
An Environment for

Literate Smalltalk Programming

Trygve Reenskaug
Anne Lise Skaar

Senter for industriforskning
Fovskningsvn. J

03 I4 Oslo - Norway

Abstract
The programming environment described in this
paper is an adaptation of Donald Knuth’s concept of
literate programming, applied to Smalltalk programs.
The environment provides a multi-media document
production system including media for Smalltalk class
and method definitions.

There are two outputs from the system. The first out-
put is a document which contains general descrip-
tions and discussions intermixed with precise
definitions of program fragments, test inputs and test
results. The second output consists of compiled
Smalltalk programs installed and ready for execution.

The main idea was to produce program documenta-
tion that was just as interesting and fascinating to
read as ordinary literature. Our experience showed an
added benefit, namely that the literate programming
environment was an active aid in the problem solving
process. The simultaneous programming and docu-
mentation lead to significantly improved quality of
both programs and documentation.

1. Introduction

At the Center for Industrial Research (SI) we are a
group of about 10 to 15 programmers using
Smalltalk-80, a language which is eminently suited for
exploratory, incremental programming. Our task has
been to develop products, however, and we have
therefore faced the challenge to create high quality
programs and documents permitting maintenance
and extension by people far removed from the origi-
nal developers.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-333-7/89/0010/0337 $1.50

To the best of our knowledge, object-oriented pro-
grams of satisfactory quality had not been produced
anywhere when we started our development. We
therefore needed to create the necessary software
engineering techniques together with a programming
environment utilizing these techniques in addition to
our specific programming tasks.

This paper is a report on our work. Many terms used
in the paper are taken from the Smalltalk program-
ming environment, but we hope it is approachable
even for people ignorant of Smalltalk. The work
marks the beginning of a major effort at our institute
aimed at developing a comprehensive environment
for the analysis, design, implementation and mainte-
nance of object-oriented systems.

The idea of literate programming is to make docu-
ments describing implementation code as readable as
ordinary literature. The senior author of this paper
was greatly inspired by the Programming pearls arti-
cle [l], where Jon Bentley presented Donald Knuth’s
concept of literate programming and the WEB system
[S]. Reference [9] contains a similar, albeit very infor-
mal, description of a tiny Smalltalk program. Ward
Cunningham and Kent Beck of Tektronix took the
idea a step further as described in [3][2]. Both the
group at Tektronix and the group at Sl have since
refined the methods further and have started using
them for serious development work.

We have based our new software engineering tech-
niques upon a variant of WEB, and have developed our
own programming environment to make the method
suited for our purpose. The environment permits us to
mix general descriptions and discussions with precise
definitions of program fragments, test inputs and test
results. The output is a program definition document
that is adapted to the needs of a human reader, while
it may also be compiled into a Smalltalk program.

October 1-6, 1989 OOPSLA ‘89 Proceedings 337

© 1989 ACM 089791-333.7/89/0010/0337

The rest of this paper is divided into four main parts.
The next section gives a description of the literate
programming environment for Smalltalk programs
and an excerpt from an actual program description.
Section 3 discusses a typical work process from a
software engineering point of view. Section 4 contains
a discussion of the experiences gained when using
the method. Finally, section 5 contains a tentative
conclusion and a suggestion for the direction of
further work.

2. The Programming Environment

Our programming environment is a tool for document
preparation, supporting a number of media useful for
general documentation, such as texts, tables, raster
pictures and vector drawings. In addition, the system
provides media for Smalltalk class definitions and
Smalltalk method definitions for the purpose of imple-
mentation. As a supplement, the Smalltalk doit-
command is available in the text media to facilitate
testing by executing Smalltalk code.

A sample program has been documented in [I 11.
Short excerpts are given in the third subsection as an
example of our present programming style.

The last subsection discusses some differences
between our system and the WEB system.

2.1. General User Interface

The user interface of the environment is basically
organized according to the Smalltalk metaphors [121.
The central idea is to provide each user with a simple,
dynamic information medium tailored to support that
particular user in performing all his or her
information-related tasks.

The model of the system is implemented in Smalltalk
and consists of persistent, shared node objects inter-
connected by attributed relations into a directed
graph structure. An editor for editing the semantic
model, called the Galley Editov, emphasizes a linear
traversal of the graph.

The Galley Editor is divided into two parts: The left-
most part is called the margin part and the rightmost
is called the contents part, see figure 1.

The margin contains an iconic representation of the
types of the document nodes. Examples of node types
in the figure above are document(D), title page, sec-
tion, text, figure, picture. The document structure may
be edited in this margin through cut and paste as well
as using the mouse to move the node icons from one
position to another. The arrow symbols indicate inser-
tion points. Activating one of these points permits the
user to insert a node of any type that is legal at this
point in the structure.

insertio
point -

node '
types

\

330

rogramn

The second [empty) section

his Is a document
.....,_._ _ _..._._.__..__,...._.~...,.~~~.. _ _....._.......,...._......~.-.-....~--..-..... _........... -........
tie page0 _.....__.,..____...._~..~,....~...~.~.........~.......~..........~~.......~.~......~.~...~...~.. - -._

‘Ire first section

,z you probably will see, this is a text.

‘his is a figure with a picture

a I A oictur mau incl
texts, bi maps and,

-collapsed
structure

\ contents

/

editors

Figure 1. The Galley Editor

OOPSLA ‘89 Proceedings October 1-6, 1989

The right part of the window shows the contents of
the nodes. The appropriate editor is started autornati-
tally when the user points to a displayed node. An
explicit command from the user is therefore not
needed.

Zooming facilities permit the user to coilapse any sub-
structure into a single line in the Galley, and to
expand the presentation to any depth.

2.2. Interface to Program Fragments (Classes
and Methods)

The special contents editors for the Smalltalk class
and method definitions are shown in the figure 2 and
are described below.

In both the class and the method aditors, there are
three push-buttons and a main text editor. In addi-
tion, the method definition has auxiliary text editors
for the class name and the protocol name.

The browse-button gives access to the Smalltalk pro-
gram library, called the system organizer, permitting
the user to select any existing class or method
definition. When a selection is made, the source code
is automatically inserted into the editor. The compile-
button activates the Smalltalk compiler, compiles the
source code in the editor and inserts the result into
the system organizer ready for execution. The resct-
button resets the contents of the editor to the current
state of the system organizer. Both the compile and
the reset buttons are inversed when the source code
corresponds to the current version of the code in the

sys tern organizer.

As a supplement to the individual co:ompila-buttons, a
general menu command in the margin can be used CO
cause all classes and methods in a selected section or
document to be compiled.

Classes and methods may be redefined, so that
several versions of the same piece of code may exist

class
definition

I

method
definition

CkssLPefinitien:

CWect variableSubclass: WSlMenuI
instanceVarhbleNames: ‘labels selectors receivers Ii

w textstyle frame form marker selection’
classVariable#ames: ”
poolDictionaries: ”
category: ‘DPS3-Framework’

instance class

Protocohme: instance creation

MetthodContents:

labels: labelArray selectors: selectorArray lines: lineArray
aText.Style + TextStyle default ashlenustyle.
aTextStyle alignment: 2. “centered”

labels: labelArray
selectors: SelectorArray

Figure 2. A class definition and method
definition as it appears on the screen.

Ociober l-6, 1989 OOPSLA ‘89 Proceedings 330

in the same program document. Old versions may be We decide to provide just one creation method in the
activated for execution by recompiling the proper part class. (Other creation methods may be added as it has
of the document. been done in the ST-80 menu classes).

The environment provides a general multi-step undo (Excerpt note: The following is a formal method
and redo mechanism so that the document can revert definition which may be compiled at the authov’s dis-
to any of its previous states. cretion).

2.3. Extract from an Example

Method definition: 51 Menu1 1 labeIs:selectors:lines:
Protocol: instance creation
labels: labelArray selectors: selectorArray lines: lineArray

In this chapter, we reproduce a few, abbreviated frag-
ments of a document describing a new menu class in
Smalltalk. (The fragments have actually been inserted
into this paper by copying some chapters from [ll]
and editing the result).

1 aTextSty/e 1
aTextStyle + TextStyle default asMenuStyle.
aTextStyle alignment 2. “centered
tself new

labels: labelArray
selectors: selectorArray
textStyle: aTextSty/e
lines: lineArray

2.3.1. Motivation and specification

No excerpt,
2.3.3. Testbed for SIMenul

2.3.2. Class SlMenul
We write a pair of dummy classes to enable the test-
ing of the new Menu class.

We started with the study of the standard ST-80
menu classes PopUpMenu and ActionMenu, but we AH we need is a View that can react to a small
decided that our new class should be a subclass of
Object. We gave it the following attributes:

number of different commands, and a Controller that
can offer a suitable menu to the user.

1 labels - an Array of Strings giving the labels of each
item. (We prefer this to the traditional withCRs, or even
worse, carriage returns in the source code).

2 selectors - an Array of Symbols, each giving the com-
mand selector to perform when an item is selected by
the user.

3 receivers - an Array of Objects (or nil) which are the
potential receivers of the command message if the user
selects the corresponding menu item. A nil value indi-
cates that the item may not be selected by the user. This
is new, and combines the function of dispatching a com-
mand selector to its final receiver with a command pas-
sivation mechanism.

(Excerpt note: The following is a formal class definition
which may be compiled at the authoJs discretion, see
the previous chapter for its appearance on the screen).

Class definition: SIMenul
Object variableSubclass: #S/Menu 1

instanceVariableNames: -labels selectors receivers lines
textStyle frame form marker selection.

c/assVariableNames: .-
poo/DicGonaries: ..
categow ‘DPS3-Framework’

A simple solution seems to be to let the View be a
subclass of StandardSystemView, and let the com-

mands effectuate changes to its inside color.

Class definition: TestView
StandardSystemView subclass: #TestView

instanceVariableNames: *’
classVariableNames: ”
poolDictionaries: =-
category: ‘Interface-Supporl’

(Excerpt note: Much material removed here).

We start the Menu when the yellowbug is pressed.

Method definition: TestController 1 controlActivity
Protocol: control defaults
controlActivity

Sensor yellowBu ttonpressed
ifTrue:

[YellowMenu
commandOn: #ye/lo wBu tton
withHeading: nil
0 wner: se/fl.

340 OOPSLA ‘89 Proceedings October I-6, 1989

The Menu will first ask its owner (the Controller)
about each Menu item in turn. In this test, we could
have let the View be the owner of the Menu, but since
the test is also going to double as a demo example,
we let the Controller relay the questions to the View.

Method definition:TestControIler3 I receiverForSelector:
Protocol: menu messages
receiverFor.Selector: aSym bol

tview receiverForSe/ector: aSymbol

To test the dynamic passivation of commands, we
decide on a logic that permits colors to be selected
freely if the color is gray, otherwise all color com-
mands but gray are blocked.

Method definition:TestView3 1 receiverForSelector:
Protocol: menu commands
receiverForSelectov: aSymbol

(insidecolor = Form gray) 1 (aSymbol = #gray)
ifrrue: [tselfl
iffalse: Itnil

2.3.4. Test of the new programs

The program should now be ready for test, but we
must remember to initialize the Controller class:

TestController initialize.
((TestView new) label: ‘test’; borderwidth: 3) con-

troller open

(Excerpt note:
the document
command).

The above statements are executed in
presentation on the screen by a doit-

The test works nicely, but it is impossible to close or
reframe the window. We correct this omission by
adding suitable action for the blue (right) mouse but-
ton and try again. (Excerpt note: We typical/y write

things like this during testing, and clean UP the code
(and the document) when everything works to our
satisfaction).

Method definition: TestContrdler3 1 ControlActivitY
Protocol: control defaults
controlActivity

Sensor ye//o WBU ttonpressed
ifTrufz

[Yello wMenu
commandOn: #yell0 WBU tton
withHeading: nil
0 wrier: selfl.

Sensor blueBu tronpressed
ifTrue:

[self blueBu ttonActivity1.

Both tests were interrupted with the menu open, and
their appearance copied into this document. In the
first test, the inside color is gray. All commands are
available and we select the command VeryLightCray.
In the second test, the inside color is VeryLightGray.
We notice that gray is the only command available, all
the others being passivated.

2.4. Differences from the WEB system.

It should be noted that there are several differences
between our tools and Knuth’s WEB system. In WEB,
program fragments may be defined in any order.
Macro- and other facilities makes it simple to subdi-
vide any code fragment in any way the author
pleases. The author has to know four languages:
English, the WEB specification language, the TeX text
formatting language, and the target programming
language, e.g. Pascal.

Our program fragments are always compilable
Smalltalk code: a class definition or a method
definition. (Definitions may be redefined in later
chapters). The author has to know two languages:
English and Smalltalk. The author does not need to
know the formatter language (e.g. TeX or TROFF),
since our high-level document media have default for-

October 1-6, 1989

Figure 3. The result of two tests.

OOPSLA ‘89 Proceedings 341

matting rules. The use of the document preparation
system is sufficiently simple for us to claim that it
should not be counted as a separate language.

Knuth’s published programs indicate that his docu-
ments are always two levels deep, the TeX program
itself having 54 chapters and 1377 sequentially num-
bered sections. In contrast, we freely use the section
structure permitted by our multi-media editor to make
the document as readable as possible. We have also
programmed our text formatter to give us an alpha-
betically ordered index of class and method
definitions with page numbers rather than section
numbers.

3. The Work Process

Programming is usually described as a top-down pro-
cess, proceeding in an orderly manner from
specification through analysis, design and coding to
final testing and installation. Reality is very different.
The problem is attacked from any angle that seems
profitable, top-down analysis is mixed with bottom-
up synthesis into something that could be called the
yo-yo approach.

During this process, various aspects of the problem
are analyzed, assumptions are established and deci-
sions are made. In a traditional approach, only the
“hard’ decisions are recorded in the form of code and
formal specifications. The underlying assumptions
and considerations are neither recorded nor shared,
and exist only as long as remembered by the origina-
tors.

The literate programming approach offers a marked
improvement on this situation. The main goal is no
longer just to get a working program, but to provide a
coherent description of a problem and its solution. It
now becomes interesting and possible to capture not
only the “hard” decisions such as code and interface
definitions, but also the “soft” arguments about the
writers’ understanding of the problem, assumptions
made, the considerations that preceded the “hard”
decisions, and so on.

This method of working is not just an artifact to help
a reader understand the program, it is an active aid in
its development. For example, if a particular piece of
the program is unduly complicated, slight
modifications of the general base of assumptions and
decisions often lead to dramatic simplifications. Tradi-
tionally, it is very expensive and dangerous to make

such changes because it is hard to oversee their
consequences. With literate programming, one can
find the exact arguments that have to be changed,
modify them and then read the documentation to find
the consequences of the changes.

There are many different ways one can organize a
literate program document, the main consideration
should be to make it easy for a reader to appreciate a
program, its why’s and how’s. One should also
remember that some of the most important readers
are the writers themselves, written arguments tend to
be clearer and last longer than mental pictures.

One possible way to organize both the work and the
documentation is a kind of stepwise refinement which
we have used successfully and will now describe in
more detail.

We first establish and document the overall architec-
ture of the new system, defining a small number of
main modules and their interdependencies. We then
develop and document each module in turn, giving it
is own chapter, or even its own volume if the pro-
gram is a large one.

In the description of each module, the main goal of
programming and testing is divided into a number of
sub-goals, each sub-goal signifying that a step in the
development has been completed. The implementa-
tion of a goal is done by writing about the problem,
possibly discussing alternative solutions, and describ-
ing the solution itself including the required source
code. A sub-goal has its own chapter containing the
description of all work involved for attaining the goal,
including test data and test results. The document
thus reflects the development process.

We have found that if programs become intolerably
complex or show many bugs that are hard to track
down, there is usually one of two possible causes for
the problem. One possibility is that the foundations
we have laid in the previous steps are lacking in func-
tionality or quality. Another possibility is that we do
not really understand the computing process we are
trying to code.

When we discover that the foundation we have built in
previous steps is lacking in functionality or quality, we
go through the document to find the best place to
introduce the required modification or addition. Some-
times we find that we have overlooked something,
making us insert a new subgoal at the appropriate

342 OOPSLA ‘89 Proceedings October l-6, 1989

place in the document. It is a highly satisfactory
experience to make relatively small changes to an
early chapter, and notice how a large and complex
program fragment collapses into a few lines of simple
code.

After having made such changes, we recompile the
document step by step, performing the old tests after
each step and compare them with the old test results
to confirm that the system is still working. We may
also introduce more sophisticated tests if experience
has told us that the original tests were insufficient.

When we backtrack to redo old work in this fashion,
we find our own documentation invaluable. It helps us
remember not only what we did, but also why we did
it the way we did.

If we do not really understand the computing process
we are trying to specify, we zoom out, and write a dis-
cussion of the computing process itself rather than its
implementation. We often find that figures and tables
are useful for clarity. The motivation for the written
discussion is two-fold. Firstly, it helps us better under-
stand our ideas. Secondly, we know that the descrip-
tion will become part of the final program documen-
tation. This inspires us to write (and think) just a bit
clearer than we otherwise might have done.

In some cases we find that we are not even able to
write a description of the computing process. We then
zoom further out and describe what we are trying to
achieve, i.e. we write a detailed description of the
current subgoal. We usually find that if we succeed in
this, we will also succeed in writing the process
description and the precise program code.

It does happen that even the specifications are out-
side our reach because we do not really understand
what we are trying to achieve. This could be caused
by our original specification either being self-
contradictory, or because there were important cases
that we had not considered. We may then have to go
through extensive experiments and discussions before
we are able to continue the main line of work.

4. Experiences
Several programs have been written using our literate
programming environment. A new version of the
environment itself, consisting of some 75,000 lines of
Smalltalk code, has actually been designed and imple-

mented by the authors using an early version of the
environment. Pal Stenslet and Anne Hurlen has used it
to write a storage service, Else Nordhagen [61 has
used it to write a new text editor.

Our experience indicates that the method requires a
fairly good initial idea about what we want to do and
how to do it. The authors knew the functionality of
the new environment because it is very similar to its
predecessor. Else Nordhagen performed extensive
experiments with the text module before she felt it
natural to write intelligently about its design and
implementation. But in all cases, the documentation of
the implementation had profound effects upon the
final design and implementation of the module.

For some kinds of work, we have found that two per-
sons working together on one workstation are very
productive since they challenge each other’s clear
thinking and immediately document the results of this
thinking. In other cases, it may be better for a person
to work in isolation for a while, and then submit his
document to one of his peers for review. Whatever
way we work, it is always a goal to achieve egoless
programming and a situation where one programmer
may complete what another has started.

We do know that our productivity as measured in
statements per working day is low, we have not
measured how low it is. But this is not surprising
since we spend a fair proportion of our time massag-
ing the design and the code, making it simpler, more
powerful, more general and incidentally also smaller
and easier to understand. The number of statements
produced on a good day is therefore often negative.
We do believe, without being able to prove it, that the
total cost of the programs developed is reasonable
considering their functionality and quality.

The environment has proved to be of very good help
during the design and development stages. The
environment seems less convenient in the testing
stage, because it is somewhat cumbersome in our
present environment to find a specific code part in a
document. Because of this, we have often just
appended new sections at the end of the document
describing the corrections.

Inexperienced programmers trying to adapt to our
current programming style have found much help and
support in our literate documents. But they tend to
need some additional information. The overview of
the programs found through the Smalltalk Browser is
of great help.

October l-6, 1989 OOPSLA ‘89 Proceedings 343

No maintenance or extensions have been done by
persons not knowing the system or the original pro-
gramming culture. We therefore have no experience
with how suitabte the documents are for this purpose.
But we hope that the fact that the whole program-
ming process is documented, including assumptions
and decisions made during the development, wilt help
the future maintainers.

5. Conclusions
Our general conclusion is that Knuth’s idea of literate
programming is a very powerful aid in the program
development process, and we are very enthusiastic
about this method of programming. We find that the
mixing of general descriptions (text, pictures and
tables) with precise program fragments is very power-
ful. For a reader, the general description supply the
background information needed for appreciating the
code. For the authors, describing the problem and its
solution is an active aid in the problem-solving pro-
cess. We have also found that recording our ideas and
assumptions in this way helps us correct errors and
introduce extensions when later work indicates that
this is desirable. The visibility of all the material pro-
vides a tremendous support for working in teams.

The technique of literate programming is no panacea,
of course. The quality of the documents is very
person-dependent, and the writing of high-quality
pedagogic material is hard work at the best of times.

The method does not seem appropriate in turbulent
times, such as during initial experimentation or final
testing. The reason may be that the analogy between
a program and a textbook is not appropriate for real
programs. The knowledge presented in a textbook is
usually well known and stable, much work can there-
fore be put into its polished presentation. In contrast,
many real world programs are undergoing continuous
modifications and extensions, rapidly making the ori-
ginal “textbook’ obsolete.

We seem to have two contradicting conclusions: The
method of literate programming is extremely useful
during some stages of the development process, but
the analogy it is built on is not entirely appropriate.
We believe that the style of presentation should be
sacrificed for enriched structure. We envisage the
material of a literate program document organized in
a general hypermedia structure with facilities for
browsing and printing this material in any way
appropriate for any purpose. We call this “the techni-

cal documentation” metaphor to emphasize its high
utility and low artistic value.

6. Acknowledgements
The Literate Programming Environment was imple-
mented as an extension of an existing system called
the DPS[7][8], an extensible work environment for
professionals now being marketed by Taskon AS. Its
first application was to the preparation of bids for
engineering projects [lo]. Our particular extension
was implemented in a few man-weeks of work.

The results reported in this paper have been produced
by a team working closely together. The team
members are Arne Jorgen Berre, Tor Bothner, Anders
Bremer, Anne Hurlen, Anton Landmark, Odd Arild
Lehne, Else Nordhagen, Eirik Nass-Ulseth, Pal Stenslet
and the authors.

The computer technology that forms the basis of our
work was developed at the Xerox Palo Alto Research
Center (PARC) in the seventies[4]. Our information
environments gain their power, user-friendliness and
extensibility from the use of Smalltalk, the most
advanced system for the development of user inter-
faces in existence today. We will therefore extend
special thanks to Alan Kay, Adele Goldberg and their
team in the Xerox Palo Alto Research Center (PARC)
for the creation of the wonderful world of Smalltalk,
and for the support given to the authors and their col-
leagues.

7. References

Jon Bentley: Programming Pearls. Comm. ACM 29, 5 may
1986), 364-369

Ward Cunningham, Kent Beck: A Diagram for Object-
Oriented Programs. Sigplan Notices, 2 I, I I (November
1986). 361-367.

Ward Cunningham, Kent Beck: ScrollController Explained,
an Example of Literate Programming in Smalltalk. CR-
86-53, Computer Research Laboratory, Tektronix, Inc.,
1986.

Adele Goldberg, David Robson: Smalltalk-80. The
language and its implementation. Addison Wesley, Palo
Alto, California, 1983.

Donald E. Knuth: TEX: The Program. Addison Wesley, Bos-
ton, Massachusetts, 1986.

OOPSLA ‘89 Proceedings October l-6, 1989

6 Else Nordhagen: A New Text Editor Implementation for
Smalltalk-80. S/-report (830303) EKI-N-42. Center for
Industrial Research, Oslo, Norway, December 15, 1987.

7 G-o Oftedal: Taskon EndUser Support. Taskon AS, PB. 6
Blindern. N-03 14 OSLO 3. Oslo, Norway 1988.

8 Cro Oftedal, Carl Petter Swensson: User Guide for Docu-
ment Production. Taskon AS, Pt?. 6 Blindern, N-0314
OSLO 3. Oslo, Norway 1988.

9 Trygve Reenskaug: Literate Programming. An Early
Experiment with Knuth.s Method for Programming
Smalltalk. Memo 830303-ree-24. Center for Industrial
Research, Oslo, Norway, June 1986.

10 Trygve Reenskaug, Eirik Nass-Ulseth: Tender One, An
Environment for Tender Preparation. Ninth international
Cost Engineering Congress, Oslo, Norway. 1986. Pages B-
4 ff.

11 Trygve Reenskaug, Anne Lise Skaar: A Literate Program-
ming Environment Written in Smalltalk. EKI Technical
Note 830303-44. Center for Industrial Research, Oslo,
February 1987.

12 Larry Tesler: The Smalltalk Environment. Byte 6, 8 (Aug.
1981) page 90 ff.

October 1-6, 1989 OOPSLA ‘89 Proceedings 345

