
1 Introduction

Modern database technology has all the hallmarks of the successful technology. The relational model has
sufficient flexibility for the expression of a large variety of interesting business phenomena; yet it has
sufficient rigidity to offer great leverage. The result is that we can describe our business information in a
very high level language such as the graphical NIAM schema language; and leave the programming of
the application details to automatic code generators. [Elmasri]

If the relational model gets its strength from its sharp focus on information structures, it also gets its main
weakness from the same source. Focusing on information structures leaves functional aspects out of
focus. The automatic code generators assume a certain functionality, e.g., get, put, select, and join. If
more sophisticated functionality is needed, the functionality has to be defined in a separate application
program that is outside the scope of the information model.

Another limitation of the relational model is that it assumes the existence of a global schema. Different
clients may see different external schemas, but these schemas are created from the one and only global
schema by filtering operations. The same limitation applies to traditional, procedure oriented application
programs. There is a main program that controls all functionality and also defines the global variables
that are available everywhere. The idea is illustrated in figure 1.

The SYSTEM

Figure 1: A centralized, procedure-oriented view of the world

The basic, usually unstated, assumption is that the system creator sees everything, knows everything,
understands everything, and controls everything. These assumptions are valid in a large number of cases.
The data centered approach and the 'global' paradigm are serving us well for developing many useful
and interesting systems. But there are cases when the problem demands that we extend our scope.

Working with objects
A three-model architecture for the analysis of information systems

 Professor Trygve Reenskaug, Taskon

The presentation discusses the merging of object oriented technology with the well-established data base
technology in a third generation client-server architecture. The architecture is based on three kinds of
models. The first is an information model describing the information used in the organization. It will
usually describe a relational database, but object-oriented databases can be effective under certain
circumstances. The second is an organization model describing the users and their work processes. This
object-oriented model acts as a formal requirements specification; the required information can be
deduced from the description of the users and their work processes. The third is a tool model describing
the computer-based tools applied by the users to perform the tasks described in the second model. The
tools will typically access the databases; the tool model is thus a specification of the operations that must
be supported by the information model.

The architecture is based on the OOram method that is described in a new book: Reenskaug, Wold,
Lehne: Working with objects. Manning/Prentice Hall 1995.

©Taskon 1995. Page 110 October 1995 07:29

Functional aspects can be too important to be treated as an afterthought; and we may want to see our
different "global" application systems within a common context. We then have to change our
fundamental way of thinking about systems. We need to find a way to combine data aspects and
functional aspects without overloading our brain. We need to find a way that permits us to accept that the
total system is too large to be comprehended as a whole; a way that permits us to build different models
as the need arises. We need to find a way to formalize and generalize our insights and experience, so that
we can build a solid library of components that we can reuse by composition and specialization to meet
new and changing requirements.

The last point is an important one. We frequently hear the vulgar statement that "change is the only
stable characteristic of the post-industrial enterprise". Taken as the whole truth, it leads to chaos. Taken
as a half-truth, it is both interesting and challenging. The post-industrial enterprise has to be alert and
continuously adapt to a rapidly changing environment. But the only way to do so is to identify a large,
solid, and stable foundation that supports its rapidly changing surface. The foundation will consist of
reusable models, change is supported by changing specializations of these models.

The object paradigm is the only known foundation that can support all the above requirements. The
object combines data and function in a common, encapsulated entity. It supports generalization and
specialization. It supports separation of concern and composition. But the most important characteristic is
the distributed nature of the object system. This is illustrated in figure 2. The all-seeing, all-knowing
system creator has disappeared. The object has responsibility, knows its collaborators, and is robust.
Nobody needs to know everything, but we may study and understand any part of the total system that we
care to consider. The object paradigm permits us to break the rigid boundaries of the centralized
paradigms; it permits us to consider huge, truly global systems.

Figure 2: A decentralized, object-oriented view of the world

There is very little new here. As humans, we have always observed the world around us, we have always
created models that help us understand and master it, and we have created different models for different
purposes. A model cannot be good or bad in itself. If a model serves its purpose, it is a good model. If it
doesn't, it is a bad model. We choose an applicable modeling paradigm, we choose the subject of our
model, we choose what to include, we choose what to exclude.

We shall see how object technology enables us to work with many models with different foci while
retaining overall control, and we shall see how the OOram method enables the practical application of
such models. OOram (Object Oriented Role Analaysis and Modeling) is a mature method that has been
applied to a variety of problems through more than ten years. It was formerly known as OORASS [Ree
92], the complete method has been published in [Ree 95].

2 A three-model system architecture

In this paper, we will choose a three-model architecture because it is interesting and helps us understand
the new generation of distributed client-server systems. We have chosen to take the information model as
our starting point, and extend our interest in two directions as illustrated in figure 3:

1. An information model describes information related to an interesting domain. There will be many
information models, because it is impractical to cover everything of interest within one and the same
model. Examples are financial models, budgeting and cost control models, materials management
models, project planning and control models, computer-aided design models.

10 October 1995 07:30 ©Taskon 1995. Page 2

2. A system user model is a formal description of the human organization and its procedures. (We call it
formal, because we do not model soft aspects such as inter-personal relationships.) There will be
many system user models, because it is impractical to cover everything people do within one and the
same model.

3. A tool model describes the physical interface between the user performing his or her tasks and the
information models.

tasks required
 information

operations

System User Models

Tool Models Information Models

Figure 3: Three model architecture

The relationships between these three models is particularly interesting. Information models describe the
subject of the system user model activities; they describe the users' universe of discourse. Given the
System User Models, we can therefore specify the information to be represented in the Information
models.

The people described in the System User Models need some kind of user interfaces to operate on the
information. The Tool Models describe these interfaces. We use the term tool to denote the artifacts
employed by the users to perform their tasks. The tasks are described in the System User Models, the tool
specifications can be derived from these models.

The Tool Models describe how the users operate on the information. The operations that need to be
supported by the Information Models are therefore specified by the Tool Models.

We will illustrate the three model system architecture by a simple example. We will first consider a
system user model for the management of business travel. The focus will be on organization, division of
authority and responsibility, and the dynamic work procedure. We clearly need an object oriented model
to describe it all, and use the example as a vehicle for introducing the concepts and notation of OOram
role modeling. We then quickly create an additional model for purchasing airline tickets. In section 6, we
describe the idea of role model synthesis enabling us to derive composite models from any number of
simpler base models.

We then move on to an information model covering our example requirements. We see that this model is
basically a data model with almost no functionality. The information model can therefore be
implemented by a relational database service. We finally consider the users' tasks, and give an example
of a tool for the person who authorizes business travels. We see that a suitable tool needs access to a
number of information services in addition to the obvious travel management service. A client-server
implementation of the tools and information services is therefore appropriate even for this very simple
example.

TravelExpense: A System User Model3

We will now develop a System User Model, that is a model describing the business organization and its
activities. It is clear that we cannot hope to create a model of all aspects of an organization; we have to
focus on some aspect and ignore everything else. We choose to focus on the management of business
travel, and we choose to focus on the people involved and their formal relationships.

The element of choice is important in all systems thinking. Regarding a system as an artifact of the
mind, rather than as a solid fact in reality, prevents religious wars and facilitates the choice of useful
models and modeling paradigms. The following definition of the object model is derived from the Delta
project [Holbæk-Hanssen]:

10 October 1995 07:30 ©Taskon 1995. Page 3

A system is a part of the real world which we choose to regard as as a whole, separated from
the rest of the world during some period of consideration; a whole that we choose to consider
as containing a collection of objects, each object characterized by a selected set of associated
attributes and by actions which may involve itself and other objects.

The OOram object metaphor3.1

One hundred years ago, Max Weber proposed a model for the rational organization of enterprises
[Etzioni]. In this rule based, bureaucratic organization, each member has a clearly defined job with
attendant authority, responsibility, and competence. The organization as a whole is structured for
maximum efficiency, its members perform their duties strictly according to the rules.

Our organization-based object metaphor is illustrated in figure 4. We think of the objects as mechanical
clerks. Each clerk has an in basket, and out basket, a book of rules, and a set of data files. An object
(clerk) picks up a message from the in box and performs the steps specified in the applicable rule in the
rule book. These steps can include reading and updating data in the data files as well as sending
messages to other objects.

This simple metaphor covers some commonly stressed object characteristics:

Identity. An object has identity. An object retains its identity all through its life time. There has never
been, and will never be, another object with the same identity.

1.

Encapsulation. An object is encapsulated. Other objects can only access it by sending messages to it;
they cannot observe its internal object construction.

2.

Polymorphism. The object has its private book of rules. Different objects can handle messages
differently according to their own, specific characteristics.

3.

Humans are not automatons, and Max Weber did not live to see a perfect bureaucracy. But if he had been
alive today, he would have seen it in the form of a structure of collaborating objects residing in a network
of communicating computers.

IN

IN

OUT

IN

OUT

OUT

Rules

Rules

Files

Rules

Files

Files

Stimulus
 message

Environment System

Figure 4: The OOram object metaphor: Clerks play roles in organization

One of the main differences between the old, "global" approach to system modeling and the new,
distributed approach is that we regard our systems as open systems [HallFagan]:

For a given system, the environment is the set of all objects outside the system whose actions
affect the system and also those objects outside the system that are affected by the actions of
the system.

A stimulus message is an initial message that is sent from an environment object to the system. The
stiumulus message triggers an activity in the system, it consists of the actions performed by the objects
and the messages sent between them. The final result of the activity is called the response.

10 October 1995 07:30 ©Taskon 1995. Page 4

TravelExpense object model3.2

Applying this metaphor to our problem, we study the business organization and simply regard each
person as an object. This is illustrated in figure 5, where we somewhat arbitrarily also show the worksFor
- reportsTo relationships.

Peter
(Technical author)

Bill
(Dispatcher)

Joyce
(Sales clerk)

Douglas
(Marketing manager)

Kim
(Methodologist)

Elsie
(Programmer)

Eve
(Software Manager)

Bill
(Bookkeeper)

Joe
(Paymaster)

Adam
(Chief Accountant)

Ruth
(President)

John
(Cashier)

Ann
(Customer consultant)

Figure 5: Company organization as an object structure

This figure can be interpreted in many different ways. The traditional way is to regard it as an
organization chart; but we choose to let it denote that each member of the organization is modeled as an
object in the sense of the figure 4 metaphor. This choice implies that we only study formal functions; we
ignore all human aspects of the business organization. But even this is too wide; there are too many
things going on in an enterprise to be represented in a single model. We elect to focus on the following
area of concern:

The area of concern is travel expense management. We focus on managing the trip, and do
not model details about why the journey was made, nor how the traveler is reimbursed for his
expenses.

We could create one model of each potential traveler: Ruth, Adam, Joe, Bill, John, Elsie, ... This is
clearly unnecessary, we select a typical traveler and lets him represent all possible travelers. Let us focus
on Peter and see what happens when he wants to make a trip. One possible process is illustrated in figure
6.

Peter
(Technical author)

Bill
(Dispatcher)

Joyce
(Sales clerk)

Douglas
(Marketing manager)

Joyce
(Methodologist)

Eve
(Software Manager)

Bill
(Bookkeeper)

Joe
(Paymaster)

Adam
(Chief Accountant)

Ruth
(President)

John
(Cashier)

Ann
(Customer consultant)

1: travelPermissionRequest
2: travelPermission

3: expenseReport

5: paymentRequest
4: authorizedExpenseReport

Figure 6: Typical expense report process

10 October 1995 07:31 ©Taskon 1995. Page 5

3.3 The role model abstraction

The model of figure 6 is clearly too specific. We need to make an abstraction; to describe the
phenomenon of travel expense management independent of the person who happens to travel. The
solution is well known to anybody who has written or followed a business procedure: we consider the
roles people play in the context of the procedure. Mapping roles to people can be done in a very flexible
manner at a later stage: a person can play many roles and a role can be played by many people.

We apply this idea to our study of complex object structures. In figure 7, we have identified the pattern
and named the roles for our specified area of concern.

Peter
(Technical author)

Bill
(Dispatcher)

Joyce
(Sales clerk)

Douglas
(Marketing manager)

Joyce
(Methodologist)

Eve
(Software Manager)

Bill
(Bookkeeper)

Joe
(Paymaster)

Adam
(Chief Accountant)

Ruth
(President)

John
(Cashier)

Ann
(Customer consultant)

1: travelPermissionRequest
2: travelPermission

3: expenseReport

5: paymentRequest
4: authorizedExpenseReport

Paymaster

Bookkeeper

Authorizer

Traveler

Figure 7: System user role model

Figure 7 is a somewhat untidy picture that illustrates the very powerful role model abstraction. We
model a complex system as a structure of interacting objects. Our current example is a business
organization, but we could just as well have considered a complex structure of interacting objects
existing in a computer or even in a system of communicating computers. The total system is too complex
to be comprehended as a whole, so we create simplified models by considering an area of concern and
describe a pattern of roles that adequately represent it.

We select a notation and redraw as the role model collaboration view of figure 8. It shows the
collaborating roles and their message communication structure.

au tr

pm

bo

Traveler Authorizer

Book
keeper

Paymaster

Figure 8: Collaboration view of System user model

The large, rounded symbols denote roles, the ones with dashed circumference denote environment roles.
The lines denote message communication paths. The small circles denote ports. Associated with each
port is the set of messages that the near role may send to its collaborator. A uni-directional path consists
of a circle and a line to the collaborator role. To simplify the diagram, the path in one direction is
superimposed on the path in the opposite direction. A single, small circle denotes cardinality of exactly
one: the near role knows of exactly one collaborator role. A double circle denotes a cardinality of any. A
cross denotes a uni-directional path, the near role does not send messages along the path.

The reason why the Traveler wants to travel is outside the area of concern. So the first, travelPermission-
Request, message appears "out of the blue". It is a stimulus message and the Traveler is an environment

©Taskon 1995. Page 610 October 1995 07:32

role. Intuitively, this feels wrong. Surely, the Traveler is an essential part of the model and cannot be a
mere environment role? But the notion of environment objects is a technical one, and the fact that there is
clearly more to the Traveler object than is represented in this Traveler role makes it an environment role.

The Paymaster role is likewise denoted as an environment role because it receives the final,
paymentRequest, and the actions triggered by that message are outside the context of the current area of
concern.

Objects describe static, data-centered properties as well as dynamic, process-centered properties. We
cannot show all aspects of an object model in one diagram, and use different views to show different
aspects of one and the same model. Some dynamic properties of our role model is shown in figure 9.
This is a scenario, it describes one possible sequence of messages resulting from a stimulus message.

Traveler Authorizer
Book

keeper
Paymaster

travelPermissionRequest:

travelPermission:

expenseReport:

authorizedExpenseReport:

paymentRequest:

Figure 9: Interaction scenario of System User Model

The OOram way of modeling dynamic properties is related to the Use Case described by Ivar Jacobson
[Jacobson]. A Use Case is triggered by a user action, an OOram activity is triggered by a stimulus
message from an environment role. Both methodologies describe the actions by describing one or more
examples in the scenario diagrams. Where we may differ, is that the OOram methodology defines a good
model as a model where both the static, data centered properties and the dynamic, process centered
properties are taken care of in a satisfactory manner.

The role model abstraction is useful for the study of large and complex object structures. In figure 10, we
first select some real world phenomenon and represent it as a structure of objects. In a second step, we
focus on a particular area of concern, and represent the relevant pattern of objects as a corresponding
pattern of roles. The roles have all the properties of objects: they have identity, they represent data, they
have behavior. We shall later see that role model inheritance not only reuses the properties of individual
objects and classes, but it also reuses the dynamic properties of interacting objects.

1. We choose an area of concern, and disregard all objects that are not relevant in this context.

We further disregard all aspects of the considered objects that are irrelevant in the context of the
chosen area of concern.

2.

We generalize object identity, and represent similar patterns of interacting objects by a similar,
archetypical pattern if interacting roles.

3.

We use the object encapsulation property to hide roles that we consider to be of little interest within
the boundaries of other roles.

4.

Smalltalk
Eiffel
C++
SDL
CORBA
OLE

Objects
Real
World Roles Code

Figure 10: The OOram role model abstraction

10 October 1995 07:33 ©Taskon 1995. Page 7

3.4 Views and perspectives

The way we have defined that objects are encapsulated and that a system has an environment. This
invites us to observe the system from different observation points as indicated in figure 11. The
perspective depends on our observation point. The view depends on what we want to see.

IN OUT

IN

IN

OUT

OUT

Rules

Rules

Files

Rules

Files

Files

Observed from
system environment

Observed from
inter-object space

Observed from
inside an object

Figure 11: The importance of observation point

If we observe the system from inter-object space, we get views similar to figures 8 and 9. If we observe
the system from its environment, we see the environment objects. The system itself appears as a single,
virtual role as shown in the collaboration view of figure 12. We readily see that we could also make
scenario views, they will look like figure 9 with all internal details suppressed.

Traveler System Paymasterau tr pm

Figure 12: System User Model collaboration view as seen from the environment

Authorizer Traveler

travelPermissionRequest: (aTravelRecord)

Check purpose

Check current plans

Check budget available

Respond to request travelPermission: (aTravelRecord)

Traveler Authorizer

travelPermission: (aTravelRecord)

<Traveler purchases the necessary tickets>

<Traveler travels>

<Traveler prepares an expense report> expenseReport: (aTravelRecord)

Figure 13: Two methods

If we move our observation point inside the object, we see its internal details. It is the observation point
that yields the code; the class, the variables, and the methods. It is the observation point most commonly

10 October 1995 07:34 ©Taskon 1995. Page 8

adopted by popular object oriented methodologies. It is close to the implementation details, but far from
the system as a whole. Method views and and possibly Finite State Diagrams are useful from this
observation point. Figure 13 shows two method views, one for an Authorizer method and one for a
Traveler method. These views are abstractions on the corresponding method codes expressed in some
programming language.

AirlineBooking: Another System User Model4

Our idea of separation of concern implies that we can create different role models on one and the same
object structure. We illustrate this by indicating a model covering the purchasing of airline tickets:

Area of concern: Airline tickets are ordered by a booking clerk and paid directly to the travel
agent. The traveler is to show the cost on the expense report as an expense, and as an
advance since the tickets are not paid by the traveler.

We show the collaboration view and a typical scenario in figure 14 without further comment.

sec

tr

ta

cust

bk

ven

pm

Traveler

Booking
Clerk

Travel
Agent

Book
Keeper

Paymaster

Traveler
Booking

Clerk
Travel
Agent

Book
Keeper

Paymaster

orderTicket:

orderTicket:

ticket:

invoice

ticketWithCost:

authorizedInvoice:

paymentRequest:

payment:

Figure 14: AirlineBooking collaboration and scenario views

5 DerivedTravelExpense: Model inheritance by synthesis

We have seen how the role model abstraction can be used for separation of concern; we can crate any
number of models that describe different areas of concern from a potentially large and complex object
structure.

We shall now study the opposite operation, called synthesis. We mentioned the key to this operation in
section 3.1; an object can play several roles, and a role can be played by several objects. As an example,
we will create a composite model that handles both TravelExpenses and AirlineBooking:

The area of concern is the procedure for travel management including the purchase of tickets.

The new model is called the derived model. It is derived from two base models: The TravelExpense
model and the AirlineBooking model. The synthesis operation is done by requiring the roles of the
derived model to play the roles of the base models as illustrated in figure 15.

The two base models are shown shaded in figure 15. There are two synthesis operations, one for each
base model. The derived model in the middle inherits all static and dynamic properties from these base
models:

Static properties:

1. The semantics of the derived roles is consistent with the semantics of the corresponding base roles.

2. The responsibility of the derived roles includes the responsibility of the corresponding base roles.

The attributes of the derived roles include the attributes of the corresponding base roles.3.

10 October 1995 07:38 ©Taskon 1995. Page 9

4. All communication paths of the base role models must be found as corresponding communication
paths in the derived model.

5. The message interfaces of the base ports must be included in the interfaces of the corresponding
derived ports.

If a base role has been implemented as a class, a class implementing the derived role can be its
subclass.

6.

au tr bo

ven

bk

ta

cust

pm

bo

sec tr

pm

sec

tr

au
tr

bk

ta

cust

ven

pm

Traveler Authorizer
Book

keeper
Paymaster

DTE
Traveler

DTE
Booking

Clerk

DTE
Book

Keeper

DTE
Travel
Agent

DTE
Paymaster

DTE
Authorizer

Traveler
Booking

Clerk

Travel
Agent

Book
Keeper

Paymaster

Base model 1: TravelExpense

Base model 2: AirlineBooking

Derived model

Figure 15: Deriving the composite model

Dynamic properties

The activities (use cases) of the base models are found in the derived model.1.

The message flows of the base models are found as corresponding message flows in the derived
model.

2.

3. The methods and possible finite state diagrams describing role behavior in the base models are
embedded in the corresponding methods and finite state diagrams of the corresponding derived roles.

This idea of model inheritance is more powerful than the more common idea of class inheritance. The
static inheritance properties are similar to those found in class inheritance, but the description of the
dynamic properties of the base model object pattern can only be inherited when we consider the model as
an entity.

The activities of the base models are repeated in the derived models. The activities can either be found as
independent activities, the base model stimulus message then becomes a stimulus in the derived model.
Alternatively, a base model activity can become part of another activity in the derived model. The base
model environment role then becomes a regular role in the derived model; and the base model stimulus
message is called from within a method in the derived model.

In our example, the ticketing activity is inserted into the travel expense activity. This is illustrated in the
composite scenario of figure 16.

The actual coupling between the two activities takes place in the derived method for travelPermission in
the derived Traveler role. The corresponding base model was shown at the bottom of figure 13, it
included a comment <Traveler purchase necessary tickets>. The AirlineBooking model gives the details
of this operation, and the corresponding activity is triggered as a subactivity in the derived method as

10 October 1995 07:39 ©Taskon 1995. Page 10

shown in figure 17.

DTE
Traveler

DTE
Booking

Clerk

DTE
Authorizer

DTE
Travel
Agent

DTE
Book

Keeper

DTE
Paymaster

travelPermissionRequest:

travelPermission:

orderTicket:

orderTicket:

ticket:

invoice:

ticketWithCost:

authorizedInvoice:

paymentRequest:

payment:

expenseReport:

authorizedExpenseReport:

paymentRequest:

Ticketing activity

TravelExpense activity

Figure 16: Composite interaction scenario

DTE
Traveler

DTE
Booking

Clerk

travelPermission: (aTravelRecord)

<Traveler purchases the necessary tickets> orderTicket: ()

DTE
Traveler

DTE
Authorizer

ticketWithCost: ()

<Traveler travels>

<Traveler prepares an expense report> expenseReport: (aTravelRecord)

Ticketing activity ends
with this message

Figure 17: Derived model method sends base model stimulus message

Notice the fundamental difference between the creation of an external database schema and the synthesis
of a composite model. The external database schema is created by filtering from a single, global schema.
The creation of a derived model is the very opposite: the derived model is composed from a number of
initially independent base models:

1. The specifications from the base models are initially orthogonal.

2. Attributes and Methods (actions) integrate behavior:

Traveler sends orderTicket as part of travelPermission method-

Traveler learns airfare from AirlineBooking model-

Traveler uses airfare when preparing expense report-

The synthesis operation is used to support three popular abstraction mechanisms as illustrated in figure
18:

1. Peer model composition. An example could be that we have a base model for our budgeting
operation, and another for expense control. A cost management model could be derived from these
two models.

Hierarchical decomposition and aggregation. An example could be a materials management model
that has a PurchaseOrder-role. Opening this role, we could see that it enclosed a role model with
roles such as PurchaseOrderItem.

2.

©Taskon 1995. Page 1110 October 1995 07:40

Specialization/generalization. We could, for example, have a base model describing general project
management. We could then derive a model for large projects and another model for small projects.

3.

3.
Specialization
 -- generalization

2.
Separation of concern
and composition between
different levels of abstraction

1.
Separation of concern
and composition on
same level of abstraction

Figure 18: Three common applications of synthesis

6 Travel Authorization Tool Model

The methods of the System User Model describe tasks to be performed by the users. The methods can,
therefore, be used as specifications for the computer-based tools to be provided for the users. As an
example, figure 19 shows a possible tool for the Authorizer when determining to authorize a travel
request. The method is outlined in the upper half of figure 13; it states that the authorizer shall check the
application against current plans and budgets. The tools is designed for a user who does this kind of task
only rarely, and who wants to make a decision within a minute. The tool collects all relevant information,
and provides push-buttons for authorizing or rejecting the request. All communication and recording of
the decision shall be made automatically.

Travel authorization request.

Authorize

Attend OOPSLA'95 conference
Purpose

USD 3,000Planned costBethTraveler Oct.15-Oct.19Period

Current plans for Beth

Week 35 36 37 38 39 40 41

Project 1
OOPSLA
Project 3
Project 4

Budget and commitments

Item
Travel

Committed
4,000

Budget
10,000

Reject

Figure 19: Travel Authorizer user interface tool

An interesting aspect of this interface is that it accesses three distinct databases as indicated in figure 20.
The databases are the travel account service, the budget service, and the planning service. We believe
this to be fairly typical for decision-making tasks. One of the great advantages of our three model
architecture and client-server distributed systems is that they permit the creation of task-oriented tools
independently of the domains of the required information.

10 October 1995 07:41 ©Taskon 1995. Page 12

acctool auth

bud

pla

Authorizer
Authorizer

Tool
Account
Service

Planning
Service

Budget
Service

Figure 20: Travel Authorization Tool Model collaboration view

7 TravelExpense: An information model

The Information Model describes the universe of discourse of the User System Model; i.e., its message
parameters and role attributes.

The area of concern is modeling the information contained in travel expense accounts. We
focus on the expense account itself and do not model details about the user interfaces.

The information model can frequently be implemented as a relational database; and the database schema
can be defined with an appropriate framework. An object oriented database could be required if the Tool
Models require a rich functionality. If all tools are as functionally simple as the tool of the previous
section, a relational database will be very satisfactory for our TravelExpense example.

We will here only give a first sketch of a possible model. Figure 21 shows a semantic view of the most
important parts, more work will be needed to specify the complete database.

Consists of

Part of

Consists of

Part of

UsedBy

Uses

Consists of

Part of

Travel
Record

Pay
Authorization

Expense
Item

Travel
Permission

Pay
Request

Client

Figure 21: Semantic view

Conclusion8

In this paper, we have shown how the proper application of object-oriented concepts and the OOram
technology can help us open the boundaries of databases and application programs. By moving from
closed to open systems, we can create multiple, interdependent models focusing on different aspects of
the enterprise. We can model the user organization and its procedures separate from the information
model, and the users' information tools independently of their information needs. Finally, we can study
the interdependencies between these models, creating an overall understanding of the enterprise
information handling needs and capabilities.

10 October 1995 07:41 ©Taskon 1995. Page 13

The OOram technology offers many advantages:

1. A role model can have several views highlighting:

static, data-oriented aspects-

- dynamic, function-oriented aspects

2. A role model can be seen from different observation points:

from the system environment observing its external properties-

- from the inter-object space observing the objects and the message flow

from inside an object, observing its construction-

Most methodologies describe message interfaces on the level of objects or classes. The OOram
technology specifies message interfaces on the level of communication paths, supporting the
specification of distributed systems.

3.

The OOram technology supports Separation of Concern, so that different models can be created for
different purposes. These models are not limited by a hierarchical straight-jacket; each model can
depict any pattern of objects:

4.

a complex system of objects can be broken down into simpler role models through
decomposition

-

- simple base models can be combined into more complex, derived models through synthesis

The synthesis operation provides model inheritance. This preserves the static and dynamic properties
of complete patterns of objects, rather than the single-object considerations supported by class
inheritance.

5.

The OOram technology offers a seamless bridge from analysis through implementation.6.

9 References

[E.And] Egil P. Andersen, Trygve Reenskaug: System Design by Composing Structures of
Interacting Objects. ECOOP '92, Utrecht, Holland.

1.

[Elmasri] Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems.
Benjamin/Cummings 1994. ISBN 0-8053-1748-1

2.

[Etzioni] Amitai Etzioni: Modern Organizations. Prentice-Hall 1964, pp. 53-543.

[HallFagan] Hall, Fagan: General Systems, Yearbook of the Society for general Systems Research.
Ann Arbor, Michigan, Vol. I-X, 1956-65.

4.

[Holbæk-Hanssen] Erik Holbæk-Hanssen, Petter Håndlykken, Kristen Nygaard: System Description
and the Delta Language. Norwegian Computing Center, Oslo 1977.

5.

6. [Jacobson] Ivar Jacobson et.al.: Object-Oriented Software Engineering. A Use Case Driven
Approach. Addison-Wesley 1992. ISBN 0-201-54435-09

[J.And 91] Jørn Andersen, Trygve Reenskaug: Operations on sets in an OODB. OOPS Messenger, 2,
4 (October 1991) pp. 26-39.

7.

8. [J.And 95] Jørn Andersen: The Dynamic Model. Object Magazine 5, 4 (July-August 1995) pp44-53

[Ree 92] Trygve Reenskaug, Egil P. Andersen, Arne Jørgen Berre, Anne Hurlen, Anton Landmark,
Odd Arild Lehne, Else Nordhagen, Eirik Næss-Ulseth, Gro Oftedal, Anne Lise Skaar, Pål Stenslet:
OORASS: Seamless Support for the Creation and Maintenance of Object-Oriented Systems. Journal
of Object-Oriented Programming, October 1992, pp 27-41.

9.

10. [Ree 95] T. Reenskaug, P. Wold, O.A. Lehne: Working With Objects. Manning/Prentice Hall, 1995.
ISBN 1-884777-10-4

©Taskon 1995. Page 1410 October 1995 07:42

