Waves with Power-Law Attenuation:
Corrections

Sverre Holm

6th August, 2019

These are corrections and additions for Holm (2019). Bold text needs to be added and replace stricken out text. Please send new suggestions to email: sverre (a) ifi.uio.no.

1 Introduction
• Page 12, Fig 1.4: New figure and additions to caption (no effect on main text)
• Page 12, misprint: replace \(d^{-t/\tau_{\sigma}}\) by \(e^{-t/\tau_{\sigma}}\) in:

\[
G(t) = E_c + E_e \left(\frac{\tau_c}{\tau_{\sigma}} - 1 \right) e^{-t/\tau_{\sigma}},
\]
(1.14)

3 Models of linear viscoelasticity
• Page 79, Fig 3.7: \(\tau_{\sigma}\) in formula in upper figure should be \(\tau\)

5 Power-law wave equations from constitutive equations
• Page 126, Fig 5.4: New figure and additions to caption (no effect on main text)
• Page 133, Sect. 5.3.1: Missing minus after last equal sign:

\[
\Delta c_{ph} \approx \frac{c_0}{2} \tau^{-1} y^{-1} \sin \frac{\pi y}{2} \omega y^{-1} = -c_0^2 c_0 \tan \frac{\pi y}{2} \omega y^{-1}
\]
(5.35)

6 Phenomenological power-law wave equations
• Page 166, line 1, Sect. 6.1.2.1:
 “... the phase velocity increases as a function of frequency, but then may start falling and eventually become negative zero.”
Justification for power laws and fractional models

- Page 201, change text under Eq. (7.59): where the order may be in resulting in $\tilde{E}(\omega) \approx E_0^{1-\alpha}(i\omega\eta_0)^\alpha$ which extends (7.51) to the range $0 \leq \alpha \leq 1$.

8 Power laws and porous media

- Page 256, Sect. 8.6: The reference of the final bullet point has now been published as Chandrasekaran & Holm (2019).
References
