great variation in approaches from the children! Here are some of the findings.

The variables were divided in three separate categories. The first category was related to any explicitly stated motivation, the second was reserved for any explicit naming of an occupation, and the third category was any explicit naming of area of work or type of problem or issue. Some children expressed more than one wish and one sort of motivation, and each statement was counted. Some children may therefore have practically zero "counts", while other may have many.
Motivation
Motivational factors like becoming famous, popular, or rich very have very low percentages in all countries. For any group, less than 5% for the children mention such factors as a motivation.

The frequency of children explicitly mentioning curiosity is also rather low, but the pattern of responses is interesting, as can be seen on the graph below. Nigerian children express more curiosity, and in each country, girls explicitly mention curiosity more often than boys do.

An explicitly stated wish to help people was the most frequently occurring motivation in the responses. Frequencies are given in the graph below.
We note that children from Nigeria mention "helping people" explicitly much more frequently than do children in England and Norway. This results supports the more qualitatively impression we reported as an impression from drawings. In all countries, fewer boys than girls mention helping people as a motivation to do engage in research. Norwegian boys constitute the group that by far has the lowest frequency of this kind of response.

Problem area, field of work

Most of the occupations mentioned received rather low scores. A general statement of wanting to become a researcher is mentioned by 12%, while 4% give an explicit statement of not wanting to become a researcher. Doctor is mentioned by 4% of the children, teacher by 2% of the children, veterinary by 1% and engineer by 3%. An analysis of the mentioned problem area gives more concrete responses and higher frequencies as can be seen from the following.

The number of sub-categories we used for this classification was rather high. The results reported in the following presents aggregates done after the initial coding. Some children mention several examples of topics for research. In the aggregate, a count of 1 is given to each pupil who mentions an aspect that belongs to the overall category one or more times.

In the following, the broad areas are presented in falling popularity, i.e. we start with the most popular and move to less frequently mentioned aspects. All
numbers are percentages of total number of children. Please note that the scale on the y-axis is different for the different aspects!

The broad category *Biology* is by far the most popular, and includes aspects like working with plants and animals, medicine, human biology etc.

![Graph showing the popularity of Biology among girls and boys in England, Norway, and Nigeria.](image)

We note that biological topics are popular in all three countries, and that the gendered pattern is clear; biology enjoys higher popularity among the girls than with boys, although the frequencies are also high for the boys! We note that this gender pattern is clearer in Norway and England than in Nigeria.
Next to Biology in popularity is the broad category of Earth science, including research on the earth, the weather and space. Results are presented on the graph below. (Note that the vertical scale is about half of the one used for biology.)

Aspects classified as Earth science are rather popular among all groups of children. Only in Nigeria is the gender pattern rather strong. We have earlier noted that all children seem to like to learn about aspects that may be classified as earth science, and these free writing support these data.
Somewhat lower in popularity are the two following broad fields, classified as *Technology* and *Environment*. The scale is the same as on the previous graph.

Under the heading *Technology* is included aspects like technology in general, computer and information technology, weapon technology, transport, building of roads, houses etc.

![Graph: Writing, "Me as scientist": Technology, total](image)

We note that *Technology* enjoys a rather high popularity among boys in all three countries. The interest among Nigerian girls is on about the same level. The remarkable result is the very low interest in technology among the girls in Norway and England. This result supports the findings that we have reported earlier in the report.
Under the heading *Environment* is included aspects like research on the greenhouse effect, the ozone layer, clean air and drinking water, pollution etc. Results are given below.

We note that children in England and Norway have this relatively high on their "research agenda", with Nigerian children much lower. This may be seen in the light that environmental concerns are high on the political and public agenda in richer countries. Developing countries are to a greater extent concerned about raising the material standard and a general improvement of living conditions. More global concern about the ozone layer and the greenhouse effect may for them seem to be matters of less immediate relevance.

In all three countries, girls seem to be more oriented towards environmental concerns than boys do.
The next two graphs show the percentage of pupils who mention aspects of Chemistry or Physics more or less explicitly. Please note again that the vertical scale on these two graphs is the double of the one used in the three previous graphs!

![Writing: "Me as scientist": Chemistry](image)

Chemistry (as such) is not mentioned very often, except by Nigerian girls. The expressed "popularity" of chemistry among girls and boys in Norway on this item is relatively gender neutral. This corresponds quite well to later curricular choices, where Chemistry is chosen by about similar proportions of girls and boys in secondary school as well as in tertiary studies.
The popularity of *Physics* as a potential field for research is displayed on the following graph.

We note that *Physics* does not appear to be a popular research priority for any of the groups in this analysis! The extreme gendered pattern in Norway is noteworthy. This corresponds quite well with enrolment data as well as other results from e.g. the TIMSS study. Among all the TIMSS countries, Norway has the lowest proportion of girls choosing physics as a school subject. It seems that such attitudes may be observed at a very early age. We return to the gender issue in a later paragraph.
Results: Important factors for future job

This item is called Important for a future job and consists of a list of 15 factors that might be important for the choice of a future job (if such a choice exists!). See Appendix C. The pupils are invited to judge the personal relevance of each of these factors. An example of the data is provided in the graph below, giving data from Norway. The factors are sorted by increasing importance, based on the total score.

We see from this graph that although there is general agreement between girls and boys on the importance on some of the factors, there are also remarkable differences on other aspect between the priorities of girls and boys. We see that the difference is 'in favour' of boys on factors like "Make and invent new things", "Become famous", "Control other people", "Earn lots of money", while the girls put considerably more emphasis on "Working with people instead of things" and "Helping other people". The following graph displays the gender difference to make this point explicit.
Of importance for choice of jobs -- gender difference
Norwegian SAS-data sorted by gender difference

In order to simplify these matters, a factor analysis of the 15 different items was performed. We identified the following four components. (The suggested name is 'invented' as a label that seems to fit with the contents.)

1. **Ego-orientation** (famous, rich, controlling others, easy job)
2. **Time and security** (time for friends, family, myself – and a secure job)
3. **Self-development** (using talents and abilities, developing knowledge and skills, taking decisions, exciting job)
4. **Others-orientation** (Helping others, working with people)

When applying this to the participating countries, we find that factors 2 and 3 ("Time and security" and "Self-development") are rather gender neutral in practically all countries. The other two factors are strongly gendered – see the graphs below.

In all but 2 countries, boys seem to be "Ego-oriented", with Iceland, Sweden, England and Norway as the most extreme! Details are given in the graph below. On the other hand, in all but two countries girls seem to be much more "Others-oriented" than boys. Also on this aspect, Norway and Sweden are the most strongly gendered.
Job priorities: "Ego-orientation"
SAS-data, sorted by total frequency

Job priorities: "Others-orientation"
SAS-data, sorted by total frequency (male: Black)
Some paradoxes and surprises

Many findings in this study are hardly surprising. The overall gender profile follows a pattern that is well documented. But some results are rather unexpected (at least for this author). Two such examples will be shortly mentioned below.

Japan: Top in score – lowest in attitudes and interests!

Many results from Japan seem to need an explanation, also seen in connection with other sources of information. Let us look at some of the paradoxes:

Japan tends to be on top on most international tests on pupils' achievement (SISS, TIMSS etc.). On the TIMSS test, however, Japan actually was ranked as "only" number three, "beaten" in mathematics by Singapore and Korea and in science by Singapore and Czech Republic (TIMSS 1996). This "low standard" is causing official concern in Japan!

In spite of high scores on achievement testing, the TIMSS data (TIMSS 1996 p 121 ff.) also indicate that Japanese children have more negative attitudes to both mathematics and science than pupils have in any other (of the nearly 50) TIMSS countries.

The data presented in this paper supports and gives more detail to this observation. Item by item, we find similar results. Japanese children are much less likely to be interested in most science items – in particular those related to modern advances in technology – the area where Japan is probably the world leader.

In the light of the high test scores, it is also rather paradoxical that Japanese children find science more difficult than children in any other participating country. Are Japanese schools putting a too high demand on the pupils? Or is the response simply another way of saying that they dislike science?

Gender differences are in many aspects large in Japan. According to our study, Japanese girls are at the lowest place when it comes to interest in science, both when the question is a global one (like item 5) and on the very specific topics in item 3. Japanese girls also state that they find science more difficult to understand than any other group in this study.

There are also other rather confusing evidence relating to the role of science and technology in Japan. Survey data (Miller 1996 in OECD 1997) indicate that the level of public understanding of science is very low in Japan; they come out on bottom of a list of 14 countries in an international survey (Miller 1996). The low level of (adult) public understanding of science is in sharp contrast to the fact...
that Japanese school children are on the world top in science achievement! (Although the tests are rather similar.) It also seems paradoxical that these "scientifically illiterate" adult persons are in fact the very same people who have developed Japan to be a world leader in modern technology!

The same study also concludes that the Japanese public is less interested in and attentive to science issues presented in media (Miller 1996 in OECD 1997). The many paradoxes relating to science and technology in Japan is also a matter of official concern. The Japanese report to OECD summarises the situation like this:

"Interest in S&T among young people is waning in Japan. [...] The declining popularity of science and technology among young people is of serious concern to the nation as a whole." (Official Japanese report, OECD 1997)

Akito Arima, the Science Adviser to the Minister of Education, Science Sports and Culture is very explicit:

"The tendency for young people to turn away from the study of science and technology is a source of great concern in Japan. The educational system should make every effort to stimulate interest is these areas." (Arima in OECD 1997)

Science educators in Japan have recently become very interested in these matters, and possible explanations as well as possible policies are hotly debated. Some parts of these debates are also available in English, see e.g. Ogawa (1995) and Kawasaki (1996). They have different approaches to the issue, Ogawa using an anthropologically oriented "world-view" perspective, Kawasaki seeking the explanations more in linguistics. Masakata Ogawa has engaged researchers from many different cultures in an effort to jointly shed light on the cross-cultural aspect of the issue (Ogawa 1997). Ogawa was also the Japanese researcher who collected the SAS data from Japan in this study.

It falls beyond the scope of this chapter to explore this extremely interesting issue, but it is expected to be an area of interesting debate and stimulating cross-cultural research in the coming years. Professor Ogawa has recently (spring 2000) received a research grant for a project called "International Joint Research in Science Teacher Education Programs Sensitive to Culture, Language, and Gender." This author is invited as member of the research group, and perspectives and results from the SAS study will be an important input in the project.
Norway and the Nordic countries: What about the gender equity?

The present study has shown that the Nordic countries (here represented by Norway, Sweden and Iceland) on many aspects come out with greater differences between girls and boys than most other countries. In particular, we documented the large difference in the interest to learn science. Other data from this study also indicate large differences in values and priorities, like in the ranking of factors that are important for them in their choice of job (item 4, not analysed in this paper.) Girls are more "person-oriented" than the boys, they want to "help other people" and to "work with people instead of things", while boys are more oriented towards making money and getting personal benefits. The analysis of children's drawings and their free writing on "Me as a scientist.." supports the strongly gendered profile.

The Scandinavian countries often consider themselves "world champions" in gender equity. Gender equity has been a major political concern since the mid 70-s. Much has been accomplished, and the overall picture is undoubtedly rather positive. In my country, Norway, legal barriers have been removed a long time ago, laws against discrimination and unequal pay are in operation. Female participation in politics and the labour market is among the highest in the world. Even textbooks in all subjects have to pass a gender equity test before they are allowed to be used in schools. In the education system, girls and women dominate the overall picture, with some 56% of tertiary students being female.

Official statistics and international reports confirm the leading position of the Nordic countries regarding gender equity. UNDP (United Nations' Development Program) publishes an annual influential Human Development Report. The analysis and conceptual development behind these reports is well respected. Among other things, they have developed a Human Development Index to describe and monitor progress in this complicated area. All the 5 Nordic countries are among the 15 on the top of this list, which includes 174 countries. (In 2001, Norway is no 1, Sweden no 2, Iceland no 7, Finland no 10 and Denmark no 15)

But UNDP has also developed indices that describe the situation of particular social sectors. In 1995 the focus was on gender, and UNDP introduced a so-called Gender Empowerment Index. This index measures the degree of achieved equity regarding aspects like education, salaries, participation in politics and on the labour market etc. In the 2001 report, the Nordic countries have the following ranks on this list of 150 countries: 1 Norway, 2 Sweden, 3 Denmark, 6 Iceland and 7 Finland. (UNDP 2001). The international reputation for gender equity seem well deserved.
But. The percentage of women in science and engineering is very low – lower than in most other countries. And the enrolment has actually gone down the last years. TIMSS results also indicate great gender differences in the Nordic countries, in enrolment, achievement as well as in attitudes.

The issue is of great political concern. The reason does not seem to be the girls' lack of ability or lack of self-confidence! It seems that even very able girls turn their backs to science and engineering. The choices seem to be rather deliberate, based on value-orientations and emotional, personal factors. Some of the underlying values are indicated above: The girls' high person-orientation and relatively low orientation towards money, career and things.

If this is correct, it shows that we should pay more attention to the underlying values, ideals and ideologies in science education. Textbooks as well as classroom teaching carry implicit (sometimes also explicit) messages about the nature of the subject and the underlying values. If we believe that these values are not strictly determined and logically deduced from "science", then we should analyse, discuss and possibly reconsider these aspects.

Science educators have recently drawn our attention to the fact that the culture of science is alien to people from non-western cultures. An overview over research and perspectives is given in Cobern and Aikenhead 1998. My impression is that pupils also in western societies feel alienated by what they perceive as the culture, ethos and ideals of science – as well as the present sometimes frightening uses and misuses of science and technology. "Border-crossing into the sub-culture of science" as described by Aikenhead (199x) may be required also of many pupils in western society.

It is my contention that concepts taken from these kinds of approaches might be used to understand why so many young people – in particular the girls – choose not to take science in countries that have actually removed most visible barriers for girls to enter the sciences.
Some conclusions and recommendations

It is evident from this study that children in most parts of the world come to school with a rich variety of relevant experiences that could and should be utilized in the teaching and learning science at school. This study does not indicate whether this is resource is actually used in a systematic way or not, but it may indicate how this might be done.

The interest in learning seems to be much higher in developing countries than in the rich and technologically developed countries. An explanation for this may be that education in developing countries is largely seen as a privilege that everybody strive for, while many pupils in the rich countries see school as a tedious duty that is imposed on them. The same perspective may explain the strong interest in science expressed by girls in developing countries: Girls in these countries often have less access to all sorts of education than boys have, therefore learning science may be seen as a very positive option.

The profile of the experiences and interests does, however, vary strongly between countries. This fact should call for caution when it comes to "importing" foreign curricula and scepticism against the pressure to "harmonise" science curricula to become similar across the globe. Although science per se may be universal (a debate that is not pursued here!), science curricula for children should reflect need and priorities in each country. Data from projects like this may provide a basis for deliberations about curricular priorities.

It is also evident that the profile of experiences as well as interests is very different for girls and boys in most countries. In general, the gender differences in interests are greater in rich countries than in developing countries, both when summed over all topics and when these are studies separately. Gender differences are very high in some North-European countries and in Japan, an aspect that is discussed a little above. If gender equity in science education is a national concern, one should go in some detail in analysing possible biases in the curricula, textbooks and classroom teaching. A study like this may be one approach to such issues, because it can lift the debate from a general level to a more concrete level, based on empirical evidence.

The values and job priorities of girls and boys vary. The general trend is that girls are 'others-oriented', while boys are more 'ego-oriented'. If S&T is to appeal more to girls that in the present situation, it may be that S&T contents should be given a stronger social and human dimension.

The image of science and scientists is more positive among children in developing countries than in the rich countries. Children in the developing
countries seem to be eager to learn science, and for them, the scientists are the heroes. This is in marked contrast to at least a significant part of the children in the rich countries, who often express sceptical and negative attitudes and perceptions in their responses to several of the items. The notion of the crazy or mad scientist is often found in rich countries. Very few children in the rich countries envisage the scientist as a kind, human and helpful person, whereas this is often the image of scientist in developing countries.

This study does not tell which image is closer to "reality". But many of the data indicate that science has a problem with its public image in many developed countries. Most OECD countries are currently worried about the falling recruitment to science and technology studies. Why do children develop these critical attitudes to science and technology, although they live in societies based on such knowledge and its applications? One possibility is that this is a result of low public understanding of science, caused by bad teaching as well as a low or negative profile in the media. Many scientists hold on to explanations like these. But there is another possibility: It may be seen as an indication that many young people have a rather well informed sceptical attitude towards certain aspects of modern society. Maybe their doubts are based on real fears about an unknown future that scientists may lead them into?

This study does not answer these questions.
Final remarks
Let the closing words be said by two 13 year old girls from two very different parts of the world, England and Lesotho. The drawing below is accompanied by a text that demonstrates a balanced and critical stance that this author thinks that science education should encourage rather than see as a problem:

"Scientists do things to make our life easier but sometimes do more damage than good!" (Girl, England)

The same view, but more elaborated, is expressed by a 13 year old girl from Lesotho:

"I think scientists help the society in some way and destroy it other way. Scientists help people by inventing modern technology, to help the blind to see and the crippled to walk, cures for viruses and so forth. But they also destroy the societies by pollution of air, creating bombs, nucleus used in wrong ways and so forth."

(Girl, 13 years, Lesotho)

These wise voices conclude this report.
References

Kahle, J.B. (1987):"Images of science: The physicist and the "cowboy"", in Fraser, B.J. og Giddings, G.J. (1987): Gender Issues In Science Education. Curtin University of Technology, Perth, Western Australia 6001

Kim, Hyo Young (1994): Female University students' dysfunctional choices of study fields in Korean universities. PhD thesis, Monash University, Australia

Matthews, B (1996) Drawing Scientists Gender and Education, 8 (2), 231-243

Mead, M and Metraux R (1957): Image of scientist among high School Students Science 126 (3270) 384-390

Sjøberg, S (1990): "Gender and science education" What Research says to the science and mathematics teacher no 6, Curtin University, Perth, Western Australia,

TIMSS (1996). *Science Achievement in the Middle School Years* TIMSS International Study Center, Boston College, MA, USA

TIMSS (1997). *Science Achievement in the Primary School Years*, TIMSS International Study Center, Boston College, MA, USA

TIMSS (1998) *Mathematics and Science Achievement in the Final year of Secondary School* TIMSS International Study Center, Boston College, MA, USA

Appendix A: Participating researchers

Project team (also with nationally collected data)

Jayshree Mehta, INDIA
Jane N. Mulemwa, UGANDA
Svein Sjøberg, NORWAY

Researchers who have collected data:

Jophus Anamuah-Mensah, GHANA
Filomena F. Campos, The PHILLIPINES,
Angel Vazquez-Alonso, Mallorca, SPAIN,
Ann C. Howe and Gail Jones, USA
June M George, Trinidad, WEST INDIES,
Karl-Gøran Karlsson and Helge Strømdahl, SWEDEN,
Kjell Myrland, NORWAY
Rose N Agholor, T Ato, Chinedum Edwin Mordi and Uchenna Nzewi
NIGERIA
Sugra Chunawala and M G Francis Xavier INDIA
Indira Chacko, PAPUA NEW GUINEA
Gaynor Sharp, Angela Srivastava and Jillian Spinks, ENGLAND
Marilu Rioseco, CHILE
Molnar Geza, HUNGARY
Wafaa Abdelrahman Abdelgadir and Durria Mansour El Hussein, SUDAN
Francisco Maria Januario and Oleg Popov, MOZAMBIQUE
Gilda Segal and Olugbemiro Jegede, AUSTRALIA
Jinwoong Song and Seung-Jae Pak, SOUTH KOREA
T. A. Balogun, LESOTHO
Masakata Ogawa, JAPAN
Stefan G. Jonsson and Stefan Bergmann, ICELAND
Appendix B:
Some publications based on the SAS project

Iceland:

Sweden.
Bäckman, Paula (1997) "Flickor, pojkar och naturvetenskap" ("Girls, boys and science") As part of dissertation work in science education, Midthögskolan, Härnösand, Sweden

Norway:
Myrland, Kjell (1997): "Vitenskap og forskere Norske 13-åringers oppfatninger om naturfag og forskere innen naturfag" (Science and scientists. 13 year old Norwegian pupils' perceptions of science and scientists") Master thesis in science education (cand.scient.), The University of Oslo

India:

Spain:
Vazquez, Angel and Manassero, Maria Antonia: "Escribir sobre ciencia: La imagen de la ciencia y de los cietintificos entre adolescentes" Cultura y Education, 1997 no 6/7

Chile:
Riosecu, Marilu and Pilar Reyes (1998) "The image of science and the scientist in Chilean girls and boys age 13" Universidad de Conception, Chile
Appendix C:
ROSE: The Relevance Of Science Education
A brief introduction

The Relevance of Science education, ROSE is an international comparative project meant to shed light on factors of importance to the learning of science and technology (S&T). It is also meant to sustain and develop the respect for and interest in S&T and S&T-related issues. ROSE is a further development of the project SAS (Science And Scientists).

ROSE involves a wide range of countries from all continents. Key international research institutions and individuals will work jointly on the development of theoretical perspectives, research instruments, data collection and analysis. The target population are pupils towards the end of secondary school (age 15/16), in many countries the age where compulsory education is finished and when important choices are made.

ROSE is supported by The Research Council of Norway and The University of Oslo. It is expected that industrialized countries will cover their own expenses, while funding will be negotiated for developing countries and countries with less available resources. Participation in the project may also enhance the possibility of releasing local funding for the participants.

We hope that researchers in individual countries will engage students (at Masters or PhD level) in the project, thereby enabling them to get involved in collaborative research of a critical and comparative nature.

Rationale
A broad public understanding of S&T is crucial for national economical development and to the life, independence and autonomy of each individual. Scientific and technological literacy is also of great importance for citizenship and democratic participation in a world dominated by S&T-related issues and challenges. Falling recruitment and interests in S&T studies and careers are observed in many countries, mainly the rich ones.

The lack of relevance of the S&T curriculum is probably one of the greatest barriers for good learning as well as for interest in the subject. The ROSE project has the ambition to provide theoretical insight into factors that relate to the relevance of the contents as well as the contexts of S&T curricula. The final outcome of the project will be perspectives and empirical findings that can provide a base for informed discussions on how to improve curricula and enhance the interest in S&T in a way that
respects cultural diversity and gender equity
promotes personal and social relevance
empowers the learner for democratic participation and citizenship

A more detailed description of ROSE is available at http://folk.uio.no/sveinsj/
These documents are also available in print on request.

ROSE Objectives

1. Develop theoretical perspectives sensitive to the diversity of backgrounds (cultural, social, gender etc.) of pupils for discussion of priorities relating to S&T education.

2. Develop an instrument to collect data on pupils' (age 15/16) experiences, interests, priorities, images and perceptions that are of relevance for their learning of S&T and their attitudes towards the subjects.

3. Collect, analyse and discuss data from a wide range of countries and cultural contexts, using the instruments referred to above.

4. Develop policy recommendations for the improvement of curricula, textbooks and classroom activities based on the findings above.

5. Raise issues relating to the relevance and importance of science in public debate and in scientific and educational fora.

Time schedule

ROSE started in September 2001. A full time researcher, Camilla Schreiner, will work on the project towards her PhD, based at the University of Oslo.

An international working seminar was held in Oslo in October 2001. The aim of this working seminar was to discuss and develop the research instruments as well as the logistics of data collection. Twelve researchers participated, representing different cultures and all continents. The further development and piloting of research instruments and logistics took part in spring 2002. Data collection will start autumn 2002. Researchers from all countries will be invited to participate in this joint study. (Researchers and research institution from some 30 countries have already in writing committed themselves to participation.)

The research is based on cooperation. The intention is also that participants shall learn from each other. The data that are produced, will of course in due time be made available for all participating researchers.
Appendix D: The SAS questionnaire
(Reproduced on the next 13 pages)